US3925525A - Spinning method - Google Patents

Spinning method Download PDF

Info

Publication number
US3925525A
US3925525A US387407A US38740773A US3925525A US 3925525 A US3925525 A US 3925525A US 387407 A US387407 A US 387407A US 38740773 A US38740773 A US 38740773A US 3925525 A US3925525 A US 3925525A
Authority
US
United States
Prior art keywords
spinning
passageway
range
equation
strain rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US387407A
Inventor
Herman L Lanieve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Corp filed Critical Celanese Corp
Priority to US387407A priority Critical patent/US3925525A/en
Priority to JP49090325A priority patent/JPS5076312A/ja
Priority to CA206,697A priority patent/CA1079015A/en
Priority to US05/594,010 priority patent/US4015924A/en
Application granted granted Critical
Publication of US3925525A publication Critical patent/US3925525A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes

Definitions

  • This invention relates to the spinning of synthetic filaments. More particularly, this invention relates to a novel method and apparatus for the spinning of synthetic filaments utilizing a spinneret nozzle designed to establish an essentially constant extensional strain rate.
  • spinnerets including a plurality of exit passageways in the form of nozzles or orifices machined in a spinneret plate.
  • a liquid comprising a polymer melt or a solution of a polymer in an appropriate solvent is extruded through these nozzles in the filament forming process.
  • the pressure drop across a spinneret can be expressed as the sum of the viscous dissipation in the passageway and the entrance and exit flows, the pressure due to kinetic energy effects, and that due to storage of elastic energy.
  • extrudate swell in connection with flow through a capillary is inversely related to the ratio of the capillary length to its diameter.
  • attempts to reduce extrudate swell by increasing that ratio may produce an excessive presure drop due to viscous dissipation.
  • the present invention departs from those prior art approaches to design of spinneret nozzle profiles which have been governed primarily by direct viscosity considerations, and perhaps, to some extent, inertial and turbulence considerations.
  • the present invention embodies a recognition that spinneret flow for fluids generally classified as viscous, such as PET melts or CTA solutions, is dominated by elastic" forces. More particularly, according to the present invention a nozzle profile is provided so as to establish an essentially constant extensional strain rate, viz. a constant change in veloc ity with respect to the incremental distance of fluid travel (an elastic force consideration). In this fashion the flow condition for the liquid is such as to provide for a low total pressure drop. At the same time adequate spinning speeds may be employed with acceptable die swell.
  • the essentially constant extensional strain rate leads to a low total pressure drop through several mechanisms.
  • a low constant extensional strain rate may be chosen to reduce that contribution as compared with prior art nozzle profiles.
  • the viscous pressure drop is minimized.
  • the gentle streamline entry flow provided by the nozzle profile of the present invention is believed to reduce dissipation due to vena contracta type eddies.
  • a preferred form of the invention intended to accomplish at least some of the foregoing objects entails the spinning of fibers through the provision of a spinneret plate for extruding polymeric materials and including at least one converging extrusion passageway having an entry opening and an exit orifice, with the passage profile being designed to establish an essentially constant extensional strain rate.
  • Spinning speeds in the range of about 500 to I500 meters per minute in the case of solution spinning and 500 to 6000 meters per minute in the case of melt spinning are usually appropriate, with about 1000 meters per minute and about 1200 to 3000 meters per minute being preferred respectively for dry and wet solution and for melt spinning.
  • Solution spinning temperatures of about 50 to l lC, preferably about 90C are usually contemplated.
  • temperatures in the range of about 275 to 330C, preferably 285 to 300C, are involved.
  • the approach angle defined as the angle of intersection between the axis of the converging extrusion passageway and the tangent to the wall of that passageway at the entrance opening, is between about to 45.
  • the passageway (i.e. the spinneret plate thickness) and exit orifice area may vary, with lengths in the range of about 0.020 to 0.060 inches for solution spinning and 0.1 to 0.6 inches for melt spinning, and areas in the range of about 3 X 10 to 50 X 10 square centimeters (solution spinning) and about l X l0 to 50 X 10 square centimeters (melt spinning) being desirable.
  • spinning of fiber-formin g materials by solution spinning (wet or dry) or melt spinning (without significant melt fracture in the range of operating conditions selected for the materials in contemplation for practice of the present invention) of any suitable polymeric materials, such as polyamides, polyesters, acrylics, polyimides, cellulosics, vinyl chloride and vinylidene cyanide polymerics and the like, may be practiced.
  • suitable polymeric materials such as polyamides, polyesters, acrylics, polyimides, cellulosics, vinyl chloride and vinylidene cyanide polymerics and the like.
  • Particular applicability of the present invention may be found in high speed spinning of cellulose esters or polyesters, especially polyethelene terephthalate.
  • the process is of particular value in the dry solution spinning of cellulose triacetate from solution in a solvent comprising a major amount of a halo genated hydrocarbon such as methylene chloride.
  • cellulose triacetate has reference to cellulose acetate having fewer than about 0.29 and preferably fewer than about 0.12 free hydroxyl group per anhydroglucose unit of the cellulose molecule, i.e., an ac etyl value calculated as combined acetic acid by weight of at least about 59 percent and preferably at least about 61 percent.
  • the dope solvent may comprise other halogenated lower alkanes such as ethylene dichloride or propylene chloride.
  • the dope solvent comprises a lower alkanol such as methanol, ethanol, isopropanol, etc.
  • the preferred dope solvent is methylene chloride-methanol in the proportions of about -10 by weight.
  • the cross-sectional configuration of the nozzle employed in accordance with the present invention is preferably symmetrical about the nozzle axis, with a circular cross-section being the preferred form.
  • non-circular configurations conventional in the spinning art such as for example those depicted in US. Pat. No. 3,303,530, issued Feb. 14, 1967, are also contemplated.
