US3923644A - Process and apparatus for re-refining used petroleum products - Google Patents

Process and apparatus for re-refining used petroleum products Download PDF

Info

Publication number
US3923644A
US3923644A US514176A US51417674A US3923644A US 3923644 A US3923644 A US 3923644A US 514176 A US514176 A US 514176A US 51417674 A US51417674 A US 51417674A US 3923644 A US3923644 A US 3923644A
Authority
US
United States
Prior art keywords
evaporator
flash
refining
oil
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US514176A
Inventor
George J Hindman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrocon Corp
Original Assignee
Petrocon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrocon Corp filed Critical Petrocon Corp
Priority to US514176A priority Critical patent/US3923644A/en
Priority to CA235,554A priority patent/CA1067439A/en
Priority to AU85349/75A priority patent/AU8534975A/en
Priority to FR7530238A priority patent/FR2287500A1/en
Priority to ZA00756287A priority patent/ZA756287B/en
Priority to BE160685A priority patent/BE834188A/en
Priority to GB40472/75A priority patent/GB1515020A/en
Priority to IT69481/75A priority patent/IT1047283B/en
Priority to DE19752545070 priority patent/DE2545070A1/en
Priority to JP50121412A priority patent/JPS5164508A/ja
Application granted granted Critical
Publication of US3923644A publication Critical patent/US3923644A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning

