US3921362A - Method of and means for multi-story building construction - Google Patents

Method of and means for multi-story building construction Download PDF

Info

Publication number
US3921362A
US3921362A US489030A US48903074A US3921362A US 3921362 A US3921362 A US 3921362A US 489030 A US489030 A US 489030A US 48903074 A US48903074 A US 48903074A US 3921362 A US3921362 A US 3921362A
Authority
US
United States
Prior art keywords
lift
wall panels
floor
slab
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US489030A
Inventor
Pablo Cortina Ortega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cortina Systems Inc
Original Assignee
Pablo Cortina Ortega
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pablo Cortina Ortega filed Critical Pablo Cortina Ortega
Priority to US489030A priority Critical patent/US3921362A/en
Priority to CA213,233A priority patent/CA1021590A/en
Priority to IN2524/CAL/74A priority patent/IN144450B/en
Priority to AU75435/74A priority patent/AU475095B2/en
Priority to ES432569A priority patent/ES432569A1/en
Priority to IT7061274A priority patent/IT1027058B/en
Priority to AR25678774A priority patent/AR209086A1/en
Priority to NL7416486A priority patent/NL7416486A/en
Priority to BR1068774A priority patent/BR7410687A/en
Priority to PH16687A priority patent/PH11385A/en
Priority to DE19752501207 priority patent/DE2501207A1/en
Priority to GB6104/75A priority patent/GB1497321A/en
Priority to YU39675A priority patent/YU39675A/en
Priority to JP2448275A priority patent/JPS5323131B2/ja
Priority to FR7508238A priority patent/FR2273127B1/fr
Priority to US05/601,789 priority patent/US3974618A/en
Application granted granted Critical
Publication of US3921362A publication Critical patent/US3921362A/en
Assigned to CORTINA SYSTEM, INCORPORATED, A CORP OF TEXAS reassignment CORTINA SYSTEM, INCORPORATED, A CORP OF TEXAS ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PABLO CORTINA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/35Extraordinary methods of construction, e.g. lift-slab, jack-block
    • E04B1/3533Extraordinary methods of construction, e.g. lift-slab, jack-block characterised by the raising of hingedly-connected building elements, e.g. arches, portal frames
    • E04B1/3538Extraordinary methods of construction, e.g. lift-slab, jack-block characterised by the raising of hingedly-connected building elements, e.g. arches, portal frames the elements being a floor slab with hingedly-connected wall panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/167Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/167Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements
    • E04G21/168Tools or apparatus specially adapted for working-up plates, panels or slab shaped building elements used for tilting, e.g. from horizontal to vertical position or vice versa