  • FIG. is a plan view of a spinneret in accordance with the present invention.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;
  • FIG. 3 is an enlarged sectional view showing the profile of the exit passageway of the spinneret of FIGS. 1 and 2;
  • FIG. 4 is an enlarged sectional view showing the passageway of FIG. 3 contiguous, adjacent its entry end, with a frusto-conical passageway;
  • FIG. 5 is a schematic illustration of a dry spinning op eration in accordance with the present invention.
  • a spinneret or jet 10 in accordance with the present invention may be seen.
  • This spinneret is made of any suitable material such as stainless steel.
  • the spinneret is generally cupshaped.
  • the cup bottom indicated at 12 is provided with a plurality of circumferentially disposed, spaced apertures or exit passageways l4 therethrough.
  • a liquid comprising a polymer melt or a solution of a polymer in an appropriate solvent is supplied to the spinneret 10 and is extruded through the exit passageways I4 in the filament forming process.
  • An enlarged view of a preferred forms of the exit passageway 14 may be seen in FIGS. 3 and 4.
  • Each passageway 14 is in the form of a converging nozzle, the profile of which is hereinafter more fully described, that terminates in an exit orifice 16.
  • elastic energy stored in the liquid is recovered so as to result in extrudate swell or die swell. This storage of elastic energy occurs by reason of the extensional flow of the fluid.
  • FIG. 5 there is shown a dry spinning cabinet 20 to which dope is supplied through a pipe 22.
  • the liquid dope is extruded through the spinneret 10 of FIGS. l-3 with no intervening plating of the spinneret.
  • I-Iot air may be admitted to the cabinet 20 through a suitable conduit 23 and may be exhausted through a suitable conduit 24 along with vapors of the dope solvent.
  • the filaments 26 leaving the spinneret 10 through the extrusion passageways 14 are directed about a guide 28 and out of the cabinet at a location indicated at 30.
  • the filaments are pulled as a yarn 32 by suitable draw rolls 34.
  • the yarn 32 by suitable draw rolls 34.
  • the yarn 32 passes through a guide 36 and is twisted and taken up on a bobbin 38 by a conventional collector such as a ring spinner 40.
  • the nozzle profile in accordance with the present invention may be more fully appreciated.
  • the radius of the exit ori- 1 fice 16 is indicated by R.
  • the nozzle preferably is circular in transverse cross-section, and has smooth, gradually curving walls 18 in the form of a surface of revolution defined by a generatrix moving about the central axis 19 of the passageway 14.
  • the wall profile, conforming to the shape of this generatrix, provides an essentially constant extensional strain rate during flow of the polymeric material through the passageway 14 by being designed to essentially respond to the following cubic equation:
  • R is the radius of the exit orifice l6
  • r u is the wall radius measured perpendicular to the axis 22;
  • Z is the distance along the axis 19 of the nozzle measured from the exit orifice 16;
  • A is a constant hereinafter more fully described.
  • Equation (1) may be derived by integrating the following equation:
  • 6v/6Z is the extensional strain rate represented by the partial derivative of velocity (V) with respect to distance measured from the exit orifice 16 along the nozzle axis 19;
  • V is the fluid velocity
  • Q is the volumetric flow rate. and while also recalling the limit condition that )1! is equal to R [as defined for equation (l)]at the exit orifree 16.
  • the constant A of Equation (l) is determined by equating the constant extensional strain rate K of Equation (2) with the maximum extensional strain rate for a conical spinneret wherein the die swell is acceptable (hereinafter referred to as equivalent conical spinneret"). Then,
  • Sv/SZ max. cone is the maximum extensional strain 55 rate for the equivalent conical spinneret.
  • the well known equation for the wall profile of a conical spinneret is:
  • Equation l rm and Z are as defined in Equation l); and 6 is the half angle of the equivalent conical spinneret,
  • Equations (2) through (6) may then be combined and integrated to produce equation (1) where A of equation (l) will be defined as:
  • Equation (8) and (9) yields:
  • Equation (ll) is rearranged and substituted in Equation (10), it will be seen that Since 5v/8Z appears in the denominator of Equation (l2), the largest possible value of 8v/5Z provides the smallest viscous pressure drop (APv) However, the provision for a constant extensional strain rate inherently imposes the constraint that:
  • FIG. 4 a further nozzle passageway that may be employed according to the present invention may be seen.
  • the passageway of FIG. 4 is comprised of the nozzle passage 14 of FIG. 3 contiguous with a passageway extension 42 in the form of a frusto-conical countersink. It has been found that manufacturing of the spinneret with a passageway 14 profile establishing an essentially constant extensional strain rate as discussed above is more convenient when such a countersink is provided.
  • the intersection of the conical section 42 with the passageway 14 be such that the walls of the cone are tangent to the walls 18 of the passageway 14 at its entry orifice 17. If such tangency is not provided, and the cone makes a steeper angle than the tangent then the extensional strain rate in the conical section 42 will be greater. As such, the chosen die-swell characteristics will not be met, and viscous pressure drop will be greater than the minimum which the constant extensional strain rate otherwise would provide.
  • r w is the perpendicular distance between nozzle wall and points along that axis
  • Z is the distance along that axis measured from said exit orifice
  • A is a constant.
  • said protile is defined by a surface of revolution defined by a generatrix described by said equation and moving about said axis in a generally circular path.
  • a solution spinning method according to claim 3 wherein said liquid material consists essentially of cellulose acetate and wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute at spinning temperatures of about 50 to ll0C.
  • a melt spinning method according to claim 3 wherein said liquid material consists essentially of polyethylene terephthalate and wherein said material is extruded at spinning speeds in the range 500 to 6000 meters per minute at spinning temperatures of about 275 to 330C.
  • liquid material comprises polyethylene terephthalate.
  • a solution spinning method according to claim I wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute.
  • a melt spinning method according to claim 1 wherein said material is extruded at spinning speeds in the range of about 500 to 3000 meters per minute.
  • equation (7) should read:

