US4483341A - Therapeutic hypothermia instrument - Google Patents

Therapeutic hypothermia instrument Download PDF

Info

Publication number
US4483341A
US4483341A US06/448,114 US44811482A US4483341A US 4483341 A US4483341 A US 4483341A US 44811482 A US44811482 A US 44811482A US 4483341 A US4483341 A US 4483341A
Authority
US
United States
Prior art keywords
temperature
cooling means
instrument
heat sink
kelvin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/448,114
Inventor
Eleonora M. Witteles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WITTELES ELEONRA M
Original Assignee
Atlantic Richfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Richfield Co filed Critical Atlantic Richfield Co
Priority to US06/448,114 priority Critical patent/US4483341A/en
Assigned to ATLANTIC RICHFIELD COMPANY, A CORP OF PA. reassignment ATLANTIC RICHFIELD COMPANY, A CORP OF PA. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WITTELES, ELEONORA M.
Assigned to WITTELES, ELEONRA M., reassignment WITTELES, ELEONRA M., ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ATLANTIC RICHFIELD COMPANY
Application granted granted Critical
Publication of US4483341A publication Critical patent/US4483341A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/007Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
    • A61F2007/0075Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0023Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • This invention relates generally to an instrument for use in cryogenic treatment of portions of the human body, and more particularly to a capsule having a solid state heat exchange means therein for the cryogenic treatment of tissue.
  • neoplastic tissue In the treatment of human diseases, particularly cancer, it is frequently desired to eliminate neoplastic tissue. This can be accomplished by extirpative surgery or by in-situ necrosis. Surgical intervention has the disadvantage of causing substantial metastasis by allowing the release of malignant cells into healthy tissue during the procedure. In addition, there are many instances where surgery is impossible.
  • Cryosurgery i.e., the controlled destruction of tissue by freezing for the treatment of tumors, began with the use of carbon dioxide snow and iced saline on advanced tumors. Thereafter, liquid nitrogen, applied with a cotton swab, was used for the treatment of skin cancer. More recently, a closed-tip cryosurgical unit was developed, in which the temperature of the probe tip is reduced to -190° C. through the circulation of liquid nitrogen through the probe tip of a vacuum insulated tube. A second technique involves the spraying of liquid nitrogen directly onto the target area.
  • both systems may be used only once with respect to internal tumors, i.e. during the surgical procedure. As a result they can only be applied to superficial carcinomas without repeated surgery.
  • the use of a probe produces an unfocused sphere of frozen tissue which damages healthy tissue at least as much as tumor tissue when the probe is placed adjacent to the tumor. Invasion of the tumor with the probe, i.e. freezing from the inside out, produces an increased risk of metastasis comparable to extirpative surgery.
  • a phase change occurs as water is converted into ice.
  • the ice crystals which are first formed are pure water, and the formation of these crystals in the liquid phase leads to an increasing solute concentration.
  • the liquid phase persists until the freezing point of the concentrated electrolyte solution is reached e.g. -21° C. (252° K.) for a sodium chloride system.
  • Rapid cooling e.g. at a rate faster than 100° C. per minute, causes intracellular ice crystals, as the water does not have a chance to leave the cell before freezing occurs
  • small ice crystals form in the cytoplasm nucleus and mitochondria of the cell and cause uncoupling of enzyme systems and DNA damage.
  • Rapid heat loss, as well as the pH change caused by the increasing solute concentration also damages cellular protein leading to the denaturation and detachment of the lipoprotein complex that comprises the cell membrane.
  • slow cooling e.g. 1° C. to 10° C. per minute allows extra cellular ice formation while the cell membrane acts as a barrier to crystal extension into the cell.
  • cell damage is caused solely by dehydration and toxic levels of solute concentration in the cell.
  • the more rapid the freeze the greater the cell damage.
  • a second parameter which determines the extent of cell destruction is the rate of thaw.
  • a slow or spontaneous thaw begins with the melting of microcrystals absorbing, in phase transition, an amount of heat equal to the latent heat of crystallization i.e. 80 Cal/g H 2 O, lowering the temperature and allowing recrystallization to occur. Thus, the microcrystals grow in size and cause increasing physical damage to the cell. Thus, slow or spontaneous thawing provides greater cell damage.
  • Mazur "Cryobiology" 2:181-192, 1966.
  • the eutectic temperature of the solution is the minimum temperature for adequate cell destruction e.g. in a physiological sodium chloride system -21° C.(252° K.).
  • lower temperatures are known to be more desirable and tumor control is increased by freezing tissue to at least -60° C.
  • T c the temperature of the cell during necrosis.
  • T n is a function of the distance from the surface of the instrument to the depth of the tissue when necrosis is to take place. It is also a function of the type of tissue treated.
  • a tumor expands predominantly by the growth of cells at the advancing margins, where new capillaries are formed which are closely related to their conjunctive arteries and veins. Capillaries in the center of the tumor, on the other hand, are connected only to other capillaries and thus blood flow becomes quite sluggish.
  • the application of freezing temperatures to the margin of the advancing tumor substantially diminishes the blood flow and reduces the circulatory input of heat into the target area. This reduction in heat input allows a greater volume of tissue to be frozen using repetitive freeze-thaw cycles.
  • the cytostatic damage caused by repetitive freezes is greater than damage caused by a single freeze-thaw cycle and thus tumor control is increased.
  • thermoelectric medical instrument which may be used to supply controlled cooling temperatures to the heart during surgery and for external uses such as freezing treatment of warts and skin blemishes.
  • the instrument includes a thermocouple assembly composed of a series of semiconductor elements of the p-type, alternating with semiconductor elements of the n-type and adapted to produce cooling by the Peltier effect.
  • the instrument of the U.S. Pat. No. 3,133,539 is of substantial size and is intended to produce a temperature approximating that of crushed ice. In fact, the maximum cooling effect at the headpiece of the instrument is disclose as being between -20° C. and -25° C.
  • U.S. Pat. No. 3,369,549 to Armao relates to a thermoelectric heat exchange capsule probe, similarly employing the Peltier effect, which may be used during surgery to freeze tumors to avoid the metastisizing for release of malignant cells into healthy tissue. Cooling of the diseased portion renders the malignant cells immobile by inhibiting the movement of fluids and cells in the tissue. It is acknowledged that freezing at sufficiently low temperatures will destroy cancer cells, but the thermoelectric instrument of the U.S. Pat. No. 3,369,549 claims only to freeze the tissue sufficiently to prohibit metastasis and the instrument is to be used as an adjunct in extirpative surgery rather than a primary instrument for cell necrosis.
  • Solid state cooling devices such as those shown in the aforementioned patents, have heretofore been unable to attain the cytostatic temperatures required for cell necrosis and tumor control.