Definitions

  • ABSTRACT There is shown the preforming of walls and floor slabs as a stack wherein the walls of each story are connected to the next floor slab thereabove by lift pick-up cables spaced along the to be top edge of each wall.
  • Lift apparatus forming no part of the building is provided for attaching lift fixtures to elements cast in the edges of the floor slabs.
  • the lift apparatus includes pairs of columns as necessary supporting a repositionable upward bridge therebetween having lifting jacks operating lift rods connected with the floor slabs below by the removable lift fixtures.
  • FIG I40 FIG. l6
  • An object of the invention is to provide a building by self-erecting walls precast in a horizontal position on a floor or casting bed, casting a ceiling slab thereabove to which the walls are hangingly connected by pick-up cables and lifting the slab while swinging the walls outwardly with their bottom ends sliding'along the floor below thereby adding to stabilization of the self-erection.
  • Another object of the invention is to provide for erecting successively cast sets of load bearing walls connected to ceiling slabs cast thereabove into a multistory building and adding to the stability of the erected building by installing vertical reinforcing rods in cast in aligned apertures in the walls and ceiling slabs.
  • a further object of the invention is to provide overload protection for each lifting fixture by lifting in seand its walls to occur at the initial part of a lift of the stack.
  • Yet another object of the invention is to provide lift fixtures to be detachably attached to the slabs of a stack of sets of slabs and walls and to each other fixture that can be removed insequence from the bottom slab after it has been lifted and lowered'onto its connected supporting'walls.
  • Still another object of the invention' is to provide lifting apparatus for sets of slabs and connected walls in a stack that has pairs of externally positioned columns supporting a bridge member and 'lift jacks thereon that is repositionable upward for making successive lifts after connecting and disconnecting lift rods from'the jacks to lift fixtures provided for the respective successive stacked slabs.
  • Another object of the invention is to provide stabilization in lifting a stack of sets of ceiling slabs and connected support walls by installing temporary pairs of erecting columns, installing a bridge member between the pairs of columns and temporarily securing it in a stabilizing manner in successive lift positions and applying a stabilizer between a lifted ceiling or floor slab and the adjacent column.
  • a further object of the invention is to provide a connection between a horizontally precast wall on a floor and a ceiling slab 'cast thereabove consisting of a pieceof cable that is formed with a loop at its lower end cast in the walls top edge with the loop lying in a plane ex tending transverse to the top edge of the wall and extending the ends of the cable upward for casting into the ceiling slab adjacent its edge in such a position that the top edge of the wall aligns to support the edge of the slab above and there is a spacing of approximately /2 to inch between the slab and the hanging wall as the slab is lifted,
  • the support by the'cable is from the leg end thereof that is positioned nearer the edge of the shifts to the other leg of the cable and to its portion of the loop directly therebelow whereby breaking and spauling of the concrete is avoided.
  • FIG. 1 is a perspective view of a typical ground floor slab having cast thereon the necessary to be lifted and swung into position supporting walls with their ceiling slab thereabove to which they are attached along their to be top edges by pick-up cables cast therein illustrative for a three story building, the topmost ceiling slab being fragmentally shown;
  • FIG. 2 is a fragmentary perspective view of the edge of a floor and/or ceiling slab with a lift attaching member cast therein and a recess therebelow in the lower face at the slab edge both for receiving and attaching a lift fixture;
  • FIG. 3 is a perspective view of the three story building with lifting apparatus in position, the supporting walls for the third story being swung into position as their ceiling slab to which they are attached by pick-up cables is lifted into position and precast wall panels ready for lift by a crane to fill the void wall'spaces;
  • FIG. 4 is a cross sectional fragmentary side view of the ground floor slab, the horizontallycast supporting walls connected by cast in pick-up cables to their .ceiling slabs thereabove and a side view of the lift attaching members cast in the slabs with the lift fixturesattached;
  • FIG. 5 is a left hand end view of FIG. 4 showing the attached lift fixtures and their connection with each other for successive pick-up from top fixture on down;
  • FIG. 6 is a view similar to FIG. 4 showing the initiation of the lift with the ceiling slabs and their supporting walls successively peeled-off and separated starting with the top most ceiling slab and its attached walls;
  • FIG. 7 is a side view of a vertical support column whose lower end is secured to a foundation support, one end of a bridge member hoisted into position by a hand winch and secured to the column, a lifting jack on the bridge and a lift rod attached to the lift fixtures, the slabs and walls having been peeled-off beginning with the roof slab and then separating each slab and its supporting wall in sequence;
  • FIG. 8 is a view similar to FIG. 7 showing the first floor support walls swinging slowly outwardly towards their vertical supporting position as the lift progresses and an aperture in the wall and in its ceiling slab above is typically shown ready to receive a stabilizing pin which will be replaced by permanent reinforcing rods;
  • FIG. 9 is similar to FIG. 8 showing the first floor supporting walls supporting their ceiling slab which has its lift fixture removed and a stabalizer installed between the ceiling slab and the column and separating wedges in position between the respective ceiling slabs;
  • FIG. 10 is similar to FIG. 9 showing the bridge having been hoisted to its next upward position and secured to the column and the second floor supporting walls being swung outwardly into load bearing position as the lifting continues; 7
  • FIG. 11 is similar to FIG. 10 the second story walls are now in load bearing position supporting their ceiling slab whose lift fixture has been removed and a stabilizer member installed between the second story ceiling slab and the column;
  • FIG. 12 is similar to FIG. 11 showing the bridge hoisted to its next lift position and secured to the column and the roof slab which is the third story ceiling slab being lifted with its load bearing walls being swung outwardly;
  • FIG. 13 is a view similar to FIG. 12 with the third story ceiling slab in position supported by its load bearing walls, the top lift fixture has been detached and the temporary stabilizers are removed and the lift apparatus is ready to be dismantled and moved to another site;
  • FIG. 14a is a fragmentary showing of a floor slab and its attached wall and the lift pick-up cable at start of lift;
  • FIG. 14b shows the wall swung outward about 45, installation of sealing material and the relatively small spacing between wall and supporting slab and the shift in cable portion support;
  • FIG. 140 shows the wall having been laterally aligned and in load bearing position under the edge of the slab
  • FIG. 15 is a showing of the erected walls and slabs and the aligned apertures formed in the walls and slabs with seismic reinforcement grouted in place;
  • FIG. 16 is a showing of a form that the stabilizer between slab and erecting column may take
  • FIG. 1 a typical ground floor slab l0-has been provided on suitable foundations and in the illustration it extends outward to provide foundation supports for floor slab could; extend only to the perimeter of the walls of the building and separate foundations would then be provided for each vertical support column.
  • On the ground floor slab or casting bed 10 are successively cast load bearing walls and their ceiling slabs.
  • a separating layer of bond-preventing material (not shown) is placed on the top of the ground floor slab 10.
  • Suitable forms are provided on the ground floor slab for first story walls 1141,1211, 13a and 14a to be poured similar to the third story walls 110, 12c, 13c and showing in FIG. 1.
  • FIG. 8 shows a temporary holding pin 48 inserted through a hole in the ceiling slab that is in alignmentwith the aperture 18. After overnight curing the walliforms are removed and used again. Any voids between the walls such as at 19, see FIG. 1, are filled with like interio'r load-bearing pickup walls or waste material such as soil and perhaps finished with a thin waste-slab of concrete.
  • a separating'layer of bond-preventing material (not shown) is placed-over the cured first story walls.
  • the ceilingslab for the first story is next to be cast over the first story now cured walls.
  • a slab perimeter form (not I shown) overhanging the wall'edges is installed.
  • the pe rimeter overhang see at,-20 in FIG. 1, is at least the width of the load bearing wall cast below whose to be top 'edge will support the ceiling slab; underneath this overhanging portion.
  • the projecting-ends of the pickup cables l6. are placed in position within the forms for the ceiling slab. Also lift attaching members. 21 such as U-bolts, see FIG.
  • the form is providedwith a filler block (not shown) so as to form a recess 22a extending in from the edge of the slab at its bottom face.
  • FIGS. 4 and 5 receive a web of an angle bar on a lift.
  • two L-shaped members could be cast in the slab with the legs threaded and projecting spaced apart at the edge of the slab to receive the lift fixtures.
  • the next two stories above have their sets of supporting walls and ceiling slabs likewise cast and connected.
  • the walls are respectively numbered 11a, 12a, 13a and 14a for the first story.
  • the second story walls are numbered 11b. 12b, 13b and 14b and as noted above the third story walls are respectively 110, 12c. 13c and 14:.
  • the first story ceiling slab as indicated above is 22, the second story ceiling slab is 23 and the third story ceiling slab or roof slab is 24.
  • Ceiling slab 22 is the floor slab for the second story and ceiling slab 23 is the floor slab for the third floor.
  • the void wall spaces are filled by separately cast wall slabs indicated in the piles 25 and 26. These are lifted and set in place by a separate crane.
  • foundation supports a for the vertical support columns 27 On the ground floor slab there is provided foundation supports a for the vertical support columns 27. These columns are about three feet longer than the total height of the building. For the particular three story building to be erected three pairs of temporary support columns 27 are placed on their support foundations 10a and secured by hold down bolts and grouting (not shown). Each column has a one ton hand operated winch 28 installed near its lower end. This is for hoisting the cross bridges 29 into their successive lift positions above the pile of cast slabs and their load bearing connected walls to be swung outwardly into position during the lifting operation.
  • Each winch has a cable 28a that is led up the column and over sheaves 28b mounted at the top of the column and then down to where it is secured to the cross bridge 29.
  • the number of pairs of support columns 27 and the center-to-center spacing between the three pairs is a function of the separate jack or separate lift means capacity and convenience.
  • Each bridge 29 is bifurcated at its ends to receive the columns 27 and be guided thereby in their sliding engagement with the columns.
  • Means are provided at fixed points along the columns for supporting the cross bridge for one lift per each ceiling slab or floors.
  • a connection shown is provided by having through apertures through which is inserted a support pin 30.
  • a welded-in tube (not shown) to reinforce the through apertures 27a could be provided, appropriate saddles (not shown) are used to provide fixity and to distribute the load on the support pins 30.
  • jack lift means 31 such as lift-slab jacks such as shown in US. Pat. Nos. 2,758,467 and 3,201,088.
  • Each separate lift means is vertically above the projecting lift attaching members 21 projecting from the slabs below.
  • lift fixtures which are detachably attached to the slabs and detachably attached to each other are provided.
  • a top lift fixture is generally indicated as 33. It has a cross head 33a of four welded together plates to form a box like member, square in cross section.
  • the cross head 33a has vertically extending apertures 33b through each end to receive the two depending lift rods 32 that are secured by a nut 32a or a quick release hinged type nut used on lift rods in lift-slab work.
  • a depending tension bar 33c is welded to the cross head 33a and it has a pair of lugs or bosses 33d welded to its opposite inner faces adjacent its lower end.
  • An angle bar 34 has its vertically extending web welded to the tension bar 330 adjacent the lugs 33d thereon and its vertically extending web has apertures therethrough spaced to each side of the tension bar 33c to receive the threaded legs of the U-bolt lift attaching member 21 to which it is secured by nuts 21a.
  • the transversely extending web or flange of the angle bar 34 projects into the formed recess 24 a in the top most ceiling slab for lift engagement to avoid interference at erection with wall 11c.
  • a second lift fixture is generally indicated as 35. It is made up of a pair of spaced apart tension bars 35a held spaced apart by a pair of spaced apart reinforcing cross pieces 35b welded thereto. A pair of lugs 350 is welded to the inside faces adjacent the top end of the spaced apart bars while another pair of lugs is welded to the inside faces adjacent the bottom end. Likewise an angle bar 36 is welded to the tension bar 35a adjacent its lower end and adjacent the lower pair of lugs 35d. The upper web of the angle bar is attached to the projecting threaded legs of the lift attaching member in ceiling slab 23 and its lower web is received in the recess 23a of the ceiling slab 23 for lift engagement. Referring to FIG.
  • top pair of lugs 35c on second lift fixture 35 are spaced above the pair of lugs 33d on the top lift fixture 33 so that the roof slab 24 is first lifted and its attached walls peeled-out. This spacing is of the order of /z to about /1 inches.
  • a third lift fixture is generally indicated as 37. It is made up of a tension bar 37a that'has a pair of lugs or bosses 37b welded to its opposite faces adjacent its top end.
  • the tension bar 37a is slidably received between the spaced tension bars 35a on the lift fixture 35 thereabove and the pair of lugs 37b are spaced above the lugs 35d on lift fixture 35 for like engagement as explained above for the top lift fixture 33 and the second lift fixture 35.
  • a pair of lugs 376 which are for engagement with a type of lift fixture 35 that would be attached to a slab therebelow if a building with a greater number of stories was being built.
  • An angle bar 38 has its vertical web welded to the tension bar at the bars lower end and has apertures therethrough like the other lift fixtures to receive the extending threaded ends of the lift attaching member in slab 22. The transverse web of the angle bar 38 is received in the adjacent recess 22a for lift engagement with slab 22.
  • FIG. 14a shows the slab and the wall W in their cast position with the lift pick up cable 16 looped around reinforcing bars 17.
  • the reinforcing bars 17 help position the cable but they are not necessary for anchorage.
  • the unique installation and cable path geometry avoids breaks and spauling of the concrete.
  • cable portion A pulls in such a direct line that there is no concrete spauling.
  • cable portion B takes over and finishes the job with vertical pulling.
  • a sealing sheet or sealing material 41 may be installed at the top edge of the wall to provide a seal in its load bearing contact with the slab portion thereabove.
  • the sealing material may be a strip of polyurethane foam, a smear of asphalt or any suitable sealing material. As the wall swings into position a certain amount of lateral alignment is required. The lift pick-up cable does not act as a hinge.
  • FIG. 15 there is shown the seismic reinforcement between walls and slabs.
  • the ground floor slab 10 has formed therein vertically extending apertures 9 along its perimeter where it receives the bottom of the load bearing wall.
  • the wall has an aperture 18, see FIG. 8, formed therein during casting and vertically aligned aperatures 22b, 23b and 24b are formed in the respective slabs 22, 23 and 24.
  • Reinforcing seismic rods 42 are installed and grouted in position in the aligned apertures.
  • a stabilizer 39 may take between an erecting column 27 and the adjacent lift attaching member 21 projecting from the lifted slab 22 after the lifting fixture 37 has been removed.
  • a U-bolt 43 is slipped over the column 27 and its threaded legs receive a clamping piece 44 that is secured by nuts 45 received on this threaded legs.
  • the clamping piece 44 has welded thereto threaded studs 46 spaced the same distance apart as the projecting threaded legs of the lift attaching member 21.
  • Turnbuckle members 47 secure the aligned threaded legs.
  • the column 27 oppositely positioned has the same installation and by setting up of the respective turn-buckle members 47, the lifted slab 22 is set off and stabilizes the column 27 from slab 22 for a successive next lift of slab 23 there above all as more fully described hereinafter.
  • the entire stack above is now supported by the completed first story load bearing walls and their ceiling slab, i.e., the second floor or story slab 22.
  • the jacking means is disengaged by removing their continuously threaded lift rod attaching jack nuts if standard lift-slab jacking equipment is used. Using the winches 28, the bridges 29 and jacks 31 are lifted to the second station and the column support or shear pins 30 reinstalled at the next higher lift station. The lifting rods, attached to the top lift fixture 33, need no attention. The jacking 8 nuts of the lift system are installed and their drive system is adjusted.
  • the lift fixtures designated by the reference number 37 are removed and set aside for reuse.
  • the slab 22 now in place is stable.
  • Installation of the stabilizers 39 shown in FIG. 16 fix the columns 27, see FIG. 9, ready for the next lift.
  • the jacks 31 through their control console and connections (not shown) are actuated until the second slab 23 is in place,'and the load bearing second story walls 11b are resting on the second floor slab or first floor ceiling slab 22. Again, see FIG. 11, the stack (roof slab 24 and third story walls 11c) are lowered onto the fixed third story floor slab 23 on wedges 49 already in place from the previous lift. The jacks are unloaded and disconnected. The lift fixtures 35 are removed and set aside for further usuage and the columns stabilized as necessary. The bridge 29 and jacks 31 are hoisted into the final lift position and secured for stability. The roof slab 24 is lifted, see FIG. 12, as the attached third story walls 11c become substantially self-erecting.
  • the narrow voids in the walls are closed with the conventional precast panels such as shown in stacks 25 and 26 in FIG. 3 as referred to above.
  • Steel reinforcing bars, see FIG. 15, are placed in the aligned vertical apertures or ducts 18 in the walls and vertical apertures in the floor slabs and grouted in to complete the vertical continuity and integrity of the structure.
  • the building is finished in conventional manner.
  • the method of erecting single or multiple story concrete columnless buildings which comprises the steps of: forming a permanent base for a building to be erected, said base forming a first casting bed;
  • step of attaching said lift fixtures to said lift attaching members includes the step of interconnecting said lift fixtures to one another with slight vertical freedom so that as said stack is initially lifted said lift fixtures cause each said set of wall panels and floor slabs to separate slightly while still at ground level, whereby the connections of all of said wall panels to said floor slabs and the connection of all of said floor slabs to said lift means may be checked prior to further lifting of said stack.
  • steps of attaching said wall panels to their corresponding floor slabs comprises securing diverging double-stranded pick-up cables between the wall panels and the floor slabs, said strands converging at the pivot lines so that the weight of each wall panel is transferred from one to the other strand of each of its pick-up cables as the wall panels swing toward the vertical, said cables permitting said panels to spaul along said pivot lines to compensate for slight pivot line misalignment or for slab deflectron.
  • first floor slab for a building to be erected, said first floor slab forming a first casting bed;
  • first set of load supporting, downwardly swingable wall panels in a generally horizontal position on said first casting bed and embedding portions of spaced apart flexible pick-up cables across the periphery pivot line of said first set of wall panels, said wall panels representing substantial portions of at least two pairs of walls approximately at right angles to each other;
  • each layer utilizing the preceding layer as a casting bed, each said set of wall panels being attached to its corresponding above floor slab to form a stack of said wall panels and floor slabs corresponding to the stories of building;
  • each of said bridge members supporting one floor height above the poured stack a movable bridge member between each said pair of columns, each of said bridge members extending over said stack of wall panels and floor slabs and carrying lift means adjacent to each column;

