US3925783A - Radome heat shield - Google Patents

Radome heat shield Download PDF

Info

Publication number
US3925783A
US3925783A US524284A US52428474A US3925783A US 3925783 A US3925783 A US 3925783A US 524284 A US524284 A US 524284A US 52428474 A US52428474 A US 52428474A US 3925783 A US3925783 A US 3925783A
Authority
US
United States
Prior art keywords
radome
heat shield
antenna
heat
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US524284A
Inventor
Michael P Bleday
Fred R Youngren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US524284A priority Critical patent/US3925783A/en
Application granted granted Critical
Publication of US3925783A publication Critical patent/US3925783A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material

Definitions

  • the heat shield can be manipulated to [56] References Cited change the dielectric constant inprescribed incremen- UNITED STATES PATENTS tal areas which provides acceptable boresight error rates through the radome. 3,075,191 l/1963 Peay t. 343/872 3,128,466 4/1964 Brown et al. 343/705 5 Clalms, 6 Drawmg Flgures SEEKER ELECTRONICS ANTENNA U.S. Patent Dec. 9, 1975 3,925,783
  • insertion phase delay is the phase of a transmitted wave through a panel of the radome relative to the phase of the wave at the same place had the panel not been present. Variations in insertion phase delay across an antenna aperture due to the presence of a radome can result in beam deflection, changes in beam width, and gain loss. Techniques are well established for obtaining the beam deflection errors. Beam deflection away from the original boresighted wavefront is defined as boresight error. A certain amount of boresight error is normally acceptable as tolerance which occurs in tradeoffs between various components of the typical radar system.
  • radomes used for high speed applications such as supersonic speeds are also characterized by high temperatures and high heating rates. Ceramic radomes afford good thermal shock resistance at these high speeds but high temperatures prevail within the randome during flight.
  • a radome for use on high speed projectiles are subjected to the relatively high temperatures associated therewith developes high inner wall temperatures that far exceed the nominal allowable temperature of a lightweight antenna within the radome.
  • the temperature sensitive antenna and related components are insulated from the inner wall of the radome by a heat shield comprising thin layers of heat reflecting material which function as an electromagnetic window and therefore does not interfere with radio frequency (rf) transmission.
  • the thin layers of the heat shield can be manipulated to change the dielectric constant therethrough in prescribed incremental areas.
  • the areavarying dielectric constant can be used to assure acceptable boresight error rates are obtained while preventing heat damage to the antenna.
  • FIG. 1 is a simplified sectional view of a typical projectile radome with a temperature sensitive antenna protected by a layered heat shield.
  • FIGS. 2-5 are simplified diagrammatic views of typical heat shield configurations
  • FIG. 6 is an enlarged section of FIG. 3 showing the typical structure of the heat shield in detail.
  • the radome In high speed application of projectiles wherein forward components such as antenna are covered by aerodynamically sound, protective radomes, the radome is usually constructed of a ceramic or ceramic-glass structure. At supersonic speeds temperatures rapidly rise from an initial nominal value to a range which may be destructive to temperature sensitive components within the radome. As shown in FIG. I, a typical radome l0'is disposed for housing an antenna 12 and related seeker electronic circuit components 14. Radome 10 is a dielectric material such as ceramic, is transparent to r-f energy, and may have various shapes depending on design and objective parameters. For high speed application the temperature within radome 10 can rapidly build up to several hundred degrees in only a short time of flight.
  • Antenna 12 is a lightweight antenna of styrofoam faced with copper, which has a nominal maximum allowable termperature of 200F or less.
  • a heat shield 16 is disposed between antenna 12 and the inner forward wall 18 of the radome.
  • Heat shield 16 may consists of several thin layers of lightweight, heat reflective material which also provides an electromagnetic window for rf transmission.
  • thin layers 20 of heat-shield 16 may be constructed of a titanium dioxide epoxy filled paper and may be spaced apart by spacers 22.
  • the nominal shape of heat shield 16 can be planar (FIG. 2), hemispherical (FIG. 3), conical (FIG. 4), or hyperbolic (FIG. 5). Any combination thereof suitably formed for structural compliance within the system will also function as the heat shield.
  • FIG. 6 further discloses an enlarged section of FIG. 3 wherein the individual layers 20 have several arbitrarily selectable shapes allowing the heat shield to withstand the acceleration loads, vibration loads, bending loads,