Abstract

Liquid polymeric materials, in a fiber spinning operation, are extruded through extrusion passageways of a spinneret plate. The passageways are designed to establish an essentially constant extensional strain rate condition for flow of liquid.

Description

United States Patent 1111 LaNieve Dec. 9, 1975 SPINNING METHOD 3,006,026 10/1961 Martin 6t 21]. 425/464 3,210.45l [Cl/I965 Manning et al 425/464 [75] memo" Henna Lameve1 summti 3.382535 5/[968 Ferrari 264/177 F Assignee: celanese C rp rati N w Y k, Santeangelo r r i r i i I I Y v v v v FOREIGN PATENTS OR APPLICATIONS [22] Filed: Aug. 10, 1973 246,828 11/1960 Australia .5 425/464 [2 AWL 3 7 7 OTHER PUBLICATIONS Polymer Processing by J. M. McKelvey, pp. 8797, [52 us. (:1 ,1 264/40; 264/176 F; 264/177 F; John wley Sons New York 1962' 264 204' 264 7 511 1111. 0. F02M 1 1 /30 pr'mary Emmmekjay W00 [58] Field of Search 425/464; 264/177 F, 176 F,
264/40, 204, 207 ABSTRACT L1qu1d polymeric materials, in a fiber spinning opera [56] References Ci tion, are extruded through extrusion passageways of :1 UNITED STATES PATENTS spinneret plate. The passageways are designed to es 2 21 l 946 8/940 G 425/464 tablish an essentially constant extensional strain rate raves 4. 1 2,341,555 2/1944 16m I I I I I I 425/464 Condmon for flow of hquld 2,742 667 4/1956 Clauzeau et al 425/464 13 Claims, 5 Drawing Figures U.S. Patent Dec. 9, 1975 FIG.1
FIG.2
M. w ilililii i- SPINNING METHOD BACKGROUND AND OBJECTS OF THE INVENTION This invention relates to the spinning of synthetic filaments. More particularly, this invention relates to a novel method and apparatus for the spinning of synthetic filaments utilizing a spinneret nozzle designed to establish an essentially constant extensional strain rate.
In connection with the production of filaments from man-made fiber forming materials, it has been common to utilize spinnerets including a plurality of exit passageways in the form of nozzles or orifices machined in a spinneret plate. A liquid comprising a polymer melt or a solution of a polymer in an appropriate solvent is extruded through these nozzles in the filament forming process.
As will be appreciated, the profile of such spinneret nozzles has been the subject of considerable research efforts. In this connection, reference may be had to U.S. Pat. No. 3,537,135 (issued Nov. 3, I970), U.S. Pat. No. 3,303,530 (issued Feb. 14, I967), U.S. Pat. No. 3,210,451 (issued Oct. 5, 1965), U.S. Pat. No. 3,227,009 (issued Jan. 4, l966), and U.S. Pat. No. 3,174,183 (issued Mar. 3, 1965) for disclosures of spinnerets with exit passageways having a variety of profiles.
An important consideration in fluid flow through a spinneret passageway of any given profile is that of fluid pressure drop. The pressure drop across a spinneret can be expressed as the sum of the viscous dissipation in the passageway and the entrance and exit flows, the pressure due to kinetic energy effects, and that due to storage of elastic energy.
Another important consideration in spinneret fluid flow is that of extrudate swell or die swell, i.e. the ratio of the fiber cross-sectional area after it passes the exit orifice of the spinneret exit passageway to the crosssectional area of that exit orifice. Die swell has a direct effect on draw ratios and fiber elongation.
For example, in the case of spinning polyethylene terephthalate (PET), increased extrudate swell resulting from increased spinning productivity would produce decreases in after-draw ratio. Similarly, in con nection with production of dry spun fibers from cellulose triacetate (CTA), increased extradate swell would reduce fiber elongation.
It has been found that extrudate swell in connection with flow through a capillary is inversely related to the ratio of the capillary length to its diameter. However, under high spinning productivities, attempts to reduce extrudate swell by increasing that ratio may produce an excessive presure drop due to viscous dissipation.
Since costs associated with the operation of spinning equipment are considerable, adequately high spinning productivity must be maintained.
It would, therefore, be highly desirable to provide a novel spinning method and apparatus based upon a passageway profile designed to advantageously accomodate desirable spinning productivity consistent with acceptable pressure drop and extrudate swell. Accordingly, it is a general object of the present invention to provide such a novel spinning method and apparatus.
In spinning operations, one important viscosity consideration is that of fluid pressure drop in spinneret flow due to viscous dissipation. Under high productivity spinning conditions, viscous pressure drop often becomes excessive. As such, viscous pressure drop to some extent constitutes a limiting factor on spinning productivity. Since the costs associated with the operation of spinning equipment are considerable, it would be highly desirable to provide for increased spinning productivity by minimizing viscous pressure drop or to provide for a viscous pressure drop consistent with a given spinning productivity.
In realizing this object, the present invention departs from those prior art approaches to design of spinneret nozzle profiles which have been governed primarily by direct viscosity considerations, and perhaps, to some extent, inertial and turbulence considerations.
In this connection, the present invention embodies a recognition that spinneret flow for fluids generally classified as viscous, such as PET melts or CTA solutions, is dominated by elastic" forces. More particularly, according to the present invention a nozzle profile is provided so as to establish an essentially constant extensional strain rate, viz. a constant change in veloc ity with respect to the incremental distance of fluid travel (an elastic force consideration). In this fashion the flow condition for the liquid is such as to provide for a low total pressure drop. At the same time adequate spinning speeds may be employed with acceptable die swell.
The essentially constant extensional strain rate leads to a low total pressure drop through several mechanisms. First, since the elastic pressure drop contribution to the total pressure drop is governed by the maxi mum extensional strain rate, a low constant extensional strain rate may be chosen to reduce that contribution as compared with prior art nozzle profiles. Secondly, as hereinafter more fully described, at a chosen constant extensional strain rate, the viscous pressure drop is minimized. In addition, the gentle streamline entry flow provided by the nozzle profile of the present invention is believed to reduce dissipation due to vena contracta type eddies.
It may be here noted that an apparently similar profile has been proposed for an entirely different purpose, namely, the design of a minimum length die to be used for extruding on a wire, plastics which are subject to melt fracture. (See U.S. Ferrari Pat. No. 3,832,535, issued May I4, 1968.) Considerations directed toward elimination of melt fracture and minimizing die length in the environment of extruding plastics on a wire are unrelated to the present invention, in that polymers involved in the contemplated spinning operations do not exhibit any significant melt fracture in the range of op erating conditions selected in contemplation for practice of the present invention.
Consistent with the foregoing, it is, therefore, a further object of the present invention to provide a novel spinning method and apparatus wherein an essentially constant extensional strain rate is established for flow through a spinneret nozzle.
It is a further object to the present invention to provide such a novel spinning method and apparatus wherein adequate spinning speeds may be employed with acceptable die swell.
It is yet another object of the present invention to provide such a novel spinning method and apparatus wherein a low total pressure drop is produced.
It is still another object of the present invention to provide such a novel spinning method and apparatus which minimizes breaking of filaments in a spin line,
