US4196232A - Method of chemically vapor-depositing a low-stress glass layer - Google Patents

Method of chemically vapor-depositing a low-stress glass layer Download PDF

Info

Publication number
US4196232A
US4196232A US05/642,141 US64214175A US4196232A US 4196232 A US4196232 A US 4196232A US 64214175 A US64214175 A US 64214175A US 4196232 A US4196232 A US 4196232A
Authority
US
United States
Prior art keywords
water vapor
silane
atmosphere
recited
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/642,141
Inventor
George L. Schnable
Albert W. Fisher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US05/642,141 priority Critical patent/US4196232A/en
Priority to FR7623845A priority patent/FR2355924A1/en
Priority to SE7608792A priority patent/SE7608792L/en
Priority to IT26770/76A priority patent/IT1064910B/en
Priority to DE2641387A priority patent/DE2641387C3/en
Priority to JP51111684A priority patent/JPS5276937A/en
Priority to GB38422/76A priority patent/GB1550215A/en
Application granted granted Critical
Publication of US4196232A publication Critical patent/US4196232A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon

Definitions

  • This invention relates to an improved method of chemically vapor-depositing a glass layer onto a substrate comprising heating the substrate in an atmosphere including silane, oxygen, and an inert carrier gas, to a temperature such that the silane is oxidized to form silicon dioxide which is deposited as a layer onto the substrate.
  • Glass layers are widely used in the fabrication of semiconductor integrated circuit devices for many different purposes such as, for example, masking operations, diffusion sources, insulators, scratch protection of underlying material, device passivation, and gettering.
  • Such glass layers include both silicon dioxide (SiO 2 ) layers and doped silicon dioxide layers, such as, for example, borosilicate glass layers (layers containing boron trioxide, B 2 O 3 ) and phosphosilicate glass layers (layers containing phosphorous pentoxide, P 2 O 5 ).
  • a typical method for chemically vapor-depositing a silicon dioxide layer onto a substrate comprises heating the substrate in an atmosphere including silane (SiH 4 ), oxygen, an inert carrier gas, and a hydride or alkyl of a dopant if a doped silicon dioxide layer is desired, to a temperature such that the silane is oxidized to form silicone dioxide which is deposited as a layer onto the substrate.
  • silane SiH 4
  • oxygen oxygen
  • an inert carrier gas oxygen
  • a hydride or alkyl of a dopant if a doped silicon dioxide layer is desired to a temperature such that the silane is oxidized to form silicone dioxide which is deposited as a layer onto the substrate.
  • Such glass layers are generally in tensile stress.
  • cracks and pin holes frequently form in such glass layers when these devices are heated.
  • silicon dioxide layers are typically used in integrated circuit devices as insulating layers between multilevel aluminum interconnections. Upon heating such silicon dioxide layers beyond their deposition temperature such as, for example, beyond 450° C., the tensile stress in such layers becomes larger due to the aluminum expanding more than the silicon dioxide, and numerous cracks are generated in such layers. These cracks may cause the multilevel aluminum interconnections to short, which results in the failure of such devices.
  • a low-stress glass layer is deposited onto a heated substrate from the oxidation of gaseous silane by intentionally adding water vapor to the atmosphere in a chemical vapor deposition (CVD) reaction chamber, in order to increase the water vapor content of the atmosphere substantially above that normally present therein resulting from the oxidation of the silane.
  • CVD chemical vapor deposition
  • This is accomplished preferably by passing an inert carrier gas such as, in the present example, nitrogen (N 2 ) through a bubbler containing water, in order to saturate the nitrogen with water vapor at room temperature.
  • the nitrogen saturated with water vapor then passes from the bubbler through a conduit and ultimately into the CVD reaction chamber.
  • the water vapor content may be increased by also passing oxygen through a bubbler in a similar manner.
  • the low-stress glass layer is deposited onto the heated substrate by the oxidation of the gaseous silane in the presence of oxygen according to the following reaction:
  • a heating circuit is first actuated to bring the CVD system up to the desired deposition temperature which, in the present example, is 450° C.
  • a regulating assembly which delivers the various gases into the CVD reaction chamber is then turned on so as to deliver oxygen and nitrogen saturated with water vapor to the interior of the chamber.
  • the substrate which comprises, in the present example, a 0.0055 inch (0.14 mm) thick silicon wafer having a (111) plane orientation, is placed on a holder within the CVD chamber and allowed to heat up to the 450° C. deposition temperature.
  • the silane source comprises ten percent silicon tetrahydride (SiH 4 ) by volume in argon.
  • a layer of silicon dioxide, having a thickness of approximately 10,000 A in the present example, is subsequently deposited onto the substrate as the silane is oxidized by the oxygen.
  • the flow rates of the various constituents at the deposition temperature will control the rate at which the silicon dioxide layer is deposited.
  • flow rates of 6000 cubic centimeters per minute of nitrogen saturated with water vapor at 25° C., 687 cubic centimeters per minute of oxygen, and 233 cubic centimeters per minute of ten percent SiH 4 in argon are used. Under these flow conditions, the water vapor content in mole percent of the atmosphere is increased by a factor of about 9.2 times, and a deposition rate of about 1000 A per minute is obtained.
  • Example 1 In order to provide comparative data to show that tensile stress is lowered by depositing silicon dioxide layers in a CVD reaction chamber wherein the water vapor content of the atmosphere therein is increased substantially above that normally present from the oxidation of the silane, the chemical vapor-deposition method of Example 1 is repeated except that no additional water vapor is added to the atmosphere. Using the same flow rates, no appreciable change in the deposition rate from that of Example 1 is observed.
  • Example 2 The chemical vapor-deposition method of Example 1 is followed except that the flow rate of the ten percent silane in argon is reduced to 94 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 14.5 times that normally present from the oxidation of the silane.
  • the deposition rate in this example is reduced to about 350 A per minute.
  • Example 2 In order to provide comparative data, the chemical vapor deposition method of Example 2 is repeated except that no additional water vapor is added to the atmosphere. Using the same flow rates, no appreciable change in the deposition rate from that of Example 2 is observed.
  • Example 1 The CVD method of Example 1 is followed except that the deposition temperature is reduced to 350° C. and the flow rate of the ten percent silane in argon is increased to 425 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 4.15 times that normally present from the oxidation of the silane and the deposition rate is increased to about 1750 A per minute.
  • Example 3 In order to provide comparative data, the CVD method of Example 3 is repeated except that no additional water vapor is added to the atmosphere.