  • the number of layers 20 are minimal as determined by the temperature history of the inner wall of the particular type of radome l0 and the limiting temperature of the particular antenna 12.
  • the spacing between layers 20 is Y also dependent on these two temperature factors since the shield must suppress convection currents in addition to being electrically suitable.
  • the spacing between layers 20 need not be constant.
  • the heat shield can be configured for attachments to either the radome or the support structure for antenna 12.
  • each layer 20 is essentially nonattenuating to rf microwaves. It may vary as necessary accommodating thicker or thinner patches.
  • the layers need not necessarily be homogeneous, involving density changes, material loading and/or pinholes. In prescribed incremental areas the layers can be manipulated to change their dielectric constant. For example,
  • a resin filler 30 is disposed around a portion of the inner surface of heat shield 16.
  • This areavarying dielectric constant can be used to obtain acceptablee boresight error rates by changing the beam deflection of rf energy passing therethrough.
  • the dielectric constant of a heat shield layer can be adjusted by applying patches, by varying the density or composition of an incremental area using the resin fillers 30 and by creating pinhole arrays 32 of varying number per square inch in selected layers 20 as shown in the outer layer of FIG. 2B.
  • the heat shield materials typically of titanium dioxide epoxy filled paper, is non-metallic and may be treated so as not to be detrimentally absorptive to atmospheric moisture.
  • the heat shield material is also capable of withstanding the prevailing temperatures within the radome so that any temperature induced reactions do not substantially affect rf transmissions.
  • material can be treated by pigment additions or by coatings to be reflective to heat radiation.
  • the most forward or outer layer absorbs and reflects radiant heat energy. It also absorbs heat energy from convection currents induced by the temperature differences within the radome cavity.
  • the second layer placed parallel or concentric with the outer layer, is located at a discrete distance from the outer layer to suppress convection wholly or to such an extent that heat transfer by convection is minimal. It can also be made reflective such that with both the reflection of heat from the outer layer and the suppression of convection currents, a minimal quantity of heat will be transferred from the radome inner wall to inside of the heat shield. Additional layers within the second layer can be added as considered necessary so that the components within the heat shield are kept below survivable or operable temperatures for the antenna and related temperature sensitive components.
  • Heat shield 16 also allows the antenna to be made of lightweight plastic foam or the like which is easily gimballed but is restricted for use to enviromental temperatures below 200F.
  • the heat shield allows the use of low temperature components connected to the antenna to be located adjacent the antenna in other packages. These components would ordinarily have to be protected from the radome heat by individual insulation, heat sinking or active cooling with fluids.
  • the heat shield within the radome can be used where high radome temperatures prevail and thermally sensitive radar and seeker components are used.
  • Typical systems include aircraft and missile, orbiting satallite and station shuttle craft and other higher speed derivative systems.
  • heat rejection and insulation is accomplished by coating the radar and seeker components with reflectors and insulators.
  • heat sinking is used, i.e., the component is made massive or attached to a larger mass than itself so that the heat can be shared throughout the effective mass rather than confined to only the component.
  • antenna surfaces were polished to be reflective.
  • the heat shield solves the problem of maintaining the radar operable in a high temperature environment.
  • a dielectric heat shield disposed within said radome and spaced apart from the radome inner forward surface for reflecting radiant heat energy and absorbing convection heat energy induced by temperature differences within the radome while allowing microwave energy to pass therethrough, said heat shield having plural concentric layers of spaced apart titanium dioxide epoxy filled paper configured to prevent heat from escaping the aft end of the radome.
  • said antenna is a temperature sensitive antenna disposed within said radome, said radome is ceramic, and said dielectric heat shield layers are parallel sheets of variable density paper for providing boresight error adjustment of said radar system, and said titanium dioxide epoxy filled paper being fixed around the circumference thereeof to a portion of the inner aft surface of said radome for isolating said antenna from the forward area of said radome.