  • the efficiency of the Peltier cooler in terms of temperature change per unit of electric current required, decreases dramatically with colder temperatures.
  • Even with cascaded thermoelectric coolers, -90° C. from room temperature is the practical limit with the Peltier effect, and the maximum temperature difference developed across a stage is directly proportional to the square of the cold junction temperature.
  • solid state cooling devices of efficacious size and current demands while capable of providing substantial advantages over closed tip liquid nitrogen cryoprobes, have heretofore been incapable of obtaining the extreme subfreezing temperatures required for effective tumor control.
  • a hypothermia instrument for the application of cytostatic freezing temperatures to selected portions of the body, the instrument comprising an outer casing of substantially rigid material; an outwardly concave head portion, or cold end, of heat conducting material at a first end of the casing; a heat sink or hot end at a second end of the casing; and solid state electrothermal means within the casing in a heat exchanging relationship with the cold end and hot end and adapted to produce a subfreezing temperature at the head portion.
  • the electrothermal means is composed of an array of thermally consecutive thermoelectric and thermomagnetic cooling stages disposed so that the hot junction of the first stage is thermally adjacent the hot end of the instrument, and the cold junction of the first stage serves as a heat sink for the hot junction of the next stage.
  • Each successive stage is most efficient in a progressively lower temperature range, and absorbs heat from the next consecutive stage.
  • the last, or coldest, of the stages acts as a heat sink for, i.e. pumps heat from, the concave cold end of the instrument.
  • the microcooler includes a first Peltier effect means disposed as a heat sink for a second Peltier effect means having an applied magnetic field.
  • the second Peltier effect means is disposed as a heat sink for an Ettinghausen effect means disposed as a heat sink for the head portion.
  • the instrument may be of an implantable size i.e., approximately 5 centimeters in length, and may be implanted surgically, in the manner of a pacemaker or insulin pump, or through the use of a catheter or the like depending upon the location of the tumor.
  • the outwardly concave head portion of the instrument is thermally adjacent the final cold junction of the microcooler, and provides a directed and focused cooling effect upon the target tissue rather than the freeze-ball effect produced by the cryogenic probes which are known in the art.
  • This allows the instrument to be implanted at the margin or edge of the tumor in the area of maximum vascular flow, with the coldfocusing head portion directed inwardly toward the center of the tumor to direct substantially all of the freezing effect toward the tumor and away from healthy tissue.
  • the head portion may be detachable, and a plurality of head portions having varied shapes and sizes may be provided to provide maximum freezing effect upon different sizes and shapes of tumors.
  • the outer concave surface of the head portion may be provided with a loosely tangled fine metal filament in steel-wool form, providing continued contact with the instrument while the tumor changes size and shape as necrosis continues, yet allowing for good thermal contact between the head portion and the tumor.
  • the freezing effect is provided by a hybrid multistage thermoelectric-thermomagnetic cooling unit which reduces the temperature of the head portion of the instrument from body temperature (310° K.) to approximately 100° K. This temperature ensures that the temperature of the tissue in contact with the head portion is below 213° K.(-60° C.), the minimum temperature required for complete tumor necrosis.
  • Each stage of the multi-stage cooling unit acts as a variable temperature heat sink for the next succeeding stage, and is operated in a temperature range which provides maximum cooling efficiency in terms of the electrical current consumed.
  • a cascaded thermoelectric Peltier heat pump is provided to lower the temperature of the cold junction thereof from body temperature (310° K.) to approximately 190° K., which temperatures are within the most efficient range for the Peltier effect.
  • the cold junction of the Peltier heat pump serves as a heat sink for a cascaded thermomagnetic heat pump connected thermally in parallel with the thermoelectric unit.
  • the thermomagnetic unit is constructed by the application of a magnetic field across the thermocouples of a cascaded thermoelectric heat pump and, when operated in tandem with the aforementioned Peltier heat pump, is capable of efficiently reducing the temperature at its hot junction (194° K.) to 150° K. at its cold junction.
  • thermomagnetic system serves as a heat sink for an Ettingshausen cooling unit, which is capable of efficiently reducing the temperature at its hot junction (150° K.) to 100° K. which is then thermally conducted to the head portion of the instrument as described.
  • the cooling unit may be powered and controlled by one of the numerous methods and devices currently used for the operation of implantable electronic instruments. Electrical connectors may extend from the instrument through the skin to an external power source, or internal lithium batteries may be incorporated in the instrument as an internal power source which is externally controlled by a transcutaneously operated power switch incorporating a radio frequency control or other transcutaneous means.
  • the instrument may also be powered by an internal nickel cadmium battery which may be recharged, and the instrument controlled, by radio frequency power transmitted from an external power source.
  • the instrument may be implanted surgically or otherwise placed with the concave head portion adjacent the edge of the target tumor area, and the temperature of the head portion is reduced from body temperature (310° K.) to 100° K. This temperature ensures the temperature of the tissue in contact with the head portion is below 213° K., the required temperature for necrosis. This temperature is maintained for a period of approximately four minutes, and the current to the instrument is then disconnected allowing a slow, spontaneous thawing for a period of 48 hours. During this period, the necrotic tissue, previously frozen, disintegrates and is carried away by body processes. A second freezing cycle is then begun to similarly treat the next layer of tumor tissue.
  • the implantable hypothermia instrument and method of the present invention provides numerous freeze-thaw cycles, thus allowing for complete necrosis of large and deep-seated tumors without repetitive invasive procedures.
  • the instrument provides an optimal freezing rate of 120° C. per minute. The exact localization and focusing of the freezing ensures preservation of the healthy tissue adjacent to the tumor.
  • As a result of the in-situ tumor necrosis there is an enhancement in the tumor-specific immunity to subsequent tumor growth as a result of the prolonged exposure of the host to tumor antigen provided by the in situ necrosis. Further, the risks of metastasis as well as hermorrhaging are substantially limited as compared to extirpative surgery.
  • FIG. 1 is a schematic cross-sectional view of a hypothermia instrument in accordance with the present invention
  • FIG. 2 is a schematic cross-sectional view of an alternative embodiment in accordance with the present invention.
  • FIG. 3 is a schematic cross-sectional view of an alternative embodiment to that of FIG. 1;
  • FIG. 4 is a schematic representation of an Ettingshausen parallelpiped
  • FIG. 5 is a representation of an exponentially shaped Ettingshausen parallelpiped
  • FIG. 6 is a schematic representation of a portion of the Ettingshausen cooler of the present invention.
  • FIGS. 1-3 a hypothermia instrument 10, adapted for surgical insertion in the human body, is shown in FIGS. 1-3.