  • Example 3 The CVD method of Example 3 is followed except that the flow rate of the ten percent silane in argon is reduced to 233 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 6.7 times that normally present from the oxidation of the silane, and the deposition rate is reduced to about 500 A per minute.
  • Example 4 In order to provide comparative data, the CVD method of Example 4 is repeated except that no additional water vapor is added to the atmosphere.
  • Table I shows that the tensile stress in the deposited layers of silicon dioxide is reduced by increasing the water vapor content of the atmosphere in the CVD reaction chamber. Although the stress in such layers is reduced by also decreasing the deposition rate, Table I shows that at an average deposition rate of about 1000 A per minute, the tensile stress in silicon dioxide layers deposited at about 450° C. and having a thickness of about 10,000 A is reduced from 2.8 ⁇ 10 9 dynes/cm 2 to 2.4 ⁇ 10 9 dynes/cm 2 by increasing the water vapor content in mole percent of the atmosphere by a factor of about 9.2 times that normally present from the oxidation of the silane.
  • the tensile stress is reduced from 2.7 ⁇ 10 9 dynes/cm 2 to 1.7 ⁇ 10 9 dynes/cm 2 by increasing the water vapor content by a factor of about 14.5 times.
  • a deposition temperature of 450° C. is acceptable where an aluminum metallization system is used
  • a deposition temperature of about 350° C. is generally utilized since the gold will alloy with the silicon at the Au-Si eutectic temperature of about 370° C.
  • Table I shows that, at an average deposition rate of about 1750 A per minute, the tensile stress in the deposited silicon dioxide layers is reduced from 3.2 ⁇ 10 9 dynes/cm 2 to 2.8 ⁇ 10 9 dynes/cm 2 by increasing the water vapor content in mole percent of the atmosphere by a factor of about 4.15 times that normally present from the oxidation of the silane.
  • the tensile stress is reduced from 2.5 ⁇ 10 9 dynes/cm 2 to 2.2 ⁇ 10 9 dynes/cm 2 by increasing the water vapor content by a factor of about 6.7 times that normally present from the assumed fifty percent oxidation of the silane.
  • glass layers are deposited upon a substrate containing a 1 micrometer-thick aluminum test pattern.
  • An aluminum test pattern which comprises a patterned aluminum layer disposed on a thermally oxidized silicon wafer, is used since oxide layers chemically vapor-deposited over aluminum are very susceptible to cracking.
  • Example 2 The chemical vapor-deposition method of Example 1 is followed except that the silicon dioxide layer is deposited onto a 1 micrometer-thick aluminum test pattern disposed on a thermally oxidized silicon wafer.
  • Example 5 In order to provide comparative data, the chemical vapor-deposition method of Example 5 is repeated except that no additional water vapor is added to the atmosphere.
  • Example 2 The chemical vapor-deposition method of Example 2 is followed except that the silicon dioxide layer is deposited onto a 1 micrometer-thick layer of evaporated aluminum continuously disposed on a thermally oxidized silicon wafer.
  • Example 5 The chemical vapor-deposition method of Example 5 is repeated except that a 1 micrometer-thick phosphosilicate glass layer is deposited onto the aluminum test pattern by substituting, for the 10 percent silane source, a gaseous mixture of 3 percent silicon tetrahydride (SiH 4 ) and 0.75 percent phosphine (PH 3 ) by volume in argon, the flow rate thereof being increased to 725 cubic centimeters per minute.
  • SiH 4 silicon tetrahydride
  • PH 3 phosphine
  • Example 7 In order to provide comparative date, the chemical vapor-deposition method of Example 7 is repeated except that no additional water vapor is added to the atmosphere.
  • the samples are etched in a hot (about 55° C.) aluminum etch for approximately ten minutes in order to reveal cracks in the deposited glass layers.
  • the etching composition used in the present example consisted of 10 volumes of 85 percent concentrated H 3 PO 4 , 1 volume of concentrated 70 percent HNO 3 , and 2.5 volumes of distilled water. Any cracks or pinholes in the overlying glass layers will allow the aluminum etch to penetrate to the aluminum and chemically remove it. A subsequent microscopic examination reveals where any cracks are located. The results of such visual examination of the aluminum samples are shown in Table II.
  • the silicon dioxide sample deposited at about 350 A per minute in an atmosphere having the water vapor content increased by a factor of about 14.5 times was reheated to 450° C. for 0.5 hour in nitrogen, cooled, and re-etched; microscope examination of this sample showed no cracks.
  • the phosphosilicate glass samples were reheated to 525° C. for 10 minutes, cooled, and re-etched. Some cracks did appear in the phosphosilicate glass layer deposited without any increase in the water vapor content, while no cracks were observed on the glass sample deposited in an atmosphere having the water vapor content increased by a factor of about 9.2 times.
  • Infrared absorption spectroscopy of silicon dioxide and phosphosilicate glass layers chemically vapor-deposited in the presence of additional water vapor has shown no larger quantitites of included water in the deposited layer structure than is normally observed under the so-called “dry” (no additional water vapor present) conditions.
  • Compositional analysis of the phosphosilicate glass layers has shown that the phosphorus content is not markedly affected under the "wet" deposition conditions.
  • a further advantage is obtained in the present invention from the step of adding water vapor to the atmosphere inside the CVD reaction chamber.
  • the nitrogen, or other carrier gas, which is saturated with water vapor is introduced into the CVD reaction chamber prior to starting the flow of silane (SiH 4 ) into the chamber.
  • silane SiH 4
  • the initial deposition of the glass layer occurs in an atmosphere containing approximately the steady-state level of water vapor rather than in an atmosphere containing a lesser degree of water vapor.
  • the deposition surface of the substrate is exposed to the water vapor prior to the start of the actual deposition process.
  • the surface of the substrate which may be silicon dioxide, becomes partially hydrated, by the conversion of oxygen bridges on the surface to silanol groups. Then, after the silane flow is started, the initially-deposited glass layer also contains more OH groups because of the higher moisture content in the ambient atmosphere. Consequently, the potential for molecular arrangements and for the formation of bridging oxygen bonds between the substrate oxide and the deposited glass layer is significantly enhanced, and the adhesion of the glass layer to the substrate is thereby improved.
  • the present invention provides a novel method of chemically vapor-depositing glass layers which, as-deposited, have relatively low intrinsic tensile stress. Such low-stress glass layers would be much less susceptible to the formation of cracks, and any further densification treatment would generally not be necessary.
  • the use of such chemically vapor-deposited glass layers in the manufacture of semiconductor devices should result in higher yields and greater reliability, especially where the glass layers are used as an insulator or passivating glass, since glass cracking is a major cause of device degradation and failure.

Abstract

A method of chemically vapor-depositing a low-stress glass layer onto a substrate which is heated in an atmosphere including silane, oxygen, and an inert carrier gas, comprises the step of adding water vapor to the atmosphere to increase the water vapor content of the atmosphere substantially above that normally present therein from the oxidation of the silane.

