Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS4221875 A
Tipo de publicaciónConcesión
Número de solicitudUS 05/881,430
Fecha de publicación9 Sep 1980
Fecha de presentación27 Feb 1978
Fecha de prioridad3 Feb 1977
También publicado comoDE2809084A1
Número de publicación05881430, 881430, US 4221875 A, US 4221875A, US-A-4221875, US4221875 A, US4221875A
InventoresToshio Yukuta, Takumi Ishiwaka, Noboru Yamaguchi
Cesionario originalBridgestone Tire Co., Ltd.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Flame resistant polyurethane foam and the method for manufacturing the same
US 4221875 A
Resumen
According to the present invention polyurethane foams, can be obtained as flame resistant and non-corrosive product. The invention specifies the foaming of raw material mixture comprising polyhydroxyl compound, polyisocyanate, blowing agent and etc. to be carried out in the presence of melamine powder added thereto as novel flame retardant, the final products being inexpensive and suitable to be used as structural material, etc.
Imágenes(7)
Previous page
Next page
Reclamaciones(8)
What is claimed is:
1. In a rigid polyurethane foam obtained by reacting a polyhydroxyl compound with a polyisocyanate in the presence of blowing agent, silicone surfactant and catalyst, the improvement, which comprises; employment of hydrophobic polyetherpolyol having two or more hydroxyl groups per molecule as the polyhydroxyl compound and incorporation of 20 to 100 parts by weight of melamine per 100 parts by weight of the polyhydroxyl compound as a sole flame retardant component.
2. The rigid polyurethane foam according to claim 1, wherein the polyetherpolyol is one containing 70 mole % or more propylene oxide.
3. The rigid polyurethane foam according to claim 1, wherein the polyetherpolyol is one produced by addition of an alkylene oxide mixture containing 70 mole % or more propylene oxide to an active hydrogen containing compound selected from the group consisting of ethylene glycol, glycerol, propylene glycol, diethylenetriamine, aromatic diamines, sucrose and sorbitol.
4. The rigid polyurethane foam according to claim 1, wherein the polyisocyanate is one selected from the group consisting of aromatic isocyanates, alicyclic isocyanates and aliphatic isocyanates.
5. In a method of manufacturing a rigid polyurethane foam by reacting a polyhydroxyl compound with a polyisocyanate in the presence of blowing agent, silicone surfactant and catalyst, the improvement, which comprises; employment of a hydrophobic polyetherpolyol having two or more hydroxyl groups per molecule as the polyhydroxyl compound and incorporation of 20 to 100 parts by weight of melamine per 100 parts by weight of the polyhydroxyl as the sole flame retardant component.
6. The method according to claim 5, wherein the polyetherpolyol is one containing 70 mole % or more propylene oxide.
7. The method according to claim 5, wherein the polyetherpolyol is one produced by addition of an alkylene oxide mixture containing 70 mole % or more propylene oxide to an active hydrogen containing compound selected from the group consisting of ethylene glycol, glycerol, propylene glycol, diethylenetriamine, aromatic diamines, sucrose and sorbitol.
8. The method according to claim 5, wherein the polyisocyanate is one selected from the group consisting of aromatic isocyanates, alicyclic isocyanates and aliphatic isocyanates.
Descripción
BACKGROUND OF THE INVENTION

Hitherto, polyurethane foam, being widely used in various fields and appreciated of its special quality, shows however a gross weak point in its flame-resistance. And yet, the control of flame-resistance of polyurethane foam materials is tending lately to become severe more and more and this situation has brought out a very important problem of how to technically make polyurethane foam flame resistant.

As regards how to make polyurethane foam flame resistant, many kinds of technique have already been proposed. However, the most preferably used one of these techniques is a method of adding, as flame retardants, a phosphorous and halogen containing compound such as tris (β-chloroethyl) phosphate. In the case of adopting this method, however, it is necessary for conferring flame-resistance on polyurethane foam to add such a great amount of phosphorus containing compound as to make the rate of phosphorus content in the foam higher than about 1%. Thus, it is necessary to add an expensive phosphorus, and halogen containing flame retardants in such a quantity as to amount 10 to 30 parts by weight per 100 parts by weight of polyhydroxyl compound, the polyurethane foam produced proves consequently to be of fairly high cost. Saying about the physical properties of the foam, further, the plasticizing effect of the added phosphorus and halogen containing flame retardants causes the polyurethane foam to be reduced in hardness, decreased in compressive strength and increased in density so that the foam is markedly lowered in the physical properties of matter. Besides, as said conventional type of flame retardant tends, when used at an elevated temperature, to undergo volatilization loss with the passage of time so as to be weakened in its effect, there arising thus a problem of suffering a fatal decrease in the flame resistance. Lately moreover, as it was confirmed an accident due to corrosion progress in a heavy oil tank equipped with a heat insulation construction made up of rigid polyurethane foam that the accident took its rise in a phosphorus and halogen containing flame retardant as one of compounding ingredients of the foam, the suspensive using of conventional flame retardants has created a remarkable stir in the field of construction works of heat insulation.

