US3923202A - Non-spitting liquid dispensing device with pressurized product supply - Google Patents

Non-spitting liquid dispensing device with pressurized product supply Download PDF

Info

Publication number
US3923202A
US3923202A US419967A US41996773A US3923202A US 3923202 A US3923202 A US 3923202A US 419967 A US419967 A US 419967A US 41996773 A US41996773 A US 41996773A US 3923202 A US3923202 A US 3923202A
Authority
US
United States
Prior art keywords
liquid
piston
source
dispenser
dispenser body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US419967A
Inventor
Pasquale R Riccio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Corp
Original Assignee
Ciba Geigy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy Corp filed Critical Ciba Geigy Corp
Priority to US419967A priority Critical patent/US3923202A/en
Priority to CH1430574A priority patent/CH588896A5/xx
Priority to DE19742451367 priority patent/DE2451367C3/en
Priority to NL7414127A priority patent/NL7414127A/en
Priority to AR25632174A priority patent/AR210252A1/en
Priority to DE19742462461 priority patent/DE2462461A1/en
Priority to FR7436146A priority patent/FR2257352B1/fr
Priority to SE7413599A priority patent/SE7413599L/xx
Priority to DK566374A priority patent/DK142132B/en
Priority to CA212,645A priority patent/CA1008033A/en
Priority to IT5380974A priority patent/IT1032113B/en
Priority to BE150044A priority patent/BE821667A/en
Priority to AU74866/74A priority patent/AU495580B2/en
Priority to GB2872577A priority patent/GB1493615A/en
Priority to JP12498774A priority patent/JPS5078912A/ja
Priority to GB4718174A priority patent/GB1493614A/en
Application granted granted Critical
Publication of US3923202A publication Critical patent/US3923202A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/06Gas or vapour producing the flow, e.g. from a compressible bulb or air pump
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/28Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement
    • G01F11/30Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply and discharge valves of the lift or plug-lift type
    • G01F11/32Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with stationary measuring chambers having constant volume during measurement with supply and discharge valves of the lift or plug-lift type for liquid or semiliquid