and thus minimizes the occurence of incomplete packages. In this connection, it is believed that breaking of filaments in a spin line might, in some respects, be attributable to faults or impurities, in the spinning material. The particular improved spinneret flow produced according to the present invention is thought to minimize the adverse consequences attributable to such faults or impurities.
SUMMARY OF PREFERRED EMBODIMENTS OF THE INVENTION A preferred form of the invention intended to accomplish at least some of the foregoing objects entails the spinning of fibers through the provision of a spinneret plate for extruding polymeric materials and including at least one converging extrusion passageway having an entry opening and an exit orifice, with the passage profile being designed to establish an essentially constant extensional strain rate.
Spinning speeds in the range of about 500 to I500 meters per minute in the case of solution spinning and 500 to 6000 meters per minute in the case of melt spinning are usually appropriate, with about 1000 meters per minute and about 1200 to 3000 meters per minute being preferred respectively for dry and wet solution and for melt spinning. Solution spinning temperatures of about 50 to l lC, preferably about 90C are usually contemplated. For melt spinning, temperatures in the range of about 275 to 330C, preferably 285 to 300C, are involved.
Preferably the approach angle, defined as the angle of intersection between the axis of the converging extrusion passageway and the tangent to the wall of that passageway at the entrance opening, is between about to 45.
The passageway (i.e. the spinneret plate thickness) and exit orifice area may vary, with lengths in the range of about 0.020 to 0.060 inches for solution spinning and 0.1 to 0.6 inches for melt spinning, and areas in the range of about 3 X 10 to 50 X 10 square centimeters (solution spinning) and about l X l0 to 50 X 10 square centimeters (melt spinning) being desirable.
In accordance with the present invention, it will be appreciated that spinning of fiber-formin g materials by solution spinning (wet or dry) or melt spinning (without significant melt fracture in the range of operating conditions selected for the materials in contemplation for practice of the present invention) of any suitable polymeric materials, such as polyamides, polyesters, acrylics, polyimides, cellulosics, vinyl chloride and vinylidene cyanide polymerics and the like, may be practiced. Particular applicability of the present invention may be found in high speed spinning of cellulose esters or polyesters, especially polyethelene terephthalate.
For example, the process is of particular value in the dry solution spinning of cellulose triacetate from solution in a solvent comprising a major amount of a halo genated hydrocarbon such as methylene chloride.
In this connection, as employed herein, cellulose triacetate has reference to cellulose acetate having fewer than about 0.29 and preferably fewer than about 0.12 free hydroxyl group per anhydroglucose unit of the cellulose molecule, i.e., an ac etyl value calculated as combined acetic acid by weight of at least about 59 percent and preferably at least about 61 percent.
Advantageously, its intrinsic viscosity ranges from about 1.5 to 2.5 and is preferably about 2, and it is pres ent in the dope to a concentration ranging from about 20 to 25 percent. In place of methylene chloride, the dope solvent may comprise other halogenated lower alkanes such as ethylene dichloride or propylene chloride. Preferably, up to about 15 percent by weight of the dope solvent comprises a lower alkanol such as methanol, ethanol, isopropanol, etc. The preferred dope solvent is methylene chloride-methanol in the proportions of about -10 by weight.
The cross-sectional configuration of the nozzle employed in accordance with the present invention is preferably symmetrical about the nozzle axis, with a circular cross-section being the preferred form. However, non-circular configurations conventional in the spinning art, such as for example those depicted in US. Pat. No. 3,303,530, issued Feb. 14, 1967, are also contemplated.
Other objects and advantages of the present invention will become apparent from the following detailed description thereof with reference to the accompanying drawings in which like numerals indicate like elements, and in which:
THE DRAWINGS FIG. is a plan view of a spinneret in accordance with the present invention;
FIG. 2 is a sectional view taken along line 2-2 of FIG. 1;
FIG. 3 is an enlarged sectional view showing the profile of the exit passageway of the spinneret of FIGS. 1 and 2;
FIG. 4 is an enlarged sectional view showing the passageway of FIG. 3 contiguous, adjacent its entry end, with a frusto-conical passageway;
FIG. 5 is a schematic illustration of a dry spinning op eration in accordance with the present invention.
DETAILED DESCRIPTION With reference now to FIG. 1, a spinneret or jet 10 in accordance with the present invention may be seen. This spinneret is made of any suitable material such as stainless steel.
As may be seen FIG. 2, the spinneret is generally cupshaped. The cup bottom indicated at 12 is provided with a plurality of circumferentially disposed, spaced apertures or exit passageways l4 therethrough.
During spinning operations, a liquid comprising a polymer melt or a solution of a polymer in an appropriate solvent is supplied to the spinneret 10 and is extruded through the exit passageways I4 in the filament forming process. An enlarged view of a preferred forms of the exit passageway 14 may be seen in FIGS. 3 and 4.
Each passageway 14 is in the form of a converging nozzle, the profile of which is hereinafter more fully described, that terminates in an exit orifice 16. After flow into the entry orifice 17, through the nozzle passageway and out the exit orifice l6, elastic energy stored in the liquid is recovered so as to result in extrudate swell or die swell. This storage of elastic energy occurs by reason of the extensional flow of the fluid.
In FIG. 5 there is shown a dry spinning cabinet 20 to which dope is supplied through a pipe 22. The liquid dope is extruded through the spinneret 10 of FIGS. l-3 with no intervening plating of the spinneret. I-Iot air may be admitted to the cabinet 20 through a suitable conduit 23 and may be exhausted through a suitable conduit 24 along with vapors of the dope solvent. The filaments 26 leaving the spinneret 10 through the extrusion passageways 14 are directed about a guide 28 and out of the cabinet at a location indicated at 30. The filaments are pulled as a yarn 32 by suitable draw rolls 34. The yarn 32 by suitable draw rolls 34. The yarn 32 passes through a guide 36 and is twisted and taken up on a bobbin 38 by a conventional collector such as a ring spinner 40.
With renewed reference to FIG. 3, the nozzle profile in accordance with the present invention may be more fully appreciated. In FIG. 3, the radius of the exit ori- 1 fice 16 is indicated by R. The nozzle preferably is circular in transverse cross-section, and has smooth, gradually curving walls 18 in the form of a surface of revolution defined by a generatrix moving about the central axis 19 of the passageway 14. The wall profile, conforming to the shape of this generatrix, provides an essentially constant extensional strain rate during flow of the polymeric material through the passageway 14 by being designed to essentially respond to the following cubic equation:
f= z+ll 2 where:
R is the radius of the exit orifice l6;
r u is the wall radius measured perpendicular to the axis 22;
Z is the distance along the axis 19 of the nozzle measured from the exit orifice 16; and
A is a constant hereinafter more fully described.
One the criterian of constant extensional strain rate is selected, the foregoing Equation (1) may be derived by integrating the following equation:
61 152 x where:
6v/6Z is the extensional strain rate represented by the partial derivative of velocity (V) with respect to distance measured from the exit orifice 16 along the nozzle axis 19; and
K is a constant, while recalling that:
V is the fluid velocity;
no is the wall radius as defined for equation (1); and