Since various questions are involved as above-mentioned in using phosphorus and halogen containing compounds as flame retardant, the development of a technique has already been strongly demanded which confers flame resistance to polyurethane foam without using any phosphorus and halogen containing compounds.

The present inventors, concentrating their energies on investigation for replying to the above-mentioned requirement, arrived finally at the discovery of a surprising fact that inexpensive melamine powder can be utilized quite with effect to confer flame resistance on polyurethane foam. The usage of triazine ring containing compounds as one of compounding ingredients for polyurethane foam has already been proposed by way of, for example, Japanese patent laid open No. 141650/75, Japanese patent laid open No. 84844/76 and Japanese patent laid open No. 16461/76. While these well-known arts make use of a triazine ring containing compound as an ingredient of foam to improve the fatigue bearability of polyurethane foam against repeated stress thereon, it has hitherto been quite unknown the fact that melamine powder has an excellent flame resistant effect on polyurethane foam. The present inventors, being based upon this information, added melamine powder to the conventional formulation of rigid polyurethane foam instead of using a phosphorus and halogen containing compounds as flame retardants and thereby succeeded in manufacturing rigid polyurethane foams which have an excellent flame resistance and show only small decrease in the physical properties; their investigation led to the present invention.

SUMMARY OF THE INVENTION

This invention relates to polyurethane foams (flame resistant polyurethane foams) to be used as building material, structural material, heat-insulation material, etc. and also to the method for manufacturing the same. More particularly, the invention relates to flame resistant polyurethane foams prepared by mixing a polyhydroxyl compound and a polyisocyanate with melamine powder as flame retardant and subjecting the mixture to foaming reaction in the presence of blowing agent, the invention relating also to the method of preparing said type of polyurethane foams characterized in that polyurethane foam is conferred with flame resistance by incorporating melamine powder thereinto.

According to the present invention melamine powder is incorporated as flame retardant into polyurethane foam obtained by making a polyhydroxyl compound and polyisocyanate react with each other in the presence of blowing agent. The polyurethane foam thus prepared behaves as excellently flame resistant and as little lowered in the physical properties of matter. Besides, as compared to conventional product of polyurethane foam with expensive and corrosive phosphorus and halogen containing flame retardants the polyurethane foam of this invention can be offered at lower prices owing to the use of inexpensive melamine powder. Hence it is the primary object of the present invention to provide a novel, flame resistant polyurethane foam which is particularly useful because of no tendency to cause corrosion and have lowered prices.

The second object of this invention is to provide a method for easily and inexpensively manufacturing polyurethane foams having excellent flame resistance by mixing a polyhydroxyl compound and polyisocyanate with melamine powder and subjecting the mixture to foaming reaction in the presence of foaming agent.

The present invention will now be described in details in the following:

In this invention, there being no particular qualification as to polyhydroxyl compound, polyisocyanate and blowing agent, they may be any ones which have hitherto been employed in the manufacture of polyurethane foam. Thus, as polyhydroxyl compound, for instance, there may be used, including those polyesters produced by esterification between a polybasic acid such as adipic acid and a polyhydric alcohol, those polyethers produced by addition of an alkylene oxide such as ethylene oxide or propylene oxide to ethylene glycol, glycerol, propylene glycol, diethylenetriamine, aromatic diamines, sucrose, sorbitol and the like and further such compounds as containing two or more hydroxyl groups at molecular end. As polyisocyanate, further, there may be used aromatic isocyanates such as tolylenediisocyanate, diphenylmethanediisocyanate, alicyclic isocyanates such as hydrogenated tolylenediisocyanate, aliphatic isocyanates such as hexamethylenediisocyanate, and etc. As blowing agent, further, there may be used water (carbon dioxide), trichloromonofluoromethane, methylene dichloride, pentane, air, etc.