Definitions

  • ABSTRACT Used petroleum products, such as crankcase oils, are reclaimed by an initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid.
  • initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid.
  • the unvaporized liquid C C 0 product is mechanically filtered through a vibratory [58] F d f S ar h 208/1 9, 186, filter and then successive cannister filters to produce a 208/187 product which may be used as a fuel oil or further refined into various fuel and/or lubricant products in 1 1 References Cited successive flash distillation stages.
  • This invention pertains to an improved process and apparatus for re-refining used oils through a sequential flash evaporation process. More specifically, it relates to improved process and apparatus wherein saleable products are obtainable at any one of various stages including a very early stage, whereby useful product may be reclaimed from used oils with a minimum of apparatus and treatment.
  • a more specific object of this invention is to provide a sequential flash evaporation process and apparatus which is efficient, dependable and flexible in its mode of operation.
  • Still another object of this invention is to provide a relatively simple apparatus and process for reclaiming lower grade, though saleable, petroleum products, from used petroleum products, such as crankcase oil, with a minimum of apparatus and treatment.
  • a used oil feed stream is flash vaporized at atmospheric pressure and 210 240 F; fine solids are then mechanically separated from the unvaporized bottom stream to produce a saleable fuel oil.
  • this residual fuel oil is further refined in a second flash evaporator operated at 300-400 F, and 24-28 inches mercury.
  • the overhead from this second flash evaporator is condensed and decanted to remove residual water, the product being a kerosene-like fuel.
  • the bottom liquid from the second flash evaporator may be passed on successively to third and fourth flash evaporators operated, respectively, at 600-650 F and 7 torr, and at 630 680 F and 1% 3 torr.
  • the mechanical filtration associated with the liquid bottom product from the first flash evaporation stage consists primarily of a vibratory filter with a horizontal screen having openings on the order of 40-45 microns from which waste material is removed at the edges.
  • the filter product proceeds through the screen to successive cartridge filters having a final filtration range (i.e., filter element capable of removing) of 3 microns in size.
  • one or more, and most preferably all, of the flash evaporators are operated by continuously heating and recirculating unvaporized bottom liquid from a specific evaporator to the vapor space above a liquid level in the same evaporator. At the same time, feed to the respective flash evaporator is added to the recycled liquid as it is introduced, almost simultaneously with this mixing, into the evaporator (in a manner similar to that disclosed in US. Pat. No, 2,799,628).
  • FIGURE is a schematic view of the process and apparatus of the preferred embodiment of the present invention.
  • first flash evaporator 10 including atmospheric vent 12.
  • a feed stream of used petroleum products (such as crank-case oil) introduced through feed line 14, is combined with recycled liquid from evaporator 10, near the terminus of recycle line 16.
  • a predetermined liquid level in flash evaporator 10 is maintained by liquid level controller 18 operating valve 20 in feed stream line 14.
  • a temperature on the order of 210240F is maintained in flash evaporator 10 by heating the recycled liquid from the bottom of flash evaporator 10 in heat exchanger 22, wherein the heating medium is preferably steam at a pressure of -150 lbs./sq.in.
  • Product draw-off line 24 passes a portion of the unvaporized liquid in flash evaporator 10 to a mechanical filtration system comprising, in the preferred embodiment of this invention, a vibratory filter 26 having a horizontally vibrating screen filter element 28, with screen openings less than 100 microns and preferably on the order of 40 to 45 microns, and a feed dispersing member 30 located above filter element 28. Waste sludge containing heavy particle contaminants and insolubles is removed at the periphery of vibrating screen element 28 while the filtrate passes through to the bottom of filter 26 and to a surge tank, from which a prod uct saleable as a residual fuel may be withdrawn.
  • a mechanical filtration system comprising, in the preferred embodiment of this invention, a vibratory filter 26 having a horizontally vibrating screen filter element 28, with screen openings less than 100 microns and preferably on the order of 40 to 45 microns, and a feed dispersing member 30 located above filter element 28. Waste sludge containing heavy particle contaminants and insoluble
  • this liquid may be forwarded for future processing to a sequence of pairs 32, 34 and 36 of cartridge filters of successively smaller pore size in the filter elements.
  • these cannister filters house filter elements ranging progressively from 25 microns to 15 microns to 3 microns in maximum pore size.
  • the initial removal of water at relatively low temperature and the subsequent filtration comprises a practical process which may be operated for extended periods of time without equipment fouling and relatively low energy consumption to produce a useful product.
  • a still more refined (and valuable) product is produced in the final filter train.
  • This product may be sold, for example, as a cutting oil or as a quench oil.
  • the used oil feed stream may comprise from 0 to 40 percent water; this more typically lies in the range of 1 l5 percent.
  • this system is designed for a relatively low proportion of that feed stream to be combined with the recycled liquid entering flash evaporator in order to maintain a relatively constant temperature there and thereby to operate flash evaporator 10 with a high degree of efficiency.
  • the proportion of this mixture will therefore change depending on water content of the feed stream in order that the heat contributed by heat exchanger 22 will balance the heat loss through evaporation of water in flash evaporator 10.
