US3925678A - Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays - Google Patents

Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays Download PDF

Info

Publication number
US3925678A
US3925678A US488076A US48807674A US3925678A US 3925678 A US3925678 A US 3925678A US 488076 A US488076 A US 488076A US 48807674 A US48807674 A US 48807674A US 3925678 A US3925678 A US 3925678A
Authority
US
United States
Prior art keywords
layer
aluminum
radiation
purity
ray fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US488076A
Inventor
Otto Eberspaecher
Herman Pfisterer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US3925678A publication Critical patent/US3925678A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • FLUORESCENCE ANALYSIS WHICH PREVENTS HARD X-RAYS BACKGROUND OF THE INVENTION 1.
  • Field of the Invention The present invention relates to layers of material for 2.
  • Description of the Prior Art In x-ray fluorescence analysis, interfering radiation often is encountered due to the radiation from the specimen holder and the results obtained are ambiguous since it is impossible to determine which radiation originated from the specimen and which radiation originated from the specimen holder.
  • the present invention provides coding specimen holders with layers so as to prevent undesired radiation during x-ray fluorescence analysis.
  • X-ray fluorescence analysis is very versatile and can be used in the analysis of substances which consist of chemical elements with order numbers of z 8. Because of the high sensitivity of this method, in addition, this method is used in quantitative determinations of low concentrations, small specimen quantities, and for. determination of mass populations in thin layers and in many other applications. Thus, highly accurate measurements must be made of the low intensities of the characteristic line radiation in these applications.
  • parasitic signals these may originate from inherent, scatter, or fluorescent radiation from components which are either located inside the x-ray tube or fall within the path of the primary beam.
  • the specimen holder which holds the specimen being examined, is particularly critical. In order to limit the contour of the primary beam between the x-ray tube and the specimen under examination, a
  • the gold-plated diaphragm is inserted and is designed to operate with the specimen holder.
  • the specimen holder will be struck by at least a part of the primary beam. This excites fluorescent radiation from the elements in the specimen holder.
  • the specimen holder is by way of example made of AlMgSi 5O may also be roughened by repeated cleaning operations and can become damaged and contaminated.
  • the relatively soft, very high-purity gold and silver layers which have Vickers hardnesses of VH 1000 N/mm are not optimum materials for the absorption of the parasitic radiation emanating from the specimen holder.
  • radiation of wide line spectrum excited from the gold and silver in this layer material will contribute to the parasitic radiation problem.
  • the invention is based upon the realization that highpreventing undesirable effects in x-ray applications. 16 pumy layers of aluminum absorb hlgh-energy x rays and electrons and the aluminum simply produces low-energy Al x-ray fluorescent radiation which is not a source of serious interference and is not dangerous.
  • the aluminum will be applied galvanically from oxygen-free aprotic media over the specimen holder or other device and the aluminum layer will then be anodically oxidized in a GX bath and for reasons of purity, an oxalic bath can be used.
  • This method of anodizing is described relative to semiconductor components in the publication entitled Chemic-Ingenieur-Technik 36, (1964), pages 616-637.
  • the thicknessof the aluminum layer should be around 200 um and that of the Eloxal or anodically oxidized layer should be around 13 pm.