Definitions

  • a device for dispensing a spray of fine droplets of liquid in gas has a dispenser body. with a nozzle opening out of the body and having a central outlet passage and lateral passages opening into the central outlet passage.
  • the dispenser body also has a supply chamber therein to which the lateral passages are connected.
  • a dispq sing device having a source of gas under pressure and a source of liquid to be dispensed which is also under pressure and a dispensing nozzle which has a central outlet passage and lateral passages opening into the central outlet passage from an annular mixing chamber around the nozzle.
  • the device has a product flow path from the source of liquid under pressure which opens into the mixing chamber, and a compressed gas flow path from the source of compressed gas into the mixing chamber.
  • FIG. 1 is a sectional elevation view of a dispenser according to the present invention with the parts in the rest or non-dispensing positions;
  • FIG. 2 is a sectional elevation view similar to FIG. 1 with the parts in the dispensing positions;
  • FIG. 3 is an elevation view, on a reduced scale, of the device of FIGS. 1 and 2.
  • a dispenser body 10 in a dispenser body 10 is an upwardly open recess 1 1 having a cross-sectional shape complementary to the cross-sectional shape of a piston 31 of a measured dose dispenser which is a source of pressurized liquid to be dispensed and which will be described below.
  • the piston 31 fits into recess 11 in slidable relationship.
  • a further recess 12 is provided in the bottom of the recess 1 l which has a cross-sectional shape complementary to the cross-sectional shape of the hollow stem portion 37 of the measured dose dispenser and which receives the hollow stem portion 37 in a substantially fluid tight fit with the end of the stem portion 37 in the bottom of the recess 12, and with the parts in the rest or non-dispensing positions, as seen in FIG. 1, with the lower end of the piston 31 spaced above the bottom of the recess 11.
  • Nozzle means 13 in the form of a nozzle insert 14 opens out of the side of the dispenser body 10.
  • the nozzle insert 14- is positioned in a laterally opening recess 16 in the dispenser body which is shaped to leave an annular mixing 17 around the nozzle insert.
  • the nozzle insert has a central outlet passage 14a into which lateral passages 14b extend from the mixing chamber 17.
  • a nozzle insert it is possible to use the Venturi nozzle insert disclosed in US. application Ser. No. 419,966, since this is a commercially available element. However, it will be understood that the central through passage thereof performs no function in the present invention.
  • the recess 16 has a smaller diameter portion at the inner end and a larger diameter portion at the outer end and the nozzle insert 14 has a smaller diameter portion which fits into the smaller diameter portion of the recess but is longer than this portion is deep.
  • the larger diameter portion of the nozzle insert is thus spaced outwardly of the bottom of the larger portion of recess 16 to leave the mixing chamber 17.
  • the dispenser body has a liquid product flow path therethrough in the form of a passage from the recess 12 to the mixing chamber 17 around the nozzle insert 14.
  • a source of gas under pressure in the form of an air compressing piston cylinder means is provided on the opposite end of the body 10 from the measured dose dispenser, and in the embodiment disclosed comprises a cylinder 18 which extends downwardly from the body 10 and within which a piston 19 is slidably positioned. Gasket 19a seals the piston in its movement into the cylinder 18.
  • a return spring 20 within the cylinder 18 urges the piston 19 out of the cylinder 18. Opening out of the inner end of the cylinder 18 and into the body 10 is a recess 21, and from the recess 21 a compressed air path is provided which has a vertically extending portion 22 and a horizontal portion 24 extending to the mixing chamber 17.
  • the recess 21 and the air path portions 22 and 24 comprise a compressed air flow path through the body 10.
  • a poppet valve member 25 which seats on a seat 26 retained in the recess 21 by a retainer 27 which is positioned in the inner end of the cylinder 18.
  • a valve return spring 28 in the recess 21 holds the poppet valve on the seat 26.
  • An actuating pin 29 extends upwardly from the piston 19. At the inner end of the stroke of the piston 19 it is engaged with the poppet valve member 25 to lift the poppet valve member 25 from the seat 26 sufficiently far to pass compressed air into the recess 21.
  • the measured dose dispenser which serves in this embodiment as the source of pressurized liquid comprises a piston-cylinder means generally indicated at 30 which, in this embodiment, has a piston 31 over which a cylinder 32 is slidable.
  • a gasket 32a in the end of the piston 31 seals against the inside surface of the cylinder 32 as the cylinder slides along the piston.
  • the piston 31 is made up of an outer shell 33 within which is positioned an inner body 34.
  • the end of the shell 33 has an aperture 33a therein, and on the inside of the shell, between the bottom thereof and the end of the inner body 34, is a first annular sealing gasket 35.
  • the inner body 34 has a larger diameter recess 34a in the end toward the bottom of the shell, and has a smaller diameter bore 34b extending from the inner end of the recess 34a to the end of the piston which is within the cylinder 32.
  • a metering valve stem Movably mounted within the recess 34a and bore 34b is a metering valve stem generally indicated at 36 which has a solid stem portion within the recess 34a and a hollow stern portion 37 extending from the solid stern portion out through the first annular sealing gasket 35 and the aperture 33a in the bottom of the shell 33, the outside surface of the hollow stem portion 37 being in sea]- ing relationship with the first annular sealing gasket 35.