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

There is shown the preforming of walls and floor slabs as a stack wherein the walls of each story are connected to the next floor slab thereabove by lift pick-up cables spaced along the to be top edge of each wall. Lift apparatus forming no part of the building is provided for attaching lift fixtures to elements cast in the edges of the floor slabs. The lift apparatus includes pairs of columns as necessary supporting a repositionable upward bridge therebetween having lifting jacks operating lift rods connected with the floor slabs below by the removable lift fixtures. The whole stack is lifted and starting with the first floor the ceiling slab lifts the walls therebelow which swing out and are guided into position under the slab thereabove and become load bearing walls. Successive like lifts are made to position the respective ceiling slabs and load bearing walls. Suitable vertically aligned apertures are formed in the walls and slabs above for installation of reinforcing rods.

Description

United States Patent Cortina 51 Nov. 25, 1975 [76] Inventor: Pablo Ortego Cortina, Taine 229,
Despachos 601-602, Mexico 5, D.F., Mexico [22] Filed: July 16, 1974 [211 Appl. No.: 489,030
[30] Foreign Application Priority Data Mar. 18, 1974 Mexico 149914 [52] U.S. Cl. 52/745; 52/126; 52/236; 52/714 [51] Int. Cl. E048 1/343; 5048 l/35 [58] Field of Search 52/126, 236, 745
[56] References Cited UNITED STATES PATENTS 1,362,069 12/1920 Witzel 52/745 3,490,191 l/197O Ekblon 52/236 3,593,482 7/1971 Johnson 52/745 3,600,870 8/1971 Greenhalgh 52/745 3,713,265 1/1973 Wysocki 52/126 3,724,157 4/1973 Miram 52/745 FOREIGN PATENTS OR APPLICATIONS 82,772 5/1957 Denmark 52/745 1,441,324 4/1966 France 52/745 Primary Examiner-Henry C. Sutherland Attorney, Agent, or Firm.lones, Tullar & Cooper [5 7] ABSTRACT There is shown the preforming of walls and floor slabs as a stack wherein the walls of each story are connected to the next floor slab thereabove by lift pick-up cables spaced along the to be top edge of each wall. Lift apparatus forming no part of the building is provided for attaching lift fixtures to elements cast in the edges of the floor slabs. The lift apparatus includes pairs of columns as necessary supporting a repositionable upward bridge therebetween having lifting jacks operating lift rods connected with the floor slabs below by the removable lift fixtures. The whole stack is lifted and starting with the first floor the ceiling slab lifts the walls therebelow which swing out and are guided into position under the slab thereabove and be- 7 Claims, 18 Drawing Figures US. Patent N0v.25, 1975 Sheet10f7 3,921,362
U.S, Patent Nov. 25, 1975 Sheet 4 of7 3,921,362
FIG. 7
FIG. 6
US. Patent Nov. 25, 1975 shw 5 of7 3,921,362
2 t mm mm) w A h F rm 0: g m
mdE
i/ Em US. Patent Nov. 25, 1975 Sheet 6 0f 7 US. Patent Nov. 25, 1975 Sheet 7 of7 3,921,362
HG, I40
FIG, l4b
FIG. l5
FIG I40 FIG. l6
METHOD OF AND MEANS FOR MULTI-STORY BUILDING CONSTRUCTION BACKGROUND OF THE INVENTION 1. Field of the Invention An on site erected structure consisting of setsjof horizontally cast walls connected by lift pick-up cables to a ceiling slab cast thereabove and externally erected lift means. The stack of cast sets are lifted as a whole and the lowest most ceiling slab lifts the walls attached therebelow that each swing simultaneously outward and are plumbed into position as load bearing walls followed by successive lifts to position the ceiling or floor slabs and their walls after which reinforcing rods are grouted in aligned vertical apertures cast in the walls and slabs.
2. Description of the Prior'Art Buildings have been erected by forming floor slabs one upon the other at ground level with spaced apart.
vertical columns extending up through the floors and lifting apparatus applied to the columns that are partially formed as the slabs are raised into position and completion of the pouring of the columns takes place as the lifting of the floors progresses such as shown in U.S. Pat. No. 1,066,436. In U.S. Pat. 2,720,0l7 the columns are set completely in place and the lifting gear placed on their tops to lift floor slabs cast one above the other with lift collars about the columns cast with each floor.
There have also been precast walls and floors in the same plane and connected together by hinge members. The units are lifted by crane into position with the walls hinging on their hinge members downward and inward such as in U.S. Pat. Nos. 3,494,092 and 3,727,157. Danish Pat. No. 82,772 of 1957 shows forming walls or column elements in horizontal position under a slab on ascaffold and letting the walls or column elements hinge down into position or forming the walls or column elements on the ground or a floor and casting a floor slab thereabove and connecting them by a thin steel band that acts as a hinge. There is no lifting gear disclosed. The disclosure seems to be to individual houses and'separate stories of buildings. A translation of the patent appears to say that the invention is to avoid referred to larger or smaller lifting-gear and cranes together with the work associated with them.
SUMMARY OF THE INVENTION An object of the invention is to provide a building by self-erecting walls precast in a horizontal position on a floor or casting bed, casting a ceiling slab thereabove to which the walls are hangingly connected by pick-up cables and lifting the slab while swinging the walls outwardly with their bottom ends sliding'along the floor below thereby adding to stabilization of the self-erection.
Another object of the invention is to provide for erecting successively cast sets of load bearing walls connected to ceiling slabs cast thereabove into a multistory building and adding to the stability of the erected building by installing vertical reinforcing rods in cast in aligned apertures in the walls and ceiling slabs.
A further object of the invention is to provide overload protection for each lifting fixture by lifting in seand its walls to occur at the initial part of a lift of the stack.
Yet another object of the invention is to provide lift fixtures to be detachably attached to the slabs of a stack of sets of slabs and walls and to each other fixture that can be removed insequence from the bottom slab after it has been lifted and lowered'onto its connected supporting'walls.
Still another object of the invention'is to provide lifting apparatus for sets of slabs and connected walls in a stack that has pairs of externally positioned columns supporting a bridge member and 'lift jacks thereon that is repositionable upward for making successive lifts after connecting and disconnecting lift rods from'the jacks to lift fixtures provided for the respective successive stacked slabs.
Another object of the invention is to provide stabilization in lifting a stack of sets of ceiling slabs and connected support walls by installing temporary pairs of erecting columns, installing a bridge member between the pairs of columns and temporarily securing it in a stabilizing manner in successive lift positions and applying a stabilizer between a lifted ceiling or floor slab and the adjacent column.
A further object of the invention is to provide a connection between a horizontally precast wall on a floor and a ceiling slab 'cast thereabove consisting of a pieceof cable that is formed with a loop at its lower end cast in the walls top edge with the loop lying in a plane ex tending transverse to the top edge of the wall and extending the ends of the cable upward for casting into the ceiling slab adjacent its edge in such a position that the top edge of the wall aligns to support the edge of the slab above and there is a spacing of approximately /2 to inch between the slab and the hanging wall as the slab is lifted, The support by the'cable is from the leg end thereof that is positioned nearer the edge of the shifts to the other leg of the cable and to its portion of the loop directly therebelow whereby breaking and spauling of the concrete is avoided.
DESCRIPTION OF THE DRAWINGS For a more complete understanding of the nature and scope of the invention reference is had to the drawings, the description and the claims that follow.
, FIG. 1 is a perspective view of a typical ground floor slab having cast thereon the necessary to be lifted and swung into position supporting walls with their ceiling slab thereabove to which they are attached along their to be top edges by pick-up cables cast therein illustrative for a three story building, the topmost ceiling slab being fragmentally shown;
FIG. 2 is a fragmentary perspective view of the edge of a floor and/or ceiling slab with a lift attaching member cast therein and a recess therebelow in the lower face at the slab edge both for receiving and attaching a lift fixture; FIG. 3 is a perspective view of the three story building with lifting apparatus in position, the supporting walls for the third story being swung into position as their ceiling slab to which they are attached by pick-up cables is lifted into position and precast wall panels ready for lift by a crane to fill the void wall'spaces;
FIG. 4 is a cross sectional fragmentary side view of the ground floor slab, the horizontallycast supporting walls connected by cast in pick-up cables to their .ceiling slabs thereabove and a side view of the lift attaching members cast in the slabs with the lift fixturesattached; FIG. 5 is a left hand end view of FIG. 4 showing the attached lift fixtures and their connection with each other for successive pick-up from top fixture on down;
FIG. 6 is a view similar to FIG. 4 showing the initiation of the lift with the ceiling slabs and their supporting walls successively peeled-off and separated starting with the top most ceiling slab and its attached walls;
FIG. 7 is a side view of a vertical support column whose lower end is secured to a foundation support, one end of a bridge member hoisted into position by a hand winch and secured to the column, a lifting jack on the bridge and a lift rod attached to the lift fixtures, the slabs and walls having been peeled-off beginning with the roof slab and then separating each slab and its supporting wall in sequence;
FIG. 8 is a view similar to FIG. 7 showing the first floor support walls swinging slowly outwardly towards their vertical supporting position as the lift progresses and an aperture in the wall and in its ceiling slab above is typically shown ready to receive a stabilizing pin which will be replaced by permanent reinforcing rods;
FIG. 9 is similar to FIG. 8 showing the first floor supporting walls supporting their ceiling slab which has its lift fixture removed and a stabalizer installed between the ceiling slab and the column and separating wedges in position between the respective ceiling slabs;
FIG. 10 is similar to FIG. 9 showing the bridge having been hoisted to its next upward position and secured to the column and the second floor supporting walls being swung outwardly into load bearing position as the lifting continues; 7
FIG. 11 is similar to FIG. 10 the second story walls are now in load bearing position supporting their ceiling slab whose lift fixture has been removed and a stabilizer member installed between the second story ceiling slab and the column; I
FIG. 12 is similar to FIG. 11 showing the bridge hoisted to its next lift position and secured to the column and the roof slab which is the third story ceiling slab being lifted with its load bearing walls being swung outwardly;
FIG. 13 is a view similar to FIG. 12 with the third story ceiling slab in position supported by its load bearing walls, the top lift fixture has been detached and the temporary stabilizers are removed and the lift apparatus is ready to be dismantled and moved to another site;
FIG. 14a is a fragmentary showing of a floor slab and its attached wall and the lift pick-up cable at start of lift;
FIG. 14b shows the wall swung outward about 45, installation of sealing material and the relatively small spacing between wall and supporting slab and the shift in cable portion support;
FIG. 140 shows the wall having been laterally aligned and in load bearing position under the edge of the slab;