Q is the volumetric flow rate. and while also recalling the limit condition that )1!) is equal to R [as defined for equation (l)]at the exit orifree 16.
Preferably the constant A of Equation (l) is determined by equating the constant extensional strain rate K of Equation (2) with the maximum extensional strain rate for a conical spinneret wherein the die swell is acceptable (hereinafter referred to as equivalent conical spinneret"). Then,
K Ev/EZ maxi cone where:
Sv/SZ max. cone is the maximum extensional strain 55 rate for the equivalent conical spinneret. The well known equation for the wall profile of a conical spinneret is:
rm Z tan 0 4K A P v Q where:
rm and Z are as defined in Equation l); and 6 is the half angle of the equivalent conical spinneret,
preferably in the range of 2 to 7%" 6 By combining equations (3) and (5), and recognizing that for a cone 5r/8Z is a maximum at the exit orifice 16 where Z is zero and rm is R, it will be determined that:
tan
52 maxvcone= 2 (6] where:
7,; is 4Q/1rR the wall shear rate.
Equations (2) through (6) may then be combined and integrated to produce equation (1) where A of equation (l) will be defined as:
V 2 tan where:
no is the wall sheer stress; and K, and n are fluid constants, Describing the viscous pressure drop A P v as:
arm
where:
Z indicates the axial position where no becomes infinite and combining Equations (8) and (9) yields:
APv=2K,( (10) When equation (3) is partially differentiated with respect to Z to produce:
and Equation (ll) is rearranged and substituted in Equation (10), it will be seen that Since 5v/8Z appears in the denominator of Equation (l2), the largest possible value of 8v/5Z provides the smallest viscous pressure drop (APv) However, the provision for a constant extensional strain rate inherently imposes the constraint that:
fir/BZ 6 6v/8Z maximum. (l3) leading to the conclusion that the viscous pressure drop of Equation (I2) is minimized by the extensional strain rate being at a constant that is also the maximum.
With reference now to FIG. 4, a further nozzle passageway that may be employed according to the present invention may be seen. The passageway of FIG. 4 is comprised of the nozzle passage 14 of FIG. 3 contiguous with a passageway extension 42 in the form of a frusto-conical countersink. It has been found that manufacturing of the spinneret with a passageway 14 profile establishing an essentially constant extensional strain rate as discussed above is more convenient when such a countersink is provided.
To aid in insuring a smooth flow transition, it is, however, desirable that the intersection of the conical section 42 with the passageway 14 be such that the walls of the cone are tangent to the walls 18 of the passageway 14 at its entry orifice 17. If such tangency is not provided, and the cone makes a steeper angle than the tangent then the extensional strain rate in the conical section 42 will be greater. As such, the chosen die-swell characteristics will not be met, and viscous pressure drop will be greater than the minimum which the constant extensional strain rate otherwise would provide.
Although the invention has been described with reference to preferred forms thereof, it will be appreciated that additions, substitutions, modifications and deletions may be made without departing from the spirit and scope of the invention as defined in the appended claims:
What is claimed is:
I. In a method of spinning fibers from fiber-forming, liquid polymeric material utilizing a spinneret for extruding said material through at least one converging nozzle passageway having an entry opening and an exit orifice. the improvement comprising establishing an essentially constant extensional strain rate condition for flow of said liquid through said passageway by providing a nozzle passageway bounded by gradually curving walls having a profile described essentially by the equation R is the perpendicular distance between an axis of the passageway and the nozzle wall at the exit orifree;
r w is the perpendicular distance between nozzle wall and points along that axis;
Z is the distance along that axis measured from said exit orifice; and
A is a constant.
2. The method according to claim 1 wherein said protile is defined by a surface of revolution defined by a generatrix described by said equation and moving about said axis in a generally circular path.
3. The method according to claim 2 wherein the constant A in said equation is defined by -2 tan B/R where 0 is the conical half angle of an equivalent frustoconical passageway for establishing a maximum extensional strain rate essentially equal to said essentially constant extensional strain rate.
4. A solution spinning method according to claim 3 wherein said liquid material consists essentially of cellulose acetate and wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute at spinning temperatures of about 50 to ll0C.
5. A melt spinning method according to claim 3 wherein said liquid material consists essentially of polyethylene terephthalate and wherein said material is extruded at spinning speeds in the range 500 to 6000 meters per minute at spinning temperatures of about 275 to 330C.
6. The method according to claim 1 wherein said passageway is contiguous with and tangent to the walls of a frusto-conical passageway.
7. The method according to claim 1 wherein said liquid material comprises polyethylene terephthalate.
8. The method according to claim 1 wherein said liquid material comprises cellulose acetate.
9. The method according to claim 1 wherein said liquid material comprises cellulose triacetate.
10. A solution spinning method according to claim I wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute.
11. A melt spinning method according to claim 1 wherein said material is extruded at spinning speeds in the range of about 500 to 3000 meters per minute.
12. A solution spinning method according to claim 1 wherein the spinning temperature is in the range of about 50 to ll0C.
13. A melt spinning method according to claim 1 wherein the spinning temperature is in the range of about 275 to 330C.
UNITED STATES PATFNT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,925,525 Page I of 5 DATED December 9 1975 |NVENTOR(S) Herman L. LaNieve It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 5, line 21, equation (1) should read:
line 24, "rm" should read r line 29 "One" should read Once line 32, equation (2) should read:
3V az K;
line 34, "(W/ 52" should read BV/BZ line 39, equation (3) should read:
lines 42, 44 and 65, "rm" should read r line 52,
equation (4) should read:
U NITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 1 3,925,525 Page 2 f 5 DATED December 9, 1975 INVENTOR(S) Herman L. LaNieve It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
line 55, "(iv/62" should read BV/GZ and, line 59, equation (5) should read:
I Z tan 8 Column 6, line 2, "Sr/62" should read ar/az lines 3 and 44, "rw" should read r -lines 4-9, equation (6) should read:
i; tan 6 az 2 R max cone lines 14-18, equation (7) should read:
A 2 tan 6 lines 30-34, equation (8) should read:
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION Page 3 of 5 PATENT N0. 3,925, 525
DATED December 9 |NVENTOR(S) Herman L. LaNieve It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
line 35, "Tm" should read 1 lines 37 and 68 "A should read AP read shear line 35, "sheer" should lines 38-42, equation (9) should read:
r; NTTED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,925,525 Page 4 of 5 DATED December 9 1975 INVENTOR(S) Herman L. LaNieve It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
lines 60-65, equation (12) should read:
rm an AP) -4K Q n+1 2 dr n r and aZ w r =R lines 66 and 67, "6V/6Z" should read 8V/8Z 82 Z maximum Claim 1, line 11, the equation should read:
1 and UNITED sTATEs PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,925,525 Page 5 of 5 DATED December 9, 1975 mvgmoms) Herman L. LaNieve It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
line 16, "rm" should read r Signed and Scaled this Twenty-second Day of May 1979 [SEAL] DONALD W. BANNER RUTH C. MASON Arresting Oflicer Commissioner of Patents and Trademarks