  • a flange 38 At the joint between the hollow stem portion 37 and the solid stern portion is a flange 38, which in the rest position of the stem, as shown in FIG. 1, rests on the first annular gasket 35.
  • the cross-sectional shape of the solid stem portion is such that it will move freely into the bore 34b.
  • a second annular sealing gasket 40 Around the end of the bore 3412, where it opens into the larger diameter recess 34a, is a second annular sealing gasket 40 through which the solid portion of the stern can move in sealing relationship therewith when the stem 36 is raised.
  • a spring 39 is positioned between the second annular-sealing gasket 40 and the flange 38, and urges the flange toward the first annular sealing gasket 35.
  • an aperture 37b which, in the rest position of the device as shown in FIG. 1, is below or outside the bottom of the piston 31. In the dispensing position, this aperture is within the larger diameter recess 340.
  • valve stem 36 and the inner body 34 with its larger diameter recess 34a, the annular sealing gaskets 35 and 40, and the spring 39 form a simple metering stem which is known from the aerosol dispensing art and is shown in US. Pat. No. 2,721,010.
  • the measured does dispenser is caused to operate to dispense a squirt of liquid through the hollow stem portion 37 into the product flow path 15 and into the mixing chamber 17.
  • air is compressed in the cylinder 18 ahead of the piston 19.
  • the poppet valve 25 remains closed.
  • the actuating pin 29 hits the poppet valve 25
  • the poppet valve is lifted from the seat 26, as shown in FIG. 2, and the air compressed in the cylinder 18 is suddenly released to flow through the compressed air path to the mixing chamber 17 around the nozzle insert 14.
  • the compressed air flowing into the mixing chamber 17 mixes and shears the liquid under pressure from the metered dose dispenser and this mixture flows through the lateral passages 14b and then out through central outlet passage 14a of the nozzle insert. Due to this mechanical break action the liquid is immediately dispensed from the nozzle insert as a fine spray of droplets of the liquid in compressed air without there first being ejected relatively large droplets of liquid.
  • valve means of the measured dose dispenser acts to control the flow of the liquid productfrom the liquid supply in a simple and effective manner and independently of the air valve controlling the flow of the compressed air from the air compressing piston cylinder means.
  • metered dose dispensing device has been shown as one specific source of pressurized liquid, other sources can also be provided, such as are disclosed in US. application Ser. No. 496,282.
  • piston cylinder air pressurizing means have been described as a specific source of gas under pressure, other sources could be provided, for example, a valved conventional aerosol can containing a conventional propellant under pressure.
  • a device for dispensing a spray of fine droplets of liquid in gas comprising a dispenser body, said dispenser body having a nozzle means opening out of said body and having a central outlet passage closed on the end remote from the end opening out of the nozzle means and lateral passages opening into said central outlet passage, said dispenser body having an annular mixing chamber around said central outlet passage to which said lateral passages are connected, a source of liquid to be dispensed having means for mechanically pressuring said liquid and operatively associated with said dispenser body, said dispenser body having a product flow conduit therethrough from said source of pressurized liquid to said annular mixing chamber, and a source of gas under pressure operatively associated with said body and said body having a compressed gas flow conduit therethrough separate from said product flow conduit and extending from said source of gas under pressure and opening into said annular mixing chamber at a point spaced from the point at which said produce flow conduit opens into said annular mixing chamber.
  • a device as claimed in claim 1 in which said source of liquid comprises a measured dose dispenser having a piston-cylinder means containing the liquid to be dispensed and valve means for dispensing a measured dose of the liquid when the piston-cylinder means is actuated.
  • a device as claimed in claim 1 in which said source of compressed gas comprises an air compressing piston-cylinder means having a fixed member and a movable member movable through a compressing stroke relative to the fixed member and a valve member in said compressed air flow path mormally closing said path, actuating pin means operatively associated with air compressing piston-cylinder means and said valve member for actuating said valve member to open it near the end of the compression stroke.
  • said source of pressurized liquid comprises a dispenser having a liquid pressurizing piston-cylinder means containing the liquid to be dispensed and valve means for dispensing an amount of the liquid when the liquid pressurizing piston-cylinder means is actuated, said air compressing piston-cylinder means being on one end of said dispenser body and the liquid pressurizing piston-cylinder means being on the other end of said dispenser body, and said nozzle opening laterally of said dispenser body, whereby pressure on the opposite ends of said device actuates both piston-cylinder means.
  • a device as claimed in claim 1 in which said annular mixing chamber is coaxial with the axis of said central outlet passage.
  • a device as claimed in claim 1 in which said product flow path and said compressed gas flow path open into said supply chamber in a direction parallel to the axis of said central outlet passage.