Above-mentioned polyhydroxyl compounds, polyisocyanate and blowing agent may be employed also in the presence of an amine, a catalyst such as organotin compound, surfactants such as silicone resin and activator added thereto as auxiliary agents which are generally used in the manufacture of polyurethane foam.

Now, according to the present invention above-mentioned ingredients are added with melamine of the formula ##STR1## in powder form as flame retardant. By the addition of melamine powder polyurethane foam can be furnished with an excellent flame resistance. While the quantity of melamine powder added is not particularly qualified, greater quantity of added melamine powder will result in the more excellent flame resistance. In adding said melamine powder, to say further, not only the kind of polyurethane foam raw material is selected but also the quantity of melamine powder added is adjusted according to the degree of flame resistance as well as the physical properties requested because flame resistance of polyurethane foam product, depends subtly upon the kind of polyurethane foam raw material especially upon the chemical structure of polyhydroxyl compound, polyisocyanate and silicone surfactant respectively. For instance, as circumstantially described in comparative examples and examples given hereinafter, when diphenylmethanediisocyanate is used as polyisocyanate and Actocol GR-71 (Takeda Chemicals, commercial name) which is a sort of aromatic amine derivative polyol is used as polyhydroxyl compound, a self-extinguishing polyurethane foam is obtained. When similar aromatic amine derivative Nippolan N-56 (Nihon Polyurethane, commercial name) or Nisso NE-450 (Nihon Soda, commercial name) which is a sort of sucrose derivative polyol is used as polyhydroxyl compound, the polyurethane foam obtained proves inflammable. Further, when the degree of flame resistance demanded of these polyurethane foams is only such an improvement as to make them self-extinguishing, melamine powder is mixed in a small amount (for instance 20 parts by weight per 100 parts by weight of polyhydroxyl compound) and when it is necessary for polyurethane foam to be improved as far as it becomes nonburning, melamine powder is mixed in a comparatively large amount (for instance, 60 parts by weight). Further, when diphenylmethanediisocyanate is used as polyisocyanate, replacement of diphenylmethanediisocyanate with tolylenediisocyanate makes the product, irrespective of using such a formulation receipt as to produce excellent flame resistant effect, turn out inflammable. In such case, however, it is possible by optionally increasing the quantity of melamine powder added for polyurethane foam to become flame resistant. For manufacturing polyurethane foams from polyhydroxyl compound, polyisocyanate and others added with above mentioned melamine powder as flame retardant any method adapted for manufacturing polyurethane foam in general may be employed. There being adopted, for instance, the one-shot process and the prepolymer method, either of low pressure foaming and high pressure foaming will do inclusive of practicability of foaming in place. According to these methods and the use of the product, the formulation is suitably made to foam into rigid, semi-rigid or flexible polyurethane foam products. As regards the way of adding melamine powder no limit being set thereto, it may be used in the form of homogeneous premixture prepared beforehand by mixing with polyhydroxyl compound or as a suspension obtained by adding to polyisocyanate. A method of using the melamine powder as independent ingredient may also be adopted by which the powder is mixed with other ingredients in the step of preparing polyurethane foam so as to make a homogeneous dispersion.

Now, when each raw material for manufacturing prescribed polyurethane foam is mixed together according to routine procedure, polyhydroxyl compound and polyisocyanate react with each other under foaming in the presence of blowing agent and the melamine powder present as dispersed in the reaction mixture behaves so as to produce polyurethane foam as incorporated with melamine powder. The polyurethane foam thus obtained behaves as excellently flame resistant owing to the special flame resistance conferring effect of melamine powder contained therein and can be used with effect for structural material and the like which should have flame resistance.

As described hereinbefore the polyurethane foam manufactured according to the present invention has very excellent flame resistant property on the one hand owing to melamine powder incorporated therein as peculiarly effective in conferring flame resistance on polyurethane foam and shows on the other hand almost no eventual drop in the physical properties due to the addition of melamine powder. Besides, while conventional phosphorus-halogen containing flame retardants is not impossible to be lost through volatilization with the passage of time and thereby lowered in flame resistant effect, foam product of this invention shows no such lowering in its flame resistance and moreover does not undergo corrosion unlike that processed with phosphorus-halogen containing flame retardants. Further, as addition of inexpensive melamine powder serves the purpose, low-priced polyurethane foams behaving as flame resistant can be manufactured with ease.