Abstract

The radome heat shield relates to insulating a temperature sensitive antenna from the heat emanating from the inner wall of an airborne radome. The heat shield consists of thin layers of reflecting material that does not interfere with radio frequency transmission therethrough. The heat shield can be manipulated to change the dielectric constant in prescribed incremental areas which provides acceptable boresight error rates through the radome.

Description

United States Patent Bleday et a]. Dec. 9, 1975 RADOME HEAT SHIELD 3,384,895 5/1968 Dorne et al 343/708 3,396,400 8/1968 Kelly et al 343/872 [75] Inventors M'chael Bledayg C(mcordl Fred 3,403,403 9/1968 Howell 343/708 YwngrenfLexmgton, both of 3,747,530 7/l973 Tepper 343/872 Mass.
[73] Assignee: The United States of America as Primary Examiner-Eli Lieberman represented by the Secretary f the Attorney, Agent, or FirmNathan Edelberg; Robert P. Army, Washington, Gibson; Jack W. Voigt [22] Flled: Nov. 15, 1974 [57] ABSTRACT [21] Appl- N04 5247284 The radome heat shield relates to insulating a temperature sensitive antenna from the heat emanating from 52 US. Cl 343/705; 343/872 the inner Wall of an airborne radome- The heat Shield [51] Int. Cl. H01Q 1/42 consists of thin layers of reflecting material that does [58] Field 6: Search 343/705, 708, 872 not interfere with radio frequency transmission therethrough. The heat shield can be manipulated to [56] References Cited change the dielectric constant inprescribed incremen- UNITED STATES PATENTS tal areas which provides acceptable boresight error rates through the radome. 3,075,191 l/1963 Peay t. 343/872 3,128,466 4/1964 Brown et al. 343/705 5 Clalms, 6 Drawmg Flgures SEEKER ELECTRONICS ANTENNA U.S. Patent Dec. 9, 1975 3,925,783
SEEK ANTENNA ELE ONICS RADOME HEAT SHIELD DEDICATORY CLAUSE The invention described herein was made under a contract with the Government and may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalties thereon.
BACKGROUND OF THE INVENTION In radome design an important parameter is the insertion phase delay, which is the phase of a transmitted wave through a panel of the radome relative to the phase of the wave at the same place had the panel not been present. Variations in insertion phase delay across an antenna aperture due to the presence of a radome can result in beam deflection, changes in beam width, and gain loss. Techniques are well established for obtaining the beam deflection errors. Beam deflection away from the original boresighted wavefront is defined as boresight error. A certain amount of boresight error is normally acceptable as tolerance which occurs in tradeoffs between various components of the typical radar system. In addition to contributing to boresight error, radomes used for high speed applications such as supersonic speeds are also characterized by high temperatures and high heating rates. Ceramic radomes afford good thermal shock resistance at these high speeds but high temperatures prevail within the randome during flight.
SUMMARY OF THE INVENTION A radome for use on high speed projectiles are subjected to the relatively high temperatures associated therewith developes high inner wall temperatures that far exceed the nominal allowable temperature of a lightweight antenna within the radome. The temperature sensitive antenna and related components are insulated from the inner wall of the radome by a heat shield comprising thin layers of heat reflecting material which function as an electromagnetic window and therefore does not interfere with radio frequency (rf) transmission. The thin layers of the heat shield can be manipulated to change the dielectric constant therethrough in prescribed incremental areas. The areavarying dielectric constant can be used to assure acceptable boresight error rates are obtained while preventing heat damage to the antenna.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified sectional view of a typical projectile radome with a temperature sensitive antenna protected by a layered heat shield.
FIGS. 2-5 are simplified diagrammatic views of typical heat shield configurations,
FIG. 6 is an enlarged section of FIG. 3 showing the typical structure of the heat shield in detail.