Description

The Government has rights in this invention pursuant to Contract No. F3365-74-C-5146 awarded by the Department of the Air Force.
This invention relates to an improved method of chemically vapor-depositing a glass layer onto a substrate comprising heating the substrate in an atmosphere including silane, oxygen, and an inert carrier gas, to a temperature such that the silane is oxidized to form silicon dioxide which is deposited as a layer onto the substrate.
Glass layers are widely used in the fabrication of semiconductor integrated circuit devices for many different purposes such as, for example, masking operations, diffusion sources, insulators, scratch protection of underlying material, device passivation, and gettering. Such glass layers include both silicon dioxide (SiO2) layers and doped silicon dioxide layers, such as, for example, borosilicate glass layers (layers containing boron trioxide, B2 O3) and phosphosilicate glass layers (layers containing phosphorous pentoxide, P2 O5). A typical method for chemically vapor-depositing a silicon dioxide layer onto a substrate comprises heating the substrate in an atmosphere including silane (SiH4), oxygen, an inert carrier gas, and a hydride or alkyl of a dopant if a doped silicon dioxide layer is desired, to a temperature such that the silane is oxidized to form silicone dioxide which is deposited as a layer onto the substrate. A complete description of such a process for chemically vapor-depositing a silicate glass layer is described in U.S. Pat. No. 3,481,781, issued to Werner Kern on Dec. 2, 1969, and assigned to the same assignee as is the present application.
Such glass layers, as deposited, are generally in tensile stress. In semiconductor devices where the glass layers are deposited over metal, cracks and pin holes frequently form in such glass layers when these devices are heated. For example, silicon dioxide layers are typically used in integrated circuit devices as insulating layers between multilevel aluminum interconnections. Upon heating such silicon dioxide layers beyond their deposition temperature such as, for example, beyond 450° C., the tensile stress in such layers becomes larger due to the aluminum expanding more than the silicon dioxide, and numerous cracks are generated in such layers. These cracks may cause the multilevel aluminum interconnections to short, which results in the failure of such devices. In devices where silicon dioxide layers are deposited over aluminum for passivation and scratch protection, such cracks would allow moisture to penetrate to the aluminum interconnects, whereby aluminum corrosion would occur. Such corrosion would continue until the aluminum interconnects are completely corroded, which results in open circuits and the failure of such devices.
It has previously been found that tensile stress in chemically vapor-deposited glass layers can be relieved by densification of the glass layers at temperatures above the deposition temperature. For example, it is possible to densify silicate glass layers sufficiently by heating them in ambients such as pure nitrogen at about 800° C. for about fifteen minutes. However, it is sometimes necessary to deposit metallic contacts such as, for example, aluminum before the glass layer is applied. Such devices cannot be safely heated much beyond 450° C. for prolonged periods of time since the aluminum will alloy with the silicon at the Al-Si eutectic temperature of about 575° C. Another method for densifying a deposited layer of silicate glass which avoids such high temperatures comprises heating the glass layer at a temperature of the order of about 400° to 450° C. in an atmosphere of water vapor, which acts as a catalyst during such low-temperature densification treatment. A complete description of such a process can be found in U.S. Pat. No. 3,850,687, issued to Werner Kern on Nov. 26, 1974, and assigned to the same assignee as is the present invention.
The aforementioned densification methods cause the stress in such glass layers at room temperature to go from tensile stress to compressive stress. However, it is desirable to be able to chemically vapor-deposit glass layers which, upon deposition, are in compressive stress or in relatively low tensile stress at room temperature or at rated device operating temperatures. Such low-stress glass layers would be much less susceptible to the formation of cracks, and thus any further densification treatment would not be necessary.
In accordance with the novel method of the present invention, a low-stress glass layer is deposited onto a heated substrate from the oxidation of gaseous silane by intentionally adding water vapor to the atmosphere in a chemical vapor deposition (CVD) reaction chamber, in order to increase the water vapor content of the atmosphere substantially above that normally present therein resulting from the oxidation of the silane. This is accomplished preferably by passing an inert carrier gas such as, in the present example, nitrogen (N2) through a bubbler containing water, in order to saturate the nitrogen with water vapor at room temperature. The nitrogen saturated with water vapor then passes from the bubbler through a conduit and ultimately into the CVD reaction chamber. The water vapor content may be increased by also passing oxygen through a bubbler in a similar manner.
The low-stress glass layer is deposited onto the heated substrate by the oxidation of the gaseous silane in the presence of oxygen according to the following reaction:
SiH.sub.4 +2O.sub.2 →SiO.sub.2 +2H.sub.2 O
Since water vapor is one of the reaction products, it is necessary to substantially increase the water vapor content of the atmosphere in order to observe an effect. Assuming that approximately fifty percent of the gaseous silane in the CVD reaction chamber is oxidized, the water vapor content in mole percent of the atmosphere in the chamber is, under steady-state conditions, increased by factors of about four (4), seven (7), nine (9), or fifteen (15) times the water vapor content normally present therein from the assumed fifty percent oxidation of the silane, as described respectively in the different examples outlined below. A detailed description of the different steps performed in carrying out the chemical vapor deposition process using gaseous silane, oxygen, and an inert carrier gas, is contained in the aforementioned Kern patent, U.S. Pat. No. 3,481,781, the disclosure of which is incorporated herein by reference.
EXAMPLE 1
Utilizing an apparatus such as disclosed in the Kern patent, a heating circuit is first actuated to bring the CVD system up to the desired deposition temperature which, in the present example, is 450° C. A regulating assembly which delivers the various gases into the CVD reaction chamber is then turned on so as to deliver oxygen and nitrogen saturated with water vapor to the interior of the chamber. Next, the substrate which comprises, in the present example, a 0.0055 inch (0.14 mm) thick silicon wafer having a (111) plane orientation, is placed on a holder within the CVD chamber and allowed to heat up to the 450° C. deposition temperature.
Next, the silane flow into the CVD chamber is started. In the present example, the silane source comprises ten percent silicon tetrahydride (SiH4) by volume in argon. A layer of silicon dioxide, having a thickness of approximately 10,000 A in the present example, is subsequently deposited onto the substrate as the silane is oxidized by the oxygen.
The flow rates of the various constituents at the deposition temperature will control the rate at which the silicon dioxide layer is deposited. In the present example, flow rates of 6000 cubic centimeters per minute of nitrogen saturated with water vapor at 25° C., 687 cubic centimeters per minute of oxygen, and 233 cubic centimeters per minute of ten percent SiH4 in argon are used. Under these flow conditions, the water vapor content in mole percent of the atmosphere is increased by a factor of about 9.2 times, and a deposition rate of about 1000 A per minute is obtained.
In order to provide comparative data to show that tensile stress is lowered by depositing silicon dioxide layers in a CVD reaction chamber wherein the water vapor content of the atmosphere therein is increased substantially above that normally present from the oxidation of the silane, the chemical vapor-deposition method of Example 1 is repeated except that no additional water vapor is added to the atmosphere. Using the same flow rates, no appreciable change in the deposition rate from that of Example 1 is observed.
EXAMPLE 2