FIG. 15 is a showing of the erected walls and slabs and the aligned apertures formed in the walls and slabs with seismic reinforcement grouted in place; and
FIG. 16 is a showing of a form that the stabilizer between slab and erecting column may take;
DESCRIPTION OF A PREFERRED EMBODIMENT In FIG. 1 a typical ground floor slab l0-has been provided on suitable foundations and in the illustration it extends outward to provide foundation supports for floor slab could; extend only to the perimeter of the walls of the building and separate foundations would then be provided for each vertical support column. On the ground floor slab or casting bed 10 are successively cast load bearing walls and their ceiling slabs. A separating layer of bond-preventing material (not shown) is placed on the top of the ground floor slab 10. Suitable forms (not shown) are provided on the ground floor slab for first story walls 1141,1211, 13a and 14a to be poured similar to the third story walls 110, 12c, 13c and showing in FIG. 1. As many full or partial length perimeter load-bearing'structu'ral walls are precast as geometry will allow. There isplaced within the forms unglazed windows 15, whose frames are of a wall thickproject along their to be top edge at spaced apart posi- I tions. They are formed with a loop at their lower end that passes around securing and reinforcing bars-l7, see FIG.4 and 5,"andthe two ends extend out to'be cast in the ceiling slab thereabove to be'described. Greased rods (not shown) are placed in the walls in their to be vertical direction and removed 2 to 3 hours after the concrete is cast. These provide apertures such 'as typically shown at 18 in FIG. 8 and as'illustrated in FIG. 15 to receive reinforcing rods that are later installed between walls and floors and grouted in. FIG. 8 shows a temporary holding pin 48 inserted through a hole in the ceiling slab that is in alignmentwith the aperture 18. After overnight curing the walliforms are removed and used again. Any voids between the walls such as at 19, see FIG. 1, are filled with like interio'r load-bearing pickup walls or waste material such as soil and perhaps finished with a thin waste-slab of concrete.
A separating'layer of bond-preventing material (not shown) is placed-over the cured first story walls..The ceilingslab for the first story is next to be cast over the first story now cured walls. A slab perimeter form (not I shown) overhanging the wall'edges is installed. The pe rimeter overhang, see at,-20 in FIG. 1, is at least the width of the load bearing wall cast below whose to be top 'edge will support the ceiling slab; underneath this overhanging portion. The projecting-ends of the pickup cables l6.are placed in position within the forms for the ceiling slab. Also lift attaching members. 21 such as U-bolts, see FIG. 2, are placedin the form and their threaded ends project out from the edge of the ceiling slab 22 for the first story, see FIGS. 1 and 2. Just below tlielift attaching member '21. the form is providedwith a filler block (not shown) so as to form a recess 22a extending in from the edge of the slab at its bottom face.
FIGS. 4 and 5, receive a web of an angle bar on a lift.
fixture to be described. Instead of the 'U-shaped bolt 21, two L-shaped members could be cast in the slab with the legs threaded and projecting spaced apart at the edge of the slab to receive the lift fixtures.
Referring to FIGS. 1 and 3 and the other applicable figures the next two stories above have their sets of supporting walls and ceiling slabs likewise cast and connected. The walls are respectively numbered 11a, 12a, 13a and 14a for the first story. The second story walls are numbered 11b. 12b, 13b and 14b and as noted above the third story walls are respectively 110, 12c. 13c and 14:. The first story ceiling slab as indicated above is 22, the second story ceiling slab is 23 and the third story ceiling slab or roof slab is 24. Ceiling slab 22 is the floor slab for the second story and ceiling slab 23 is the floor slab for the third floor.
After the erection as will hereinafter be described the void wall spaces are filled by separately cast wall slabs indicated in the piles 25 and 26. These are lifted and set in place by a separate crane.
The matter of erecting the building and lifting into position the designated ceiling slabs and their load bearing walls will be described. On the ground floor slab there is provided foundation supports a for the vertical support columns 27. These columns are about three feet longer than the total height of the building. For the particular three story building to be erected three pairs of temporary support columns 27 are placed on their support foundations 10a and secured by hold down bolts and grouting (not shown). Each column has a one ton hand operated winch 28 installed near its lower end. This is for hoisting the cross bridges 29 into their successive lift positions above the pile of cast slabs and their load bearing connected walls to be swung outwardly into position during the lifting operation. Each winch has a cable 28a that is led up the column and over sheaves 28b mounted at the top of the column and then down to where it is secured to the cross bridge 29. The number of pairs of support columns 27 and the center-to-center spacing between the three pairs is a function of the separate jack or separate lift means capacity and convenience. Each bridge 29 is bifurcated at its ends to receive the columns 27 and be guided thereby in their sliding engagement with the columns. Means are provided at fixed points along the columns for supporting the cross bridge for one lift per each ceiling slab or floors. A connection shown is provided by having through apertures through which is inserted a support pin 30. A welded-in tube (not shown) to reinforce the through apertures 27a could be provided, appropriate saddles (not shown) are used to provide fixity and to distribute the load on the support pins 30.
Near the ends of the support bridge 29 adjacent the columns are placed jack lift means 31 such as lift-slab jacks such as shown in US. Pat. Nos. 2,758,467 and 3,201,088. Each separate lift means is vertically above the projecting lift attaching members 21 projecting from the slabs below. To attach the lift rods 32 depending from the jacks, lift fixtures which are detachably attached to the slabs and detachably attached to each other are provided.
A top lift fixture is generally indicated as 33. It has a cross head 33a of four welded together plates to form a box like member, square in cross section. The cross head 33a has vertically extending apertures 33b through each end to receive the two depending lift rods 32 that are secured by a nut 32a or a quick release hinged type nut used on lift rods in lift-slab work. A depending tension bar 33c is welded to the cross head 33a and it has a pair of lugs or bosses 33d welded to its opposite inner faces adjacent its lower end. An angle bar 34 has its vertically extending web welded to the tension bar 330 adjacent the lugs 33d thereon and its vertically extending web has apertures therethrough spaced to each side of the tension bar 33c to receive the threaded legs of the U-bolt lift attaching member 21 to which it is secured by nuts 21a. The transversely extending web or flange of the angle bar 34 projects into the formed recess 24 a in the top most ceiling slab for lift engagement to avoid interference at erection with wall 11c.
A second lift fixture is generally indicated as 35. It is made up of a pair of spaced apart tension bars 35a held spaced apart by a pair of spaced apart reinforcing cross pieces 35b welded thereto. A pair of lugs 350 is welded to the inside faces adjacent the top end of the spaced apart bars while another pair of lugs is welded to the inside faces adjacent the bottom end. Likewise an angle bar 36 is welded to the tension bar 35a adjacent its lower end and adjacent the lower pair of lugs 35d. The upper web of the angle bar is attached to the projecting threaded legs of the lift attaching member in ceiling slab 23 and its lower web is received in the recess 23a of the ceiling slab 23 for lift engagement. Referring to FIG. 5 it will be noted that the top pair of lugs 35c on second lift fixture 35 are spaced above the pair of lugs 33d on the top lift fixture 33 so that the roof slab 24 is first lifted and its attached walls peeled-out. This spacing is of the order of /z to about /1 inches.
A third lift fixture is generally indicated as 37. It is made up of a tension bar 37a that'has a pair of lugs or bosses 37b welded to its opposite faces adjacent its top end. The tension bar 37a is slidably received between the spaced tension bars 35a on the lift fixture 35 thereabove and the pair of lugs 37b are spaced above the lugs 35d on lift fixture 35 for like engagement as explained above for the top lift fixture 33 and the second lift fixture 35. At the lower end of the tension bar 37a and on its opposite faces is welded a pair of lugs 376 which are for engagement with a type of lift fixture 35 that would be attached to a slab therebelow if a building with a greater number of stories was being built. Likewise another lift fixture like the second lift fixture 35 would be required for the next below successive slab of such a larger building. An angle bar 38 has its vertical web welded to the tension bar at the bars lower end and has apertures therethrough like the other lift fixtures to receive the extending threaded ends of the lift attaching member in slab 22. The transverse web of the angle bar 38 is received in the adjacent recess 22a for lift engagement with slab 22.
Reference to FIG. 14a shows the slab and the wall W in their cast position with the lift pick up cable 16 looped around reinforcing bars 17. The reinforcing bars 17 help position the cable but they are not necessary for anchorage. The unique installation and cable path geometry avoids breaks and spauling of the concrete. At the start of the lift, see FIG. 14a, cable portion A pulls in such a direct line that there is no concrete spauling. After the wall W is swung outwardly by lifting of the slab S so that the wall angle passes approximately 45 inclination, see FIG. 14b, cable portion B takes over and finishes the job with vertical pulling. Reference to FIG. 14b shows that a sealing sheet or sealing material 41 may be installed at the top edge of the wall to provide a seal in its load bearing contact with the slab portion thereabove. The sealing material may be a strip of polyurethane foam, a smear of asphalt or any suitable sealing material. As the wall swings into position a certain amount of lateral alignment is required. The lift pick-up cable does not act as a hinge.
In FIG. 15 there is shown the seismic reinforcement between walls and slabs. The ground floor slab 10 has formed therein vertically extending apertures 9 along its perimeter where it receives the bottom of the load bearing wall. The wall has an aperture 18, see FIG. 8, formed therein during casting and vertically aligned aperatures 22b, 23b and 24b are formed in the respective slabs 22, 23 and 24. Reinforcing seismic rods 42 are installed and grouted in position in the aligned apertures.
Referring to FIG. 16 there is illustrated a form that a stabilizer 39, see FIG. 9, may take between an erecting column 27 and the adjacent lift attaching member 21 projecting from the lifted slab 22 after the lifting fixture 37 has been removed. A U-bolt 43 is slipped over the column 27 and its threaded legs receive a clamping piece 44 that is secured by nuts 45 received on this threaded legs. The clamping piece 44 has welded thereto threaded studs 46 spaced the same distance apart as the projecting threaded legs of the lift attaching member 21. Turnbuckle members 47 secure the aligned threaded legs. The column 27 oppositely positioned has the same installation and by setting up of the respective turn-buckle members 47, the lifted slab 22 is set off and stabilizes the column 27 from slab 22 for a successive next lift of slab 23 there above all as more fully described hereinafter.