DESCRIPTION OF THE PREFERRED EMBODIMENT In high speed application of projectiles wherein forward components such as antenna are covered by aerodynamically sound, protective radomes, the radome is usually constructed of a ceramic or ceramic-glass structure. At supersonic speeds temperatures rapidly rise from an initial nominal value to a range which may be destructive to temperature sensitive components within the radome. As shown in FIG. I, a typical radome l0'is disposed for housing an antenna 12 and related seeker electronic circuit components 14. Radome 10 is a dielectric material such as ceramic, is transparent to r-f energy, and may have various shapes depending on design and objective parameters. For high speed application the temperature within radome 10 can rapidly build up to several hundred degrees in only a short time of flight.
Antenna 12 is a lightweight antenna of styrofoam faced with copper, which has a nominal maximum allowable termperature of 200F or less. To prevent the high temperatures which emanate from the inner wall of the radome from destroying the temperature sensitive antenna, a heat shield 16 is disposed between antenna 12 and the inner forward wall 18 of the radome. Heat shield 16 may consists of several thin layers of lightweight, heat reflective material which also provides an electromagnetic window for rf transmission. Typically, thin layers 20 of heat-shield 16 may be constructed of a titanium dioxide epoxy filled paper and may be spaced apart by spacers 22.
As shown in FIGS. 2-5, the nominal shape of heat shield 16 can be planar (FIG. 2), hemispherical (FIG. 3), conical (FIG. 4), or hyperbolic (FIG. 5). Any combination thereof suitably formed for structural compliance within the system will also function as the heat shield.
FIG. 6 further discloses an enlarged section of FIG. 3 wherein the individual layers 20 have several arbitrarily selectable shapes allowing the heat shield to withstand the acceleration loads, vibration loads, bending loads,
or other forces which may influence the structure. The number of layers 20 are minimal as determined by the temperature history of the inner wall of the particular type of radome l0 and the limiting temperature of the particular antenna 12. The spacing between layers 20 is Y also dependent on these two temperature factors since the shield must suppress convection currents in addition to being electrically suitable. The spacing between layers 20 need not be constant. The heat shield can be configured for attachments to either the radome or the support structure for antenna 12. v a
The thickness of each layer 20 is essentially nonattenuating to rf microwaves. It may vary as necessary accommodating thicker or thinner patches. The layers need not necessarily be homogeneous, involving density changes, material loading and/or pinholes. In prescribed incremental areas the layers can be manipulated to change their dielectric constant. For example,
I in FIG. 4 a resin filler 30 is disposed around a portion of the inner surface of heat shield 16. This areavarying dielectric constant can be used to obtain acceptablee boresight error rates by changing the beam deflection of rf energy passing therethrough. The dielectric constant of a heat shield layer can be adjusted by applying patches, by varying the density or composition of an incremental area using the resin fillers 30 and by creating pinhole arrays 32 of varying number per square inch in selected layers 20 as shown in the outer layer of FIG. 2B.
The heat shield materials, typically of titanium dioxide epoxy filled paper, is non-metallic and may be treated so as not to be detrimentally absorptive to atmospheric moisture. The heat shield material is also capable of withstanding the prevailing temperatures within the radome so that any temperature induced reactions do not substantially affect rf transmissions. The
material can be treated by pigment additions or by coatings to be reflective to heat radiation.
In operation as a heat shield, the most forward or outer layer absorbs and reflects radiant heat energy. It also absorbs heat energy from convection currents induced by the temperature differences within the radome cavity. The second layer 20, placed parallel or concentric with the outer layer, is located at a discrete distance from the outer layer to suppress convection wholly or to such an extent that heat transfer by convection is minimal. It can also be made reflective such that with both the reflection of heat from the outer layer and the suppression of convection currents, a minimal quantity of heat will be transferred from the radome inner wall to inside of the heat shield. Additional layers within the second layer can be added as considered necessary so that the components within the heat shield are kept below survivable or operable temperatures for the antenna and related temperature sensitive components.