  • the hypothermia instrument 10 is shown to be cylindrical in form, and to have a casing 12 defining the major portion of the instrument.
  • the casing 12 may be formed from a biocompatible material having a coefficient of thermal expansion appropriate for the temperature gradients herein described.
  • the casing 12 may be made from any one of a number of polymeric materials, such as epoxy, which have the advantage of providing thermal and electrical insulation properties.
  • Other appropriate materials for the casing 12 would be stainless steel or silver, when provided with additional insulation means as set forth hereinafter.
  • the instrument 10 is further seen to include a concave head portion 14 at a first end thereof, a heat sink portion 16 disposed at a second end opposite said head portion 14 and a microcooler 18 disposed therebetween.
  • the head portion 14 is seen to be removably attached to the casing 12 by means of mating threaded portions 20 and 21 which, upon engagement, cause the head portion 14 and the casing 12 to be drawn into an abutting and sealing relationship at the flange 22 of the head portion 14.
  • the head portion 14 is further seen to include an outwardly concave tumor abutting portion 24, said head portion 14 being detachable by means of the threads 20 and 21 to allow the substitution of additional head portions, not shown, having varied concave shapes adapted to fit the size and shape of the individual tumor, not shown.
  • the head portion 14 is constructed of a material having high thermal conductivity such as silver or stainless steel, and is seen to include, along the tumor abutting portion 24, a film of fluorocarbon material 26 such as Teflon to serve as an anticryoadhesion material to prevent the risk of induced hemorrhaging upon the movement of the instrument in the treatment of a large target area of the tumor.
  • a film of fluorocarbon material 26 such as Teflon to serve as an anticryoadhesion material to prevent the risk of induced hemorrhaging upon the movement of the instrument in the treatment of a large target area of the tumor.
  • the heat sink 16 is shown to be joined to the casing 12 by epoxy adhesive at the junction 27 therebetween, although the heat sink 16 may be removably attached to the casing 12 by mating threads, not shown, similar to the threads 20 and 21.
  • the head portion 14 is shown to be faced with a woven wire cloth 128 in a tangled steel-wool form, allowing for good thermal contact between the head portion 14 and the changing size and shape of the tumor during treatment.
  • the head portion 14 is seen to be attached to and insulated from the casing 12, here represented as having been fashioned from a thermally conductive material such as stainless steel or silver, by a thermally insulative gasket member 30.
  • the gasket member 30 is seen to join the head portion 14 and the casing 12 by means of a suitable low temperature adhesive such as epoxy.
  • the instrument 10 includes a heat sink 16 for the transmission of heat generated by the microcooler 18.
  • the heat sink 16 is constructed from a material having high thermal conductivity such as that used in the head portion 14.
  • the struts 32 aid in the transmission of heat from the microcooler 18 to the outer portion 34 of the heat sink 16, where it is there transmitted to healthy tissue, not shown, surrounding the instrument 10.
  • the heat sink 16 may also include a battery 36 to supply power to the microcooler as hereinafter described, and is shown to include an end cap 38, removable via threads 39, in the outer portion 34 to provide access to the battery 36 for maintenance and replacement thereof.
  • the heat sink 16 may be filled with a thermal conducting fluorocarbon liquid such as polyfluorinated polyethers having the general formula ##STR1## where n is a whole number in the range of 1-11. These materials are available from E.I. DuPont de Nemours & Co.
  • the heat sink 16 is seen to include optional heat radiating fins 40 disposed about the outer portion 34 to assist in the transfer of heat therefrom.
  • the instrument 10 described in FIG. 3 is seen to be operated and powered by an external power source, not shown, rather than by the battery 36 as shown in FIG. 1. Electrical current enters the instrument 10 through a Teflon coated power cord 42, passing through a grommet 44 contained in an opening 46 formed in the outer portion 34 of the heat sink 16.
  • thermoelectric Peltier section 48 a thermomagnetic section 50 and a third section 52 which employs the Ettingshausen effect.
  • thermoelectric Peltier section 48 a thermoelectric Peltier section 48
  • thermomagnetic section 50 a thermomagnetic section 50
  • third section 52 which employs the Ettingshausen effect.
  • Each of the three sections is utilized in a particular portion of the temperature gradient over which it pumps heat in an effective and efficient manner.
  • the Peltier section 48 having a hot junction 54 cooled by the heat sink 16, reduces the temperature of the heat sink 16 from body temperature (310° K.) to approximately 194° K. at its cold junction 56.
  • the cold junction 56 and thus the Peltier section 48 serves as a heat sink for the thermomagnetic section 50 which reduces the temperature of the junction 56 from 195° K. to 150° K. at the junction 58.
  • the junction 58, and thus the thermomagnetic unit 50 serves as a heat sink for the Ettingshausen unit 52 which further reduces the temperature of the junction 58 i.e. 150° K., to a temperature of 100° K. at a cold junction 60, which temperature is then thermally conducted to the head portion 14.
  • thermoelectric cooling The mechanism of thermoelectric cooling, known as the Peltier effect, is well known, and since the refinement of semiconductor materials thermoelectric refrigeration has become increasingly common.
  • Semiconductor materials with dissimilar characteristics are connected electrically in series and thermally in parallel, so that two junctions are created.
  • the semiconductor materials are n- and p-type and are so named because either they have more electrons than necessary to complete a perfect molecular lattice structure (n-type) or not enough electrons to complete a lattice structure (p-type).
  • the extra electrons in the n-type materials and the holes left in the p-type material are called carriers and they are the agents that move the heat energy from the cold to the hot junction. Heat absorbed at the cold junction is pumped to the hot junction at a rate proportional to the carrier current passing through the circuit and the number of couples.
  • Couples are combined in a module where they are connected in series electrically and in parallel thermally.
  • a single stage module is capable of pumping heat where the difference in a temperature of the cold junction and hot junction ( ⁇ T) is 70° C. or less.
  • ⁇ T cold junction and hot junction
  • the modules in tiers can be cascaded i.e., the mechanical stacking of modules in tiers so that the cold junction of one module becomes the heat sink for a smaller module on top.
  • the next lower tier must also pump the heat resulting from the input power to the upper tier. Consequently, each succeeding tier must be larger and larger from the top of the cascade downward toward the hot junction.
  • a six-tier cascaded Peltier effect heat pump employing Bi 2 Te 3 (p)--Bi 2 Te 3 (n) alloy, such as manufactured by Cambridge Thermionic Corporation under the trademark CAMBION, provides a ⁇ T of 115° K. as required by the microcooler 18.