  • the thickness of the layer is sufficient to fully absorb the spectrum lines of the disturbing fluorescent radiation from all elements having an order number less than 31.
  • the radiation of all elements up to gallium will be abosrbed.
  • the spectrum lines of the L spectra of all elements up to iridium will be absorbed.
  • the very long wave AlK radiation usually does not interfere with most kinds of investigations and is not a problem. It is only where investigations involving the element aluminum are being conducted that the specimen holder must be made of an aluminum-free material asfor example from sintered carbon.
  • the surface of the layers of the present invention has very low adhesive power and attracts virtually no impurities.
  • the thickness of. the layers can be very accurately controlled; and thus precision components can be constructed.
  • FIG. 1 is a sectional view illustrating a first embodiment of the invention.
  • FIG. 2 is a sectional view illustrating a second embodiment of the invention.
  • FIG. 1 is a cross-sectional view according to the invention.
  • the material 1 which might, for example, be AlMgSi 1 is utilized as a specimen holder and the x-ray fluorescence radiation from this material is to be absorbed so as to prevent contamination and spurious radiation.
  • a layer 2 of high-purity aluminum which, for example, might have a purity of better than 99.999 percent, may be applied galvanically from an oxygen-free aprotic media to a thickness of around 200 um. Then the outer surface of the aluminum layer 2 is subjected to a high-purity anodic oxidation referred to as the Eloxal process so as to produce an Eloxal layer 21.
  • the Eloxal or anodically oxidized layer may have a thickness of around 13 pm.
  • the arrows 30 represent the primary x-ray beam and the arrows 31 represent a reflected x-ray beam.
  • FIG. 2 illustrates a modification of the invention wherein before depositing the aluminum layer 2 on the material 1 there is deposited a layer 4 of nickel or iron or copper.
  • X-ray fluorescence spectrograms were recorded, first using a specimen holder of uncoated material, and second, with a specimen holder having the layer system according to the invention. In both specimen holders, high-purity aluminum was used as a dummy specimen. The net intensity was measured, in other words, the gross intensity minus the background intensity for Ka lines of Mg, Si, Cr, Mn, Fe, and Ga. In this manner the intensity I, of the parasitic signals emanating from the specimen holder were measured. Thereafter, the intensity 1,, of these lines in solid specimens of pure samples of the above elements were measured. Then the quotient 1,/I was calculated and this ratio indicates the ratio between the intensity of the parasitic radiation and the intensity of the radiation to be measured.
  • This quotient is defined in this application as A in the case of the uncoated specimen holder and is designated as B in the case of the specimen holder coated with the layer system of the invention. Then the quotient (A B) /A was calculated which is a measure of the proportion of the parasitic radiation intesity absorbed by the layer system of the invention. The following table lists these quotients for the different kinds of radiation.
  • the additional layer 4 consisting of iron, nickel, or copper are provided. These layers can be electro-deposited on the material 1 before the layer 2.
  • the layer systems of the present invention are advantageous not only for the specimen holder used for x-ray fluorescence analysis, but they can also be used for diaphragms and other components subject to the effect of a primary beam as well as in x-ray apparatus of all kinds and for electron beam equipment.
  • a layered structure for x-ray absorption formed on and covering a base member comprising a first layer of high-purity aluminum formed on said base member, and a second layer of high-purity anodic oxidized aluminum formed on said first layer.