An advantage of the heat shield is that it allows the radome designer a surface onto which dielectric adjustments may be made to compensate for the radome boresight errors and boresight error slopes. Hence, phase tuning and/or fine tuning of the radome acting as an electromagnetic window can be accomplished for the radome/antenna interaction by adjustments in the heat shield. Heat shield 16 also allows the antenna to be made of lightweight plastic foam or the like which is easily gimballed but is restricted for use to enviromental temperatures below 200F. The heat shield allows the use of low temperature components connected to the antenna to be located adjacent the antenna in other packages. These components would ordinarily have to be protected from the radome heat by individual insulation, heat sinking or active cooling with fluids.
The heat shield within the radome can be used where high radome temperatures prevail and thermally sensitive radar and seeker components are used. Typical systems include aircraft and missile, orbiting satallite and station shuttle craft and other higher speed derivative systems.
In established missiles, heat rejection and insulation is accomplished by coating the radar and seeker components with reflectors and insulators. Also, heat sinking is used, i.e., the component is made massive or attached to a larger mass than itself so that the heat can be shared throughout the effective mass rather than confined to only the component. Hence, antenna surfaces were polished to be reflective. Thus, the introduction of lightweight temperature sensitive antennas has reduced the space and weight requirements but has also reduced the thermal damage threshold. The heat shield solves the problem of maintaining the radar operable in a high temperature environment.
Although a particular embodiment and form of this invention has been illustrated, it is apparent that various modification and embodiments of the invention may be made by those skilled in the art without departing from the scope and spirit of the foregoing disclosure. While the inventive antenna heat shield was designed primarily for use on high speed projectiles the heat shield can be used otherwise than has been indicated. For example, in ground radomes subjected to heating from nuclear thermal pulses the heat shield will protect the antenna and related equipment. Accordingly, the scope of the invention should be limited only by the claims appended hereto.
We claim:
1. In a radar system wherein microwave energy is transmitted from an antenna through a radome, the inprovement of an electromagnetic window comprising: a dielectric heat shield disposed within said radome and spaced apart from the radome inner forward surface for reflecting radiant heat energy and absorbing convection heat energy induced by temperature differences within the radome while allowing microwave energy to pass therethrough, said heat shield having plural concentric layers of spaced apart titanium dioxide epoxy filled paper configured to prevent heat from escaping the aft end of the radome.
2. The electromagnetic window as set forth in claim 1 wherein said paper layers are inhomogeneous, thereby providing a non-uniform dielectric constant for affecting radome boresight error.
3. The electromagnetic window as set forth in claim 2 wherein said paper layers have pinhole arrays discriminately formed therein as a varied quantity per unit area for providing a variable dielectric constant within said shield.
4. The electromagnetic window as set forth in claim 3 and further comprising a resin filler fixedly attached to a portion of at least one of said plural paper layers for varying the density of an incremental area of said shield for changing the dielectric constant.
5. The electromagnetic window as set forth in claim 1 wherein said antenna is a temperature sensitive antenna disposed within said radome, said radome is ceramic, and said dielectric heat shield layers are parallel sheets of variable density paper for providing boresight error adjustment of said radar system, and said titanium dioxide epoxy filled paper being fixed around the circumference thereeof to a portion of the inner aft surface of said radome for isolating said antenna from the forward area of said radome.