Abstract

A device for dispensing a spray of fine droplets of liquid in gas. The device has a dispenser body, with a nozzle opening out of the body and having a central outlet passage and lateral passages opening into the central outlet passage. The dispenser body also has a supply chamber therein to which the lateral passages are connected. A source of pressurized liquid to be dispensed is operatively associated with the dispenser body and the dispenser body has a valved product flow path therethrough from the source of pressurized liquid to the supply chamber. A source of gas under pressure is also operatively associated with the body and the body has a compressed gas flow path therethrough from the source of gas under pressure to the supply chamber. Upon actuation, compressed gas and liquid under pressure are premixed in the supply chamber and dispensed as a spray through the nozzle.

Description

United States Patent 1191 Riccio 1 Dec.2, 1975 1 NON-SPITTING LIQUID DISPENSING DEVICE WITH PRESSURIZED PRODUCT SUPPLY [75] Inventor: Pasquale R. Riccio, Salem, NH.
[73] Assignee: Ciba-Geigy Corporation, Ardsley,
[22] Filed: Nov. 29, 1973 [21] Appl. No.: 419,967
[52] US. Cl 222/145; 222/193 [51] Int. Cl. B67D 5/54 [58] Field of Search 222/129, 145, 193, 398,
[56] References Cited UNITED STATES PATENTS 2,029,408 2/1936 Bramsen et al. 222/193 3,415,425 12/1968 Knight et al. 222/387 X 3,666,150 5/1972 Liljeholm... 222/453 3,741,443 6/1973 Marand 222/145 3,788,556 1/1974 Riccio 239/357 X 'IIIIAUI').
Primary Examiner-Robert B. Reeves Assistant Examiner-Joseph J. Rolla Attorney, Agent, or Firm-Wenderoth, Lind & Ponack 57 ABSTRACT A device for dispensing a spray of fine droplets of liquid in gas. The device has a dispenser body. with a nozzle opening out of the body and having a central outlet passage and lateral passages opening into the central outlet passage. The dispenser body also has a supply chamber therein to which the lateral passages are connected. A source of pressurized liquid to be 6 Claims, 3 Drawing Figures 3 1 8 "3 34 a 30 I A n 34 I): Q w ill ((3! 11 i T US. atent Dec. 2, 1975 NON-SPETTHN'G LllQUllD DlSPENSlNG DEVICE Wi'lili PRESSUREZED FRODUCT SUPPLY BACKGROUND AND PRIOR ART For many years, most of the aerosol dispensers have been the type in which a propellant is compressed in a valved container along with the product to be dispensed, so that when the valve is opened, the pressure of the propellant forces the product, mixed with the propellant, through the valve and out through a nozzle means, and because of the high pressure of the propellant, the mixed product and propellant emerge from the nozzle in spray form. Because of the high pressure,
the start of flow of the mixed propellant and product is almost instantaneous and little or no trouble is experienced because of larger drops of liquid first being ejected, followed by a fine spray. Such a difficulty will hereinafter be referred to as spitting.
In the last few years, there has been developed a type of aerosol dispenser in which the propellant is stored in the dispensing apparatus separately from the product to be dispensed, the propellant and product being mixed only upon being actually dispensed. This has enabled the dispensing by means of aerosol dispensers of products which are normally incompatible with the propellants being used when the two are stored together for any length of time. However, this type of dispenser still utilizes a propellant as the means for dispensing and atomizing the product. Occasionally, the type of device is subject to spitting.
There has recently been much discussion about the possible damaging effects of the propellants commonly used in such aerosol dispensers, such as freon gas. Where the products are not used on the human body, such as with paint or insecticide, precautions can be taken by the user so that he does not inhale the dispensed mixture of product and propellant. However, where the product is to be used on the human body or to be ingested into the human body, such as in the case of deodorant which is used directly on the body, or a breath freshner which is sprayed directly into the mouth, there is no way to avoid exposing the user to the damaging effects of the propellant.
drawback in the aerosol dispensers has led to the recent development of dispensers which use a charge of compressed air to aspirate a product from a separate product container each time the dispenser is actuated. Examples of such dispensers are found in the U.S. Pat. Nos. 3,672,545 and 3,733,010. In these dispensers, since there is no propellant used, but only compressed air, there is no danger to the user from the propellant. These devices therefore have a great potential for use in dispensing such products as medicaments, cosmetic and personal hygiene products, and the like where it is desirable that the user not be exposed to the dangers of conventional propellants. However, these devices are subject to the problem of spitting.
In addition, in U.S. application Ser. No. 496,282, filed Aug. 4, i974, which is a continuation of Ser. No. 41 1,267, filed Oct. 3 l i973, now abandon, there is dis closed a dispenser device in which at the same time as the compressed air is produced by a piston-cylinder means, pressure is also exerted on the liquid product to be dispensed, so that at the time the compressed air is released, the liquid product is supplied under pressure. A similar device is disclosed in U.S. application Ser. No. 411,265, filed Oct. 3i, 1973 now U.S. Pat. No.
2 3,878,973. These devices have made it possible to provide a spray of very fine droplets and can provide a spray with a droplet size which makes it possible to use these devices for medicaments which are to be inhaled by the user. However, the devices disclosed in both applications are also subject to the problem of spitting.
In U.S. application Ser. No. 419,966, filed Nov. 59, 1973, there is disclosed a dispenser for overcoming the problem of spitting in this type of dispenser. The structure of that dispenser, however, is somewhat complex, and requires a branched compressed air flow path and a Venturi type nozzle.
OBJECTS AND BRIEF DESCRIPTIONS OF THE INVENTION It is an object of the present invention to provide a device for dispensing a spray of liquid in compressed gas in which the problem of spitting is avoided, and the device upon actuation immediately starts to dispense a sprayof fine droplets without first ejecting larger droplets of the liquid to be dispensed, and which device has a somewhat simpler construction than prior art devices.