The chemical vapor-deposition method of Example 1 is followed except that the flow rate of the ten percent silane in argon is reduced to 94 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 14.5 times that normally present from the oxidation of the silane. By changing the flow rate of the ten percent silane in argon, the deposition rate in this example is reduced to about 350 A per minute.
In order to provide comparative data, the chemical vapor deposition method of Example 2 is repeated except that no additional water vapor is added to the atmosphere. Using the same flow rates, no appreciable change in the deposition rate from that of Example 2 is observed.
EXAMPLE 3
The CVD method of Example 1 is followed except that the deposition temperature is reduced to 350° C. and the flow rate of the ten percent silane in argon is increased to 425 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 4.15 times that normally present from the oxidation of the silane and the deposition rate is increased to about 1750 A per minute.
In order to provide comparative data, the CVD method of Example 3 is repeated except that no additional water vapor is added to the atmosphere.
EXAMPLE 4
The CVD method of Example 3 is followed except that the flow rate of the ten percent silane in argon is reduced to 233 cubic centimeters per minute, whereby the water vapor content in mole percent of the atmosphere is increased by a factor of about 6.7 times that normally present from the oxidation of the silane, and the deposition rate is reduced to about 500 A per minute.
In order to provide comparative data, the CVD method of Example 4 is repeated except that no additional water vapor is added to the atmosphere.
In order to determine the effect which the increased water vapor content of the atmosphere has on reducing the tensile stress of the silicon dioxide layers deposited in the aforementioned examples, stress measurements at room temperature were made and the results, expressed in dynes/cm2, are shown in Table I. In each Example, the substrate deflection (as calculated by measuring the displacement of the center of the circular silicon wafer in relation to its edges) caused by the tensile stress of the silicon dioxide film was measured and, after correcting for initial substrate flatness, the average stress in dynes/cm2 was calculated from a known equation which expresses stress as a function of the substrate deflection.
              TABLE I                                                     
______________________________________                                    
GLASS LAYERS ON SILICON                                                   
          Water Va-                                                       
          por Content                                                     
          Factor In-                                                      
          crease Over                                                     
                     Deposi-                                              
          That Present                                                    
                     tion Rate                                            
                              Stress                                      
          From Chemi-                                                     
                     (A Per   × 10.sup.9                            
          cal Reaction                                                    
                     Minute)  Dynes/cm.sup.2)                             
______________________________________                                    
Silicon Dioxide                                                           
            No Increase  1000     2.8                                     
Layer Deposited                                                           
            9.2 Times    1000     2.4                                     
Upon a Silicon                                                            
            No Increase   350     2.7                                     
Wafer at 450° C.                                                   
            14.5 Times    350     1.7                                     
Silicon Dioxide                                                           
            No Increase  1750     3.2                                     
Layer Deposited                                                           
            4.15 Times   1750     2.8                                     
Upon a Silicon                                                            
            No Increase   500     2.5                                     
Wafer at 350° C.                                                   
            6.7 Times     500     2.2                                     
______________________________________                                    
Table I shows that the tensile stress in the deposited layers of silicon dioxide is reduced by increasing the water vapor content of the atmosphere in the CVD reaction chamber. Although the stress in such layers is reduced by also decreasing the deposition rate, Table I shows that at an average deposition rate of about 1000 A per minute, the tensile stress in silicon dioxide layers deposited at about 450° C. and having a thickness of about 10,000 A is reduced from 2.8×109 dynes/cm2 to 2.4×109 dynes/cm2 by increasing the water vapor content in mole percent of the atmosphere by a factor of about 9.2 times that normally present from the oxidation of the silane. At the same deposition temperature of about 450° C., but at a deposition rate of about 350 A per minute, the tensile stress is reduced from 2.7×109 dynes/cm2 to 1.7×109 dynes/cm2 by increasing the water vapor content by a factor of about 14.5 times.
While a deposition temperature of 450° C. is acceptable where an aluminum metallization system is used, in applications where a gold metallization system is used, a deposition temperature of about 350° C. is generally utilized since the gold will alloy with the silicon at the Au-Si eutectic temperature of about 370° C. Using a deposition temperature of about 350° C., Table I shows that, at an average deposition rate of about 1750 A per minute, the tensile stress in the deposited silicon dioxide layers is reduced from 3.2×109 dynes/cm2 to 2.8×109 dynes/cm2 by increasing the water vapor content in mole percent of the atmosphere by a factor of about 4.15 times that normally present from the oxidation of the silane. At the same deposition temperature of about 350° C., but at an average deposition rate of about 500 A per minute, the tensile stress is reduced from 2.5×109 dynes/cm2 to 2.2×109 dynes/cm2 by increasing the water vapor content by a factor of about 6.7 times that normally present from the assumed fifty percent oxidation of the silane.
In order to further confirm the fact that tensile stress is lowered by depositing glass layers in a CVD reaction chamber wherein the water vapor content of the atmosphere therein is increased substantially above that normally present from the oxidation of the silane, glass layers are deposited upon a substrate containing a 1 micrometer-thick aluminum test pattern. An aluminum test pattern, which comprises a patterned aluminum layer disposed on a thermally oxidized silicon wafer, is used since oxide layers chemically vapor-deposited over aluminum are very susceptible to cracking.
EXAMPLE 5
The chemical vapor-deposition method of Example 1 is followed except that the silicon dioxide layer is deposited onto a 1 micrometer-thick aluminum test pattern disposed on a thermally oxidized silicon wafer.
In order to provide comparative data, the chemical vapor-deposition method of Example 5 is repeated except that no additional water vapor is added to the atmosphere.
EXAMPLE 6
The chemical vapor-deposition method of Example 2 is followed except that the silicon dioxide layer is deposited onto a 1 micrometer-thick layer of evaporated aluminum continuously disposed on a thermally oxidized silicon wafer.
EXAMPLE 7
The chemical vapor-deposition method of Example 5 is repeated except that a 1 micrometer-thick phosphosilicate glass layer is deposited onto the aluminum test pattern by substituting, for the 10 percent silane source, a gaseous mixture of 3 percent silicon tetrahydride (SiH4) and 0.75 percent phosphine (PH3) by volume in argon, the flow rate thereof being increased to 725 cubic centimeters per minute.
In order to provide comparative date, the chemical vapor-deposition method of Example 7 is repeated except that no additional water vapor is added to the atmosphere.