LIFTING After the jacks 31 and their lifting rods 32 are installed and hooked up to control means such as a console, see for example US. Pat. No. 2,758,467, placed on the roof slab, the lifting can begin. The stack of slabs and their walls are peeled-out, i.e. the slabs and their walls are separated, see FIGS. 6 and 7. After the roof slab 24 is elevated say, for example with the lift fixtures described above, approximately /2 or A; of an inch, the slack in the second lift fixture 35 is taken up and the second floor ceiling or roof slab 23 is lifted. Following this after lifting a fraction of an inch the second floor slab 22 is lifted, a sequence for limiting each fixtures load. Lifting then progresses at the normal rate and the first floor or story walls 11a, 12a, 13a and 14a swing slowly outward as their tops are elevated by lifting with their multiple pick-up cables 16. The bottom edges of the walls slide without damage across the ground floor slab l laterally, see FIG. 8, unassisted by rollers or other devices almost to their final vertical position. The walls offer considerable friction along their length thus imparting additional stability to the lift.
At the end of the first lift the walls are manually plumbed and laterally aligned. Manual means or temporary pointed pins 48, see FIG. 8, are inserted in the apertures in the slab 22 aligned with the apertures 18 in the walls. This alignment is permitted because of the slack in the pick-up cables 16, see FIG. 14b. Before the stack is set down after the alignment of the walls the sealing material 41 as referred to above is installed.
The entire stack is now set down on the erected first story. As a technique for temporarily parking the stack and to allow the lifting equipment to be relocated, see FIG. 9, and to prevent the slabs and walls from closing again, wedges 49 are inserted from slab-to-slab substantially over the load bearing walls. Since these slabs overhang the erected load bearing walls, this weight of the stack above is directly transmitted through the load bearing walls to the ground floor slab 10.
The entire stack above is now supported by the completed first story load bearing walls and their ceiling slab, i.e., the second floor or story slab 22. The jacking means is disengaged by removing their continuously threaded lift rod attaching jack nuts if standard lift-slab jacking equipment is used. Using the winches 28, the bridges 29 and jacks 31 are lifted to the second station and the column support or shear pins 30 reinstalled at the next higher lift station. The lifting rods, attached to the top lift fixture 33, need no attention. The jacking 8 nuts of the lift system are installed and their drive system is adjusted.
The lift fixtures designated by the reference number 37, their job done, are removed and set aside for reuse. The slab 22 now in place is stable. Installation of the stabilizers 39 shown in FIG. 16 fix the columns 27, see FIG. 9, ready for the next lift. By making the initial lift on very short effective length columns and by stabilizing the columns higher up as the building gains height, as referred to above, bracing, guying and deadmen are eliminated.
The jacks 31 through their control console and connections (not shown) are actuated until the second slab 23 is in place,'and the load bearing second story walls 11b are resting on the second floor slab or first floor ceiling slab 22. Again, see FIG. 11, the stack (roof slab 24 and third story walls 11c) are lowered onto the fixed third story floor slab 23 on wedges 49 already in place from the previous lift. The jacks are unloaded and disconnected. The lift fixtures 35 are removed and set aside for further usuage and the columns stabilized as necessary. The bridge 29 and jacks 31 are hoisted into the final lift position and secured for stability. The roof slab 24 is lifted, see FIG. 12, as the attached third story walls 11c become substantially self-erecting.
This completes this building unit, see FIG. 13. The casting and lifting sequence would merely be repeated for units having additional floors. The lifting equipment, columns, bridges, jacks, lifting rods, lift fixtures, wedges, stabilizing clamps, etc., are moved on to erect the next building unit.
The narrow voids in the walls are closed with the conventional precast panels such as shown in stacks 25 and 26 in FIG. 3 as referred to above. Steel reinforcing bars, see FIG. 15, are placed in the aligned vertical apertures or ducts 18 in the walls and vertical apertures in the floor slabs and grouted in to complete the vertical continuity and integrity of the structure. The building is finished in conventional manner.
What is claimed is:
1. The method of erecting single or multiple story concrete columnless buildings which comprises the steps of: forming a permanent base for a building to be erected, said base forming a first casting bed;
pouring a first set of load supporting, downwardly swingable wall panels in a generally horizontal position on said first casting bed;
filling any voids in or between said wall panels to provide a second casting bed;
pouring a first floor slab in horizontal position on said second casting bed;
securing lift attaching members to the periphery of said first floor slab;
attaching said first set of wall panels to said first fioor slab by securing spaced apart, flexible pick-up cables across a pivot line between each said wall panel and said floor slab;
pouring alternating additional sets of wall panels and floor slabs one above the other in layers with each layer utilizing the preceding layer as a casting bed, securing lift attaching members to each of said floor slabs and attaching each set of wall panels to its corresponding floor slab to form a stack of said wall panels and floor slabs corresponding to the stories of the building;
erecting pairs of spaced columns exteriorly of said base and adjacent said lift attaching members, said columns being slightly greater in height than the height of the erected building; 7 movably supporting a bridge member between each said pair of columns, each of said bridge members extending over said stack of wall panels and floor slabs and carrying lift means adjacent each column; attaching lift fixtures to said lift attaching members on said floor slabs; connecting said lift fixtures to said lift means; actuating said lift means to raise said stack whereby each of the wall panels in said first set of wall panels swing downwardly on said pick-up cables about said pivot lines to a vertical, load supporting position; lowering said stack to support said first floor slab and said stack on said downwardly swung walls;
disconnecting said lift fixtures from the lift attaching members on said first floor slab, disengaging said lift means, and raising said bridges on said columns the height of an additional story;
engaging said lift means with said lift fixtures, and repetitively and alternately raising said stack to allow succeeding sets of wall panels to swing into position, and raising said bridges and lift means to peel out successive layers of said wall panels and floor slabs to erect each additional story of said building; and
dismantling and removing said bridge members and columns after said building has been erected.
2. In the method of claim 1 the further step of connecting stabilizing means between each said column and each floor slab once the floor slab has been positioned atop a corresponding set of downwardly swung wall panels, said stabilization providing short effective working length columns during said lifting.
3. In the method of claim 1 the further steps of providing aligned vertical apertures in each of said wall panels and corresponding apertures in said floor slabs, and inserting and grouting reinforcing bars in said apertures once said building is erected.
4. The method of claim 1 wherein the step of attaching said lift fixtures to said lift attaching members includes the step of interconnecting said lift fixtures to one another with slight vertical freedom so that as said stack is initially lifted said lift fixtures cause each said set of wall panels and floor slabs to separate slightly while still at ground level, whereby the connections of all of said wall panels to said floor slabs and the connection of all of said floor slabs to said lift means may be checked prior to further lifting of said stack.
5. In the method of claim 4, the further step of inserting vertically disposed multiple wedge means between said floor slabs after said initial lifting to prevent said wall panels and said floor slabs from returning to their cast position upon said disengagement of said lift means from said lift fixtures.
6. In the method of claim 1 wherein the steps of attaching said wall panels to their corresponding floor slabs comprises securing diverging double-stranded pick-up cables between the wall panels and the floor slabs, said strands converging at the pivot lines so that the weight of each wall panel is transferred from one to the other strand of each of its pick-up cables as the wall panels swing toward the vertical, said cables permitting said panels to spaul along said pivot lines to compensate for slight pivot line misalignment or for slab deflectron.
10 7. The method of erecting singleor multiple story concrete columnless buildings which "comprises the steps of:
forming in situ a permanent first floor slab for a building to be erected, said first floor slab forming a first casting bed;
pouring a first set of load supporting, downwardly swingable wall panels in a generally horizontal position on said first casting bed and embedding portions of spaced apart flexible pick-up cables across the periphery pivot line of said first set of wall panels, said wall panels representing substantial portions of at least two pairs of walls approximately at right angles to each other;
filling any voids in or between said wall panels to provide a second casting bed;
pouring a second floor slab in horizontal position on said second casting bed, completing the attachment of said first set of wall panels to said second floor slab by securing said flexible pick-up cables across said pivot line between each said wall panel and said second floor slab;
pouring alternating additional sets of wall panels and floor slabs one above the other in layers with each layer utilizing the preceding layer as a casting bed, each said set of wall panels being attached to its corresponding above floor slab to form a stack of said wall panels and floor slabs corresponding to the stories of building;
allowing the concrete to cure to acceptable strength;
securing lift attaching members to the periphery of an uppermost one of said floor slabs and to each said floor slabs in sequence;
erecting pairs of spaced columns exteriorly positioned to said first floor slab and adjacent said lift attaching members, said columns being slightly greater in height than the height of the erected building;
supporting one floor height above the poured stack a movable bridge member between each said pair of columns, each of said bridge members extending over said stack of wall panels and floor slabs and carrying lift means adjacent to each column;
attaching lift fixtures to said lift attaching members;
connecting said lift fixtures to said lift means;
actuating said lift means to raise said stack whereby each of said two pairs of wall panels at approximately right angles to each other in said first set of wall panels swing downwardly on said pick-up cable about said pivot lines to a near vertical position;
plumbing the nearly vertical walls by laterally positioning the bottoms of said walls into a load supporting laterally stable structure;
lowering said stack to support said second floor slab and said above stack on said downwardly swung plumbed walls;
disconnecting said second floor slab lift fixtures from the above lift fixtures, disengaging said lift means, and raising and securing said bridges on said columns the height of an additional story;
engaging said lift means with said remaining lift attaching members, and repetitively and alternately raising said stack to allow succeeding sets of wall panels to swing into near vertical position, plumbing said wall panels and securing said bridges and lift means to erect each additional story of said building; and
1 1 dismanteling and removing said bridge members and columns after said building has been erected.