This object is achieved by providing a dispq sing device having a source of gas under pressure and a source of liquid to be dispensed which is also under pressure and a dispensing nozzle which has a central outlet passage and lateral passages opening into the central outlet passage from an annular mixing chamber around the nozzle. The device has a product flow path from the source of liquid under pressure which opens into the mixing chamber, and a compressed gas flow path from the source of compressed gas into the mixing chamber. By this arrangement, the liquid to be dispensed is mixed with compressed gas to a certain extent prior to its being fed into the central outlet passage of the nozzle through the lateral passage, and the ejection of large droplets at the start of the flow of compressed gas and liquid under pressure is avoided.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described in greater detail in the following specification taken in connection with the accompanying drawings, in which:
FIG. 1 is a sectional elevation view of a dispenser according to the present invention with the parts in the rest or non-dispensing positions;
FIG. 2 is a sectional elevation view similar to FIG. 1 with the parts in the dispensing positions; and
FIG. 3 is an elevation view, on a reduced scale, of the device of FIGS. 1 and 2.
DETAILED DESCRIPTION OF THE INVENTION Referring to the figures, in a dispenser body 10 is an upwardly open recess 1 1 having a cross-sectional shape complementary to the cross-sectional shape of a piston 31 of a measured dose dispenser which is a source of pressurized liquid to be dispensed and which will be described below. The piston 31 fits into recess 11 in slidable relationship. A further recess 12 is provided in the bottom of the recess 1 l which has a cross-sectional shape complementary to the cross-sectional shape of the hollow stem portion 37 of the measured dose dispenser and which receives the hollow stem portion 37 in a substantially fluid tight fit with the end of the stem portion 37 in the bottom of the recess 12, and with the parts in the rest or non-dispensing positions, as seen in FIG. 1, with the lower end of the piston 31 spaced above the bottom of the recess 11.
Nozzle means 13 in the form of a nozzle insert 14 opens out of the side of the dispenser body 10. The nozzle insert 14- is positioned in a laterally opening recess 16 in the dispenser body which is shaped to leave an annular mixing 17 around the nozzle insert. The nozzle insert has a central outlet passage 14a into which lateral passages 14b extend from the mixing chamber 17. As one practical embodiment of a nozzle insert, it is possible to use the Venturi nozzle insert disclosed in US. application Ser. No. 419,966, since this is a commercially available element. However, it will be understood that the central through passage thereof performs no function in the present invention. In the specific form of the structure as shown, the recess 16 has a smaller diameter portion at the inner end and a larger diameter portion at the outer end and the nozzle insert 14 has a smaller diameter portion which fits into the smaller diameter portion of the recess but is longer than this portion is deep. The larger diameter portion of the nozzle insert is thus spaced outwardly of the bottom of the larger portion of recess 16 to leave the mixing chamber 17. The dispenser body has a liquid product flow path therethrough in the form of a passage from the recess 12 to the mixing chamber 17 around the nozzle insert 14.
A source of gas under pressure in the form of an air compressing piston cylinder means is provided on the opposite end of the body 10 from the measured dose dispenser, and in the embodiment disclosed comprises a cylinder 18 which extends downwardly from the body 10 and within which a piston 19 is slidably positioned. Gasket 19a seals the piston in its movement into the cylinder 18. A return spring 20 within the cylinder 18 urges the piston 19 out of the cylinder 18. Opening out of the inner end of the cylinder 18 and into the body 10 is a recess 21, and from the recess 21 a compressed air path is provided which has a vertically extending portion 22 and a horizontal portion 24 extending to the mixing chamber 17.
The recess 21 and the air path portions 22 and 24 comprise a compressed air flow path through the body 10. Within the recess 21 is a poppet valve member 25 which seats on a seat 26 retained in the recess 21 by a retainer 27 which is positioned in the inner end of the cylinder 18. A valve return spring 28 in the recess 21 holds the poppet valve on the seat 26. An actuating pin 29 extends upwardly from the piston 19. At the inner end of the stroke of the piston 19 it is engaged with the poppet valve member 25 to lift the poppet valve member 25 from the seat 26 sufficiently far to pass compressed air into the recess 21.
The measured dose dispenser which serves in this embodiment as the source of pressurized liquid comprises a piston-cylinder means generally indicated at 30 which, in this embodiment, has a piston 31 over which a cylinder 32 is slidable. A gasket 32a in the end of the piston 31 seals against the inside surface of the cylinder 32 as the cylinder slides along the piston. The piston 31 is made up of an outer shell 33 within which is positioned an inner body 34. The end of the shell 33 has an aperture 33a therein, and on the inside of the shell, between the bottom thereof and the end of the inner body 34, is a first annular sealing gasket 35. The inner body 34 has a larger diameter recess 34a in the end toward the bottom of the shell, and has a smaller diameter bore 34b extending from the inner end of the recess 34a to the end of the piston which is within the cylinder 32.
Movably mounted within the recess 34a and bore 34b is a metering valve stem generally indicated at 36 which has a solid stem portion within the recess 34a and a hollow stern portion 37 extending from the solid stern portion out through the first annular sealing gasket 35 and the aperture 33a in the bottom of the shell 33, the outside surface of the hollow stem portion 37 being in sea]- ing relationship with the first annular sealing gasket 35. At the joint between the hollow stem portion 37 and the solid stern portion is a flange 38, which in the rest position of the stem, as shown in FIG. 1, rests on the first annular gasket 35. The cross-sectional shape of the solid stem portion is such that it will move freely into the bore 34b. Around the end of the bore 3412, where it opens into the larger diameter recess 34a, is a second annular sealing gasket 40 through which the solid portion of the stern can move in sealing relationship therewith when the stem 36 is raised. A spring 39 is positioned between the second annular-sealing gasket 40 and the flange 38, and urges the flange toward the first annular sealing gasket 35.
In the hollow stem portion 37 is an aperture 37b which, in the rest position of the device as shown in FIG. 1, is below or outside the bottom of the piston 31. In the dispensing position, this aperture is within the larger diameter recess 340.
It will be seen that the valve stem 36 and the inner body 34 with its larger diameter recess 34a, the annular sealing gaskets 35 and 40, and the spring 39 form a simple metering stem which is known from the aerosol dispensing art and is shown in US. Pat. No. 2,721,010.