  • the Peltier unit 48 is seen to comprise alternating p-type Be 2 Te 3 semiconductors 62 and n-type Be 2 Te 3 semiconductors 64 and metal p--n connectors 66 and 68 which are electrically insulated from the junctions 54 and 56 by electrical insulation members 70 and 72, respectively.
  • the junctions 54 and 56 may be made of ceramic material which has electrical insulation and thermal conducting properties, whereupon the electrical insulation members 70 and 72 may be omitted.
  • thermoelectric coolers Methods for the production of solid state thermoelectric coolers are known in the art and coolers of the type represented figuratively by Peltier unit 48 in FIGS. 1 and 2 are available from one of numerous commercial suppliers, as hereinbefore described.
  • thermomagnetic stage 50 The six-tier cascaded solid state thermoelectric Peltier unit 48, by providing a temperature of 195° K. at junction 56, serves as a heat sink for the second, thermomagnetic stage 50 of the microcooler 18.
  • the thermomagnetic stage 50 is constructed in a manner similar to that of the thermoelectric stage 48 and includes metal connecting strips 74 and 76 as well as electrical insulating means 78 and 80, respectively, between the respective connecting strips 74 and 76 and the heat junctions 56 and 58.
  • the thermomagnetic unit 50 employs thermocouples of Bi--Sb alloy which are doped to provide p-type semiconductors 82 and n-type semiconductors 84.
  • the thermomagnetic stage 50 is preferably a three tier cascaded module, as hereinbefore described, which operates in an applied magnetic field of 3000 to 8000 gauss to improve the thermocouple efficiency over a colder portion of the temperature gradient.
  • the magnetic field is provided by samariumcobalt permanent magnets 86, having soft iron fieldforming pole faces 88, placed in spaces between the thermocouple elements.
  • the magnets 86 provide a transverse magnetic field on the thermocouple elements and allow the thermomagnetic stage to operate efficiently in a reduced temperature range and to produce at the junction 58 a temperature of 150° K.
  • the last cooling stage of the microcooler 18 is provided by a cooling unit 52 which employs the Ettingshausen effect.
  • the Ettingshausen effect is described with reference to FIG. 4, and occurs when a current passes through a parallelpiped of intrinsic (n ⁇ p) material. A transverse magnetic field deflects the carriers and the net carrier transport creates an energy flow since the carriers must recombine (heating) on one side and be generated (cooling) on the other side.
  • the Ettingshausen cooler is preferably constructed from optimally doped n-type Bi--Sb alloys, in which the thermomagnetic effects are largest in the temperature range of 100° K.-200° K.
  • the ⁇ T across the Ettingshausen cooler saturates at a critical value of the magnetic field which depends upon temperature.
  • the condition for saturation is that the product of the charge carrier mobility in the magnetic field be much greater than unity. As the mobility falls with increasing temperature, the magnetic field required to produce saturation becomes very large at high temperatures.
  • the thermoelectric stage 48 and the thermo magnetic stage 50 provide a heat sink for the Ettingshausen cooler which will limit the saturation field to reasonable values and allow the cooler to operate in a temperature range which will yield the largest ⁇ T, or the lowest overall temperature at the head piece 14.
  • thermoelectric couples may be cascaded to improve the performance above that of a single couple.
  • the Ettingshausen device comprising a single unit 90, is cascaded by the shaping of the single element exponentially as described in FIG. 5.
  • shaped devices have more than doubled the performance of a simple parallelpiped.
  • the required magnetic field of 3000 to 8000 gauss in the Ettingshausen unit 52 is provided by small, lightweight samarium-cobalt magnets 92 placed between the Ettingshausen devices 90 as shown in FIGS. 1 and 2.
  • the magnets 92 are provided with soft iron field forming pole faces 94 to provide the required transverse magnetic field.
  • the individual Ettingshausen devices 90 are seen to be mounted between the junctions 58 and 60 and separated therefrom by means of electrically insulating and thermally conductive material 96 and 98.
  • FIG. 6 two of the Ettingshausen devices 90 are seen to be mounted, figuratively, on either side of the samarium-cobalt magnet 92.
  • the Ettingshausen devices are seen to include electrically conductive metal pole end pieces 100 and the electrically insulative and thermally conductive pieces 96 and 98.
  • the devices 90 are seen to be connected to the battery 102.
  • electromagnetic coils are placed in the spaces between the Ettingshausen devices 90 as well as in the spaces between the n and p couples 82 and 84 in the thermomagnetic section 50 as hereinbefore described.
  • the electric current which flows through the Ettingshausen units 90 and the electromagnetic section 50 is also passed through the coils to produce the required magnetic field.
  • the number of turns in the coil is such that a field of 8K Gauss is produced.
  • the coil is positioned in such a way that the magnetic field which it produces is directed in a direction perpendicular to the direction of current flow in the Ettingshausen units and in the thermomagnetic elements.
  • thermomagnetic unit having the following values of temperature:
  • thermoelectric unit having the following values of temperature:
  • the heat load on the probe of the instrument at the cold stage is 10mW;
  • the efficiency of the exponentially shaped device is: ##EQU1##
  • the efficiency is: ##EQU2## This calculation has to be performed for each stage using the proper values of ⁇ T, T H and T C for each stage. For example, ##EQU3##
  • the Peltier stages ##EQU4## This calculation again has to be performed for each state using the proper values of ⁇ T, T H and T C for each stage.
  • thermoelectric devices are preferably high current-low voltage unit, the battery 36 must supply a current of about 8 amperes at a potential of 2 volts.
  • the microcooler 18 is seen to be powered by a battery 36, in this instance a rechargeable nickel cadmium battery.
  • the battery 36 is recharged via radio frequency power transmitted from an external portable source, not shown, and received by a coil 102, by means of a recharging circuit 104.
  • the battery pack 36 may be "quick charged” at 40mA in about 21/2hours. This system, more fully described hereinafter, will charge implanted batteries through 13 mm tissue thickness, using 50mm diameter transmitting and receiving coils.
  • the microcooler 18 is switched off during recharging, and operated to produce the freeze/thaw cycles described herein, by an on-off switch circuit 106 which is controlled, through an implanted antenna 107, by an external radio transmitter, not shown.
  • radio-controlled devices are described in detail by Jeutter in IEEE Transactions On Biomedical Engineering, Vol. BME-29, No. 5, May 1982, which is hereby incorporated by reference.
  • the temperature produced by the microcooler 18 at the head portion 14 is controlled by a thermistor microcircuit 108.
  • the microcircuit 108 receives voltage from a silicone diode cryogenic temperature sensor 109 which passes increasing voltage as the temperature of the sensor decreases.
  • a silicone diode cryogenic temperature sensor may pass 0.3 volts at room temperature, 2.5 volts at helium temperatures and show a temperature sensitivity of approximately 50 millivolts per degree Kelvin.