Claims (5)

1. IN A RADAR SYSTEM WHEREIN MICROWAVE ENERGY IS TRANSMITTED FROM AN ANTENNA THROUGH A RADOME, THE INPROVEMENT OF AN ELECTROMAGNETIC WINDOW COMPRISING; A DIELECTRIC HEAT SHIELD DISPOSED WITHIN SAID RADOME AND SPACED APART FROM THE RADOME INNER FORMWARD SURFACE FOR REFLECTING RADIANT HEAT ENERGY AND ABSORBING CONVECTION HEAT ENERGY INDUCED BY TEMPERATURE DIFFERENCES WITHIN THE RADOME WHILE ALLOWING MICROWAVE ENERGY TO PASS THERETHROUGH, SAID HEAT SHIELD HAVING PLURAL CONCENTRIC LAYERS OF SPACED APART TITANIUM DIOXIDE EPOXY FILLED PAPER CONFIGURED TO PREVENT HEAT FROM ESCAPING THE AF END OF THE RADOME.
2. The electromagnetic window as set forth in claim 1 wherein said paper layers are inhomogeneous, thereby providing a non-uniform dielectric constant for affecting radome boresight error.
3. The electromagnetic wiNdow as set forth in claim 2 wherein said paper layers have pinhole arrays discriminately formed therein as a varied quantity per unit area for providing a variable dielectric constant within said shield.
4. The electromagnetic window as set forth in claim 3 and further comprising a resin filler fixedly attached to a portion of at least one of said plural paper layers for varying the density of an incremental area of said shield for changing the dielectric constant.
5. The electromagnetic window as set forth in claim 1 wherein said antenna is a temperature sensitive antenna disposed within said radome, said radome is ceramic, and said dielectric heat shield layers are parallel sheets of variable density paper for providing boresight error adjustment of said radar system, and said titanium dioxide epoxy filled paper being fixed around the circumference thereeof to a portion of the inner aft surface of said radome for isolating said antenna from the forward area of said radome.
US524284A 1974-11-15 1974-11-15 Radome heat shield Expired - Lifetime US3925783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US524284A US3925783A (en) 1974-11-15 1974-11-15 Radome heat shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US524284A US3925783A (en) 1974-11-15 1974-11-15 Radome heat shield

Publications (1)

Publication Number Publication Date
US3925783A true US3925783A (en) 1975-12-09

Family

ID=24088565

Family Applications (1)

Application Number Title Priority Date Filing Date
US524284A Expired - Lifetime US3925783A (en) 1974-11-15 1974-11-15 Radome heat shield

Country Status (1)

Country Link
US (1) US3925783A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691616A (en) * 1985-01-25 1987-09-08 U.S. Philips Corporation Arrangement for fire control
US5455594A (en) * 1992-07-16 1995-10-03 Conductus, Inc. Internal thermal isolation layer for array antenna
US5457471A (en) * 1984-09-10 1995-10-10 Hughes Missile Systems Company Adaptively ablatable radome
EP0735607A1 (en) 1995-03-28 1996-10-02 Loral Vought Systems Corporation Radome with secondary heat shield
EP0977305A3 (en) * 1998-07-28 2002-02-13 BODENSEEWERK GERÄTETECHNIK GmbH Electromagnetic transparent compound window for target tracking supersonic and hypersonic missiles
KR20030022184A (en) * 2003-02-06 2003-03-15 (주)지엔씨소프트 Automatic azimuthal tracking system equipped with constant temperature
US20060022088A1 (en) * 2003-12-19 2006-02-02 Francis Dazet Aircraft nose with shield
US20060208131A1 (en) * 2004-11-05 2006-09-21 Diehl Bgt Defence Gmbh & Co., Kg Nose cover
US20070164152A1 (en) * 2006-01-19 2007-07-19 The Boeing Company Deformable forward pressure bulkhead for an aircraft
US20100206523A1 (en) * 2008-07-30 2010-08-19 Raytheon Company Internal cooling system for a radome
US20100264252A1 (en) * 2009-04-21 2010-10-21 Raytheon Company Cold shield apparatus and methods
WO2010117474A3 (en) * 2009-04-10 2010-12-23 Alliant Techsystems Inc. Radomes, aircraft and spacecraft including such radomes, and methods of forming radomes
US20120256040A1 (en) * 2011-04-07 2012-10-11 Raytheon Company Optical assembly including a heat shield to axially restrain an energy collection system, and method
US20140159949A1 (en) * 2012-12-10 2014-06-12 Airbus Operations (Sas) Aircraft comprising an onboard weather radar antenna provided with inclined panels
US8975564B2 (en) * 2011-04-04 2015-03-10 Sener Grupo De Ingenieria, S.A. Aeroheating of sensor protected by integrating device seeker (Aspids)
WO2015084207A1 (en) * 2013-12-05 2015-06-11 Открытое акционерное общество "Лантан" Radio-transparent armor
US20170045344A1 (en) * 2015-08-14 2017-02-16 Raytheon Company Metallic nosecone with unitary assembly
CN106921031A (en) * 2017-04-21 2017-07-04 中国电子科技集团公司第五十四研究所 A kind of airborne blade antenna cover and its accurate manufacture process
US11217872B2 (en) 2020-02-20 2022-01-04 Raytheon Company RF sensor heat shield
WO2023274506A1 (en) * 2021-06-29 2023-01-05 Huawei Technologies Co., Ltd. Antenna arrangement and base station comprising such antenna arrangement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075191A (en) * 1961-08-21 1963-01-22 Paul W Peay Peripheral support for revolving radome
US3128466A (en) * 1953-09-04 1964-04-07 Goodyear Aerospace Corp Radome boresight error compensator
US3384895A (en) * 1966-01-19 1968-05-21 James E. Webb Nose cone mounted heat-resistant antenna
US3396400A (en) * 1965-03-30 1968-08-06 Goodyear Aerospace Corp Radar transparent covering
US3403403A (en) * 1966-03-08 1968-09-24 Army Usa Antenna filter window
US3747530A (en) * 1966-10-26 1973-07-24 Us Navy Window protector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128466A (en) * 1953-09-04 1964-04-07 Goodyear Aerospace Corp Radome boresight error compensator
US3075191A (en) * 1961-08-21 1963-01-22 Paul W Peay Peripheral support for revolving radome
US3396400A (en) * 1965-03-30 1968-08-06 Goodyear Aerospace Corp Radar transparent covering
US3384895A (en) * 1966-01-19 1968-05-21 James E. Webb Nose cone mounted heat-resistant antenna
US3403403A (en) * 1966-03-08 1968-09-24 Army Usa Antenna filter window
US3747530A (en) * 1966-10-26 1973-07-24 Us Navy Window protector