  • Another important factor in maintaining the equilibrium in flash evaporator 10 is the mixing of the feed stream and recycle liquid just as these materials are introduced into the flash evaporator in the vapor space above the liquid level therein.
  • Vapors leaving flash evaporator 10 through atmospheric vent 12 are predominantly water, and may ordinarily be released to the atmosphere. This is a further advantage of the simple reclamation technique described to this point. However, in some situations, it may be necessary or desirable to collect the vapors exiting vent 12 and perhaps to remove or to recover residual non-aqueous contaminants in the vapors.
  • Evaporator 40 is similar to flash evaporator 10, both in design and operation, but differs in design operating conditions and in the absence of an atmospheric vent.
  • flash evaporator 40 includes overhead removal line 42 through which collected vapors from evaporator 40 are passed to condenser 44.
  • a cooling medium such as cold water, cools the vapors and causes them to condense.
  • Vacuum pump 46 in communication with the vapor space in condenser 44, maintains a pressure of about 24-28 (preferably about 26) inches mercury in evaporator 40.
  • Liquid level controller 48 associated with valve 50 on filtrate line 38 holds the liquid level in evaporator 40 at a predetermined point, maintaining a vapor space of some vertical height in evaporator 40.
  • Recycle line 52 carries heated recycle liquid after its passage through a heat exchanger 54 wherein steam at 130-150 psi (preferably 150 psi) provides the necessary heat input to maintain a temperature level in the second flash evaporator 40 on the order of 300-400F, and preferably about 350 F.
  • steam at 130-150 psi preferably 150 psi
  • anhydrous ammonia may be injected into the liquid phase in evaporator 40.
  • Condensate from overhead condenser 44 is collected in an accumulator 58 and then pumped to decanter 56 through line 39.
  • the liquid level is determined by level control 41 controlling a valve 43 in line 39.
  • a small amount of residual water is removed from decanter 56.
  • the pH of this residual water is controlled at or near 7.5 by the addition of caustic soda to the vapors in line 42.
  • the remaining product stream may be sold or used inplant as a fuel.
  • the volatility of this product stream is generally comparable to that of kerosene.
  • the bottom liquid drawoff not recycled to evaporator 40 may also be sold as a fuel oil product, but preferably it is further upgraded by passage to subsequent flash evaporation stages.
  • bottom liquid draw-off product passes through line 58 to a third flash evaporator 60 where it is introduced into the vapor space, along with recycled and heated liquid from recycle line 62 and heat exchanger 64, (wherein a hot heat exchange liquid, such as Dowtherm liquid, a commercial product of the Dow Chemical Co., is the heating media), which provides the heat input to evaporator 60.
  • a hot heat exchange liquid such as Dowtherm liquid, a commercial product of the Dow Chemical Co., is the heating media
  • recycle liquid in line 62 is combined with stage feed in line 58 just prior to release in the vapor space of evaporator 60.
  • the liquid is maintained at a predetermined level in evaporator 60 by liquid level controller 66 associated with a stage output valve 68.
  • Overhead vapors are collected and condensed in a cooler 70, usually with cold water as the cooling fluid, to which a steam aspirator 72 is connected to maintain the pressure in evaporator 60 at 6-8 torr, preferably about 7 torr.
  • the recycled liquid drawoff is heated in heat exchanger 64 to a temperature in the range of 600650F (preferably 625F) to maintain a temperature in evaporator 60 on that order.
  • Condensate product from cooler after passing through accumulator 73 is steam stripped in stripper 74, the overhead vapors of which are condensed in cold water cooler 75.
  • the bottom product of steam stripper 74 is a lube oil within the range of SAE 10.
  • the bottom liquid draw-off of evaporator 60 may also be used or sold as fuel oil (with volatility characteristics comparable to to that of Number 5 or 6 fuel oil). However, it is preferably fed through line 76 to fourth flash evaporator 80.
  • a cold water condenser 84 receives and condenses the overhead product from evaporator 80 and passes the condensate through accumulator 81 to steam stripper 86.
  • the product of stripper 86 is a lubricant within the viscosity range of SAE 20 or 30 oil.
  • Steam aspirator 82 in connection with the vapor side of condenser 84 maintains the pressure in evaporator 80 at about 1% 3 torr.
  • Liquid level controller 83 in accumulator 81 controls valve 85 to draw-off condensate from accumulator 81 to steam stripper 86.
  • Unvaporized liquid from evaporator 80 is drawn off and may be sold as a high boiling point residual oil product or for other purposes where a heavy petroleum fraction is required.
  • a substantial proportion of the liquid drawn off from evaporator 80 is recycled through recycle line 87 to evaporator 80, after passing through Dowthermheated heat exchanger 78. In heat exchanger 78, the liquid is heated to 630680F to maintain a temperature in that range, and preferably about 650F, in evaporator 80.
  • the intermediate streams in the preferred embodiment of this invention may be withdrawn in whole or in part as product streams.
  • the filtered product stream from the first flash evaporation stage is, it should again be noted, a useful saleable product.
  • a feasible used oil refining process and apparatus may therefore encompass the first flash evaporation stage and subsequent filter alone.
  • any one or more of the products of this invention may be further refined and treated, such as by clay percolation to pick up color bodies.
  • a process for re-refining a used hydrocarbon oil as recited in claim 1, wherein at least a portion of unvaporized liquid removed from the bottom of said evaporator is passed at relatively low pressure through a vibratory filter having a horizontally disposed screen filter element having openings on the order of 40-45 microns.
  • a process of re-refining a used hydrocarbon oil as recited in claim 2, wherein the filtrate from said vibratory filter is further filtered to remove remaining particles having a maximum dimension larger than 3 microns.