After chemically vapor-depositing the glass layers onto the aluminum substrate samples as outlined in Examples 5 through 7, the samples are etched in a hot (about 55° C.) aluminum etch for approximately ten minutes in order to reveal cracks in the deposited glass layers. The etching composition used in the present example consisted of 10 volumes of 85 percent concentrated H3 PO4, 1 volume of concentrated 70 percent HNO3, and 2.5 volumes of distilled water. Any cracks or pinholes in the overlying glass layers will allow the aluminum etch to penetrate to the aluminum and chemically remove it. A subsequent microscopic examination reveals where any cracks are located. The results of such visual examination of the aluminum samples are shown in Table II.
                                  TABLE II                                
__________________________________________________________________________
GLASS LAYERS ON ALUMINUM                                                  
          Water Vapor Content                                             
          (Factor Increase Over       Visual Examination                  
          That Present From                                               
                      Deposition Rate                                     
                              Visual  After Post-Deposition               
          Chemical Reaction)                                              
                      (A Per Minute)                                      
                              Examination                                 
                                      Heat Treatment                      
__________________________________________________________________________
Silicon Dioxide                                                           
          No Increase 1000    Some Cracks                                 
                                      Severely Cracked                    
Layer Deposited                                                           
Upon a 1μm-Thick                                                       
          9.2 Times   1000    No Cracks                                   
                                      A Few Cracks                        
Aluminum Pattern                                                          
at 450° C.                                                         
          14.5 Times   350    No Cracks                                   
                                      No Cracks                           
Phosphosilicate                                                           
Glass Layer                                                               
Deposited Upon                                                            
          No Increase 1000    No Cracks                                   
                                      Some Cracks                         
a 1μm-Thick                                                            
Aluminum Pattern                                                          
          9.2 Times   1000    No Cracks                                   
                                      No Cracks                           
at 450° C.                                                         
__________________________________________________________________________
Microscopic examination showed that the silicon dioxide sample deposited without any increase in the water vapor content had some cracks, while the silicon dioxide samples deposited in atmospheres having the water vapor content increased by factors of 9.2 and 14.5 times, had no cracks. Both the phosphosilicate glass sample deposited without any increase in the water vapor content and the sample deposited in the presence of additional water vapor, had no cracks; this is attributed to the fact that phosphosilicate glass layers have lower intrinsic tensile stress as-deposited than silicon dioxide layers deposited under the same conditions.
All the samples which had glass layers deposited upon aluminum were then subjected to a post-deposition heat treatment, followed by reetching and reexamination under the microscope for cracks. These results are shown in Table II also. The silicon dioxide samples deposited at about 1000 A per minute were reheated to 450° for 1.5 hours in nitrogen, cooled, and re-etched for an additional 10 minutes in the hot aluminum etch. Microscopic examination showed that the silicon dioxide sample deposited without any increase in the water vapor content was severely cracked, while the silicon dioxide sample deposited in an atmosphere having the water vapor content increased by a factor of about 9.2 times had just a few cracks. The silicon dioxide sample deposited at about 350 A per minute in an atmosphere having the water vapor content increased by a factor of about 14.5 times was reheated to 450° C. for 0.5 hour in nitrogen, cooled, and re-etched; microscope examination of this sample showed no cracks. The phosphosilicate glass samples were reheated to 525° C. for 10 minutes, cooled, and re-etched. Some cracks did appear in the phosphosilicate glass layer deposited without any increase in the water vapor content, while no cracks were observed on the glass sample deposited in an atmosphere having the water vapor content increased by a factor of about 9.2 times.
The results shown in Tables I and II reveal that under the same deposition conditions, glass layers, including both silicon dioxide layers and doped silicate glass layers, which are chemically vapor-deposited by the oxidation of silane in a CVD reaction chamber wherein the water vapor content of the atmosphere therein is increased substantially above that normally present from the oxidation of the silane, have lower intrinsic tensile stress than glass layers deposited without any increase in the water vapor content. Such low-stress layers are much more resistant to cracking, thereby providing greater reliability for semiconductor devices manufactured in accordance with the present method. Infrared absorption spectroscopy of silicon dioxide and phosphosilicate glass layers chemically vapor-deposited in the presence of additional water vapor has shown no larger quantitites of included water in the deposited layer structure than is normally observed under the so-called "dry" (no additional water vapor present) conditions. Compositional analysis of the phosphosilicate glass layers has shown that the phosphorus content is not markedly affected under the "wet" deposition conditions.
A further advantage is obtained in the present invention from the step of adding water vapor to the atmosphere inside the CVD reaction chamber. In performing the preferred embodiment of the novel method, the nitrogen, or other carrier gas, which is saturated with water vapor is introduced into the CVD reaction chamber prior to starting the flow of silane (SiH4) into the chamber. By adding water vapor to the atmosphere prior to starting the flow of silane, the initial deposition of the glass layer occurs in an atmosphere containing approximately the steady-state level of water vapor rather than in an atmosphere containing a lesser degree of water vapor. By doing this, the deposition surface of the substrate is exposed to the water vapor prior to the start of the actual deposition process. As a result of such exposure to water vapor, the surface of the substrate, which may be silicon dioxide, becomes partially hydrated, by the conversion of oxygen bridges on the surface to silanol groups. Then, after the silane flow is started, the initially-deposited glass layer also contains more OH groups because of the higher moisture content in the ambient atmosphere. Consequently, the potential for molecular arrangements and for the formation of bridging oxygen bonds between the substrate oxide and the deposited glass layer is significantly enhanced, and the adhesion of the glass layer to the substrate is thereby improved.
The present invention provides a novel method of chemically vapor-depositing glass layers which, as-deposited, have relatively low intrinsic tensile stress. Such low-stress glass layers would be much less susceptible to the formation of cracks, and any further densification treatment would generally not be necessary. The use of such chemically vapor-deposited glass layers in the manufacture of semiconductor devices should result in higher yields and greater reliability, especially where the glass layers are used as an insulator or passivating glass, since glass cracking is a major cause of device degradation and failure.