In operation with the parts in the positions a shown in FIG. 1 and with the cylinder filled with liquid L, pressure is exerted against the top of the cylinder 32 to urge the cylinder along the piston 31 to thereby exert pressure on the liquid L within the cylinder and within the smaller diameter bore 34b and larger diameter recess 34a. Since the stem 36 is fixed in position in recess 12, the pressure will move the piston 31 down around the stem 36 against the action of the spring 39, first causing the second annular sealing gasket 40 to move around the upper end of the solid portion of the stem 36 and seal off the recess 34a from the smaller diameter bore 34b and the interior of the cylinder 32, thus trapping a metered quantity of liquid in recess 34a. Thereafter, further movement of the piston 31 and cylinder 32 downwardly along the stem 36 causes the first annular sealing gasket 35 to move past the aperture 37b so that the recess 34a is in communication with the interior of the hollow stem portion 37.
It has been found that with this construction, when the aperture 37b is placed in communication with the recess 34a, the liquid which has been trapped in the recess 34a is ejected from the hollow stern portion 37 in a squirt which has considerable force.
In the operation of the overall device, when pressure is exerted by the fingers of the user on the cylinder 32 of the measured dose dispenser and the piston 19 of the air compressing piston cylinder means, the measured does dispenser is caused to operate to dispense a squirt of liquid through the hollow stem portion 37 into the product flow path 15 and into the mixing chamber 17. At the same time, air is compressed in the cylinder 18 ahead of the piston 19. However, until the piston 19 reaches the end of its stroke, the poppet valve 25 remains closed. When the actuating pin 29 hits the poppet valve 25, the poppet valve is lifted from the seat 26, as shown in FIG. 2, and the air compressed in the cylinder 18 is suddenly released to flow through the compressed air path to the mixing chamber 17 around the nozzle insert 14. The compressed air flowing into the mixing chamber 17 mixes and shears the liquid under pressure from the metered dose dispenser and this mixture flows through the lateral passages 14b and then out through central outlet passage 14a of the nozzle insert. Due to this mechanical break action the liquid is immediately dispensed from the nozzle insert as a fine spray of droplets of the liquid in compressed air without there first being ejected relatively large droplets of liquid.
The particular advantage of such a source of pressurized liquid as described above is that it can simply be replaced by a filled measured does dispensing device.
In addition to dispensing only a measured dose the valve means of the measured dose dispenser acts to control the flow of the liquid productfrom the liquid supply in a simple and effective manner and independently of the air valve controlling the flow of the compressed air from the air compressing piston cylinder means.
While the metered dose dispensing device has been shown as one specific source of pressurized liquid, other sources can also be provided, such as are disclosed in US. application Ser. No. 496,282. Moreover, while the piston cylinder air pressurizing means have been described as a specific source of gas under pressure, other sources could be provided, for example, a valved conventional aerosol can containing a conventional propellant under pressure.
It will thus be seen that by a very simple change in the structure such that the gas under pressure and the liquid to be dispensed are supplied together to the supply chamber around the nozzle, the liquid is initially dispensed in the form of fine droplets, and the problems of spitting are overcome.
It is thought that the invention and its advantages will be understood from the foregoing description, and it is apparent that various changes may be made in the form, construction and arrangement of the parts without departing from the spirit and scope of the invention or sacrificing its material advantages, the form hereinbefore described and illustrated in the drawings being merely a preferred embodiment thereof.
What is claimed is:
1. A device for dispensing a spray of fine droplets of liquid in gas comprising a dispenser body, said dispenser body having a nozzle means opening out of said body and having a central outlet passage closed on the end remote from the end opening out of the nozzle means and lateral passages opening into said central outlet passage, said dispenser body having an annular mixing chamber around said central outlet passage to which said lateral passages are connected, a source of liquid to be dispensed having means for mechanically pressuring said liquid and operatively associated with said dispenser body, said dispenser body having a product flow conduit therethrough from said source of pressurized liquid to said annular mixing chamber, and a source of gas under pressure operatively associated with said body and said body having a compressed gas flow conduit therethrough separate from said product flow conduit and extending from said source of gas under pressure and opening into said annular mixing chamber at a point spaced from the point at which said produce flow conduit opens into said annular mixing chamber.
2. A device as claimed in claim 1 in which said source of liquid comprises a measured dose dispenser having a piston-cylinder means containing the liquid to be dispensed and valve means for dispensing a measured dose of the liquid when the piston-cylinder means is actuated.
3. A device as claimed in claim 1 in which said source of compressed gas comprises an air compressing piston-cylinder means having a fixed member and a movable member movable through a compressing stroke relative to the fixed member and a valve member in said compressed air flow path mormally closing said path, actuating pin means operatively associated with air compressing piston-cylinder means and said valve member for actuating said valve member to open it near the end of the compression stroke.
4. A device as claimed in claim 3 in which said source of pressurized liquid comprises a dispenser having a liquid pressurizing piston-cylinder means containing the liquid to be dispensed and valve means for dispensing an amount of the liquid when the liquid pressurizing piston-cylinder means is actuated, said air compressing piston-cylinder means being on one end of said dispenser body and the liquid pressurizing piston-cylinder means being on the other end of said dispenser body, and said nozzle opening laterally of said dispenser body, whereby pressure on the opposite ends of said device actuates both piston-cylinder means.
5. A device as claimed in claim 1 in which said annular mixing chamber is coaxial with the axis of said central outlet passage.
6. A device as claimed in claim 1 in which said product flow path and said compressed gas flow path open into said supply chamber in a direction parallel to the axis of said central outlet passage.