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457471A (en) * 1984-09-10 1995-10-10 Hughes Missile Systems Company Adaptively ablatable radome
US4691616A (en) * 1985-01-25 1987-09-08 U.S. Philips Corporation Arrangement for fire control
US5455594A (en) * 1992-07-16 1995-10-03 Conductus, Inc. Internal thermal isolation layer for array antenna
EP0735607A1 (en) 1995-03-28 1996-10-02 Loral Vought Systems Corporation Radome with secondary heat shield
US5691736A (en) * 1995-03-28 1997-11-25 Loral Vought Systems Corporation Radome with secondary heat shield
EP0977305A3 (en) * 1998-07-28 2002-02-13 BODENSEEWERK GERÄTETECHNIK GmbH Electromagnetic transparent compound window for target tracking supersonic and hypersonic missiles
KR20030022184A (en) * 2003-02-06 2003-03-15 (주)지엔씨소프트 Automatic azimuthal tracking system equipped with constant temperature
US7384015B2 (en) * 2003-12-19 2008-06-10 Airbus France Sa Aircraft nose with shield
US20060022088A1 (en) * 2003-12-19 2006-02-02 Francis Dazet Aircraft nose with shield
US20060208131A1 (en) * 2004-11-05 2006-09-21 Diehl Bgt Defence Gmbh & Co., Kg Nose cover
US7423245B2 (en) * 2004-11-05 2008-09-09 Diehl Bgt Defence Gmbh & Co., Kg Nose cover
US20070164159A1 (en) * 2006-01-19 2007-07-19 Koch William J Compliant crown panel for an aircraft
US20070164152A1 (en) * 2006-01-19 2007-07-19 The Boeing Company Deformable forward pressure bulkhead for an aircraft
US7766277B2 (en) * 2006-01-19 2010-08-03 The Boeing Company Deformable forward pressure bulkhead for an aircraft
US20110101164A1 (en) * 2006-01-19 2011-05-05 The Boeing Company Compliant crown panel for an aircraft
US8434716B2 (en) 2006-01-19 2013-05-07 The Boeing Company Compliant crown panel for an aircraft
US8398021B2 (en) 2006-01-19 2013-03-19 The Boeing Company Compliant crown panel for an aircraft
US8698691B2 (en) 2008-07-30 2014-04-15 Ratheon Company Internal cooling system for a radome
US20100206523A1 (en) * 2008-07-30 2010-08-19 Raytheon Company Internal cooling system for a radome
WO2010117474A3 (en) * 2009-04-10 2010-12-23 Alliant Techsystems Inc. Radomes, aircraft and spacecraft including such radomes, and methods of forming radomes
US8130167B2 (en) 2009-04-10 2012-03-06 Coi Ceramics, Inc. Radomes, aircraft and spacecraft including such radomes, and methods of forming radomes
US20100264252A1 (en) * 2009-04-21 2010-10-21 Raytheon Company Cold shield apparatus and methods
US8692172B2 (en) * 2009-04-21 2014-04-08 Raytheon Company Cold shield apparatus and methods
US8975564B2 (en) * 2011-04-04 2015-03-10 Sener Grupo De Ingenieria, S.A. Aeroheating of sensor protected by integrating device seeker (Aspids)
US8658955B2 (en) * 2011-04-07 2014-02-25 Raytheon Company Optical assembly including a heat shield to axially restrain an energy collection system, and method
US20120256040A1 (en) * 2011-04-07 2012-10-11 Raytheon Company Optical assembly including a heat shield to axially restrain an energy collection system, and method
US20140159949A1 (en) * 2012-12-10 2014-06-12 Airbus Operations (Sas) Aircraft comprising an onboard weather radar antenna provided with inclined panels
US9213097B2 (en) * 2012-12-10 2015-12-15 Airbus Operations Sas Aircraft comprising an onboard weather radar antenna provided with inclined panels
WO2015084207A1 (en) * 2013-12-05 2015-06-11 Открытое акционерное общество "Лантан" Radio-transparent armor
US20170045344A1 (en) * 2015-08-14 2017-02-16 Raytheon Company Metallic nosecone with unitary assembly
US9835425B2 (en) * 2015-08-14 2017-12-05 Raytheon Company Metallic nosecone with unitary assembly
CN106921031A (en) * 2017-04-21 2017-07-04 中国电子科技集团公司第五十四研究所 A kind of airborne blade antenna cover and its accurate manufacture process
CN106921031B (en) * 2017-04-21 2019-12-03 中国电子科技集团公司第五十四研究所 A kind of airborne blade antenna cover and its accurate manufacture process
US11217872B2 (en) 2020-02-20 2022-01-04 Raytheon Company RF sensor heat shield
WO2023274506A1 (en) * 2021-06-29 2023-01-05 Huawei Technologies Co., Ltd. Antenna arrangement and base station comprising such antenna arrangement