DESCRIPTION OF PREFERRED EXAMPLES

The present invention will now be explained hereinafter by way of a few examples and comparative examples, these examples setting, however, no limit to this invention.

EXAMPLES 1-14

In accordance with the composition receipt given in Table 1 a polyol was first weighed out by 150 g into a paper cup, added then with the necessary amounts of catalyst, silicone surfactant and water, respectively. After being stired for about 10 seconds by means of propeller type agitator the mixture was added further with the necessary amounts of melamine powder and trichloromonofluoromethane and thoroughly homogenized by stirring for about one minute. When the homogeneous liquid mixture thus obtained was added with the necessary amount of crude diphenylmethanediisocyanate and submitted to high speed agitation, there started reaction and the reaction mixture became creamy generally after about 15 seconds or so. (cream-time) When the reaction mixture in this state was quickly poured into a paper mould of 250×250×200 cm3, it begans to become foamy, the rise of foam being completed after about 150 seconds or so. (rise-time)

Rigid polyurethane foams thus obtained were let alone at room temperature for about one week and submitted thereafter to test of general property of matter and also to burning test, results being obtained as given Table 1.

COMPARATIVE EXAMPLES 1-7

In the same way of foaming as in Examples except leaving out the addition of melamine powder rigid polyurethane foams were prepared according to the formulation recipe of Table 1 and results of testing physical properties and those of burning test were obtained as given in Table 1.

As seen from the result of burning test given in Table 1 the flame resistance of rigid polyurethane foam depends very much on the kind of polyol employed.

Thus, when Actocol GR-71 (Takeda Chemicals, commercial name) which is a kind of aromatic amine derivative polyol is used, the result of burning test judged as self-extinguishing already in Comparative Examples 1 and 2. However, according to Examples 1-4 of the present invention the addition of melamine powder being effective in enhancing the tendency to self-extinguishing (burning distance becomes distinctly shorter), even a judgement for non-burning can thereby obtained rather nearby. In using Nippolan N-506 (Nihon Polyurethane commercial name), on the other hand, which is likewise a sort of aromatic amine derivative polyol, result of burning test was judged for inflammable as indicated by Comparative Examples 3 and 4. Even with rigid polyurethane foam behaving thus as inflammable it is recognized that in Examples 5-9 wherein melamine powder was added according to the present invention improvement was attained as far as self-extinguishing or non-burning. Thus, the degree of flame resistance attained in Example 5 wherein 20 parts of melamine powder was added is nearly equal to that in Comparative Example 5 in which 10 parts of conventional flame retardant TCEP (Tris(β-chloroethyl)Phosphate) was added. As to the case of using Nisso NE-450 (Nihon Soda, commercial name), further, which is a sort of sucrose derivative polyol the merit of this invention to be clearly confirmed by comparing Comparative Examples 6 and 7 with Examples 10-14 in respect of the result of burning test.

All the above-mentioned examples point to the novelty and industrial usefulness of the present invention according to which polyurethane foam is obtained as flame resistant manufacture without using conventional phosphorus and halogen containing flame retardants but by addition of melamine powder quite inexpensive in industrial aspect.