Abstract

Used petroleum products, such as crankcase oils, are reclaimed by an initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid. At atmospheric pressure and 210*-240* F, water comprises substantially all of the overhead product and this may be vented to the atmosphere. The unvaporized liquid product is mechanically filtered through a vibratory filter and then successive cannister filters to produce a product which may be used as a fuel oil or further refined into various fuel and/or lubricant products in successive flash distillation stages. In the preferred embodiment, three such stages are operated, respectively, at 300*-400* F and 24-28 inches mercury, 600*650* F, and 7 torr, and 630*-680* F and 1 1/2 -3 torr.

Description

United States Patent 1191 Hindman 1 Dec. 2, 1975 1 1 PROCESS AND APPARATUS FOR RE-REFINING USED PETROLEUM [73] Assignee: Petrocon Corporation, Valley Forge,
[22] Filed: Oct. 11, 1974 [21] Appl. No.: 514,176
2 /1974 Fitzsimons et al. 208/179 Primary Examiner-Delbert E. Gantz Assistant Examiner-Juanita M. Nelson Attorney, Agent, or FirmMiller, Frailey & Prestia {57] ABSTRACT Used petroleum products, such as crankcase oils, are reclaimed by an initial treatment step consisting of flash vaporization with continuous recirculation of a substantial portion of the unvaporized liquid. At atmo- U.S. C1. sphe ic pressfl e and 2lO-240 F, Water Comprises 196/ 6- 159/ 208/187; 210/184 substantially all of the overhead product and this may 1 1 ClOM C106 33/00; be vented to the atmosphere. The unvaporized liquid C C 0 product is mechanically filtered through a vibratory [58] F d f S ar h 208/1 9, 186, filter and then successive cannister filters to produce a 208/187 product which may be used as a fuel oil or further refined into various fuel and/or lubricant products in 1 1 References Cited successive flash distillation stages. In the preferred UNITED STATES PATENTS embodiment, three such stages are operated, respec- 2,799,628 7/1957 Barr et a1 208/179 tively at 3000-4000 F and 24-28 inches mercury 3,173,859 3/1965 Chambers 208/184 F, and 7 and F and 1V2-3 3,198,241 8/1965 Baird 23/276 torr- 3,304,255 2/1967 Katsuta et a1.. 208/179 3,489,676 1/1970 Hu 611 211..... 208/179 7 Clams 1 D'awmg Fgure 3,625,881 12/1972 Chambers 208/179 CAUSTlC-- VAC 42 i 44 Q EXHAUST 8 0.11. 4 so 5 5 40 lg 1 52 STEAM NH; E '39 LIGHT FUEL Q Q 54 43 I I l 56 32 34 36 RESIDUAL ALT. PRODUCT (RESIDUAL FUEL DIL) CDNDENSATE (T0 WASTE) I US. Patent Dec. 2, I975 so 52 E2228 PROCESS AND APPARATUS FOR RE-REFINING USED PETROLEUM PRODUCTS This invention pertains to an improved process and apparatus for re-refining used oils through a sequential flash evaporation process. More specifically, it relates to improved process and apparatus wherein saleable products are obtainable at any one of various stages including a very early stage, whereby useful product may be reclaimed from used oils with a minimum of apparatus and treatment.
Heretofore, a variety of processes and apparatus have been suggested for re-refining crankcase oil and other types of used petroleum products. One disadvantage of many of these processes is their reliance on complex fractionation columns as a means of separating various components in the used petroleum products. Impurities in these products, typically including solid carbon particles, tarry solids and oxidation products of both petroleum components and additives, tend to collect and to interfere in the complex plumbing associated with a multi-stage distillation column.
Thus, as an improvement on the crankcase oil refining process disclosed in US. Pat. No. 3,173,859 to Chambers, one notes the flash vaporization pretreatment for that process disclosed in US Pat. No. 3,625,881 to Chambers.
Similarly, in the re-refining process of US. Pat. No. 3,791,965 to FitzSimons et al. (of common assignment herewith) a complex evaporator used in the initial treatment of the used petroleum products was found to interfere with process efficiency, due to fouling and coking, as solid and semi-solid impurities in used oil built up on the various mechanical components in the device referred to in that patent as the stripper.
Having in mind these problems, it is the general objective of the present invention to provide an improved process and apparatus for refining used petroleum products.
A more specific object of this invention is to provide a sequential flash evaporation process and apparatus which is efficient, dependable and flexible in its mode of operation.
Still another object of this invention is to provide a relatively simple apparatus and process for reclaiming lower grade, though saleable, petroleum products, from used petroleum products, such as crankcase oil, with a minimum of apparatus and treatment.
These and other objects, which will be apparent in the course of the subsequent description, are met, briefly, by a process and apparatus wherein a used oil feed stream is flash vaporized at atmospheric pressure and 210 240 F; fine solids are then mechanically separated from the unvaporized bottom stream to produce a saleable fuel oil. In the preferred embodiments of this invention, this residual fuel oil is further refined in a second flash evaporator operated at 300-400 F, and 24-28 inches mercury. The overhead from this second flash evaporator is condensed and decanted to remove residual water, the product being a kerosene-like fuel. The bottom liquid from the second flash evaporator may be passed on successively to third and fourth flash evaporators operated, respectively, at 600-650 F and 7 torr, and at 630 680 F and 1% 3 torr.
The mechanical filtration associated with the liquid bottom product from the first flash evaporation stage consists primarily of a vibratory filter with a horizontal screen having openings on the order of 40-45 microns from which waste material is removed at the edges. The filter product proceeds through the screen to successive cartridge filters having a final filtration range (i.e., filter element capable of removing) of 3 microns in size.
Preferably also, one or more, and most preferably all, of the flash evaporators are operated by continuously heating and recirculating unvaporized bottom liquid from a specific evaporator to the vapor space above a liquid level in the same evaporator. At the same time, feed to the respective flash evaporator is added to the recycled liquid as it is introduced, almost simultaneously with this mixing, into the evaporator (in a manner similar to that disclosed in US. Pat. No, 2,799,628).
This invention may be better understood by reference to the claims appended hereto and the following detailed description, taken in conjunction with the accompanying FIGURE, which is a schematic view of the process and apparatus of the preferred embodiment of the present invention.
Referring more specifically to the FIGURE, there is shown first flash evaporator 10, including atmospheric vent 12. A feed stream of used petroleum products (such as crank-case oil) introduced through feed line 14, is combined with recycled liquid from evaporator 10, near the terminus of recycle line 16. A predetermined liquid level in flash evaporator 10 is maintained by liquid level controller 18 operating valve 20 in feed stream line 14. A temperature on the order of 210240F is maintained in flash evaporator 10 by heating the recycled liquid from the bottom of flash evaporator 10 in heat exchanger 22, wherein the heating medium is preferably steam at a pressure of -150 lbs./sq.in.
Product draw-off line 24 passes a portion of the unvaporized liquid in flash evaporator 10 to a mechanical filtration system comprising, in the preferred embodiment of this invention, a vibratory filter 26 having a horizontally vibrating screen filter element 28, with screen openings less than 100 microns and preferably on the order of 40 to 45 microns, and a feed dispersing member 30 located above filter element 28. Waste sludge containing heavy particle contaminants and insolubles is removed at the periphery of vibrating screen element 28 while the filtrate passes through to the bottom of filter 26 and to a surge tank, from which a prod uct saleable as a residual fuel may be withdrawn. Alternatively, this liquid may be forwarded for future processing to a sequence of pairs 32, 34 and 36 of cartridge filters of successively smaller pore size in the filter elements. Preferably, these cannister filters house filter elements ranging progressively from 25 microns to 15 microns to 3 microns in maximum pore size.
The initial removal of water at relatively low temperature and the subsequent filtration comprises a practical process which may be operated for extended periods of time without equipment fouling and relatively low energy consumption to produce a useful product. Similarly, a still more refined (and valuable) product is produced in the final filter train. This product may be sold, for example, as a cutting oil or as a quench oil.
With respect to the operation of this apparatus, it should be noted that the used oil feed stream may comprise from 0 to 40 percent water; this more typically lies in the range of 1 l5 percent. in any event, this system is designed for a relatively low proportion of that feed stream to be combined with the recycled liquid entering flash evaporator in order to maintain a relatively constant temperature there and thereby to operate flash evaporator 10 with a high degree of efficiency. The proportion of this mixture will therefore change depending on water content of the feed stream in order that the heat contributed by heat exchanger 22 will balance the heat loss through evaporation of water in flash evaporator 10.