  • Such sensors are available from Lake Shore Cryotronics, Inc.
  • the voltage produced by the sensor 109 is employed, by the thermistor microcircuit 108 in a manner known in the art, to maintain the proper temperature in the head piece 14 during the freeze/thaw cycles hereinafter described.
  • FIG. 3 yet another embodiment of the present invention shows the electric current for the operation of the instrument 10 entering the heat sink 16 via a Teflon-coated stainless steel or copper control cable 42.
  • Contained in the control cable 42 are power wires 110 and 112 which connect the thermoelectric stage 48, the thermomagnetic stage 50 and the Ettingshausen stage 52 to an external power source and power switch, neither shown.
  • Also contained in the cable 42 are leads 114 from the silicone diode cryogenic temperature sensor 116, which feeds voltage to an external thermistor microcircuit, not shown, used to control the temperature of the head piece 14 as described.
  • the sensor 116 is seen to protrude from the face of the head piece 14 to allow the direct sensing of the temperature of the tumor to be treated.
  • the instrument 10 also employs thermal junctions 118, 120 and 122, formed of ceramic material having high thermal conductivity and minimal electrical conductivity, thus obviating the need for the electrical insulating members 70, 72, 78, 80, 96 and 98 shown in FIG. 1.
  • the junctions 118, 120 and 122 are thermally insulated from the casing 12 of the instrument 10 by elastomeric support members 124, 126, and 128, each of said support members having low thermal conductivity.
  • the instrument 10 may be used to treat dermal and subdermal tumors or other diseased surface tissue, its primary utility is seen as the treatment of deep-seated tumors without repetitive invasive procedures.
  • the instrument 10 is implanted next to the tumor and positioned with the concave cold end 14 abutting the tumor margin by standard surgical techniques or through the use of a catheter when the tumor is within the lung, alimentary canal or genital-urinary tract.
  • the terms "implant” and “implantable” refer to the placement of the instrument within the body, whether by surgical or other techniques as described. Care should be taken to avoid the surgical invasion of the tumor in order to avoid the risk of metastatis.
  • the instrument 10 is positioned to allow external manipulation of the patient's body to reposition the instrument as the size of the tumor is reduced by necrosis.
  • the coil and antenna for the recharging and power switching system should be placed within the required distance below the skin i.e. 10 to 15mm tissue thickness for the charging unit and up to 100mm tissue thickness for the power switching system. If an external power and switching source, shown in FIG. 3, is used to operate the instrument 10, the Teflon-coated control cable 42 is led through the patient's skin to the external power source in the same manner as with other implantable instruments.
  • the current is caused to flow in the microcooler 18 until the temperature of the portion of the tumor adjacent the cold end 14 is reduced to at least 213° K. (-60° C.).
  • This temperature may be ascertained by a tumor-penetrating sensor such as the sensor 116 in FIG. 3, or by allowing the cold end 14 to reach a predetermined temperature, depending upon the density of the tumor tissue, as determined by the sensor 109 as shown in FIG. 2. According to the present invention, this temperature is attained with a freezing rate of 120° C. per minute.
  • this temperature is kept constant for three to four minutes. During this time period, the concave shape of the tumor abutting portion 24 of the cold end 14 focuses the freezing effect to form a sphere of frozen tissue adjacent the instrument 10. During the freezing cycle, the heat pumped from the cold end 14 is safely conducted to the healthy tissue by the heat sink 16.
  • the current to the instrument is then disconnected allowing for a slow, spontaneous thawing, and over a period of about 48 hours, the dead tumor tissue disintegrates and is carried away by body processes.
  • the current is then switched on for another freeze/thaw cycle, and the next layer of tumor tissue is destroyed.
  • the hypothermia instrument of the present invention allows repeated and controlled freeze/ thaw cycles for the total and complete necrosis of deep-seated tumors without repetitive invasive procedures.
  • the instrument attains in-situ tumor necrosis, with the accompanying enhancement of the tumor-specific immunity to subsequent tumor growth which results from the prolonged exposure of the host to tumor antigen provided by in-situ tumor necrosis.
  • the instrument allows accurate and controlled temperature as well as rate of freezing and thawing.
  • the freezing may be focused and localized to ensure the preservation of healthy tissue adjacent the tumor.
  • the tumor necrosis may be induced without hemorrhaging or other trauma which would serve to induce metastisis of the tumor cells.

Abstract

An implantable hypothermia instrument for the in-situ treatment of oncological disorders includes a cylindrical casing terminating at a first end in a concave tumor-abutting portion of a thermoconductive material which is thermally adjacent the cold junction of a cascaded three-component solid state cooler and shaped to partially surround the target tissue in order to provide a convergent freezing effect. The cooler comprises a thermoelectric first cooling section, a thermomagnetic second cooling section and an Ettingshausen third cooling section connected thermally in parallel to afford a stepped temperature reduction across a wide thermal gradient and to provide a temperature level, freezing rate and repetitive freeze/thaw cycles sufficient for tumor necrosis.

Description

BACKGROUND OF THE INVENTION
This invention relates generally to an instrument for use in cryogenic treatment of portions of the human body, and more particularly to a capsule having a solid state heat exchange means therein for the cryogenic treatment of tissue.
In the treatment of human diseases, particularly cancer, it is frequently desired to eliminate neoplastic tissue. This can be accomplished by extirpative surgery or by in-situ necrosis. Surgical intervention has the disadvantage of causing substantial metastasis by allowing the release of malignant cells into healthy tissue during the procedure. In addition, there are many instances where surgery is impossible.
A number of procedures are available for in situ necrosis. Among these are radiation therapy, chemotherapy, electrocoagulation, hyperthermia, microwave radiation and hypothermia. The primary disadvantage of these procedures as they are practiced today is the severe side effects which they may induce as well as the danger of damage to healthy tissue.
Cryosurgery, i.e., the controlled destruction of tissue by freezing for the treatment of tumors, began with the use of carbon dioxide snow and iced saline on advanced tumors. Thereafter, liquid nitrogen, applied with a cotton swab, was used for the treatment of skin cancer. More recently, a closed-tip cryosurgical unit was developed, in which the temperature of the probe tip is reduced to -190° C. through the circulation of liquid nitrogen through the probe tip of a vacuum insulated tube. A second technique involves the spraying of liquid nitrogen directly onto the target area. While the closed system has the advantage of a precise localized freezing point which allows for the preservation of adjacent tissue, and the open system allows maximal freezing of the target area, both systems may be used only once with respect to internal tumors, i.e. during the surgical procedure. As a result they can only be applied to superficial carcinomas without repeated surgery. Moreover, the use of a probe produces an unfocused sphere of frozen tissue which damages healthy tissue at least as much as tumor tissue when the probe is placed adjacent to the tumor. Invasion of the tumor with the probe, i.e. freezing from the inside out, produces an increased risk of metastasis comparable to extirpative surgery.