                                  Table 1__________________________________________________________________________<Formulation>(PHR)   Example         Comparative example   1   2   3   4   1   2   3   4__________________________________________________________________________PolyolActocolGR-711   100 100         100 100 100 100Nippolan5062                       100 100Nisso NE-4503FlameretardantMelaminepowder  20  40  60  100TCEP4CatalystDABCO-                          1.5 1.533LV5Amino-alcohol2 M6C-Cat7   0.8 0.8 0.8 0.8 0.8 0.8NeostannU-1008                     0.17                               0.17SurfactantSiliconeSH-1939SiliconeF-31710   1.5 1.5 1.5 1.5 1.5 1.5SiliconeL-542011                   1.5 1.5Blowing agentWater   1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0Asahiflon   38  46  54  67  40  32  60  28.5llSS12Poly-isocyanateMillionateMR13   147.0       147.0           147.0               147.0                   147.0                       147.0                           141.2                               141.2(NCO Index)   110 110 100 110 110 110 108 108<Physicalproperties>Foamdensity(g/cm3)   0.0261       0.0244           0.0259               0.0248                   0.0228                       0.0260                           0.0212                               0.0265Heatconductivity(Kcal/m.hr. ° C.)   0.0174       0.0186           0.0176               0.0201                   0.0181                       0.0174                           0.0204                               0.0178Cold dimensional stability (%)-20° C.×24hr1114   - 0.4       - 0.3             0 -0.4                    - 3.7                        0.1                            - 8.8                               - 0.5115   - 2.6       - 0.5           - 0.8                0.4                   - 23.8                       - 0.6                           -27.2                               -2.9Hot dimensionalstability (%)70° C.× 24hr1114   - 0.6       - 0.6           - 0.6               -0.9                   - 0.5                       - 0.4                           - 0.9                               - 0.3115    1.0        1.0            1.0                1.9                    1.2                        1.0                            7.0                                0.8Compressivestrength(kg/cm2)    1.76        1.44            1.41                0.90                    1.28                        1.64                            0.74                                1.62Modulus ofcompressiveelasticity(kg/cm2)   54.9       50.7           46.9               33.1                   38.6                       52.2                           28.9                               59.3<Burningtest> ASTMD-1692-59TJudgment.sup. 16   SE  SE  NB  NB   SE SE  B   BBurningdistance (mm)   6   5           32  36  100 100Burningtime (sec)   8   13          20  20  27  23__________________________________________________________________________<Formulation>(PHR)       Example         Comparative example       5   6   7   8   5   6   7__________________________________________________________________________PolyolActocol(GR-711)NippolanN-5062 100 100 100 100 100NissoNE-4503                    100 100Flame RetardantMelaminepowder      20  40  40  60  20TCEP4                  10CatalystDABCO-33LV5  1.0 1.0 1.5 1.2 1.5 1.0 1.2Aminoalcohol2M6        1.2 2.0 1.5     1.2 1.5C-Cat7NeostannU-1008 0.15            0.17SurfactantSiliconeSH-1939    1.5 2.0 1.5     1.5 1.5SiliconeF-31710SiliconeL-542011       1.5             1.5Blowing agentWater       2.0 2.0 2.0 2.0 2.0 2.0 2.0Asahiflon11 SS12       60  70  44  78  28.5                           60  30PolyisocyanateMillionateMR13   144.4           144.4               144.4                   144.4                       141.2                           155.1                               155.1(NCO Index) 110 110 110 110 108 110 110<Physical properties>Foam density(g/cm3)       0.0214           0.0212               0.0250                   0.0213                       0.0278                           0.0204                               0.0273Heat conductivity(Kcal/m.hr.