Claims (16)

What is claimed is:
1. In a method of chemically vapor-depositing a glass layer onto a substrate wherein said substrate is heated in an atmosphere comprising silane and oxygen to a temperature such that said silane is oxidized, the improvement in said method comprising the step of adding water vapor to said atmosphere to increase the water vapor content of said atmosphere substantially above that normally present therein from the oxidation of said silane, whereby the tensile stress of said deposited glass layer is reduced.
2. A method as recited in claim 1 wherein the water vapor content in mole percent of said atmosphere is at least two times that normally present from the oxidation of said silane.
3. A method as recited in claim 2 wherein the water vapor content in mole percent of said atmosphere is increased by a factor of about four times that normally present from the oxidation of said silane.
4. A method as recited in claim 3 wherein said deposition temperature is about 350° C. and said layer of glass is deposited at a rate of about 1750 A per minute.
5. A method as recited in claim 2 wherein the water vapor content in mole percent of said atmosphere is increased by a factor of about seven times that normally present from the oxidation of said silane.
6. A method as recited in claim 5 wherein said deposition temperature is about 350° C. and said layer of glass is deposited at a rate of about 500 A per minute.
7. A method as recited in claim 2 wherein the water vapor content in mole percent of said atmosphere is increased by a factor of about nine times that normally present from the oxidation of said silane.
8. A method as recited in claim 7 wherein said deposition temperature is about 450° C. and said layer of glass is deposited at a rate of about 1000 A per minute.
9. A method as recited in claim 8 wherein said substrate is a silicon wafer and wherein said glass layer is silicon dioxide.
10. A method as recited in claim 8 wherein said substrate is a patterned aluminum layer disposed on a silicon wafer and wherein said glass layer is silicon dioxide.
11. A method as recited in claim 8 wherein said substrate is a patterned aluminum layer disposed on a silicon wafer and wherein said glass layer is phosphosilicate glass.
12. A method as recited in claim 2 wherein the water vapor content in mole percent of said atmosphere is increased by a factor of about fifteen times that normally present from the oxidation of said silane.
13. A method as recited in claim 12 wherein said deposition temperature is about 450° C. and said layer of glass is deposited at a rate of about 350 A per minute.
14. A method as recited in claim 1 wherein the step of adding said water vapor to said atmosphere is performed prior to including said silane in said atmosphere.
15. A method of chemically vapor depositing a glass layer onto a surface of a substrate comprising heating said substrate while contacting said surface with a vaporous mixture comprising silane, oxygen, and water vapor, said water vapor being present in an amount substantially above that normally present therein from the oxidation of said silane, whereby the tensile stress of said deposited glass layer is reduced.
16. A method as recited in claim 15 wherein the water vapor content in mole percent of said vaporous mixture is at least two times that normally present from the oxidation of said silane.
US05/642,141 1975-12-18 1975-12-18 Method of chemically vapor-depositing a low-stress glass layer Expired - Lifetime US4196232A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US05/642,141 US4196232A (en) 1975-12-18 1975-12-18 Method of chemically vapor-depositing a low-stress glass layer
FR7623845A FR2355924A1 (en) 1975-12-18 1976-08-04 PROCESS FOR CHEMICALLY STEAM DEPOSITION OF A LOW VOLTAGE GLASS LAYER
SE7608792A SE7608792L (en) 1975-12-18 1976-08-05 WAY TO CHEMICAL PREPARATION OF GLASS LAYERS
IT26770/76A IT1064910B (en) 1975-12-18 1976-09-01 METHOD FOR CHEMICALLY DEPOSITING A GLASS LAYER WITH LOW INTERNAL STRESSES FROM THE STEAM PHASE
DE2641387A DE2641387C3 (en) 1975-12-18 1976-09-15 Process for depositing a layer of glass
JP51111684A JPS5276937A (en) 1975-12-18 1976-09-16 Method of chemically accumulating low stress glass layer
GB38422/76A GB1550215A (en) 1975-12-18 1976-09-16 Method of chemically vapour-depositing a low-stress glass layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/642,141 US4196232A (en) 1975-12-18 1975-12-18 Method of chemically vapor-depositing a low-stress glass layer

Publications (1)

Publication Number Publication Date
US4196232A true US4196232A (en) 1980-04-01

Family

ID=24575370

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/642,141 Expired - Lifetime US4196232A (en) 1975-12-18 1975-12-18 Method of chemically vapor-depositing a low-stress glass layer

Country Status (7)

Country Link
US (1) US4196232A (en)
JP (1) JPS5276937A (en)
DE (1) DE2641387C3 (en)
FR (1) FR2355924A1 (en)
GB (1) GB1550215A (en)
IT (1) IT1064910B (en)
SE (1) SE7608792L (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0060783A1 (en) * 1981-03-16 1982-09-22 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Process of forming a thin glass film on a semiconductor substrate
FR2551093A1 (en) * 1983-08-27 1985-03-01 Philips Nv PROCESS FOR PRODUCING A REACTION CONTAINER FOR CRYSTAL GROWTH PURPOSES
US4513026A (en) * 1980-08-29 1985-04-23 Fujitsu Limited Method for coating a semiconductor device with a phosphosilicate glass
US4564532A (en) * 1985-01-07 1986-01-14 Kms Fusion, Inc. Glass-surface microcarrier for anchorage-dependent cell cultivation
US4686112A (en) * 1983-01-13 1987-08-11 Rca Corporation Deposition of silicon dioxide
US4810673A (en) * 1986-09-18 1989-03-07 Texas Instruments Incorporated Oxide deposition method
US4828629A (en) * 1985-03-20 1989-05-09 Hitachi, Ltd. Process of fabricating silicon oxide and gettering films on polycrystalline silicon resistance element
US4900591A (en) * 1988-01-20 1990-02-13 The United States Of America As Represented By The Secretary Of The Air Force Method for the deposition of high quality silicon dioxide at low temperature
US5262356A (en) * 1990-05-23 1993-11-16 Mitsubishi Denki Kabushiki Kaisha Method of treating a substrate wherein the flow rates of the treatment gases are equal
US5525550A (en) * 1991-05-21 1996-06-11 Fujitsu Limited Process for forming thin films by plasma CVD for use in the production of semiconductor devices
US6323142B1 (en) * 1995-09-08 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US20020132465A1 (en) * 1997-04-04 2002-09-19 Elm Technology Corporation Reconfigurable integrated circuit memory
US20030161949A1 (en) * 2002-02-28 2003-08-28 The Regents Of The University Of California Vapor deposition of dihalodialklysilanes
US6627305B1 (en) * 1997-07-16 2003-09-30 Koninklijke Philips Electronics N.V. Substrates for large area electronic devices
US20040150068A1 (en) * 1992-04-08 2004-08-05 Elm Technology Corporation Membrane 3D IC fabrication
EP1538234A2 (en) * 2003-12-01 2005-06-08 Mori Yasuhiro Method of modifying solid surface and product obtained
US20060105516A1 (en) * 2003-11-04 2006-05-18 Belyansky Michael P Oxidation method for altering a film structure
US20080237591A1 (en) * 2002-08-08 2008-10-02 Elm Technology Corporation Vertical system integration
US20090067210A1 (en) * 1997-04-04 2009-03-12 Leedy Glenn J Three dimensional structure memory
US20130071566A1 (en) * 2011-09-19 2013-03-21 Pilkington Group Limited Process for forming a silica coating on a glass substrate
US20140186545A1 (en) * 2011-08-02 2014-07-03 Linde Aktiengesellschaft Method for producing high transmission glass coatings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8414878D0 (en) * 1984-06-11 1984-07-18 Gen Electric Co Plc Integrated optical waveguides
GB8814922D0 (en) * 1988-06-23 1988-07-27 Pilkington Plc Coatings on glass
EP0844670B1 (en) * 1996-06-06 2004-01-02 Seiko Epson Corporation Method for manufacturing thin film transistor, liquid crystal display and electronic device both produced by the method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243323A (en) * 1962-06-11 1966-03-29 Motorola Inc Gas etching
US3258359A (en) * 1963-04-08 1966-06-28 Siliconix Inc Semiconductor etch and oxidation process
US3331716A (en) * 1962-06-04 1967-07-18 Philips Corp Method of manufacturing a semiconductor device by vapor-deposition
US3481781A (en) * 1967-03-17 1969-12-02 Rca Corp Silicate glass coating of semiconductor devices
US3511703A (en) * 1963-09-20 1970-05-12 Motorola Inc Method for depositing mixed oxide films containing aluminum oxide
JPS4712408U (en) * 1971-03-12 1972-10-14
US3850687A (en) * 1971-05-26 1974-11-26 Rca Corp Method of densifying silicate glasses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1614455C3 (en) * 1967-03-16 1979-07-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Method for producing a protective layer consisting partly of silicon oxide and partly of silicon nitride on the surface of a semiconductor body
US3531696A (en) * 1967-09-30 1970-09-29 Nippon Electric Co Semiconductor device with hysteretic capacity vs. voltage characteristics
GB1463056A (en) * 1973-01-19 1977-02-02 Thorn Lighting Ltd Electric discharge lamp