Abstract

An absorption layer for use during x-ray fluorescence analyses which prevents hard x-ray radiation comprising coating a specimen holder with a first layer of high-purity aluminum and a second layer of high-purity anodic oxidized aluminum.

Description

States atent Eberspaecher et a].
ABSORPTION LAYER FOR USE DURING X-RAY FLUORESCENCE ANALYSIS WHICH PREVENTS HARD X-RAYS Inventors: Otto Eberspaecher; Herman Pfisterer, both of Munich, Germany Assignee: Siemens Aktiengesellsehaft, Berlin &
Munich, Germany Filed: July 12, 1974 Appl. No.: 488,076
Foreign Application Priority Data July 18, 1973 Germany 2336652 US. Cl 250/508; 250/515 Int. Cl. H01J 35/16 Field of Search 250/508, 515
[ Dec.9, 1975 [56] References Cited UNITED STATES PATENTS 3,644,736 2/l972 Kato et al. 250/508 Primary ExaminerDavis L. Willis Attorney, Agent, or FirmHill, Gross, Simpson, Van Santen, Steadman, Chiara & Simpson ABSTRACT An absorption layer for use during x-ray fluorescence analyses which prevents hard x-ray radiation comprising coating a specimen holder with a first layer of high-purity aluminum and a second layer of highpurity anodic oxidized aluminum.
6 Claims, 2 Drawing Figures US. Patent Dec. 9, 1975 Fig. l 30 Fig.2 3U
FLUORESCENCE ANALYSIS WHICH PREVENTS HARD X-RAYS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to layers of material for 2. Description of the Prior Art In x-ray fluorescence analysis, interfering radiation often is encountered due to the radiation from the specimen holder and the results obtained are ambiguous since it is impossible to determine which radiation originated from the specimen and which radiation originated from the specimen holder.
SUMMARY OF THE INVENTION The present invention provides coding specimen holders with layers so as to prevent undesired radiation during x-ray fluorescence analysis. X-ray fluorescence analysis is very versatile and can be used in the analysis of substances which consist of chemical elements with order numbers of z 8. Because of the high sensitivity of this method, in addition, this method is used in quantitative determinations of low concentrations, small specimen quantities, and for. determination of mass populations in thin layers and in many other applications. Thus, highly accurate measurements must be made of the low intensities of the characteristic line radiation in these applications.
In such measurements, the results can be inaccurate due to parasitic signals in that it is not possible to distinguish whether the measured intensity of a spectral line originates from the specimen under examination or from other sources. With regard to parasitic signals, these may originate from inherent, scatter, or fluorescent radiation from components which are either located inside the x-ray tube or fall within the path of the primary beam. The specimen holder, which holds the specimen being examined, is particularly critical. In order to limit the contour of the primary beam between the x-ray tube and the specimen under examination, a
gold-plated diaphragm is inserted and is designed to operate with the specimen holder. However, it is inevitable that the specimen holder will be struck by at least a part of the primary beam. This excites fluorescent radiation from the elements in the specimen holder. If the specimen holder is by way of example made of AlMgSi 5O may also be roughened by repeated cleaning operations and can become damaged and contaminated. For this reason, the relatively soft, very high-purity gold and silver layers, which have Vickers hardnesses of VH 1000 N/mm are not optimum materials for the absorption of the parasitic radiation emanating from the specimen holder. Also, radiation of wide line spectrum excited from the gold and silver in this layer material will contribute to the parasitic radiation problem.
It is an object of the present invention to provide an absorption layer for x-rays in which the surface layer has a Vickers hardness of VH 4000 N/mm' This is achieved by utilizing a layer of high-purity aluminum over a holder or other device and coating the first layer with a second layer of high-purity Eloxal which is anodic oxidized aluminum.
The invention is based upon the realization that highpreventing undesirable effects in x-ray applications. 16 pumy layers of aluminum absorb hlgh-energy x rays and electrons and the aluminum simply produces low-energy Al x-ray fluorescent radiation which is not a source of serious interference and is not dangerous.
In a preferred embodiment of the invention, the aluminum will be applied galvanically from oxygen-free aprotic media over the specimen holder or other device and the aluminum layer will then be anodically oxidized in a GX bath and for reasons of purity, an oxalic bath can be used. This method of anodizing is described relative to semiconductor components in the publication entitled Chemic-Ingenieur-Technik 36, (1964), pages 616-637. The thicknessof the aluminum layer should be around 200 um and that of the Eloxal or anodically oxidized layer should be around 13 pm.
It is an advantage that the thickness of the layer is sufficient to fully absorb the spectrum lines of the disturbing fluorescent radiation from all elements having an order number less than 31. Thus, in the K spectrum, the radiation of all elements up to gallium will be abosrbed. Also, the spectrum lines of the L spectra of all elements up to iridium will be absorbed. The very long wave AlK radiation usually does not interfere with most kinds of investigations and is not a problem. It is only where investigations involving the element aluminum are being conducted that the specimen holder must be made of an aluminum-free material asfor example from sintered carbon.