Claims (7)

1. The method of erecting single or multiple story concrete columnless buildings which comprises the steps of: forming a permanent base for a building to be erected, said base forming a first casting bed; pouring a first set of load supporting, downwardly swingable wall panels in a generally horizontal position on said first casting bed; filling any voids in or between said wall panels to provide a second casting bed; pouring a first floor slab in horizontal position on said second casting bed; securing lift attaching members to the periphery of said first floor slab; attaching said first set of wall panels to said first floor slab by securing spaced apart, flexible pick-up cables across a pivot line between each said wall panel and said floor slab; pouring alternating additional sets of wall panels and floor slabs one above the other in layers with each layer utilizing the preceding layer as a casting bed, securing lift attaching members to each of said floor slabs and attaching each set of wall panels to its corresponding floor slab to form a stack of said wall panels and floor slabs corresponding to the stories of the building; erecting pairs of spaced columns exteriorly of said base and adjacent said lift attaching members, said columns being slightly greater in height than the height of the erected building; movably supporting a bridge member between each said pair of columns, each of said bridge members extending over said stack of wall panels and floor slabs and carrying lift means adjacent each column; attaching lift fixtures to said lift attaching members on said floor slabs; connecting said lift fixtures to said lift means; actuating said lift means to raise said stack whereby each of the wall panels in said first set of wall panels swing downwardly on said pick-up cables about said pivot lines to a vertical, load supporting position; lowering said stack to support said first floor slab and said stack on said downwardly swung walls; disconnecting said lift fixtures from the lift attaching members on said first floor slab, disengaging said lift means, and raising said bridges on said columns the height of an additional story; engaging said lift means with said lift fixtures, and repetitively and alternately raising said stack to allow succeeding sets of wall panels to swing into position, and raising said bridges and lift means to peel out successive layers of said wall panels and floor slabs to erect each additional story of said building; and dismantling and removing said bridge members and columns after said building has been erected.
2. In the method of claim 1 the further step of connecting stabilizing means between each said column and each floor slab once the floor slab has been positioned atop a corresponding set of downwardly swung wall panels, said stabilization providing short effective working length columns during said lifting.
3. In the method of claim 1 the further steps of providing aligned vertical apertures in each of said wall panels and corresponding apertures in said floor slabs, and inserting and grouting reinforcing bars in said apertures once said building is erected.
4. The method of claim 1 wherein the step of attaching said lift fixtures to said lift attaching members includes the step of interconnecting said lift fixtures to one another with slight vertical freedom so that as said stack is initially lifted said lift fixtures cause each said set of wall panels and floor slabs to separate slightly while still at ground level, whereby the connections of all of said wall panels to said floor slabs and the connection of all of said floor slabs to said lift means may be checked prior to further lifting of said stack.
5. In the method of claim 4, the further step of inserting vertically disposed multiple wedge means between said floor slabs after said initial lifting to prevent said wall panels and said floor slabs from returning to their cast position upon said disengagement of said lift means from said lift fixtures.
6. In the method of claim 1 wherein the steps of attaching said wall panels to their corresponding floor slabs comprises securing diverging double-stranded pick-up cables between the wall panels and the floor slabs, said strands converging at the pivot lines so that the weight of each wall panel is transferred from one to the other strand of each of its pick-up cables as the wall panels swing toward the vertical, said cables permitting said panels to spaul along said pivot lines to compensate for slight pivot line misalignment or for slab deflection.
7. The method of erecting single or multiple story concrete columnless buildings which comprises the steps of: forming in situ a permanent first floor slab for a building to be erected, said first floor slab forming a first casting bed; pouring a first set of load supporting, downwardly swingable wall panels in a generally horizontal position on said first casting bed and embedding portions of spaced apart flexible pick-up cables across the periphery pivot line of said first set of wall panels, said wall panels representing substantial portions of at least two pairs of walls approximately at right angles to each other; filling any voids in or between said wall panels to provide a second casting bed; pouring a second floor slab in horizontal position on said second casting bed, completing the attachment of said first set of wall panels to said second floor slab by securing said flexible pick-up cables across said pivot line between each said wall panel and said second floor slab; pouring alternating additional sets of wall panels and floor slabs one above the other in layers with each layer utilizing the preceding layer as a casting bed, each said set of wall panels being attached to its corresponding above floor slab to form a stack of said wall panels and floor slabs corresponding to the stories of building; allowing the concrete to cure to acceptable strength; securing lift attaching members to the periphery of an uppermost one of said floor slabs and to each said floor slabs in sequence; erecting pairs of spaced columns exteriorly positioned to said first floor slab and adjacent said lift attaching members, said columns being slightly greater in height than the height of the erected building; supporting one floor height above the poured stack a movable bridge member between each said pair of columns, each of said bridge members extending over said stack of wall panels and floor slabs and carrying lift means adjacent to each column; attaching lift fixtures to said lift attaching members; connecting said lift fixtures to said lift means; actuating said lift means to raise said stack whEreby each of said two pairs of wall panels at approximately right angles to each other in said first set of wall panels swing downwardly on said pick-up cable about said pivot lines to a near vertical position; plumbing the nearly vertical walls by laterally positioning the bottoms of said walls into a load supporting laterally stable structure; lowering said stack to support said second floor slab and said above stack on said downwardly swung plumbed walls; disconnecting said second floor slab lift fixtures from the above lift fixtures, disengaging said lift means, and raising and securing said bridges on said columns the height of an additional story; engaging said lift means with said remaining lift attaching members, and repetitively and alternately raising said stack to allow succeeding sets of wall panels to swing into near vertical position, plumbing said wall panels and securing said bridges and lift means to erect each additional story of said building; and dismanteling and removing said bridge members and columns after said building has been erected.
US489030A 1974-03-18 1974-07-16 Method of and means for multi-story building construction Expired - Lifetime US3921362A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US489030A US3921362A (en) 1974-03-18 1974-07-16 Method of and means for multi-story building construction
CA213,233A CA1021590A (en) 1974-03-18 1974-11-07 Method of and means for multi-story building construction
IN2524/CAL/74A IN144450B (en) 1974-03-18 1974-11-15
AU75435/74A AU475095B2 (en) 1974-03-18 1974-11-15 Method and means for multi-story building construction
ES432569A ES432569A1 (en) 1974-03-18 1974-12-04 A method of eriguing a building. (Machine-translation by Google Translate, not legally binding)
IT7061274A IT1027058B (en) 1974-03-18 1974-12-12 Cast-slab multi-storey building erection - with temporary paired columns containing permanent base slabs covered by separating layer
AR25678774A AR209086A1 (en) 1974-03-18 1974-12-15 METHOD AND ARRANGEMENT OF ELEMENTS TO RAISE A BUILDING
NL7416486A NL7416486A (en) 1974-03-18 1974-12-18 METHOD AND EQUIPMENT FOR ESTABLISHING MULTI-STOREY BUILDINGS AND CONSTRUCTION WORK OBTAINED BY THE METHOD.
BR1068774A BR7410687A (en) 1974-03-18 1974-12-20 PROCESS TO BUILD A LIFTING APPLIANCE BUILDING LIFT ACCESSORIES AND CABLE CONNECTION FOR THE SAME
PH16687A PH11385A (en) 1974-07-16 1975-01-08 Method of and means for multi-story building constitution
DE19752501207 DE2501207A1 (en) 1974-03-18 1975-01-14 METHOD AND DEVICE FOR THE CONSTRUCTION OF A MULTI-FLOOR BUILDING
GB6104/75A GB1497321A (en) 1974-03-18 1975-02-13 Building construction and apparatus therefor
YU39675A YU39675A (en) 1974-03-18 1975-02-19 Device for building multiple-floor buildings
JP2448275A JPS5323131B2 (en) 1974-03-18 1975-02-26
FR7508238A FR2273127B1 (en) 1974-03-18 1975-03-17
US05/601,789 US3974618A (en) 1974-03-18 1975-08-04 Method of and means for multi-story building construction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
MX14991474 1974-03-18
US489030A US3921362A (en) 1974-03-18 1974-07-16 Method of and means for multi-story building construction
US05/601,789 US3974618A (en) 1974-03-18 1975-08-04 Method of and means for multi-story building construction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/601,789 Division US3974618A (en) 1974-03-18 1975-08-04 Method of and means for multi-story building construction

Publications (1)

Publication Number Publication Date
US3921362A true US3921362A (en) 1975-11-25

Family

ID=27350929

Family Applications (2)

Application Number Title Priority Date Filing Date
US489030A Expired - Lifetime US3921362A (en) 1974-03-18 1974-07-16 Method of and means for multi-story building construction
US05/601,789 Expired - Lifetime US3974618A (en) 1974-03-18 1975-08-04 Method of and means for multi-story building construction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/601,789 Expired - Lifetime US3974618A (en) 1974-03-18 1975-08-04 Method of and means for multi-story building construction