° C.)       0.0208           0.0229               0.0198                   0.0228                       0.0175                           0.0204                               0.0184Cold dimensionalstability (%)-20° C. × 24 hr1114   -0.5           -0.5               -0.3                   -0.6                       -0.3                           -6.4                               -0.1115    -4.6           2.6 -0.3                   2.7 -0.6                           -27.5                               -0.5Hot dimensionalstability (%)70°  C. ×  24 hr1114   -1.7           -1.5               -0.8                   -2.0                       -0.4                           -1.5                               -0.7115    8.1 4.6 1.6 5.9 0.4 4.2 0.6Compressive strength(kg/cm2)       0.67           0.73               1.41                   0.61                       1.48                           0.97                               2.24Modulus of compressiveelasticity(kg/cm2)       25.9           30.9               52.7                   26.6                       60.7                           33.8                               72.1<Burning>ASTM D-1692-59TJudgment16       SE  NB  SE  NB  SE  B   BBurning distance(mm)        22      4       17  100 100Burning time(sec)       16      15      11  27  26__________________________________________________________________________<Formulation>(PHR)     Example     9    10   11   12   13   14__________________________________________________________________________PolyolActocolGR-711Nippolan5062 100Nisso NE-4503      100  100  100  100  100Flame retardantMelaminepowder    100  20   40   40   60   100TCEP4CatalystDABCO-33LV5     1.5  1.0  1.0  1.5  1.0  1.5Aminoalcohol2M6  2.0  1.2  1.2  1.5  1.2  2.0C-Cat7NeostannU-1008SurfactantSiliconeSH-1939     3.0  1.5  1.5  2.0  1.5  3.0SiliconeF-31710SiliconeL-542011Blowing agentWater     2.0  2.0  2.0  2.0  2.0  2.0Asahiflon11SS12     95   65   70   44   78   95PolyisocyanateMillionateMR13 144.4          155.1               155.1                    155.1                         155.1                              155.1(NCO Index)     110  110  110  110  110  110<Physical Properties>Foam density(g/cm3)     0.0219          0.0212               0.0216                    0.0264                         0.0218                              0.0219Heatconductivity(Kcal/m.hr. °C.)     0.0219          0.0212               0.0216                    0.0186                         0.0225                              0.0220Cold dimensionalstability (%)-20°  C. ×  24 hr1114 -0.3 -0.3 -0.3 0    -0.5 -0.3115  1.7  1.5  2.4  -1.5 2.1  0.8Hot dimensionalstability (%)70°  C.× 24 hr1114 -1.3 -1.4 -1.6 -0.9 -1.6 -1.6115  8.2  5.6  5.5  2.3  5.6  6.4Compressivestrength(kg/cm2)     0.50 0.86 0.82 1.47 0.82 0.59Modulus ofcompressiveelasticity(kg/cm2)     21.9 33.2 32.5 57.6 31.0 23.6<Burning test>ASTM D-1692-59TJudgment16     NB   SE   SE   NB   NB   NBBurning distance(mm)           59   11Burning time(sec)          40   12__________________________________________________________________________ Note: 1 Commercial name, product of Takeda Chemicals, aromatic amine derivative polyol, OH number=495-465 mg KOH/g 2 Commercial name, product of Nihon Polyurethane, aromatic amine derivative polyol, OH number=  410-390 mg KOH/g polyol 3 Commercial name, product of Nihon Soda, sucrose derivative polyol, OH number= 465-435 mg KOH/g polyol 4 Tris (β chloroethyl) phosphate 5 Commercial name, manufacture of Sankyo Airproducts, triethylendiamine/dipropylene glycol (weight proportion 1/2) 6 Commercial name, product of Nihon Nyukazai, dimethyl ethanolamine 7 Commercial name, product of Kao Sekken, N,N, N', Ntetramethylpropylendiamine/N, N, N', N",N" pentamethyldiethylenetriamine (weight proportion 7/3) 8 Commercial name, product of Nitto Kasei, dibutyltindilaurate 9 Commercial name, product of Tore Silicone, Silicone surfactant 10 Commercial name, product of Shinetsu Silicone, Silicone surfactan 11 Commercial name, product of Nihon Unicar, Silicone surfactant 12 Commercial name, product of Asahi Glass, trichloromonofluoromethane 13 Commercial name, product of Nihon Polyurethane, crude diphenylmethanediisocyanate 14 Dimensional stability in the direction of foaming 15 Dimensional stability in the direction perpendicular to that of foaming 16 Judgment appraisal  B: burning  SE: selfextinguishing  NB: nonburning
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3399151 *15 Ago 196627 Ago 1968Olin MathiesonPolyurethane foam prepared from an oxyalkylated polyamino-1, 3, 5-triazine-organic polyisocyanate reaction product
US3462381 *20 Oct 196619 Ago 1969Ici LtdPolymeric materials
US3824239 *29 Dic 197216 Jul 1974Basf Wyandotte CorpDisubstituted diethanol-amino-s-triazines
US3897372 *17 Abr 197429 Jul 1975Grace W R & CoSmoke-flame retardant hydrophilic urethane and method
US4098729 *13 Jul 19764 Jul 1978Th. Goldschmidt AgProcess of producing cross-linked urethane-group comprising foams of open-cell structure
US4139501 *19 Oct 197713 Feb 1979Tenneco Chemicals, Inc.Production of polyurethane foam of reduced tendency to form embers when burned