Another important factor in maintaining the equilibrium in flash evaporator 10 is the mixing of the feed stream and recycle liquid just as these materials are introduced into the flash evaporator in the vapor space above the liquid level therein.
Vapors leaving flash evaporator 10 through atmospheric vent 12 are predominantly water, and may ordinarily be released to the atmosphere. This is a further advantage of the simple reclamation technique described to this point. However, in some situations, it may be necessary or desirable to collect the vapors exiting vent 12 and perhaps to remove or to recover residual non-aqueous contaminants in the vapors.
While an apparatus and process as described, consisting of a single flash evaporator, associated heat exchanger and a mechanical filter or filter train, provides a practical and economical approach to the re-refining of used petroleum products, such as crankcase oil, this apparatus and process is combined, in the preferred embodiments of the present invention, with one or more subsequent flash evaporation stages. Each of these additional stages further upgrades the filtered atmospheric pressure flash evaporated filtrate stream described above.
Thus, the filtrate stream from cartridge filters 32, 34 and 36 passes through filtrate line 38 to a second flash evaporator 40. Evaporator 40 is similar to flash evaporator 10, both in design and operation, but differs in design operating conditions and in the absence of an atmospheric vent.
More specifically, flash evaporator 40 includes overhead removal line 42 through which collected vapors from evaporator 40 are passed to condenser 44. In condenser 44, a cooling medium, such as cold water, cools the vapors and causes them to condense. Vacuum pump 46, in communication with the vapor space in condenser 44, maintains a pressure of about 24-28 (preferably about 26) inches mercury in evaporator 40. Liquid level controller 48 associated with valve 50 on filtrate line 38 holds the liquid level in evaporator 40 at a predetermined point, maintaining a vapor space of some vertical height in evaporator 40. Into this vapor space is introduced the combined filtrate stream from line 38 and, in a much larger proportion, heated recycled liquid from the bottom of flash evaporator 40. Recycle line 52 carries heated recycle liquid after its passage through a heat exchanger 54 wherein steam at 130-150 psi (preferably 150 psi) provides the necessary heat input to maintain a temperature level in the second flash evaporator 40 on the order of 300-400F, and preferably about 350 F. To prevent excess acidity (and possible corrosion) anhydrous ammonia may be injected into the liquid phase in evaporator 40.
Condensate from overhead condenser 44 is collected in an accumulator 58 and then pumped to decanter 56 through line 39. The liquid level is determined by level control 41 controlling a valve 43 in line 39. A small amount of residual water is removed from decanter 56. The pH of this residual water is controlled at or near 7.5 by the addition of caustic soda to the vapors in line 42. The remaining product stream may be sold or used inplant as a fuel. The volatility of this product stream is generally comparable to that of kerosene. The bottom liquid drawoff not recycled to evaporator 40 may also be sold as a fuel oil product, but preferably it is further upgraded by passage to subsequent flash evaporation stages.
More specifically, bottom liquid draw-off product passes through line 58 to a third flash evaporator 60 where it is introduced into the vapor space, along with recycled and heated liquid from recycle line 62 and heat exchanger 64, (wherein a hot heat exchange liquid, such as Dowtherm liquid, a commercial product of the Dow Chemical Co., is the heating media), which provides the heat input to evaporator 60. Again, as in the previous evaporator stages, recycle liquid in line 62 is combined with stage feed in line 58 just prior to release in the vapor space of evaporator 60. The liquid is maintained at a predetermined level in evaporator 60 by liquid level controller 66 associated with a stage output valve 68. Overhead vapors are collected and condensed in a cooler 70, usually with cold water as the cooling fluid, to which a steam aspirator 72 is connected to maintain the pressure in evaporator 60 at 6-8 torr, preferably about 7 torr. The recycled liquid drawoff is heated in heat exchanger 64 to a temperature in the range of 600650F (preferably 625F) to maintain a temperature in evaporator 60 on that order.
Condensate product from cooler after passing through accumulator 73 is steam stripped in stripper 74, the overhead vapors of which are condensed in cold water cooler 75. The bottom product of steam stripper 74 is a lube oil within the range of SAE 10. The bottom liquid draw-off of evaporator 60 may also be used or sold as fuel oil (with volatility characteristics comparable to to that of Number 5 or 6 fuel oil). However, it is preferably fed through line 76 to fourth flash evaporator 80. A cold water condenser 84 receives and condenses the overhead product from evaporator 80 and passes the condensate through accumulator 81 to steam stripper 86. The product of stripper 86 is a lubricant within the viscosity range of SAE 20 or 30 oil. Steam aspirator 82 in connection with the vapor side of condenser 84 maintains the pressure in evaporator 80 at about 1% 3 torr. Liquid level controller 83 in accumulator 81 controls valve 85 to draw-off condensate from accumulator 81 to steam stripper 86. Unvaporized liquid from evaporator 80 is drawn off and may be sold as a high boiling point residual oil product or for other purposes where a heavy petroleum fraction is required. A substantial proportion of the liquid drawn off from evaporator 80 is recycled through recycle line 87 to evaporator 80, after passing through Dowthermheated heat exchanger 78. In heat exchanger 78, the liquid is heated to 630680F to maintain a temperature in that range, and preferably about 650F, in evaporator 80. A
While this invention has been described with respect to its essential components, it should be understood that some variation and modification of these components may be made by those skilled in the art without departing from the scope of the invention.
As indicated throughout the description, many of the intermediate streams in the preferred embodiment of this invention may be withdrawn in whole or in part as product streams. In particular, the filtered product stream from the first flash evaporation stage is, it should again be noted, a useful saleable product. A feasible used oil refining process and apparatus may therefore encompass the first flash evaporation stage and subsequent filter alone.
It should be further noted that some preliminary filtration of the feed stream introduced in flash evapora tor may be desirable, and in some cases necessary, depending on the degree of contamination in the used oil supply. Similarly, any one or more of the products of this invention may be further refined and treated, such as by clay percolation to pick up color bodies.
l claim:
1. In a process of refining a used hydrocarbon oil wherein a used oil is distilled and filtered for re-use, the improvement comprising flash vaporizing said used oil in an evaporator in which the internal conditions are maintained at atmospheric pressure and 210-240 F, and continuously separating a vaporized portion from an unvaporized liquid portion and continuously removing said unvaporized liquid portion from the bottom of said evaporator, and then mechanically filtering at least a portion of the unvaporized liquid removed from said evaporator.
2. A process for re-refining a used hydrocarbon oil, as recited in claim 1, wherein at least a portion of unvaporized liquid removed from the bottom of said evaporator is passed at relatively low pressure through a vibratory filter having a horizontally disposed screen filter element having openings on the order of 40-45 microns.
3. A process of re-refining a used hydrocarbon oil, as recited in claim 2, wherein the filtrate from said vibratory filter is further filtered to remove remaining particles having a maximum dimension larger than 3 microns.
4. A process of re-refining a used hydrocarbon oil wherein said filtered liquid is subsequently flash vaporized at 24-28 inches Hg and 300-400 F.
5. The process, as recited in claim 4, wherein the overhead vapor stream from said subsequent flash vaporization is condensed and water therein is separated by gravity separation.
6. The process, as recited in claim 5, wherein unvaporized liquid removed from said subsequent evaporator is heated to 600-680 F and successively flash evaporated at 7 torr and 1 /2 3 torr, the vaporized overhead streams from said 7 and 1% 3 torr evaporation steps being condensed and steam stripped.
7. The process, as recited in claim 1, wherein the fresh feed stream of said used oil is mixed with a substantially larger quantity of recycled, heated, unvaporized liquid removed from the bottom of said flash evaporator, said mixing taking place as said fresh feed stream is introduced into the vessel where said 2l0240F, atmospheric pressure flash evaporation OCCUI'S.