Country Status (7)

Country Link
US (2) US3921362A (en)
AU (1) AU475095B2 (en)
CA (1) CA1021590A (en)
DE (1) DE2501207A1 (en)
FR (1) FR2273127B1 (en)
GB (1) GB1497321A (en)
NL (1) NL7416486A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391070A (en) * 1980-02-29 1983-07-05 Babcock-Bau Gmbh Chimney
US4539788A (en) * 1982-05-13 1985-09-10 Adviesbureau D3Bn Civiel Ingenieurs Method of building a house starting from a packaged structure, a packaged structure for use in said method, a method of making a foundation, and a pile cap for use therein
US4766708A (en) * 1985-12-27 1988-08-30 Peter Sing Shock and vibration resistant structures
US4942701A (en) * 1989-07-24 1990-07-24 Complete Hydraulic Building Systems, Inc. Hydraulic winch system for use in erecting clear-span, pole-type buildings
US4980999A (en) * 1988-07-27 1991-01-01 Terenzoni Robert S System for raising a roof
US5182886A (en) * 1988-08-02 1993-02-02 National Research Development Corporation Building elements and joints therefor
US5839239A (en) * 1996-04-04 1998-11-24 Jang; Byung K. Apparatus and method for building construction
US5867950A (en) * 1995-11-23 1999-02-09 Claisse; Patrick Device for lifting a framework, optionally together with a portion of a building resting on said framework
US5881504A (en) * 1995-05-15 1999-03-16 Obayashi Corporation Temporary frame system for construction
US20020124466A1 (en) * 2001-03-06 2002-09-12 J. Kelly Kindig Method for the treatment of coal
EP1520944A2 (en) * 2003-10-01 2005-04-06 Vierck Udo Method for constructing houses
US20090249708A1 (en) * 2005-11-28 2009-10-08 Flyport Development Entwicklungs Und Betreuungsgesellchaft Mbh Passenger Terminal Consisting of Mobile Room Units
WO2011155992A1 (en) * 2010-06-08 2011-12-15 Collins Arlan E Lift-slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US20120023840A1 (en) * 2009-04-10 2012-02-02 Bin Yuan Main Work Construction Method for Reinforced Concrete Building and Building Construction Machine
CN103225422A (en) * 2013-04-10 2013-07-31 北京筑福国际工程技术有限责任公司 Existing masonry structure using light steel structure direct storey-adding technology and construction method of existing masonry structure
CN103225423A (en) * 2013-04-10 2013-07-31 北京筑福国际工程技术有限责任公司 Existing building surrounding type story-adding structure and construction method thereof
CN103790393A (en) * 2014-01-17 2014-05-14 上海建工四建集团有限公司 Construction method for integrated replacement of existing building structure
US8950132B2 (en) 2010-06-08 2015-02-10 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US8978324B2 (en) 2010-06-08 2015-03-17 Innovative Building Technologies, Llc Pre-manufactured utility wall
US9027307B2 (en) 2010-06-08 2015-05-12 Innovative Building Technologies, Llc Construction system and method for constructing buildings using premanufactured structures
US20150211205A1 (en) * 2014-01-29 2015-07-30 Guangzhou Jishi Construction Group Co., Ltd. Construction system for subway station
WO2018057792A1 (en) * 2016-09-21 2018-03-29 Skyrise Global, Llc Structure and method of making the same
CN108153972A (en) * 2017-12-22 2018-06-12 腾达建设集团股份有限公司 A kind of cable hoisting full-range analysis methods
US10041289B2 (en) 2014-08-30 2018-08-07 Innovative Building Technologies, Llc Interface between a floor panel and a panel track
US10260250B2 (en) 2014-08-30 2019-04-16 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US10323428B2 (en) 2017-05-12 2019-06-18 Innovative Building Technologies, Llc Sequence for constructing a building from prefabricated components
US10329764B2 (en) 2014-08-30 2019-06-25 Innovative Building Technologies, Llc Prefabricated demising and end walls
US10364572B2 (en) 2014-08-30 2019-07-30 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
CN110306714A (en) * 2019-07-04 2019-10-08 艺墙之格建筑发展(上海)有限公司 A kind of assembling type partition wall ceiling structure
US20190309508A1 (en) * 2016-05-30 2019-10-10 Aleksandr Aleksandrovich TITOV Method for erecting framework of structures
US10487493B2 (en) 2017-05-12 2019-11-26 Innovative Building Technologies, Llc Building design and construction using prefabricated components
US10508442B2 (en) 2016-03-07 2019-12-17 Innovative Building Technologies, Llc Floor and ceiling panel for slab-free floor system of a building
US10676923B2 (en) 2016-03-07 2020-06-09 Innovative Building Technologies, Llc Waterproofing assemblies and prefabricated wall panels including the same
US10724228B2 (en) 2017-05-12 2020-07-28 Innovative Building Technologies, Llc Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls
US10900224B2 (en) 2016-03-07 2021-01-26 Innovative Building Technologies, Llc Prefabricated demising wall with external conduit engagement features
US10961710B2 (en) 2016-03-07 2021-03-30 Innovative Building Technologies, Llc Pre-assembled wall panel for utility installation
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings
US11098475B2 (en) 2017-05-12 2021-08-24 Innovative Building Technologies, Llc Building system with a diaphragm provided by pre-fabricated floor panels
US11193287B2 (en) * 2016-09-23 2021-12-07 Sh Technologies Pte Ltd Construction system and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284840A (en) * 1977-06-15 1981-08-18 The Wiremold Company Service pole assembly
FR2405337A1 (en) * 1977-10-06 1979-05-04 Parica Construction method for small dwelling - with concrete wall panels cast on floor slab and lifted and pivoted into place using hoist on gantry frame
US4301565A (en) * 1980-03-19 1981-11-24 Irwin Weinbaum Method and system for the removal and replacement of a bridge
DE3239816A1 (en) * 1982-05-24 1983-11-24 Dvt Deutsch Verfahrenstech METHOD FOR DISTILLING SEAWATER FROM SEAWATER
DE3219456A1 (en) * 1982-05-24 1983-12-01 Dvt Deutsch Verfahrenstech CONTAINER FOR PRESSURE-SEALING A PACKING COLUMN
NO159184C (en) * 1986-03-07 1990-12-28 Torodd Eeg Olsen PROCEDURE FOR BUILDING LARGE MODULES AND THE MODULE MANUFACTURED BY THE PROCEDURE.
US4782634A (en) * 1987-02-12 1988-11-08 G. & M. Fry Pty. Ltd. Building construction
DE3718436A1 (en) * 1987-06-02 1988-12-22 Wolfgang Keuser Process for producing tower-like structures
AU651616B2 (en) * 1990-10-08 1994-07-28 Kajima Corporation Process for constructing frame and erection
DE4121295A1 (en) * 1991-06-27 1993-01-07 Thomas Tibitanzl System type of building construction - uses walls and floors formed from prefab components and tensioned together on site to form integral unit
US5460499A (en) * 1993-08-27 1995-10-24 Franklin; James W. Concrete building frame construction apparatus
JP3255628B2 (en) * 1999-09-24 2002-02-12 株式会社 松本工務店 Rebuilding equipment for joining long members
US6679025B1 (en) * 2000-12-08 2004-01-20 Process Marketing, Inc. Modular tower
JP5059357B2 (en) * 2006-08-03 2012-10-24 株式会社日立プラントテクノロジー Construction method of boiler cage section floor
ES2308934B1 (en) * 2007-05-29 2009-09-25 Navarra Intelligent Concrete System, S.L AUTOMATIC BUILDING CONSTRUCTION SYSTEM.
KR101794085B1 (en) * 2009-02-09 2017-11-20 3엘-이노제니 인코포레이티드 Construction system and method for multi-floor buildings
US20100281818A1 (en) * 2009-05-07 2010-11-11 Southworth George L Method for building wind turbine tower
ES2625980B1 (en) * 2015-12-21 2018-05-03 Francisco José SAENZ SAENZ Method of construction of buildings of reticular structure and building constructed by said method
DK3211154T3 (en) * 2016-02-26 2022-05-02 Nordex Energy Spain S A PROCEDURE FOR MANUFACTURE OF CONCRETE TOWERS FOR WIND TURBINES
BR102016007926B1 (en) * 2016-04-08 2018-02-06 Rinaldo Zaina, Engenharia, Consultoria E Projetos Industriais S/S Ltda Me INDUSTRIAL PROCESS FOR BUILDING BUILDINGS
DE102021124665A1 (en) * 2021-09-23 2023-03-23 tfc tools for composite GmbH Single module, building kit and building
GB202211586D0 (en) * 2022-08-09 2022-09-21 Kiss House Ltd Kit of parts and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1362069A (en) * 1919-05-06 1920-12-14 Joseph R Witzel Building construction
US3490191A (en) * 1966-09-28 1970-01-20 Ingf Hans Hansson & Co Method for erecting buildings
US3593482A (en) * 1968-12-12 1971-07-20 Delp W Johnson Process for erecting folding slab construction
US3600870A (en) * 1970-05-06 1971-08-24 William Greenhalgh Building erection method
US3713265A (en) * 1970-12-14 1973-01-30 J Wysocki Method for construction and erection of floor slabs
US3724157A (en) * 1971-04-16 1973-04-03 O Miram Method of multi-level building construction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720017A (en) * 1948-11-30 1955-10-11 Inst Of Inventive Res Method of erecting buildings
US2964143A (en) * 1953-05-15 1960-12-13 Henri Lefaure Method of erecting buildings
US3036816A (en) * 1956-03-20 1962-05-29 Allan H Stubbs Apparatus for lift-slab building construction
US3053015A (en) * 1959-06-26 1962-09-11 George T Graham Method of building construction
US3494092A (en) * 1967-07-05 1970-02-10 Delp W Johnson Integrated folding slab construction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1362069A (en) * 1919-05-06 1920-12-14 Joseph R Witzel Building construction
US3490191A (en) * 1966-09-28 1970-01-20 Ingf Hans Hansson & Co Method for erecting buildings
US3593482A (en) * 1968-12-12 1971-07-20 Delp W Johnson Process for erecting folding slab construction
US3600870A (en) * 1970-05-06 1971-08-24 William Greenhalgh Building erection method
US3713265A (en) * 1970-12-14 1973-01-30 J Wysocki Method for construction and erection of floor slabs
US3724157A (en) * 1971-04-16 1973-04-03 O Miram Method of multi-level building construction