Claims (13)

1. IN A METHOD OF SPINING FIBERS FROM FIBER-FORMING, LIQUID POLYMERIC MATERIAL UTILIZING A SPINNERET FOR EXTRUDING SAID MATERIAL THROUGH AT LEAST ONE CONVERGING NOZZLE PASSAGEWAY HAVING AN ENTRY OPENING AND AN EXIST ORIFICE, THE IMPROVEMENT COMPRISING ESTABLISHING AN ESSENTIALLY CONSTANT EXTENSIONAL STRAIN RATE CONDITION FOR FLOW OF SAID LIQUID THROUGH SAID PASSAGEWAY BY PROVIDING A NOZLE PASSAGEWAY BOUNDED BY GRADUALLY CURVING WALLS HAVING A PROFILE DESCRIBED ESSENTIALLY BY THE EQUATION
2. The method according to claim 1 wherein said profile is defined by a surface of revolution defined by a generatrix described by said equation and moving about said axis in a generally circular path.
3. The method according to claim 2 wherein the constant A in said equation is defined by -2 tan theta /R3 where theta is the conical half angle of an equivalent frustoconical passageway for establishing a maximum extensional strain rate essentially equal to said essentially constant extensional strain rate.
4. A solution spinning method according to claim 3 wherein said liquid material consists essentially of cellulose acetate and wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute at spinning temperatures of about 50* to 110*C.
5. A melt spinning method according to claim 3 wherein said liquid material consists essentially of polyethylene terephthalate and wherein said material is extruded at spinning speeds in the range 500 to 6000 meters per minute at spinning temperatures of about 275* to 330*C.
6. The method according to claim 1 wherein said passageway is contiguous with and tangent to the walls of a frusto-conical passageway.
7. The method according to claim 1 wherein said liquid material comprises polyethylene terephthalate.
8. The method according to claim 1 wherein said liquid material comprises cellulose acetate.
9. The method according to claim 1 wherein said liquid material comprises cellulose triacetate.
10. A solution spinning method according to claim 1 wherein said material is extruded at spinning speeds in the range of about 500 to 1500 meters per minute.
11. A melt spinning method according to claim 1 wherein said material is extruded at spinning speeds in the range of about 500 to 3000 meters per minute.
12. A solution spinning method according to claim 1 wherein the spinning temperature is in the range of about 50* to 110*C.
13. A melt spinning method according to claim 1 wherein the spinning temperature is in the range of about 275* to 330*C.
US387407A 1973-08-10 1973-08-10 Spinning method Expired - Lifetime US3925525A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US387407A US3925525A (en) 1973-08-10 1973-08-10 Spinning method
JP49090325A JPS5076312A (en) 1973-08-10 1974-08-08
CA206,697A CA1079015A (en) 1973-08-10 1974-08-09 Spinning method and apparatus
US05/594,010 US4015924A (en) 1973-08-10 1975-07-08 Spinning apparatus providing for essentially constant extensional strain rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US387407A US3925525A (en) 1973-08-10 1973-08-10 Spinning method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/594,010 Division US4015924A (en) 1973-08-10 1975-07-08 Spinning apparatus providing for essentially constant extensional strain rate

Publications (1)

Publication Number Publication Date
US3925525A true US3925525A (en) 1975-12-09

Family

ID=23529738

Family Applications (1)

Application Number Title Priority Date Filing Date
US387407A Expired - Lifetime US3925525A (en) 1973-08-10 1973-08-10 Spinning method

Country Status (3)

Country Link
US (1) US3925525A (en)
JP (1) JPS5076312A (en)
CA (1) CA1079015A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384098A (en) * 1981-01-13 1983-05-17 Phillips Petroleum Company Filamentary polypropylene and method of making
US5234652A (en) * 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
US5236734A (en) * 1987-04-20 1993-08-17 Fuisz Technologies Ltd. Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix
US5238696A (en) * 1987-04-20 1993-08-24 Fuisz Technologies Ltd. Method of preparing a frozen comestible
US5240665A (en) * 1991-12-31 1993-08-31 Eastman Kodak Company Process of making cellulose acetate fibers from spinning solutions containing metal oxide precursor
US5268110A (en) * 1991-05-17 1993-12-07 Fuisz Technologies Ltd. Oil removing method
US5279849A (en) * 1992-05-12 1994-01-18 Fuisz Technologies Ltd. Dispersible polydextrose, compositions containing same and method for the preparation thereof
US5286513A (en) * 1987-04-20 1994-02-15 Fuisz Technologies Ltd. Proteinaceous food product containing a melt spun oleaginous matrix
WO1994012703A1 (en) * 1992-12-03 1994-06-09 The Dow Chemical Company Method for spinning a polybenzazole fiber
US5330348A (en) * 1992-08-05 1994-07-19 E. I. Du Pont De Nemours And Company Spinneret for the production of hollow filaments
US5346377A (en) * 1993-10-07 1994-09-13 Fuisz Technologies Ltd. Apparatus for flash flow processing having feed rate control
US5348758A (en) * 1992-10-20 1994-09-20 Fuisz Technologies Ltd. Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5387431A (en) * 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US5407676A (en) * 1990-12-14 1995-04-18 Fuisz Technologies Ltd. Hydrophilic form of perfluoro compounds and a method of manufacture
US5427804A (en) * 1992-03-05 1995-06-27 Fuisz Technologies Ltd. Low-fat edible proteins with maltodextrins and low-saturate oils
US5445769A (en) * 1994-06-27 1995-08-29 Fuisz Technologies Ltd. Spinner head for flash flow processing
US5456932A (en) * 1987-04-20 1995-10-10 Fuisz Technologies Ltd. Method of converting a feedstock to a shearform product and product thereof
US5458823A (en) * 1994-10-28 1995-10-17 Fuisz Technologies Ltd. Method and apparatus for spinning feedstock material
US5472731A (en) * 1987-04-20 1995-12-05 Fuisz Technologies Ltd. Protein based food product
US5501858A (en) * 1992-05-12 1996-03-26 Fuisz Technologies Ltd. Rapidly dispersable compositions containing polydextrose
US5516537A (en) * 1987-04-20 1996-05-14 Fuisz Technologies Ltd. Frozen comestibles
US5518730A (en) * 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
US5518551A (en) * 1993-09-10 1996-05-21 Fuisz Technologies Ltd. Spheroidal crystal sugar and method of making
US5549917A (en) * 1994-07-01 1996-08-27 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
US5556652A (en) * 1994-08-05 1996-09-17 Fuisz Technologies Ltd. Comestibles containing stabilized highly odorous flavor component delivery systems
US5567439A (en) * 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
US5576042A (en) * 1991-10-25 1996-11-19 Fuisz Technologies Ltd. High intensity particulate polysaccharide based liquids
US5587198A (en) * 1995-05-31 1996-12-24 Fuisz Technologies Ltd. Positive hydration method of preparing confectionery and product therefrom
US5593502A (en) * 1993-10-07 1997-01-14 Fuisz Technologies Ltd. Method of making crystalline sugar and products resulting therefrom
US5622719A (en) * 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5624684A (en) * 1991-05-17 1997-04-29 Fuisz Technologies Ltd. Enzyme systems
US5651987A (en) * 1991-12-17 1997-07-29 Fuisz Technologies Ltd. Ulcer prevention and treatment composition
US5654003A (en) * 1992-03-05 1997-08-05 Fuisz Technologies Ltd. Process and apparatus for making tablets and tablets made therefrom
US5728397A (en) * 1992-05-12 1998-03-17 Fuisz Technologies Ltd. Polydextrose product and process
US5779946A (en) * 1993-04-19 1998-07-14 Fuisz Technologies Ltd. Method for spin processing material having temperature feedback control
US5843922A (en) * 1994-07-29 1998-12-01 Fuisz Technologies Ltd. Preparation of oligosaccharides and products therefrom
US5851553A (en) * 1993-09-10 1998-12-22 Fuisz Technologies, Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5895664A (en) * 1993-09-10 1999-04-20 Fuisz Technologies Ltd. Process for forming quickly dispersing comestible unit and product therefrom
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US6051175A (en) * 1993-09-03 2000-04-18 Polymer Processing Research Inst., Ltd. Process for producing filament and filament assembly composed of thermotropic liquid crystal polymer
WO2001089022A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
WO2001089021A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A composite polymer electrolyte, a lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods
WO2001089023A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
WO2001089020A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
WO2001091219A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A lithium secondary battery comprising a porous polymer separator film fabricated by a spray method and its fabrication method
WO2001091221A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A composite polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods
WO2001091220A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A hybrid polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
WO2001091222A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A lithium secondary battery comprising a polymer electrolyte fabricated by a spray method and its fabrication method
US20050258562A1 (en) * 2004-05-21 2005-11-24 3M Innovative Properties Company Lubricated flow fiber extrusion
US20130183525A1 (en) * 2012-01-12 2013-07-18 Beijing University Of Chemical Technology Methods of Preparing Polyimide Fibers with Kidney-Shaped Cross-Sections