Claims (7)

1. IN A PROCESS OF REFINING A USED HYDROCARBON OIL WHEREIN A USED OIL IS DISTILLED AND FILTERED FOR RE-USE, THE IMPROVEMENT COMPRISING FLASH VAPORIZING SAID USED OIL IN AN EVAPORATOR IN WHICH THE INTERNAL CONDITIONS ARE MAINTAINED AT ATMOSPHERIC PRESSURE AND 210*-240*F, AND CONTINUOUSLY SEPARATING A VAPORIZED PORTION FROM AN UNVAPORIZED LIQUID PORTION FROM CONTINUOUSLY REMOVING SAID UNVAPORIZED LIQUID PORTION FROM THE BOTTOM OF SAID EVAPORATOR, AND THEN MECHANICALLY FILTERING AT LEAST A PORTION OF THE UNVAPORIZED LIQUID REMOVED FROM SAID EVAPORATOR.
2. A PROCESS FOR RE-REFINING A UUSED HYDROCARBON OIL, AS RECITED IN CLAIM 1, WHEREIN AT LEAST A PORTION OF UNVAPORIZED LIQUID REMOVED FROM THE BOTTOM OF SAID EVAPORATOR IS PASSED AT RELATIVELY LOW PRESSURE THROOUGH A VIBRATORY FILTER HAVING A HORIZONTALLY DISPOSED SCREEN FILTER ELEMMENT HAVING OPENINGS ON THE ORDER OF 40-45 MICRONS.
3. A PROCESS OF RE-REFINING A USED HYDROCARBON OIL, AS RECITED IN CLAIM 2, WHEREIN THE FILTERATE FROM SAID VIBRATORY FILTER IS FURTHER FILTERED TO REMOVE REMAINING PARTILCES HAVING A MAXIMUM DIMENSION LARGER THAN 3 MICRONS.
4. A process of re-refining a used hydrocarbon oil wherein said filtered liquid is subsequently flash vaporized at 24-28 inches Hg and 300*-400* F.
5. The process, as recited in claim 4, wherein the overhead vapor stream from said subsequent flash vaporization is condensed and water therein is separated by gravity separation.
6. The process, as recited in claim 5, wherein unvaporized liquid removed from said subsequent evaporator is heated to 600*-680* F and successively flash evaporated at 7 torr and 1 1/2 - 3 torr, the vaporized overhead streams from said 7 and 1 1/2 - 3 torr evaporation steps being condensed and steam stripped.
7. The process, as recited in claim 1, wherein the fresh feed stream of said used oil is mixed with a substantially larger quantity of recycled, heated, unvaporized liquid removed from the bottom of said flash evaporator, said mixing taking place as said fresh feed stream is introduced into the vessel where said 210*-240*F, atmospheric pressure flash evaporation occurs.
US514176A 1974-10-11 1974-10-11 Process and apparatus for re-refining used petroleum products Expired - Lifetime US3923644A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US514176A US3923644A (en) 1974-10-11 1974-10-11 Process and apparatus for re-refining used petroleum products
CA235,554A CA1067439A (en) 1974-10-11 1975-09-16 Process and apparatus for re-refining used petroleum products
AU85349/75A AU8534975A (en) 1974-10-11 1975-10-01 Flushable sanitary napkin
FR7530238A FR2287500A1 (en) 1974-10-11 1975-10-02 METHOD AND DEVICE FOR REFINING USED PETROLEUM PRODUCTS
ZA00756287A ZA756287B (en) 1974-10-11 1975-10-03 Process and apparatus for re-refining used petroleum products
BE160685A BE834188A (en) 1974-10-11 1975-10-03 METHOD AND DEVICE FOR REFINING USED PETROLEUM PRODUCTS
GB40472/75A GB1515020A (en) 1974-10-11 1975-10-03 Process and apparatus for re-refining used petroleum products
IT69481/75A IT1047283B (en) 1974-10-11 1975-10-07 IMPROVED PROCEDURE AND EQUIPMENT FOR REGENERATING USED OIL PRODUCTS
DE19752545070 DE2545070A1 (en) 1974-10-11 1975-10-08 METHOD AND DEVICE FOR REFINING USED OILS
JP50121412A JPS5164508A (en) 1974-10-11 1975-10-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US514176A US3923644A (en) 1974-10-11 1974-10-11 Process and apparatus for re-refining used petroleum products

Publications (1)

Publication Number Publication Date
US3923644A true US3923644A (en) 1975-12-02

Family

ID=24046103

Family Applications (1)

Application Number Title Priority Date Filing Date
US514176A Expired - Lifetime US3923644A (en) 1974-10-11 1974-10-11 Process and apparatus for re-refining used petroleum products

Country Status (10)