Claims (6)

1. A device for dispensing a spray of fine droplets of liquid in gas comprising a dispenser body, said dispenser body having a nozzle means opening out of said body and having a central outlet passage closed on the end remote from the end opening out of the nozzle means and lateral passages opening into said central outlet passage, said dispenser body having an annular mixing chamber around said central outlet passage to which said lateral passages are connected, a source of liquid to be dispensed having means for mechanically pressuring said liquid and operatively associated with said dispenser body, said dispenser body having a product flow conduit therethrough from said source of pressurized liquid to said annular mixing chamber, and a source of gas under pressure operatively associated with said body and said body having a compressed gas flow conduit therethrough separate from said product flow conduit and extending from said source of gas under pressure and opening into said annular mixing chamber at a point spaced from the point at which said produce flow conduit opens into said annular mixing chamber.
2. A device as claimed in claim 1 in which said source of liquid comprises a measured dose dispenser having a piston-cylinder means containing the liquid to be dispensed and valve means for dispensing a measured dose of the liquid when the piston-cylinder means is actuated.
3. A device as claimed in claim 1 in which said source of compressed gas comprises an air compressing piston-cylinder means having a fixed member and a movable member movable through a compressing stroke relative to the fixed member and a valve member in said compressed air flow path mormally closing said path, actuating pin means operatively associated with air compressing piston-cylinder means and said valve member for actuating said valve member to open it near the end of the compression stroke.
4. A device as claimed in claIm 3 in which said source of pressurized liquid comprises a dispenser having a liquid pressurizing piston-cylinder means containing the liquid to be dispensed and valve means for dispensing an amount of the liquid when the liquid pressurizing piston-cylinder means is actuated, said air compressing piston-cylinder means being on one end of said dispenser body and the liquid pressurizing piston-cylinder means being on the other end of said dispenser body, and said nozzle opening laterally of said dispenser body, whereby pressure on the opposite ends of said device actuates both piston-cylinder means.
5. A device as claimed in claim 1 in which said annular mixing chamber is coaxial with the axis of said central outlet passage.
6. A device as claimed in claim 1 in which said product flow path and said compressed gas flow path open into said supply chamber in a direction parallel to the axis of said central outlet passage.
US419967A 1973-10-31 1973-11-29 Non-spitting liquid dispensing device with pressurized product supply Expired - Lifetime US3923202A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US419967A US3923202A (en) 1973-11-29 1973-11-29 Non-spitting liquid dispensing device with pressurized product supply
CH1430574A CH588896A5 (en) 1973-10-31 1974-10-25
NL7414127A NL7414127A (en) 1973-10-31 1974-10-29 AEROROL SPRAYER.
AR25632174A AR210252A1 (en) 1973-10-31 1974-10-29 AEROSOL DISPENSER USED AS A MANUAL SPRAYING DEVICE
DE19742462461 DE2462461A1 (en) 1973-10-31 1974-10-29 AEROSOL SPRAYER TRAINED AS A HAND SPRAY CAN
FR7436146A FR2257352B1 (en) 1973-10-31 1974-10-29
SE7413599A SE7413599L (en) 1973-10-31 1974-10-29
DE19742451367 DE2451367C3 (en) 1973-10-31 1974-10-29 Aerosol atomizer designed as a hand spray can
DK566374A DK142132B (en) 1973-10-31 1974-10-30 Aerosol nebulizer with manually operated atomisers.
CA212,645A CA1008033A (en) 1973-10-31 1974-10-30 Aerosol dispenser and novel nozzle arrangements therefor
IT5380974A IT1032113B (en) 1973-10-31 1974-10-30 Aerosol spray can - has propellant pressure applied to fluid reservoir upstream of adjustable control valve
BE150044A BE821667A (en) 1973-10-31 1974-10-30 AEROSOL DISPENSER WITH A NEW NOZZLE ARRANGEMENT
AU74866/74A AU495580B2 (en) 1974-10-30 Pressurised aerosol dispenser
GB2872577A GB1493615A (en) 1973-10-31 1974-10-31 Aerosol dispensers
JP12498774A JPS5078912A (en) 1973-10-31 1974-10-31
GB4718174A GB1493614A (en) 1973-10-31 1974-10-31 Aerosol dispensers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US419967A US3923202A (en) 1973-11-29 1973-11-29 Non-spitting liquid dispensing device with pressurized product supply

Publications (1)

Publication Number Publication Date
US3923202A true US3923202A (en) 1975-12-02

Family

ID=23664518

Family Applications (1)

Application Number Title Priority Date Filing Date
US419967A Expired - Lifetime US3923202A (en) 1973-10-31 1973-11-29 Non-spitting liquid dispensing device with pressurized product supply

Country Status (1)

Country Link
US (1) US3923202A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302550A (en) * 1977-10-14 1981-11-24 Bayer Aktiengesellschaft Process and apparatus for the mixing and application of reactive materials
US5002048A (en) * 1989-12-12 1991-03-26 Makiej Jr Walter J Inhalation device utilizing two or more aerosol containers
US5007419A (en) * 1989-09-25 1991-04-16 Allan Weinstein Inhaler device
US5402943A (en) * 1990-12-04 1995-04-04 Dmw (Technology) Limited Method of atomizing including inducing a secondary flow
US5405084A (en) * 1990-12-04 1995-04-11 Dmw (Technology) Limited Nozzle assembly for preventing back-flow
US5497944A (en) * 1990-03-21 1996-03-12 Dmw (Technology) Limited Atomising devices and methods
US20050051162A1 (en) * 2002-10-30 2005-03-10 Nektar Therapeutics (Formerly Inhale Therapeutic Systems, Inc.) Increased dosage metered dose inhaler
US20050274378A1 (en) * 2002-07-25 2005-12-15 Bonney Stanley G Medicament dispenser
US20060213927A1 (en) * 2003-03-24 2006-09-28 Airlessystems Fluid product dispenser
US20090050137A1 (en) * 2005-03-10 2009-02-26 Jeroen Mathijn Wissink Inhaler With a Mixing Channel for Producing an Aerosol to Be Inhaled
WO2017118825A1 (en) * 2016-01-07 2017-07-13 Aptar France Sas Nasal delivery assembly for a fluid product and method for actuating the assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029408A (en) * 1933-06-29 1936-02-04 Binks Mfg Co Powder-spraying appliance
US3415425A (en) * 1966-11-15 1968-12-10 Johnson & Johnson Aerosol dispenser
US3666150A (en) * 1968-11-07 1972-05-30 Steli Konsult Arrangement for delivering predetermined quantities of liquid and solid material
US3741443A (en) * 1970-11-19 1973-06-26 Ciba Geigy Corp Dispensing system with propellant metering valve
US3788556A (en) * 1972-03-31 1974-01-29 Ciba Geigy Corp Compressed air operated dispenser with hydraulic force multiplying means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029408A (en) * 1933-06-29 1936-02-04 Binks Mfg Co Powder-spraying appliance
US3415425A (en) * 1966-11-15 1968-12-10 Johnson & Johnson Aerosol dispenser
US3666150A (en) * 1968-11-07 1972-05-30 Steli Konsult Arrangement for delivering predetermined quantities of liquid and solid material
US3741443A (en) * 1970-11-19 1973-06-26 Ciba Geigy Corp Dispensing system with propellant metering valve
US3788556A (en) * 1972-03-31 1974-01-29 Ciba Geigy Corp Compressed air operated dispenser with hydraulic force multiplying means