As the temperature of a biologic system is lowered, a phase change occurs as water is converted into ice. The ice crystals which are first formed are pure water, and the formation of these crystals in the liquid phase leads to an increasing solute concentration. The liquid phase persists until the freezing point of the concentrated electrolyte solution is reached e.g. -21° C. (252° K.) for a sodium chloride system.
Rapid cooling, e.g. at a rate faster than 100° C. per minute, causes intracellular ice crystals, as the water does not have a chance to leave the cell before freezing occurs As a result of such rapid freezing, small ice crystals form in the cytoplasm nucleus and mitochondria of the cell and cause uncoupling of enzyme systems and DNA damage. Rapid heat loss, as well as the pH change caused by the increasing solute concentration, also damages cellular protein leading to the denaturation and detachment of the lipoprotein complex that comprises the cell membrane. In contrast, slow cooling e.g. 1° C. to 10° C. per minute allows extra cellular ice formation while the cell membrane acts as a barrier to crystal extension into the cell. In this case, cell damage is caused solely by dehydration and toxic levels of solute concentration in the cell. Thus, the more rapid the freeze, the greater the cell damage.
A second parameter which determines the extent of cell destruction is the rate of thaw. A slow or spontaneous thaw begins with the melting of microcrystals absorbing, in phase transition, an amount of heat equal to the latent heat of crystallization i.e. 80 Cal/g H2 O, lowering the temperature and allowing recrystallization to occur. Thus, the microcrystals grow in size and cause increasing physical damage to the cell. Thus, slow or spontaneous thawing provides greater cell damage. Mazur, "Cryobiology" 2:181-192, 1966.
It is generally accepted that the eutectic temperature of the solution is the minimum temperature for adequate cell destruction e.g. in a physiological sodium chloride system -21° C.(252° K.). However, lower temperatures are known to be more desirable and tumor control is increased by freezing tissue to at least -60° C. Neel et al. "Laryngoscope", 83:1062-1071, 1973. It should be noted that there is a difference between the temperature Tc on the surface of the freezing instrument and the temperature Tn which is the temperature of the cell during necrosis. The difference between the Tc and Tn is a function of the distance from the surface of the instrument to the depth of the tissue when necrosis is to take place. It is also a function of the type of tissue treated.
One of the most important considerations in the hypothermic treatment of cancer is the vascularity of tumors and the relation of the rate of blood profusion to heat transfer. It is known that tumors have impaired blood circulation and reduced heat transfer capabilities. A tumor expands predominantly by the growth of cells at the advancing margins, where new capillaries are formed which are closely related to their conjunctive arteries and veins. Capillaries in the center of the tumor, on the other hand, are connected only to other capillaries and thus blood flow becomes quite sluggish. The application of freezing temperatures to the margin of the advancing tumor substantially diminishes the blood flow and reduces the circulatory input of heat into the target area. This reduction in heat input allows a greater volume of tissue to be frozen using repetitive freeze-thaw cycles. The cytostatic damage caused by repetitive freezes is greater than damage caused by a single freeze-thaw cycle and thus tumor control is increased.
U.S. Pat. No. 3,133,539 to Eidus describes a thermoelectric medical instrument which may be used to supply controlled cooling temperatures to the heart during surgery and for external uses such as freezing treatment of warts and skin blemishes. The instrument includes a thermocouple assembly composed of a series of semiconductor elements of the p-type, alternating with semiconductor elements of the n-type and adapted to produce cooling by the Peltier effect. The instrument of the U.S. Pat. No. 3,133,539 is of substantial size and is intended to produce a temperature approximating that of crushed ice. In fact, the maximum cooling effect at the headpiece of the instrument is disclose as being between -20° C. and -25° C.
U.S. Pat. No. 3,369,549 to Armao relates to a thermoelectric heat exchange capsule probe, similarly employing the Peltier effect, which may be used during surgery to freeze tumors to avoid the metastisizing for release of malignant cells into healthy tissue. Cooling of the diseased portion renders the malignant cells immobile by inhibiting the movement of fluids and cells in the tissue. It is acknowledged that freezing at sufficiently low temperatures will destroy cancer cells, but the thermoelectric instrument of the U.S. Pat. No. 3,369,549 claims only to freeze the tissue sufficiently to prohibit metastasis and the instrument is to be used as an adjunct in extirpative surgery rather than a primary instrument for cell necrosis.
Solid state cooling devices, such as those shown in the aforementioned patents, have heretofore been unable to attain the cytostatic temperatures required for cell necrosis and tumor control. The efficiency of the Peltier cooler, in terms of temperature change per unit of electric current required, decreases dramatically with colder temperatures. Even with cascaded thermoelectric coolers, -90° C. from room temperature is the practical limit with the Peltier effect, and the maximum temperature difference developed across a stage is directly proportional to the square of the cold junction temperature. Thus, it is apparent that solid state cooling devices of efficacious size and current demands, while capable of providing substantial advantages over closed tip liquid nitrogen cryoprobes, have heretofore been incapable of obtaining the extreme subfreezing temperatures required for effective tumor control.
SUMMARY OF THE INVENTION
In accordance with the present invention, a hypothermia instrument is provided for the application of cytostatic freezing temperatures to selected portions of the body, the instrument comprising an outer casing of substantially rigid material; an outwardly concave head portion, or cold end, of heat conducting material at a first end of the casing; a heat sink or hot end at a second end of the casing; and solid state electrothermal means within the casing in a heat exchanging relationship with the cold end and hot end and adapted to produce a subfreezing temperature at the head portion. The electrothermal means, or microcooler, is composed of an array of thermally consecutive thermoelectric and thermomagnetic cooling stages disposed so that the hot junction of the first stage is thermally adjacent the hot end of the instrument, and the cold junction of the first stage serves as a heat sink for the hot junction of the next stage. Each successive stage is most efficient in a progressively lower temperature range, and absorbs heat from the next consecutive stage. The last, or coldest, of the stages acts as a heat sink for, i.e. pumps heat from, the concave cold end of the instrument. For example, in a preferred embodiment, the microcooler includes a first Peltier effect means disposed as a heat sink for a second Peltier effect means having an applied magnetic field. The second Peltier effect means, in turn, is disposed as a heat sink for an Ettinghausen effect means disposed as a heat sink for the head portion.
The instrument may be of an implantable size i.e., approximately 5 centimeters in length, and may be implanted surgically, in the manner of a pacemaker or insulin pump, or through the use of a catheter or the like depending upon the location of the tumor.