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567007A (en) * 1978-11-10 1980-05-20 Unitika Ltd Production of ultra-fine polyamide fiber
JPS61138719A (en) * 1984-12-10 1986-06-26 Sumitomo Chem Co Ltd Melt-spinning process
JP2668849B2 (en) * 1993-12-02 1997-10-27 惠一 村上 Manufacturing method of spinneret
US6682677B2 (en) * 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
JP2017179622A (en) * 2016-03-28 2017-10-05 帝人株式会社 Production method for copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2211946A (en) * 1938-05-12 1940-08-20 Du Pont Spinnerette
US2341555A (en) * 1939-01-05 1944-02-15 Baker & Co Inc Extrusion device
US2742667A (en) * 1951-11-08 1956-04-24 Rhodiaceta Spinnerets
US3006026A (en) * 1957-03-02 1961-10-31 Glanzstoff Ag Spinneret with orifice insert
US3210451A (en) * 1960-12-01 1965-10-05 Celanese Corp Spinnerettes
US3382535A (en) * 1965-04-16 1968-05-14 Western Electric Co Minimum length extrusion die
US3608041A (en) * 1964-01-09 1971-09-21 Celanese Corp Spinning process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2211946A (en) * 1938-05-12 1940-08-20 Du Pont Spinnerette
US2341555A (en) * 1939-01-05 1944-02-15 Baker & Co Inc Extrusion device
US2742667A (en) * 1951-11-08 1956-04-24 Rhodiaceta Spinnerets
US3006026A (en) * 1957-03-02 1961-10-31 Glanzstoff Ag Spinneret with orifice insert
US3210451A (en) * 1960-12-01 1965-10-05 Celanese Corp Spinnerettes
US3608041A (en) * 1964-01-09 1971-09-21 Celanese Corp Spinning process
US3382535A (en) * 1965-04-16 1968-05-14 Western Electric Co Minimum length extrusion die