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302550A (en) * 1977-10-14 1981-11-24 Bayer Aktiengesellschaft Process and apparatus for the mixing and application of reactive materials
US4310493A (en) * 1977-10-14 1982-01-12 Bayer Aktiengesellschaft Apparatus for the mixing and application of reactive materials
US5007419A (en) * 1989-09-25 1991-04-16 Allan Weinstein Inhaler device
WO1992016249A1 (en) * 1989-09-25 1992-10-01 Allan Weinstein Inhaler device
US5002048A (en) * 1989-12-12 1991-03-26 Makiej Jr Walter J Inhalation device utilizing two or more aerosol containers
US5662271A (en) * 1990-03-21 1997-09-02 Boehringer Ingelheim International Gmbh Atomizing devices and methods
US5497944A (en) * 1990-03-21 1996-03-12 Dmw (Technology) Limited Atomising devices and methods
US5402943A (en) * 1990-12-04 1995-04-04 Dmw (Technology) Limited Method of atomizing including inducing a secondary flow
US5405084A (en) * 1990-12-04 1995-04-11 Dmw (Technology) Limited Nozzle assembly for preventing back-flow
US20050274378A1 (en) * 2002-07-25 2005-12-15 Bonney Stanley G Medicament dispenser
US7481212B2 (en) 2002-10-30 2009-01-27 Nektar Therapeutics Increased dosage metered dose inhaler
US20050051162A1 (en) * 2002-10-30 2005-03-10 Nektar Therapeutics (Formerly Inhale Therapeutic Systems, Inc.) Increased dosage metered dose inhaler
US20090095289A1 (en) * 2002-10-30 2009-04-16 Nektar Therapeutics Increased Dosage Metered Dose Inhaler
US8079361B2 (en) 2002-10-30 2011-12-20 Novartis Ag Increased dosage metered dose inhaler
US20060213927A1 (en) * 2003-03-24 2006-09-28 Airlessystems Fluid product dispenser
US20090050137A1 (en) * 2005-03-10 2009-02-26 Jeroen Mathijn Wissink Inhaler With a Mixing Channel for Producing an Aerosol to Be Inhaled
US9802013B2 (en) * 2005-03-10 2017-10-31 Medspray Xmems Bv Inhaler with a mixing channel for producing an aerosol to be inhaled
WO2017118825A1 (en) * 2016-01-07 2017-07-13 Aptar France Sas Nasal delivery assembly for a fluid product and method for actuating the assembly
CN108472666A (en) * 2016-01-07 2018-08-31 阿普塔尔法国简易股份公司 The method of nose fluid distributor component and this component of actuating

Similar Documents

Publication Publication Date Title
US4183449A (en) Manually operated miniature atomizer
US4117958A (en) Vapor tap valve for aerosol containers used with flammable propellants
US4230242A (en) Triple seal valve member for an atomizing pump dispenser
CA1099674A (en) Manually operated liquid dispensing device
US3878973A (en) Metered dose dispenser
US3856185A (en) Single dose, replaceable supply air pressure operated dispenser
US2631814A (en) Valve mechanism for dispensing gases and liquids under pressure
US4154378A (en) Metering valve for pressurized container
US3289949A (en) Pushbutton dispenser for products in the fluid state
EP0079963B1 (en) Pressurized container with dispensing pump
US5370317A (en) Atomizing device for producing a spray from a liquid under pressure
US4017007A (en) Single dose air pressure operated dispenser
CA1078796A (en) Liquid spraying device
US5323936A (en) Media dispenser for dispensing a dosed medium in a gas flow
US3940029A (en) Rechargeable sprayer with improved valve system and charge cycle limit stop therefor
CA1083099A (en) Rechargeable sprayer
US4313568A (en) Fluid dispenser method and apparatus
US3545682A (en) Dispensing device
US3326469A (en) Spraying dispenser with separate holders for material and carrier fluid
US3860150A (en) Aerosol dispenser for fluid products comprising a piston pump assembly for generating compressed air serving as propellant and a product metering device
US3131834A (en) Device and method for dispensing material under pressure of a propellent immiscible gs
US3923202A (en) Non-spitting liquid dispensing device with pressurized product supply
US3292827A (en) Aerosol dispensing apparatus
US3921857A (en) Non-spitting liquid dispensing device
JPH0278459A (en) Applying device