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331716A (en) * 1962-06-04 1967-07-18 Philips Corp Method of manufacturing a semiconductor device by vapor-deposition
US3243323A (en) * 1962-06-11 1966-03-29 Motorola Inc Gas etching
US3258359A (en) * 1963-04-08 1966-06-28 Siliconix Inc Semiconductor etch and oxidation process
US3511703A (en) * 1963-09-20 1970-05-12 Motorola Inc Method for depositing mixed oxide films containing aluminum oxide
US3481781A (en) * 1967-03-17 1969-12-02 Rca Corp Silicate glass coating of semiconductor devices
JPS4712408U (en) * 1971-03-12 1972-10-14
US3850687A (en) * 1971-05-26 1974-11-26 Rca Corp Method of densifying silicate glasses

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ackerman et al, IBM Tech Discl. Bull., vol. 15, No. 12, May 1973 p. 3888. *
Bratter et al, IBM Tech Discl. Bull., vol. 15, No. 2, Jul. 1972 p. 685. *
Deal, "The Oxidation of Silicon . . . ", (1963) J. Electrochem. Soc., vol. 110, No. 6, pp. 527-532. *
Ghezzo, J. Electrochem. Soc., pp. 1428-1430, vol. 119, No. 10, Oct. 1972. *

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513026A (en) * 1980-08-29 1985-04-23 Fujitsu Limited Method for coating a semiconductor device with a phosphosilicate glass
EP0060783A1 (en) * 1981-03-16 1982-09-22 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Process of forming a thin glass film on a semiconductor substrate
US4686112A (en) * 1983-01-13 1987-08-11 Rca Corporation Deposition of silicon dioxide
FR2551093A1 (en) * 1983-08-27 1985-03-01 Philips Nv PROCESS FOR PRODUCING A REACTION CONTAINER FOR CRYSTAL GROWTH PURPOSES
US4592924A (en) * 1983-08-27 1986-06-03 U.S. Philips Corporation Method of manufacturing a reaction vessel for crystal growth purposes
US4564532A (en) * 1985-01-07 1986-01-14 Kms Fusion, Inc. Glass-surface microcarrier for anchorage-dependent cell cultivation
US4828629A (en) * 1985-03-20 1989-05-09 Hitachi, Ltd. Process of fabricating silicon oxide and gettering films on polycrystalline silicon resistance element
US4810673A (en) * 1986-09-18 1989-03-07 Texas Instruments Incorporated Oxide deposition method
US4900591A (en) * 1988-01-20 1990-02-13 The United States Of America As Represented By The Secretary Of The Air Force Method for the deposition of high quality silicon dioxide at low temperature
US5262356A (en) * 1990-05-23 1993-11-16 Mitsubishi Denki Kabushiki Kaisha Method of treating a substrate wherein the flow rates of the treatment gases are equal
US5525550A (en) * 1991-05-21 1996-06-11 Fujitsu Limited Process for forming thin films by plasma CVD for use in the production of semiconductor devices
US7763948B2 (en) 1992-04-08 2010-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US20050156265A1 (en) * 1992-04-08 2005-07-21 Elm Technology Corporation Lithography device for semiconductor circuit pattern generation
US7670893B2 (en) 1992-04-08 2010-03-02 Taiwan Semiconductor Manufacturing Co., Ltd. Membrane IC fabrication
US7615837B2 (en) 1992-04-08 2009-11-10 Taiwan Semiconductor Manufacturing Company Lithography device for semiconductor circuit pattern generation
US7485571B2 (en) 1992-04-08 2009-02-03 Elm Technology Corporation Method of making an integrated circuit
US7479694B2 (en) 1992-04-08 2009-01-20 Elm Technology Corporation Membrane 3D IC fabrication
US20080302559A1 (en) * 1992-04-08 2008-12-11 Elm Technology Corporation Flexible and elastic dielectric integrated circuit
US7385835B2 (en) * 1992-04-08 2008-06-10 Elm Technology Corporation Membrane 3D IC fabrication
US7911012B2 (en) 1992-04-08 2011-03-22 Taiwan Semiconductor Manufacturing Co., Ltd. Flexible and elastic dielectric integrated circuit
US20040150068A1 (en) * 1992-04-08 2004-08-05 Elm Technology Corporation Membrane 3D IC fabrication
US20050176174A1 (en) * 1992-04-08 2005-08-11 Elm Technology Corporation Methodof making an integrated circuit
US20040197951A1 (en) * 1992-04-08 2004-10-07 Leedy Glenn Joseph Membrane IC fabrication
US20050082626A1 (en) * 1992-04-08 2005-04-21 Elm Technology Corporation Membrane 3D IC fabrication
US20040127069A1 (en) * 1995-09-08 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. A Japan Corporation Method and apparatus for manufacturing a semiconductor device
US6706648B2 (en) * 1995-09-08 2004-03-16 Semiconductor Energy Laboratory Co., Ltd APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US6323142B1 (en) * 1995-09-08 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US7491659B2 (en) 1995-09-08 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US7705466B2 (en) 1997-04-04 2010-04-27 Elm Technology Corporation Three dimensional multi layer memory and control logic integrated circuit structure
US8841778B2 (en) 1997-04-04 2014-09-23 Glenn J Leedy Three dimensional memory structure
US20040070063A1 (en) * 1997-04-04 2004-04-15 Elm Technology Corporation Three dimensional structure integrated circuit
US9401183B2 (en) 1997-04-04 2016-07-26 Glenn J. Leedy Stacked integrated memory device
US9087556B2 (en) 1997-04-04 2015-07-21 Glenn J Leedy Three dimension structure memory
US8933570B2 (en) 1997-04-04 2015-01-13 Elm Technology Corp. Three dimensional structure memory
US8928119B2 (en) 1997-04-04 2015-01-06 Glenn J. Leedy Three dimensional structure memory
US8907499B2 (en) 1997-04-04 2014-12-09 Glenn J Leedy Three dimensional structure memory
US7474004B2 (en) 1997-04-04 2009-01-06 Elm Technology Corporation Three dimensional structure memory
US20100171224A1 (en) * 1997-04-04 2010-07-08 Leedy Glenn J Three dimensional structure memory
US20030173608A1 (en) * 1997-04-04 2003-09-18 Elm Technology Corporation Three dimensional structure integrated circuit
US20040151043A1 (en) * 1997-04-04 2004-08-05 Elm Technology Corporation Three dimensional structure memory
US20090067210A1 (en) * 1997-04-04 2009-03-12 Leedy Glenn J Three dimensional structure memory
US7504732B2 (en) 1997-04-04 2009-03-17 Elm Technology Corporation Three dimensional structure memory
US8824159B2 (en) 1997-04-04 2014-09-02 Glenn J. Leedy Three dimensional structure memory
US8796862B2 (en) 1997-04-04 2014-08-05 Glenn J Leedy Three dimensional memory structure
US20090219743A1 (en) * 1997-04-04 2009-09-03 Leedy Glenn J Three dimensional structure memory
US20090219744A1 (en) * 1997-04-04 2009-09-03 Leedy Glenn J Three dimensional structure memory
US20090218700A1 (en) * 1997-04-04 2009-09-03 Leedy Glenn J Three dimensional structure memory
US8791581B2 (en) 1997-04-04 2014-07-29 Glenn J Leedy Three dimensional structure memory
US20030057564A1 (en) * 1997-04-04 2003-03-27 Elm Technology Corporation Three dimensional structure memory
US8629542B2 (en) 1997-04-04 2014-01-14 Glenn J. Leedy Three dimensional structure memory
US20090175104A1 (en) * 1997-04-04 2009-07-09 Leedy Glenn J Three dimensional structure memory
US8410617B2 (en) 1997-04-04 2013-04-02 Elm Technology Three dimensional structure memory
US20100173453A1 (en) * 1997-04-04 2010-07-08 Leedy Glenn J Three dimensional structure memory
US20020132465A1 (en) * 1997-04-04 2002-09-19 Elm Technology Corporation Reconfigurable integrated circuit memory
US8318538B2 (en) 1997-04-04 2012-11-27 Elm Technology Corp. Three dimensional structure memory
US8035233B2 (en) 1997-04-04 2011-10-11 Elm Technology Corporation Adjacent substantially flexible substrates having integrated circuits that are bonded together by non-polymeric layer
US8288206B2 (en) 1997-04-04 2012-10-16 Elm Technology Corp Three dimensional structure memory
US6627305B1 (en) * 1997-07-16 2003-09-30 Koninklijke Philips Electronics N.V. Substrates for large area electronic devices
US20030161949A1 (en) * 2002-02-28 2003-08-28 The Regents Of The University Of California Vapor deposition of dihalodialklysilanes
US8080442B2 (en) 2002-08-08 2011-12-20 Elm Technology Corporation Vertical system integration
US20080251941A1 (en) * 2002-08-08 2008-10-16 Elm Technology Corporation Vertical system integration
US20080284611A1 (en) * 2002-08-08 2008-11-20 Elm Technology Corporation Vertical system integration
US8269327B2 (en) 2002-08-08 2012-09-18 Glenn J Leedy Vertical system integration
US8587102B2 (en) 2002-08-08 2013-11-19 Glenn J Leedy Vertical system integration
US20080237591A1 (en) * 2002-08-08 2008-10-02 Elm Technology Corporation Vertical system integration
US20080254572A1 (en) * 2002-08-08 2008-10-16 Elm Technology Corporation Vertical system integration
US20090194768A1 (en) * 2002-08-08 2009-08-06 Leedy Glenn J Vertical system integration
US20060105516A1 (en) * 2003-11-04 2006-05-18 Belyansky Michael P Oxidation method for altering a film structure
US7741166B2 (en) * 2003-11-04 2010-06-22 International Business Machines Corporation Oxidation method for altering a film structure
US20050153145A1 (en) * 2003-12-01 2005-07-14 Mikio Yamashita Method of modifying solid surface and surface-modified solidmaterial
EP1538234A3 (en) * 2003-12-01 2006-02-08 Mori Yasuhiro Method of modifying solid surface and product obtained
EP1538234A2 (en) * 2003-12-01 2005-06-08 Mori Yasuhiro Method of modifying solid surface and product obtained
US20140186545A1 (en) * 2011-08-02 2014-07-03 Linde Aktiengesellschaft Method for producing high transmission glass coatings
CN103946173A (en) * 2011-09-19 2014-07-23 皮尔金顿集团有限公司 Process for forming a silica coating on a glass substrate
US20130071566A1 (en) * 2011-09-19 2013-03-21 Pilkington Group Limited Process for forming a silica coating on a glass substrate
US8734903B2 (en) * 2011-09-19 2014-05-27 Pilkington Group Limited Process for forming a silica coating on a glass substrate