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384098A (en) * 1981-01-13 1983-05-17 Phillips Petroleum Company Filamentary polypropylene and method of making
US5374447A (en) * 1987-04-20 1994-12-20 Fuisz Technologies Ltd. Method of preparing a reduced-fat meat product
US5472731A (en) * 1987-04-20 1995-12-05 Fuisz Technologies Ltd. Protein based food product
US5238696A (en) * 1987-04-20 1993-08-24 Fuisz Technologies Ltd. Method of preparing a frozen comestible
US5490993A (en) * 1987-04-20 1996-02-13 Fuisz Technologies Ltd. Method of preparing a proteinaceous food product containing a melt spun matrix and product thereof
US5503862A (en) * 1987-04-20 1996-04-02 Fuisz Technologies Ltd. Method of subjecting a protein-containing material to flash flow processing and product thereof
US5516537A (en) * 1987-04-20 1996-05-14 Fuisz Technologies Ltd. Frozen comestibles
US5286513A (en) * 1987-04-20 1994-02-15 Fuisz Technologies Ltd. Proteinaceous food product containing a melt spun oleaginous matrix
US5456932A (en) * 1987-04-20 1995-10-10 Fuisz Technologies Ltd. Method of converting a feedstock to a shearform product and product thereof
US5236734A (en) * 1987-04-20 1993-08-17 Fuisz Technologies Ltd. Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix
US5407676A (en) * 1990-12-14 1995-04-18 Fuisz Technologies Ltd. Hydrophilic form of perfluoro compounds and a method of manufacture
US5399308A (en) * 1990-12-20 1995-03-21 Woodhams; Raymond T. Process for the continuous production of high modulus articles from high molecular weight plastics
US5234652A (en) * 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
US5268110A (en) * 1991-05-17 1993-12-07 Fuisz Technologies Ltd. Oil removing method
US5624684A (en) * 1991-05-17 1997-04-29 Fuisz Technologies Ltd. Enzyme systems
US6129926A (en) * 1991-05-17 2000-10-10 Fuisz Technologies Ltd. Flash flow processing of thermoplastic polymers and products made therefrom
US5709876A (en) * 1991-10-25 1998-01-20 Fuisz Technologies Ltd. Saccharide-based matrix
US5429836A (en) * 1991-10-25 1995-07-04 Fuisz Technologies Ltd. Saccharide-based matrix
US5576042A (en) * 1991-10-25 1996-11-19 Fuisz Technologies Ltd. High intensity particulate polysaccharide based liquids
US5387431A (en) * 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US5597608A (en) * 1991-10-25 1997-01-28 Fuisz Technologies Ltd. Saccharide-based matrix incorporating maltodextrin and process for making
US5651987A (en) * 1991-12-17 1997-07-29 Fuisz Technologies Ltd. Ulcer prevention and treatment composition
US5240665A (en) * 1991-12-31 1993-08-31 Eastman Kodak Company Process of making cellulose acetate fibers from spinning solutions containing metal oxide precursor
US5427804A (en) * 1992-03-05 1995-06-27 Fuisz Technologies Ltd. Low-fat edible proteins with maltodextrins and low-saturate oils
US5654003A (en) * 1992-03-05 1997-08-05 Fuisz Technologies Ltd. Process and apparatus for making tablets and tablets made therefrom
US5501858A (en) * 1992-05-12 1996-03-26 Fuisz Technologies Ltd. Rapidly dispersable compositions containing polydextrose
US5728397A (en) * 1992-05-12 1998-03-17 Fuisz Technologies Ltd. Polydextrose product and process
US5279849A (en) * 1992-05-12 1994-01-18 Fuisz Technologies Ltd. Dispersible polydextrose, compositions containing same and method for the preparation thereof
US5518730A (en) * 1992-06-03 1996-05-21 Fuisz Technologies Ltd. Biodegradable controlled release flash flow melt-spun delivery system
US5330348A (en) * 1992-08-05 1994-07-19 E. I. Du Pont De Nemours And Company Spinneret for the production of hollow filaments
US5348758A (en) * 1992-10-20 1994-09-20 Fuisz Technologies Ltd. Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
WO1994012703A1 (en) * 1992-12-03 1994-06-09 The Dow Chemical Company Method for spinning a polybenzazole fiber
US5779946A (en) * 1993-04-19 1998-07-14 Fuisz Technologies Ltd. Method for spin processing material having temperature feedback control
US6051175A (en) * 1993-09-03 2000-04-18 Polymer Processing Research Inst., Ltd. Process for producing filament and filament assembly composed of thermotropic liquid crystal polymer
US5601076A (en) * 1993-09-10 1997-02-11 Fuisz Technologies Ltd. Spheroidal crystal sugar and method of making
US5827563A (en) * 1993-09-10 1998-10-27 Fuisz Technologies Ltd. Spheroidal crystal sugar
US5895664A (en) * 1993-09-10 1999-04-20 Fuisz Technologies Ltd. Process for forming quickly dispersing comestible unit and product therefrom
US5622719A (en) * 1993-09-10 1997-04-22 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5871781A (en) * 1993-09-10 1999-02-16 Fuisz Technologies Ltd. Apparatus for making rapidly-dissolving dosage units
US5866163A (en) * 1993-09-10 1999-02-02 Fuisz Technologies Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5851553A (en) * 1993-09-10 1998-12-22 Fuisz Technologies, Ltd. Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5518551A (en) * 1993-09-10 1996-05-21 Fuisz Technologies Ltd. Spheroidal crystal sugar and method of making
US5597416A (en) * 1993-10-07 1997-01-28 Fuisz Technologies Ltd. Method of making crystalline sugar and products resulting therefrom
US5346377A (en) * 1993-10-07 1994-09-13 Fuisz Technologies Ltd. Apparatus for flash flow processing having feed rate control
US5593502A (en) * 1993-10-07 1997-01-14 Fuisz Technologies Ltd. Method of making crystalline sugar and products resulting therefrom
US5520859A (en) * 1993-10-07 1996-05-28 Fuisz Technologies Ltd. Method for flash flow processing having feed rate control
US5853762A (en) * 1994-06-14 1998-12-29 Fuisz Technologies Ltd Delivery of controlled-release system(s)
US6020002A (en) * 1994-06-14 2000-02-01 Fuisz Technologies Ltd. Delivery of controlled-release system(s)
US5567439A (en) * 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
US5851552A (en) * 1994-06-14 1998-12-22 Fuisz Technologies, Ltd. Delivery of controlled-release system(s)
US5733577A (en) * 1994-06-14 1998-03-31 Fuisz Technologies Ltd. Delivery of controlled-release system (s)
US5445769A (en) * 1994-06-27 1995-08-29 Fuisz Technologies Ltd. Spinner head for flash flow processing
US5549917A (en) * 1994-07-01 1996-08-27 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
US5824342A (en) * 1994-07-01 1998-10-20 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
US5582855A (en) * 1994-07-01 1996-12-10 Fuisz Technologies Ltd. Flash flow formed solloid delivery systems
US5843922A (en) * 1994-07-29 1998-12-01 Fuisz Technologies Ltd. Preparation of oligosaccharides and products therefrom
US5556652A (en) * 1994-08-05 1996-09-17 Fuisz Technologies Ltd. Comestibles containing stabilized highly odorous flavor component delivery systems
US5633027A (en) * 1994-08-05 1997-05-27 Fuisz Technologies Ltd. Confectioneries containing stabilized highly odorous flavor component delivery systems
US5744180A (en) * 1994-08-05 1998-04-28 Fuisz Technologies Ltd. Comestibles containing stabilized highly odorous flavor component delivery systems
US5458823A (en) * 1994-10-28 1995-10-17 Fuisz Technologies Ltd. Method and apparatus for spinning feedstock material
US5587198A (en) * 1995-05-31 1996-12-24 Fuisz Technologies Ltd. Positive hydration method of preparing confectionery and product therefrom
US5804247A (en) * 1995-05-31 1998-09-08 Fuisz Technologies Ltd. Positive hydration method of preparing confectionary and product therefrom
WO2001089022A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
WO2001089021A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A composite polymer electrolyte, a lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods
WO2001089023A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
WO2001089020A1 (en) * 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
US20090026662A1 (en) * 2000-05-19 2009-01-29 Korea Institute Of Science And Technology Hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
US7279251B1 (en) 2000-05-19 2007-10-09 Korea Institute Of Science And Technology Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
WO2001091222A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A lithium secondary battery comprising a polymer electrolyte fabricated by a spray method and its fabrication method
WO2001091220A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A hybrid polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
WO2001091221A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A composite polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods
WO2001091219A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A lithium secondary battery comprising a porous polymer separator film fabricated by a spray method and its fabrication method
US20050258562A1 (en) * 2004-05-21 2005-11-24 3M Innovative Properties Company Lubricated flow fiber extrusion
US20070154708A1 (en) * 2004-05-21 2007-07-05 Wilson Bruce B Melt extruded fibers and methods of making the same
US7476352B2 (en) 2004-05-21 2009-01-13 3M Innovative Properties Company Lubricated flow fiber extrusion
US8481157B2 (en) 2004-05-21 2013-07-09 3M Innovative Properties Company Melt extruded fibers and methods of making the same
US20130183525A1 (en) * 2012-01-12 2013-07-18 Beijing University Of Chemical Technology Methods of Preparing Polyimide Fibers with Kidney-Shaped Cross-Sections
US8911649B2 (en) * 2012-01-12 2014-12-16 Beijing University Of Technology Methods of preparing polyimide fibers with kidney-shaped cross-sections

Also Published As

Publication number Publication date
JPS5076312A (en) 1975-06-23
CA1079015A (en) 1980-06-10

Similar Documents

Publication Publication Date Title
US3925525A (en) Spinning method
US3227794A (en) Process and apparatus for flash spinning of fibrillated plexifilamentary material
US4687610A (en) Low crystallinity polyester yarn produced at ultra high spinning speeds
US5034182A (en) Melt spinning process for polymeric filaments
US2386173A (en) Apparatus for the production of artificial filaments
US5252284A (en) Method of producing shaped cellulosic articles
US3210451A (en) Spinnerettes
US3118012A (en) Melt spinning process
US2955017A (en) Process of flowing filamentis in laminar flow surrounded by an outer area of turbulent flow
US4015924A (en) Spinning apparatus providing for essentially constant extensional strain rate
US3209402A (en) Apparatus for producing multicom-ponent filaments and yarns
US3135811A (en) Process and apparatus for uniformly cooling melt-spun filaments
US2804645A (en) Spinneret plate for melt spinning
JPH03119105A (en) Preparation of polyethylene filament
US3303530A (en) Spinnerette
US4305983A (en) Thin walled tubing formed of a melt spinnable synthetic polymer and process for the manufacturing thereof
US3341891A (en) Production of a composite filament and a spinneret assembly
US3608041A (en) Spinning process
CN1088637A (en) The preparation method of fine denier cellulose acetate fibers
GB1063286A (en) Composite filaments
US2211946A (en) Spinnerette
CN105420824A (en) Spinning assembly and spinning method thereof
US3397427A (en) Sealed vented insert spinneret
US3049755A (en) Process and apparatus for stretch spinning cuprammonium rayon
US3537135A (en) Spinning apparatus