The outwardly concave head portion of the instrument is thermally adjacent the final cold junction of the microcooler, and provides a directed and focused cooling effect upon the target tissue rather than the freeze-ball effect produced by the cryogenic probes which are known in the art. This allows the instrument to be implanted at the margin or edge of the tumor in the area of maximum vascular flow, with the coldfocusing head portion directed inwardly toward the center of the tumor to direct substantially all of the freezing effect toward the tumor and away from healthy tissue. The head portion may be detachable, and a plurality of head portions having varied shapes and sizes may be provided to provide maximum freezing effect upon different sizes and shapes of tumors. Moreover, the outer concave surface of the head portion may be provided with a loosely tangled fine metal filament in steel-wool form, providing continued contact with the instrument while the tumor changes size and shape as necrosis continues, yet allowing for good thermal contact between the head portion and the tumor.
The freezing effect is provided by a hybrid multistage thermoelectric-thermomagnetic cooling unit which reduces the temperature of the head portion of the instrument from body temperature (310° K.) to approximately 100° K. This temperature ensures that the temperature of the tissue in contact with the head portion is below 213° K.(-60° C.), the minimum temperature required for complete tumor necrosis. Each stage of the multi-stage cooling unit acts as a variable temperature heat sink for the next succeeding stage, and is operated in a temperature range which provides maximum cooling efficiency in terms of the electrical current consumed.
In a preferred example, a cascaded thermoelectric Peltier heat pump is provided to lower the temperature of the cold junction thereof from body temperature (310° K.) to approximately 190° K., which temperatures are within the most efficient range for the Peltier effect. The cold junction of the Peltier heat pump serves as a heat sink for a cascaded thermomagnetic heat pump connected thermally in parallel with the thermoelectric unit. The thermomagnetic unit is constructed by the application of a magnetic field across the thermocouples of a cascaded thermoelectric heat pump and, when operated in tandem with the aforementioned Peltier heat pump, is capable of efficiently reducing the temperature at its hot junction (194° K.) to 150° K. at its cold junction. The cold junction of the thermomagnetic system serves as a heat sink for an Ettingshausen cooling unit, which is capable of efficiently reducing the temperature at its hot junction (150° K.) to 100° K. which is then thermally conducted to the head portion of the instrument as described.
The cooling unit may be powered and controlled by one of the numerous methods and devices currently used for the operation of implantable electronic instruments. Electrical connectors may extend from the instrument through the skin to an external power source, or internal lithium batteries may be incorporated in the instrument as an internal power source which is externally controlled by a transcutaneously operated power switch incorporating a radio frequency control or other transcutaneous means. The instrument may also be powered by an internal nickel cadmium battery which may be recharged, and the instrument controlled, by radio frequency power transmitted from an external power source.
The instrument may be implanted surgically or otherwise placed with the concave head portion adjacent the edge of the target tumor area, and the temperature of the head portion is reduced from body temperature (310° K.) to 100° K. This temperature ensures the temperature of the tissue in contact with the head portion is below 213° K., the required temperature for necrosis. This temperature is maintained for a period of approximately four minutes, and the current to the instrument is then disconnected allowing a slow, spontaneous thawing for a period of 48 hours. During this period, the necrotic tissue, previously frozen, disintegrates and is carried away by body processes. A second freezing cycle is then begun to similarly treat the next layer of tumor tissue.
The implantable hypothermia instrument and method of the present invention provides numerous freeze-thaw cycles, thus allowing for complete necrosis of large and deep-seated tumors without repetitive invasive procedures. The instrument provides an optimal freezing rate of 120° C. per minute. The exact localization and focusing of the freezing ensures preservation of the healthy tissue adjacent to the tumor. As a result of the in-situ tumor necrosis, there is an enhancement in the tumor-specific immunity to subsequent tumor growth as a result of the prolonged exposure of the host to tumor antigen provided by the in situ necrosis. Further, the risks of metastasis as well as hermorrhaging are substantially limited as compared to extirpative surgery.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-sectional view of a hypothermia instrument in accordance with the present invention;
FIG. 2 is a schematic cross-sectional view of an alternative embodiment in accordance with the present invention;
FIG. 3 is a schematic cross-sectional view of an alternative embodiment to that of FIG. 1;
FIG. 4 is a schematic representation of an Ettingshausen parallelpiped;
FIG. 5 is a representation of an exponentially shaped Ettingshausen parallelpiped; and
FIG. 6 is a schematic representation of a portion of the Ettingshausen cooler of the present invention.
DETAILED DESCRIPTION
By way of introduction, a hypothermia instrument 10, adapted for surgical insertion in the human body, is shown in FIGS. 1-3.
In FIG. 1, the hypothermia instrument 10 is shown to be cylindrical in form, and to have a casing 12 defining the major portion of the instrument. The casing 12 may be formed from a biocompatible material having a coefficient of thermal expansion appropriate for the temperature gradients herein described. Preferably, the casing 12 may be made from any one of a number of polymeric materials, such as epoxy, which have the advantage of providing thermal and electrical insulation properties. Other appropriate materials for the casing 12 would be stainless steel or silver, when provided with additional insulation means as set forth hereinafter.
In FIG. 1, the instrument 10 is further seen to include a concave head portion 14 at a first end thereof, a heat sink portion 16 disposed at a second end opposite said head portion 14 and a microcooler 18 disposed therebetween.
In FIG. 1, the head portion 14 is seen to be removably attached to the casing 12 by means of mating threaded portions 20 and 21 which, upon engagement, cause the head portion 14 and the casing 12 to be drawn into an abutting and sealing relationship at the flange 22 of the head portion 14. The head portion 14 is further seen to include an outwardly concave tumor abutting portion 24, said head portion 14 being detachable by means of the threads 20 and 21 to allow the substitution of additional head portions, not shown, having varied concave shapes adapted to fit the size and shape of the individual tumor, not shown. The head portion 14 is constructed of a material having high thermal conductivity such as silver or stainless steel, and is seen to include, along the tumor abutting portion 24, a film of fluorocarbon material 26 such as Teflon to serve as an anticryoadhesion material to prevent the risk of induced hemorrhaging upon the movement of the instrument in the treatment of a large target area of the tumor.
The heat sink 16 is shown to be joined to the casing 12 by epoxy adhesive at the junction 27 therebetween, although the heat sink 16 may be removably attached to the casing 12 by mating threads, not shown, similar to the threads 20 and 21.