Similar Documents

Publication Publication Date Title
US3925783A (en) Radome heat shield
US3755815A (en) Phased array fed lens antenna
US5273815A (en) Thermal control and electrostatic discharge laminate
US5457471A (en) Adaptively ablatable radome
US4570166A (en) RF-Transparent shield structures
US7212147B2 (en) Method of agile reduction of radar cross section using electromagnetic channelization
EP0539951B1 (en) Spacecraft protective blanket
US20180053994A1 (en) Electronically Compensated Radome Using Frequency Selective Surface Compensation
Crone et al. Design and performance of airborne radomes: A review
Zhou et al. Dual-band A-sandwich radome design for airborne applications
US11726169B1 (en) System for augmenting 360-degree aspect monostatic radar cross section of an aircraft
EP3619041B1 (en) Aircraft radomes with broadband transparency
Tahseen et al. Design of FSS‐antenna‐radome system for airborne and ground applications
US3798652A (en) Pitot tube dielectric antenna system
US4947174A (en) Vehicle shield
EP0742095A2 (en) Composite material structure able to absorb and dissipate incident electromagnetic radiation power, in particular for air, water and land craft and for fixed ground installations
GB2251339A (en) Antenna arrangement
US3975737A (en) Radome-antenna structure
US7982653B1 (en) Radar disruption device
US3762666A (en) Hypervelocity missile design to accomodate seekers
Sripho et al. Comparison of antenna for DTI rocket telemetry system
CA2632220C (en) Method of agile reduction of radar cross section using electromagnetic channelization
US4189731A (en) Radome with tilted dielectric strips
RU2789319C1 (en) Antenna heat-shielding multilayer insert
GB2194391A (en) Passive radar target