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391070A (en) * 1980-02-29 1983-07-05 Babcock-Bau Gmbh Chimney
US4539788A (en) * 1982-05-13 1985-09-10 Adviesbureau D3Bn Civiel Ingenieurs Method of building a house starting from a packaged structure, a packaged structure for use in said method, a method of making a foundation, and a pile cap for use therein
US4766708A (en) * 1985-12-27 1988-08-30 Peter Sing Shock and vibration resistant structures
US4980999A (en) * 1988-07-27 1991-01-01 Terenzoni Robert S System for raising a roof
US5182886A (en) * 1988-08-02 1993-02-02 National Research Development Corporation Building elements and joints therefor
US4942701A (en) * 1989-07-24 1990-07-24 Complete Hydraulic Building Systems, Inc. Hydraulic winch system for use in erecting clear-span, pole-type buildings
US5881504A (en) * 1995-05-15 1999-03-16 Obayashi Corporation Temporary frame system for construction
US5867950A (en) * 1995-11-23 1999-02-09 Claisse; Patrick Device for lifting a framework, optionally together with a portion of a building resting on said framework
US5839239A (en) * 1996-04-04 1998-11-24 Jang; Byung K. Apparatus and method for building construction
US20020124466A1 (en) * 2001-03-06 2002-09-12 J. Kelly Kindig Method for the treatment of coal
EP1520944A2 (en) * 2003-10-01 2005-04-06 Vierck Udo Method for constructing houses
EP1520944A3 (en) * 2003-10-01 2006-03-15 Vierck Udo Method for constructing houses
US20090249708A1 (en) * 2005-11-28 2009-10-08 Flyport Development Entwicklungs Und Betreuungsgesellchaft Mbh Passenger Terminal Consisting of Mobile Room Units
US8863474B2 (en) * 2009-04-10 2014-10-21 Bin Yuan Main work construction method for reinforced concrete building and building construction machine
US20120023840A1 (en) * 2009-04-10 2012-02-02 Bin Yuan Main Work Construction Method for Reinforced Concrete Building and Building Construction Machine
US9493940B2 (en) * 2010-06-08 2016-11-15 Innovative Building Technologies, Llc Slab construction system and method for constructing multi-story buildings using pre-manufactured structures
WO2011155992A1 (en) * 2010-06-08 2011-12-15 Collins Arlan E Lift-slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US10190309B2 (en) * 2010-06-08 2019-01-29 Innovative Building Technologies, Llc Slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US10145103B2 (en) 2010-06-08 2018-12-04 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US20130067832A1 (en) * 2010-06-08 2013-03-21 Sustainable Living Technology, Llc Lift-slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US8950132B2 (en) 2010-06-08 2015-02-10 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US8978324B2 (en) 2010-06-08 2015-03-17 Innovative Building Technologies, Llc Pre-manufactured utility wall
US9027307B2 (en) 2010-06-08 2015-05-12 Innovative Building Technologies, Llc Construction system and method for constructing buildings using premanufactured structures
US9382709B2 (en) 2010-06-08 2016-07-05 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
CN103225423B (en) * 2013-04-10 2015-10-14 北京筑福建筑事务有限责任公司 A kind of existing building encloses shell type adding storey structure and construction method thereof
CN103225422B (en) * 2013-04-10 2015-07-01 北京筑福国际工程技术有限责任公司 Existing masonry structure using light steel structure direct storey-adding technology and construction method of existing masonry structure
CN103225422A (en) * 2013-04-10 2013-07-31 北京筑福国际工程技术有限责任公司 Existing masonry structure using light steel structure direct storey-adding technology and construction method of existing masonry structure
CN103225423A (en) * 2013-04-10 2013-07-31 北京筑福国际工程技术有限责任公司 Existing building surrounding type story-adding structure and construction method thereof
CN103790393B (en) * 2014-01-17 2016-06-08 上海建工四建集团有限公司 A kind of construction method of existing building structure integral replacement
CN103790393A (en) * 2014-01-17 2014-05-14 上海建工四建集团有限公司 Construction method for integrated replacement of existing building structure
US20150211205A1 (en) * 2014-01-29 2015-07-30 Guangzhou Jishi Construction Group Co., Ltd. Construction system for subway station
US9822506B2 (en) * 2014-01-29 2017-11-21 Guangzhou Jishi Construction Group Co., Ltd. Construction system for subway station
US10041289B2 (en) 2014-08-30 2018-08-07 Innovative Building Technologies, Llc Interface between a floor panel and a panel track
US11060286B2 (en) 2014-08-30 2021-07-13 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US10975590B2 (en) 2014-08-30 2021-04-13 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US10260250B2 (en) 2014-08-30 2019-04-16 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings
US10329764B2 (en) 2014-08-30 2019-06-25 Innovative Building Technologies, Llc Prefabricated demising and end walls
US10364572B2 (en) 2014-08-30 2019-07-30 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US10676923B2 (en) 2016-03-07 2020-06-09 Innovative Building Technologies, Llc Waterproofing assemblies and prefabricated wall panels including the same
US10508442B2 (en) 2016-03-07 2019-12-17 Innovative Building Technologies, Llc Floor and ceiling panel for slab-free floor system of a building
US10900224B2 (en) 2016-03-07 2021-01-26 Innovative Building Technologies, Llc Prefabricated demising wall with external conduit engagement features
US10961710B2 (en) 2016-03-07 2021-03-30 Innovative Building Technologies, Llc Pre-assembled wall panel for utility installation
US20190309508A1 (en) * 2016-05-30 2019-10-10 Aleksandr Aleksandrovich TITOV Method for erecting framework of structures
US11002004B2 (en) * 2016-05-30 2021-05-11 Titov Aleksandr Aleksandrovich Method for erecting framework of structures
US10392794B2 (en) 2016-09-21 2019-08-27 Skyrise Global, Llc Structure and method of making the same
WO2018057792A1 (en) * 2016-09-21 2018-03-29 Skyrise Global, Llc Structure and method of making the same
US10550566B2 (en) 2016-09-21 2020-02-04 Skyrise Global, Llc Structure and method of making the same
US10731327B2 (en) 2016-09-21 2020-08-04 Skyrise Global, Llc Structure and method of making the same
US11193287B2 (en) * 2016-09-23 2021-12-07 Sh Technologies Pte Ltd Construction system and method
US10323428B2 (en) 2017-05-12 2019-06-18 Innovative Building Technologies, Llc Sequence for constructing a building from prefabricated components
US10724228B2 (en) 2017-05-12 2020-07-28 Innovative Building Technologies, Llc Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls
US10487493B2 (en) 2017-05-12 2019-11-26 Innovative Building Technologies, Llc Building design and construction using prefabricated components
US11098475B2 (en) 2017-05-12 2021-08-24 Innovative Building Technologies, Llc Building system with a diaphragm provided by pre-fabricated floor panels
CN108153972B (en) * 2017-12-22 2021-05-28 腾达建设集团股份有限公司 Analysis method for whole process of cable hoisting
CN108153972A (en) * 2017-12-22 2018-06-12 腾达建设集团股份有限公司 A kind of cable hoisting full-range analysis methods
CN110306714A (en) * 2019-07-04 2019-10-08 艺墙之格建筑发展(上海)有限公司 A kind of assembling type partition wall ceiling structure

Also Published As

Publication number Publication date
NL7416486A (en) 1975-09-22
FR2273127A1 (en) 1975-12-26
AU7543574A (en) 1976-05-20
CA1021590A (en) 1977-11-29
FR2273127B1 (en) 1979-03-16
AU475095B2 (en) 1976-08-12
DE2501207A1 (en) 1975-09-25
GB1497321A (en) 1978-01-05
US3974618A (en) 1976-08-17

Similar Documents

Publication Publication Date Title
US3921362A (en) Method of and means for multi-story building construction
US3782061A (en) Concrete building construction with improved post tensioning means
US3828513A (en) Method of erecting a multi-story building and apparatus therefor
AU2019409113A1 (en) Building site device having a climbing formwork and an elevator system
US3692446A (en) Apparatus for forming and lifting multi-story columns in one story increments
US10829927B2 (en) Vertical slip form construction system with multi-function platform, and method of constructing a building therewith
US20090165408A1 (en) Construction elements and methods of construction
KR101232704B1 (en) The installation and dismantlement method of main girder for bridge temporary
US3156071A (en) Building structure
JP5075398B2 (en) Construction method of tower-like PC structure and tension system device
CN108019040B (en) A kind of high-rise building transfer floor Bailey bracket platform construction method
CN115627912A (en) Construction method of assembled externally-mounted flower basket type overhanging scaffold
US3552080A (en) Method for erecting multistory buildings
JP7134133B2 (en) Bridge railing construction method
US3295266A (en) Suspended floor system for a multi-level building
JP5437876B2 (en) Method of dismantling and removing support members in the construction process of RC RC ramen structure viaduct
JPH11140892A (en) Method for excavating ground and method for constructing underground structure using the same
KR20210068283A (en) Structural Systems and Methods for Floor Structural Work in Elevator Machine Room of Apartment Housing
KR100617395B1 (en) Building repairing system through column raising
CN214996287U (en) Assembled frame construction elevator well
JPH0932295A (en) Construction method for concrete structure
JP3445419B2 (en) Double slab construction method
JP3020023B2 (en) Structure removal method
JP2003172046A (en) Floor board for base isolation building and base isolation structuralization method of the existing building used thereof
JP2761527B2 (en) How to build structures

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)

AS Assignment

Owner name: CORTINA SYSTEM, INCORPORATED, A CORP OF TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PABLO CORTINA;REEL/FRAME:004441/0701

Effective date: 19850630