It has been discovered that using specimen holders coded according to the invention results in substantially improved results over analysis not using the invention in that the intensity of the background radiation is reduced and the parasitic signals disappear. It
. has also been found advantageous to use cleaning agents for cleaning the specimen holder which are free of elements in order numbers of z 8. For example, distilled water or hydro-carbons in association with ultrasonic cleaning devices have been used.
The surface of the layers of the present invention has very low adhesive power and attracts virtually no impurities.
Also, in the present invention, the thickness of. the layers can be very accurately controlled; and thus precision components can be constructed.
Other objects, features and advantages of the invention will be readily apparent from the following description of certain preferred embodiments thereof, taken in conjunction with the accompanying drawing, although variations and modifications may be effected without departing from the spirit and scope of the novel concepts of the disclosure, and in which:
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a sectional view illustrating a first embodiment of the invention; and
FIG. 2 is a sectional view illustrating a second embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view according to the invention. The material 1 which might, for example, be AlMgSi 1 is utilized as a specimen holder and the x-ray fluorescence radiation from this material is to be absorbed so as to prevent contamination and spurious radiation. A layer 2 of high-purity aluminum which, for example, might have a purity of better than 99.999 percent, may be applied galvanically from an oxygen-free aprotic media to a thickness of around 200 um. Then the outer surface of the aluminum layer 2 is subjected to a high-purity anodic oxidation referred to as the Eloxal process so as to produce an Eloxal layer 21. The Eloxal or anodically oxidized layer may have a thickness of around 13 pm. The arrows 30 represent the primary x-ray beam and the arrows 31 represent a reflected x-ray beam.
FIG. 2 illustrates a modification of the invention wherein before depositing the aluminum layer 2 on the material 1 there is deposited a layer 4 of nickel or iron or copper.
In order to measure the effectiveness of the layer system of the invention, comparative measurements were carried out utilizing the following test arrangement.
X-ray fluorescence spectrograms were recorded, first using a specimen holder of uncoated material, and second, with a specimen holder having the layer system according to the invention. In both specimen holders, high-purity aluminum was used as a dummy specimen. The net intensity was measured, in other words, the gross intensity minus the background intensity for Ka lines of Mg, Si, Cr, Mn, Fe, and Ga. In this manner the intensity I, of the parasitic signals emanating from the specimen holder were measured. Thereafter, the intensity 1,, of these lines in solid specimens of pure samples of the above elements were measured. Then the quotient 1,/I was calculated and this ratio indicates the ratio between the intensity of the parasitic radiation and the intensity of the radiation to be measured. This quotient is defined in this application as A in the case of the uncoated specimen holder and is designated as B in the case of the specimen holder coated with the layer system of the invention. Then the quotient (A B) /A was calculated which is a measure of the proportion of the parasitic radiation intesity absorbed by the layer system of the invention. The following table lists these quotients for the different kinds of radiation.
Radiation A B (A B) /A Mg K 1.00 10 7.03 Ill) 993 Si K 2.16 10 1.24 10' 42.6 Cr K 4.04 10 1.23 10" 97.0 Mn K 2.41 10' 1.99 10 99.2
Fe K 3.72 10 7.28 10 98.0 Ga K 1.38 10" 1.45 10 98.9
The figures followed by an asterisk, in particular the figure for SiKa radiation, were too low because the specimen of the pure elements cannot be manufactured free of impurities. For example, the dummy specimen of pure aluminum is not free of silicon.
Insofar as the material whose x-ray fluorescence radiation is to be absorbed consists of elements having order numbers of z 3 l the additional layer 4 consisting of iron, nickel, or copper are provided. These layers can be electro-deposited on the material 1 before the layer 2.
It is to be noted that the layer systems of the present invention are advantageous not only for the specimen holder used for x-ray fluorescence analysis, but they can also be used for diaphragms and other components subject to the effect of a primary beam as well as in x-ray apparatus of all kinds and for electron beam equipment.
Although the invention has been described with respect to preferred embodiments, it is not to be so limited as changes and modifications may be made which are within the full intended scope as defined by the appended claims.
We claim as our invention:
1. A layered structure for x-ray absorption formed on and covering a base member comprising a first layer of high-purity aluminum formed on said base member, and a second layer of high-purity anodic oxidized aluminum formed on said first layer.
2. A layered structure according to claim 1, wherein an additional layer consisting of iron, nickel, or copperis formed between said base member and said first layer of high-purity aluminum.
3. A layered structure according to claim 1, wherein said first layer of aluminum is produced by electrodeposition from an aprotic, oxygen-free media.
4. A layered structure according to claim 1, wherein a said second layer has a thickness of about 13 um.