Country Link
US (1) US3923644A (en)
JP (1) JPS5164508A (en)
AU (1) AU8534975A (en)
BE (1) BE834188A (en)
CA (1) CA1067439A (en)
DE (1) DE2545070A1 (en)
FR (1) FR2287500A1 (en)
GB (1) GB1515020A (en)
IT (1) IT1047283B (en)
ZA (1) ZA756287B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179019A (en) * 1978-01-09 1979-12-18 Danziger Harry Lee Apparatus for reclaiming used lubricating oils
US4265733A (en) * 1979-11-01 1981-05-05 Phillips Petroleum Company De-ashing lubricating oils
US4681660A (en) * 1984-07-26 1987-07-21 Budny Rick R Method and device for reclaiming fluid lubricants
US4968410A (en) * 1989-09-05 1990-11-06 Electrolube Devices, Inc. Oil recovery system
US4990237A (en) * 1987-07-27 1991-02-05 Heuer Steven R Process for the recovery of oil from waste oil sludges
US5011579A (en) * 1990-01-16 1991-04-30 Merichem Company Neutral oil recovery process for the production of naphthenic acids
US5269906A (en) * 1987-07-27 1993-12-14 Reynolds Victor R Process for the recovery of oil from waste oil sludges
US5391304A (en) * 1991-03-04 1995-02-21 Lantos; Federico E. Method for decreasing the level of contamination of fuels such as residual fuels and other liquid fuels containing residual hydrocarbons used for diesel engines and gas turbines
US6372123B1 (en) * 2000-06-26 2002-04-16 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US6849175B2 (en) * 2000-06-27 2005-02-01 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US7208079B2 (en) 2002-07-30 2007-04-24 Nouredine Fakhri Process for the treatment of waste oils
US20090082906A1 (en) * 2007-08-27 2009-03-26 H2Oil, Inc. System and method for providing aqueous stream purification services
CN102140368A (en) * 2011-01-28 2011-08-03 胡勇刚 Heavy dirty oil recycling process
US20110278151A1 (en) * 2005-03-08 2011-11-17 Macdonald Martin R Method for Producing Base Lubricating Oil from Waste Oil
CN102517067A (en) * 2011-12-02 2012-06-27 中国海洋石油总公司 Method for depriving hydrogen sulfide from sulfur-containing oil well products
CN102559251A (en) * 2010-12-30 2012-07-11 中国石油化工股份有限公司 Crude oil distilling method and device for pressure type feeding
US20120205289A1 (en) * 2009-11-09 2012-08-16 Rohit Joshi Method and apparatus for processing of spent lubricating oil
CN101717658B (en) * 2009-12-03 2012-10-17 中国石油天然气集团公司 Multi-vaporization feeding method of oil product fractionator
US20140224640A1 (en) * 2011-08-18 2014-08-14 Roger Fincher Distillation Solids Removal System and Method
US9243191B1 (en) * 2010-07-16 2016-01-26 Delta Technologies LLC Re-refining used motor oil
CN105419861A (en) * 2015-12-31 2016-03-23 惠生(南京)清洁能源股份有限公司 Separating device for heavy hydrocarbon, heavy oil and heavy-oxygen-enriched water in MTO technology process
US9677013B2 (en) 2013-03-07 2017-06-13 Png Gold Corporation Method for producing base lubricating oil from oils recovered from combustion engine service

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3246354A1 (en) * 1982-12-15 1984-08-09 Hans-Peter 4600 Dortmund Jenau Plant for recovering hydrocarbon products from spent oils or the like
DE19830046C1 (en) * 1998-07-04 1999-09-09 Sommer Removal of water from metalworking coolant-lubricating emulsions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2799628A (en) * 1953-04-24 1957-07-16 Phillips Petroleum Co Method for obtaining increased depth of flash vaporization
US3173859A (en) * 1961-08-24 1965-03-16 Berks Associates Inc Crankcase oil refining
US3198241A (en) * 1963-01-31 1965-08-03 Artisan Ind Evaporator stripper and fractionator
US3304255A (en) * 1963-10-23 1967-02-14 Mitsubishi Heavy Ind Ltd Method for continuous removal of contaminants from lubricating oil and apparatus therefor
US3489676A (en) * 1967-09-05 1970-01-13 Exxon Research Engineering Co Novel oil treatment and lubricating oil filters for internal combustion engines
US3625881A (en) * 1970-08-31 1971-12-07 Berks Associates Inc Crank case oil refining
US3791965A (en) * 1972-04-07 1974-02-12 Petrocon Corp Process for re-refining used petroleum products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2799628A (en) * 1953-04-24 1957-07-16 Phillips Petroleum Co Method for obtaining increased depth of flash vaporization
US3173859A (en) * 1961-08-24 1965-03-16 Berks Associates Inc Crankcase oil refining
US3198241A (en) * 1963-01-31 1965-08-03 Artisan Ind Evaporator stripper and fractionator
US3304255A (en) * 1963-10-23 1967-02-14 Mitsubishi Heavy Ind Ltd Method for continuous removal of contaminants from lubricating oil and apparatus therefor
US3489676A (en) * 1967-09-05 1970-01-13 Exxon Research Engineering Co Novel oil treatment and lubricating oil filters for internal combustion engines
US3625881A (en) * 1970-08-31 1971-12-07 Berks Associates Inc Crank case oil refining
US3791965A (en) * 1972-04-07 1974-02-12 Petrocon Corp Process for re-refining used petroleum products