Also Published As

Publication number Publication date
JPS558950B2 (en) 1980-03-06
SE7608792L (en) 1977-06-19
FR2355924A1 (en) 1978-01-20
IT1064910B (en) 1985-02-25
DE2641387C3 (en) 1979-08-02
JPS5276937A (en) 1977-06-28
GB1550215A (en) 1979-08-08
DE2641387A1 (en) 1977-06-30
DE2641387B2 (en) 1978-11-16

Similar Documents

Publication Publication Date Title
US4196232A (en) Method of chemically vapor-depositing a low-stress glass layer
US4097889A (en) Combination glass/low temperature deposited Siw Nx Hy O.sub.z
US3511703A (en) Method for depositing mixed oxide films containing aluminum oxide
EP0323103B1 (en) Multilayer ceramics coatings from the ceramification of hydrogen silsesquioxane resin in the presence of ammonia
EP0025717B1 (en) A semiconductor device comprising two insulating films and process for producing the same
US4091406A (en) Combination glass/low temperature deposited Siw Nx Hy O.sub.z
US4091407A (en) Combination glass/low temperature deposited Siw Nx Hy O.sub.z
US5405489A (en) Method for fabricating an interlayer-dielectric film of a semiconductor device by using a plasma treatment prior to reflow
US5336640A (en) Method of manufacturing a semiconductor device having an insulating layer composed of a BPSG film and a plasma-CVD silicon nitride film
US4442449A (en) Binary germanium-silicon interconnect and electrode structure for integrated circuits
Kern et al. Chemical Vapor Deposition of Silicate Glasses for Use with Silicon Devices: I. Deposition Techniques
US3669724A (en) Method of vapor depositing a tungsten-tungsten oxide coating
Kern et al. Chemical vapor deposition of silicate glasses for use with silicon devices: II. Film Properties
US3850687A (en) Method of densifying silicate glasses
Klerer On the mechanism of the deposition of Silica by Pyrolytic decomposition of Silanes
JPS6128213B2 (en)
US3668095A (en) Method of manufacturing a metallic oxide film on a substrate
US4172158A (en) Method of forming a phosphorus-nitrogen-oxygen film on a substrate
Maxwell et al. Densification of SIPOS
EP0060783B1 (en) Process of forming a thin glass film on a semiconductor substrate
US6489255B1 (en) Low temperature/low dopant oxide glass film
JPS6223453B2 (en)
US4289539A (en) Phosphorus-nitrogen-oxygen composition and method for making such composition and applications of the same
Maeda et al. Behavior of various insulating films in high temperature water and moisture
RU1396862C (en) Process of manufacture of structure of semiconductor devices