Claims (6)

1. A LAYERED STRUCTURE FOR X-RAY ABSORPTION FORMED ON SAID COVERING A BASE MEMBER COMPRISING A FIRST LAYER OF HIGH-PURITY ALUMINUM FORMED ON SAID BASE MEMBER, AND A SECOND LAYER OF HIGH-PURITY ANODIC OXIDIZED ALUMINUM FORMED ON SAID FIRST LAYER.
2. A layered structure according to claim 1, wherein an additional layer consisting of iron, nickel, or copper is formed between said base member and said first layer of high-purity aluminum.
3. A layered structure according to claim 1, wherein said first layer of aluminum is produced by electro-deposition from an aprotic, oxygen-free media.
4. A layered structure according to claim 1, wherein said first layer of aluminum has a purity of better than 99.999%.
5. A layered structure according to claim 1, wherein said first layer has a thickness of about 200 Mu m.
6. A layered structure according to claim 1, wherein said second layer has a thickness of about 13 Mu m.
US488076A 1973-07-18 1974-07-12 Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays Expired - Lifetime US3925678A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19732336652 DE2336652A1 (en) 1973-07-18 1973-07-18 LAYER SYSTEM FOR THE ABSORPTION OF X-RAYS

Publications (1)

Publication Number Publication Date
US3925678A true US3925678A (en) 1975-12-09

Family

ID=5887354

Family Applications (1)

Application Number Title Priority Date Filing Date
US488076A Expired - Lifetime US3925678A (en) 1973-07-18 1974-07-12 Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays

Country Status (9)

Country Link
US (1) US3925678A (en)
JP (1) JPS5044882A (en)
BE (1) BE817811A (en)
DE (1) DE2336652A1 (en)
DK (1) DK385174A (en)
FR (1) FR2238218B3 (en)
IT (1) IT1017127B (en)
LU (1) LU70538A1 (en)
NL (1) NL7409479A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764945A (en) * 1984-10-05 1988-08-16 Kawasaki Steel Corp. Method of measuring layer thickness and composition of alloy plating
US4821301A (en) * 1986-02-28 1989-04-11 Duke University X-ray reflection method and apparatus for chemical analysis of thin surface layers
WO2002006792A2 (en) * 2000-07-18 2002-01-24 Uop Llc Process of parallel sample preparation
USRE37536E1 (en) 1982-11-26 2002-02-05 Uab Research Foundation Split energy level radiation detection
US20020016006A1 (en) * 2000-07-18 2002-02-07 Rune Wendelbo Process of parallel sample preparation
US6677162B1 (en) 2000-07-18 2004-01-13 Uop Llc Process of parallel sample preparation
US7341414B2 (en) * 2005-05-02 2008-03-11 Cummins Inc. Fastener and method for reducing stress failure in an engine component
US20130037717A1 (en) * 2011-08-09 2013-02-14 Ketek Gmbh Device for a Radiation Detector and Radiation Detector with the Device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644736A (en) * 1968-11-05 1972-02-22 Giken Kogyo Kk Back-scattering absorber materials for gamma-rays

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644736A (en) * 1968-11-05 1972-02-22 Giken Kogyo Kk Back-scattering absorber materials for gamma-rays