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179019A (en) * 1978-01-09 1979-12-18 Danziger Harry Lee Apparatus for reclaiming used lubricating oils
US4265733A (en) * 1979-11-01 1981-05-05 Phillips Petroleum Company De-ashing lubricating oils
US4681660A (en) * 1984-07-26 1987-07-21 Budny Rick R Method and device for reclaiming fluid lubricants
US4990237A (en) * 1987-07-27 1991-02-05 Heuer Steven R Process for the recovery of oil from waste oil sludges
WO1992004424A1 (en) * 1987-07-27 1992-03-19 Heuer Steven R Process for the recovery of oil from waste oil sludges
US5269906A (en) * 1987-07-27 1993-12-14 Reynolds Victor R Process for the recovery of oil from waste oil sludges
US4968410A (en) * 1989-09-05 1990-11-06 Electrolube Devices, Inc. Oil recovery system
US5011579A (en) * 1990-01-16 1991-04-30 Merichem Company Neutral oil recovery process for the production of naphthenic acids
US5391304A (en) * 1991-03-04 1995-02-21 Lantos; Federico E. Method for decreasing the level of contamination of fuels such as residual fuels and other liquid fuels containing residual hydrocarbons used for diesel engines and gas turbines
US6372123B1 (en) * 2000-06-26 2002-04-16 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US6849175B2 (en) * 2000-06-27 2005-02-01 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US7208079B2 (en) 2002-07-30 2007-04-24 Nouredine Fakhri Process for the treatment of waste oils
US20110278151A1 (en) * 2005-03-08 2011-11-17 Macdonald Martin R Method for Producing Base Lubricating Oil from Waste Oil
US20150129412A1 (en) * 2005-03-08 2015-05-14 Verolube, Inc. Method for producing base lubricating oil from waste oil
US8936718B2 (en) * 2005-03-08 2015-01-20 Verolube, Inc. Method for producing base lubricating oil from waste oil
US20090082906A1 (en) * 2007-08-27 2009-03-26 H2Oil, Inc. System and method for providing aqueous stream purification services
US20090078652A1 (en) * 2007-08-27 2009-03-26 H2Oil, Inc. System and method for purifying an aqueous stream
US7837768B2 (en) * 2007-08-27 2010-11-23 General Electric Capital Corporation As Administrative Agent System and method for purifying an aqueous stream
US7842121B2 (en) * 2007-08-27 2010-11-30 General Electric Capital Corporation System and method for providing aqueous stream purification services
US8986536B2 (en) * 2009-11-09 2015-03-24 Rohit Joshi Method and apparatus for processing of spent lubricating oil
US20120205289A1 (en) * 2009-11-09 2012-08-16 Rohit Joshi Method and apparatus for processing of spent lubricating oil
CN101717658B (en) * 2009-12-03 2012-10-17 中国石油天然气集团公司 Multi-vaporization feeding method of oil product fractionator
US9243191B1 (en) * 2010-07-16 2016-01-26 Delta Technologies LLC Re-refining used motor oil
CN102559251B (en) * 2010-12-30 2015-01-14 中国石油化工股份有限公司 Crude oil distilling method and device for pressure type feeding
CN102559251A (en) * 2010-12-30 2012-07-11 中国石油化工股份有限公司 Crude oil distilling method and device for pressure type feeding
CN102140368B (en) * 2011-01-28 2013-12-11 胡勇刚 Heavy dirty oil recycling process
CN102140368A (en) * 2011-01-28 2011-08-03 胡勇刚 Heavy dirty oil recycling process
US20140224640A1 (en) * 2011-08-18 2014-08-14 Roger Fincher Distillation Solids Removal System and Method
US9808739B2 (en) * 2011-08-18 2017-11-07 212 Water Services, Llc Distillation solids removal system and method
CN102517067A (en) * 2011-12-02 2012-06-27 中国海洋石油总公司 Method for depriving hydrogen sulfide from sulfur-containing oil well products
US9677013B2 (en) 2013-03-07 2017-06-13 Png Gold Corporation Method for producing base lubricating oil from oils recovered from combustion engine service
US10287514B2 (en) 2013-03-07 2019-05-14 Gen Iii Oil Corporation Method and apparatus for recovering synthetic oils from composite oil streams
US10287513B2 (en) 2013-03-07 2019-05-14 Gen Iii Oil Corporation Method and apparatus for recovering synthetic oils from composite oil streams
CN105419861A (en) * 2015-12-31 2016-03-23 惠生(南京)清洁能源股份有限公司 Separating device for heavy hydrocarbon, heavy oil and heavy-oxygen-enriched water in MTO technology process

Also Published As

Publication number Publication date
JPS5164508A (en) 1976-06-04
CA1067439A (en) 1979-12-04
BE834188A (en) 1976-02-02
ZA756287B (en) 1976-09-29
AU8534975A (en) 1977-04-07
GB1515020A (en) 1978-06-21
FR2287500A1 (en) 1976-05-07
DE2545070A1 (en) 1976-04-22
IT1047283B (en) 1980-09-10
FR2287500B1 (en) 1979-09-07

Similar Documents

Publication Publication Date Title
US3923644A (en) Process and apparatus for re-refining used petroleum products
US3625881A (en) Crank case oil refining
US4101414A (en) Rerefining of used motor oils
US3791965A (en) Process for re-refining used petroleum products
CN1197794C (en) Oil-containing sludge treating method
US4941967A (en) Process for re-refining spent lubeoils
US4360420A (en) Distillation and solvent extraction process for rerefining used lubricating oil
US4381992A (en) Reclaiming used lubricating oil
SA95160353B1 (en) Method and plant for purifying spent oil
RU2356939C2 (en) Method for regeneration of spent oils by means of demetallisation and distillation
US4342645A (en) Method of rerefining used lubricating oil
RU96115921A (en) METHOD OF RE-CLEANING OIL WITHOUT FORMATION OF ACID TAR
US4333822A (en) Method of treating waste engine oils
US4406743A (en) Fractionation column for reclaiming used lubricating oil
RU2161176C1 (en) Method and installation for processing waste petroleum products
US3666828A (en) Condensate purification and recovery for use as dilution steam to pyrolysis furnace
US1891402A (en) Method of treating oils
US2222475A (en) Process for refining lubricating oil stocks
RU2720193C1 (en) Method of separation of by-products and wastes of metallurgical industry and device for implementation thereof
US2050772A (en) Process of refining mineral oil
RU2759496C1 (en) Installation for stabilization, topping and dehydration of oil
US1735546A (en) Process for reclaiming lubricating oil
US1664977A (en) Art of distilling lubricating oils
RU2805550C1 (en) Processing method for used technical liquids and oils
RU2772332C1 (en) Method for processing watered oil-containing waste