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4390642 *7 Jul 198128 Jun 1983Thermocell Development, Ltd.Flame-retardant, thermosetting foam product and method of preparing same
US4421868 *28 Sep 198220 Dic 1983Thermocell Development, Ltd.Polyester-melamine thermosetting foam and method of preparation
US4444913 *18 Nov 198224 Abr 1984Thermocell Development, Ltd.Modified polyisocyanurate foam and method of preparation
US4467014 *6 Abr 198321 Ago 1984Thermocell Development, Ltd.Polyisocyanurate-coated foam insulation board and method of preparation
US4485195 *25 Oct 198327 Nov 1984Texaco Inc.Alkoxylated Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4487816 *4 Ene 198411 Dic 1984Thermocell Development, Ltd.Sprayable, modified polyisocyanurate composition and articles therefrom
US4487852 *25 Oct 198311 Dic 1984Texaco Inc.Modified Mannich condensates and manufacture of rigid polyurethane foam with alkoxylation products thereof
US4489178 *25 Oct 198318 Dic 1984Texaco Inc.Mannich condensates having fire retardancy properties and manufacture of rigid polyurethane foam therewith
US4500655 *29 Dic 198319 Feb 1985Texaco Inc.Alkoxylated modified Mannich condensates and manufacture of rigid polyurethane foams therewith
US4644015 *8 May 198617 Feb 1987Ashland Oil, Inc.Stable polyol-melamine blend for use in the manufacture of fire retardant flexible urethane foam
US4745133 *19 Mar 198717 May 1988Basf CorporationFlame retardant polyurethane foams
US4757093 *21 May 198712 Jul 1988Reeves Brothers, Inc.Flame retardant melamine containing polyurethane foam
US4757094 *21 May 198712 Jul 1988Reeves Brothers, Inc.Melamine cured polyurethane foam with improved properties
US4826884 *20 Jul 19872 May 1989Basf CorporationFlame retardant polyurethane foams resistant to cigarette smoldering ignition
US4871477 *20 Oct 19883 Oct 1989Firestop Chemical CorporationFire protected foamed polymeric materials
US4892893 *17 Feb 19899 Ene 1990Basf CorporationFlame retardant polyurethane foams resistant to cigarette smoldering ignition
US4904703 *7 Dic 198827 Feb 1990Sms AssociatesHigh temperature foam
US5017623 *21 Ago 198921 May 1991Bayer AktiengesellschaftProcess for the preparation of polyurethane foams
US5087384 *22 Mar 199011 Feb 1992Chemie Linz Gesellschaft M.B.H.Melamine preparation and stable dispersion of melamine in polyether polyols
US5104905 *2 Oct 198914 Abr 1992Bayer AktiengesellschaftProcess for the preparation of polyurethane foams
US5104906 *21 Jun 199114 Abr 1992Bayer AktiengesellschaftProcess for the preparation of polyurethane foams
US5171758 *24 Dic 199015 Dic 1992Olin CorporationFlame retardant urethane foams made using propylene oxide-based polyols
US5506278 *15 Dic 19949 Abr 1996Hickory Springs Manufacturing CompanyPolyurethane foams
US5536757 *15 Dic 199416 Jul 1996Hickory Springs Manufacturing CompanyPolyurethane foams
US5569682 *5 Jun 199529 Oct 1996Hickory Springs Manufacturing CompanyFire-retardant polyurethane foams and method of producing
US5741827 *28 Ago 199621 Abr 1998Basf AktiengesellschaftProduction of flame-resistant flexible polyurethane foams
US5837760 *21 Jul 199717 Nov 1998Elastogran GmbhSelf-extinguishing thermoplastic polyurethanes and their preparation
US5885479 *1 May 199723 Mar 1999Basf AktiengesellschaftProduction of flame-resistant flexible polyurethane foams
US7196130 *3 Jun 200327 Mar 2007Mitsui Chemicals, Inc.Thermoplastic resin composition, polymer composition, and molded product comprising the composition
US80489358 Nov 20041 Nov 2011Carpenter Co.Liquid foam systems and ASTM E-84 class 1 rated rigid, high-density polyurethane foams and articles prepared therefrom
USRE36358 *16 Jul 199626 Oct 1999Basf CorporationFlame retardant polyurethane foams
DE102011056368A113 Dic 201113 Jun 2013Chemische Fabrik Budenheim KgHalogenfreies Flammschutzmittel für thermoplastisches Polyurethan (TPU)
WO1984000373A1 *13 Jul 19832 Feb 1984Thermocell Dev LtdModified polyisocyanurate foam and method of preparation
WO1990015833A1 *12 Jun 199027 Dic 1990Basf CorpPolyurethane compositions exhibiting reduced smoke density and method of preparing same
WO1994007943A1 *5 Oct 199214 Abr 1994Olin CorpFlame retardant urethane foams
WO2010066771A29 Dic 200917 Jun 2010Basf SeWhite expandable polystyrene having improved heat conductivity
WO2013087733A212 Dic 201220 Jun 2013Chemische Fabrik Budenheim KgHalogen‑free flame retardant for thermoplastic polyurethane (tpu)
Clasificaciones
Clasificación de EE.UU.521/128, 521/906, 521/163
Clasificación internacionalC08J9/00, C08G18/00, C08G18/38, C08J9/02
Clasificación cooperativaC08J2375/04, C08J9/0028, Y10S521/906, C08G18/3851
Clasificación europeaC08J9/00K16, C08G18/38F20N