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37536E1 (en) 1982-11-26 2002-02-05 Uab Research Foundation Split energy level radiation detection
US4764945A (en) * 1984-10-05 1988-08-16 Kawasaki Steel Corp. Method of measuring layer thickness and composition of alloy plating
US4821301A (en) * 1986-02-28 1989-04-11 Duke University X-ray reflection method and apparatus for chemical analysis of thin surface layers
WO2002006792A2 (en) * 2000-07-18 2002-01-24 Uop Llc Process of parallel sample preparation
US20020016006A1 (en) * 2000-07-18 2002-02-07 Rune Wendelbo Process of parallel sample preparation
WO2002006792A3 (en) * 2000-07-18 2003-03-27 Uop Llc Process of parallel sample preparation
US6677162B1 (en) 2000-07-18 2004-01-13 Uop Llc Process of parallel sample preparation
US6806093B2 (en) 2000-07-18 2004-10-19 Uop Llc Process of parallel sample preparation
US7341414B2 (en) * 2005-05-02 2008-03-11 Cummins Inc. Fastener and method for reducing stress failure in an engine component
US20130037717A1 (en) * 2011-08-09 2013-02-14 Ketek Gmbh Device for a Radiation Detector and Radiation Detector with the Device
US8835857B2 (en) * 2011-08-09 2014-09-16 Ketek Gmbh Device for a radiation detector and radiation detector with the device

Also Published As

Publication number Publication date
LU70538A1 (en) 1974-11-28
BE817811A (en) 1974-11-18
IT1017127B (en) 1977-07-20
FR2238218B3 (en) 1977-05-06
DK385174A (en) 1975-03-10
JPS5044882A (en) 1975-04-22
NL7409479A (en) 1975-01-21
DE2336652A1 (en) 1975-01-30
FR2238218A1 (en) 1975-02-14

Similar Documents

Publication Publication Date Title
Riggs et al. Surface analysis by X-ray photoelectron spectroscopy
US3925678A (en) Absorption layer for use during x-ray fluorescence analysis which prevents hard x-rays
Cooper et al. Does magnetic Compton scattering only measure spin magnetization?
Pease et al. Accurate X-ray absorption spectra obtained from concentrated bulk samples by fluorescence detection
Fischer et al. Carbon K-edge structure of chemisorbed molecules by means of fluorescence detection
Rüttner et al. The detection of etiologic agents in interstitial pulmonary fibrosis
US2831977A (en) Low angle x-ray diffraction
US3924127A (en) Metal screens used for industrial radiography
JP2016029380A (en) Method of manufacturing radiation detection element
Srdoč et al. Generation and spectroscopy of ultrasoft X-rays by non-dispersive methods
McCutcheon Cathodic Vacuum Etching of Metals
DOWbING et al. COUNTERS FOR X;. RAY ANALYSIS
Herman et al. Target backings for charged particle induced X-ray fluorescence analysis
Boslett et al. Determination of parts per billion levels of electrodeposited metals by energy dispersive x-ray fluorescence spectrometry
Ranzetta et al. Electron-probe microanalysis of low atomic number elements
Newbury Chemical compositional mapping by microbeam analysis at the micrometer scale and finer
Fischer et al. Effect of Alloying on the Aluminum K and Nickel L X-Ray Emission Spectra in the Aluminum-Nickel Binary System
Borisyuk et al. The formation of submonolayer thorium coatings on a silicon oxide surface by electrochemical deposition
Shaw et al. K α Satellite Lines for Elements Zn (30) to Pd (46)
Yakowitz et al. Practical aspects of X-ray microanalysis
Maddigan The technique of microradiography
Trillat Metallurgical aspects of microradiography
Ohno et al. X‐ray fluorescence analysis without standards of small particles extracted from super‐alloys
US2882418A (en) Analysis of unknown substances
Kruger et al. Studies of the Nature of the Passive Film on Iron Using EXAFS