Turning now to FIG. 3, the head portion 14 is shown to be faced with a woven wire cloth 128 in a tangled steel-wool form, allowing for good thermal contact between the head portion 14 and the changing size and shape of the tumor during treatment. Further with regard to FIG. 3, the head portion 14 is seen to be attached to and insulated from the casing 12, here represented as having been fashioned from a thermally conductive material such as stainless steel or silver, by a thermally insulative gasket member 30. The gasket member 30 is seen to join the head portion 14 and the casing 12 by means of a suitable low temperature adhesive such as epoxy.
As shown in FIG. 1, the instrument 10 includes a heat sink 16 for the transmission of heat generated by the microcooler 18. The heat sink 16 is constructed from a material having high thermal conductivity such as that used in the head portion 14. The struts 32 aid in the transmission of heat from the microcooler 18 to the outer portion 34 of the heat sink 16, where it is there transmitted to healthy tissue, not shown, surrounding the instrument 10. The heat sink 16 may also include a battery 36 to supply power to the microcooler as hereinafter described, and is shown to include an end cap 38, removable via threads 39, in the outer portion 34 to provide access to the battery 36 for maintenance and replacement thereof. In addition to the struts 32, or as substitutes therefor, the heat sink 16 may be filled with a thermal conducting fluorocarbon liquid such as polyfluorinated polyethers having the general formula ##STR1## where n is a whole number in the range of 1-11. These materials are available from E.I. DuPont de Nemours & Co.
Turning now again to FIG. 3, the heat sink 16 is seen to include optional heat radiating fins 40 disposed about the outer portion 34 to assist in the transfer of heat therefrom. The casing 12, here shown to be made of a thermally conductive material and insulated from the head portion 14 by the gasket 30, serves as an additional heat radiating member.
The instrument 10 described in FIG. 3 is seen to be operated and powered by an external power source, not shown, rather than by the battery 36 as shown in FIG. 1. Electrical current enters the instrument 10 through a Teflon coated power cord 42, passing through a grommet 44 contained in an opening 46 formed in the outer portion 34 of the heat sink 16.
Turning now to FIGS. 1 and 2, the microcooler 18 will be described in detail. Due to the requirement of a freeze rate of 120° C. per minute and a desired tissue temperature of 213° K., the microcooler 18 must cool the head portion 14 across a temperature gradient of 210° K. from 310° K. (body temperature) to 100° K. According to the present invention, these requirements are met through the use of a thermoelectric Peltier section 48, a thermomagnetic section 50 and a third section 52 which employs the Ettingshausen effect. Each of the three sections is utilized in a particular portion of the temperature gradient over which it pumps heat in an effective and efficient manner. The Peltier section 48, having a hot junction 54 cooled by the heat sink 16, reduces the temperature of the heat sink 16 from body temperature (310° K.) to approximately 194° K. at its cold junction 56. The cold junction 56 and thus the Peltier section 48, serves as a heat sink for the thermomagnetic section 50 which reduces the temperature of the junction 56 from 195° K. to 150° K. at the junction 58. In turn, the junction 58, and thus the thermomagnetic unit 50, serves as a heat sink for the Ettingshausen unit 52 which further reduces the temperature of the junction 58 i.e. 150° K., to a temperature of 100° K. at a cold junction 60, which temperature is then thermally conducted to the head portion 14.
The mechanism of thermoelectric cooling, known as the Peltier effect, is well known, and since the refinement of semiconductor materials thermoelectric refrigeration has become increasingly common. Semiconductor materials with dissimilar characteristics are connected electrically in series and thermally in parallel, so that two junctions are created. The semiconductor materials are n- and p-type and are so named because either they have more electrons than necessary to complete a perfect molecular lattice structure (n-type) or not enough electrons to complete a lattice structure (p-type). The extra electrons in the n-type materials and the holes left in the p-type material are called carriers and they are the agents that move the heat energy from the cold to the hot junction. Heat absorbed at the cold junction is pumped to the hot junction at a rate proportional to the carrier current passing through the circuit and the number of couples.
Couples are combined in a module where they are connected in series electrically and in parallel thermally. A single stage module is capable of pumping heat where the difference in a temperature of the cold junction and hot junction (ΔT) is 70° C. or less. In applications which require higher ΔT's, such as here, the modules in tiers can be cascaded i.e., the mechanical stacking of modules in tiers so that the cold junction of one module becomes the heat sink for a smaller module on top. In addition to the heat pumped by any given tier, the next lower tier must also pump the heat resulting from the input power to the upper tier. Consequently, each succeeding tier must be larger and larger from the top of the cascade downward toward the hot junction.
In the instrument 10, a six-tier cascaded Peltier effect heat pump, employing Bi2 Te3 (p)--Bi2 Te3 (n) alloy, such as manufactured by Cambridge Thermionic Corporation under the trademark CAMBION, provides a ΔT of 115° K. as required by the microcooler 18.
The Peltier unit 48 is seen to comprise alternating p-type Be2 Te3 semiconductors 62 and n-type Be2 Te3 semiconductors 64 and metal p-- n connectors 66 and 68 which are electrically insulated from the junctions 54 and 56 by electrical insulation members 70 and 72, respectively. Alternatively, the junctions 54 and 56 may be made of ceramic material which has electrical insulation and thermal conducting properties, whereupon the electrical insulation members 70 and 72 may be omitted.
Methods for the production of solid state thermoelectric coolers are known in the art and coolers of the type represented figuratively by Peltier unit 48 in FIGS. 1 and 2 are available from one of numerous commercial suppliers, as hereinbefore described.
The six-tier cascaded solid state thermoelectric Peltier unit 48, by providing a temperature of 195° K. at junction 56, serves as a heat sink for the second, thermomagnetic stage 50 of the microcooler 18. The thermomagnetic stage 50 is constructed in a manner similar to that of the thermoelectric stage 48 and includes metal connecting strips 74 and 76 as well as electrical insulating means 78 and 80, respectively, between the respective connecting strips 74 and 76 and the heat junctions 56 and 58. The thermomagnetic unit 50 employs thermocouples of Bi--Sb alloy which are doped to provide p-type semiconductors 82 and n-type semiconductors 84.
The thermomagnetic stage 50 is preferably a three tier cascaded module, as hereinbefore described, which operates in an applied magnetic field of 3000 to 8000 gauss to improve the thermocouple efficiency over a colder portion of the temperature gradient. Preferably, the magnetic field is provided by samariumcobalt permanent magnets 86, having soft iron fieldforming pole faces 88, placed in spaces between the thermocouple elements.
The magnets 86 provide a transverse magnetic field on the thermocouple elements and allow the thermomagnetic stage to operate efficiently in a reduced temperature range and to produce at the junction 58 a temperature of 150° K.
The last cooling stage of the microcooler 18 is provided by a cooling unit 52 which employs the Ettingshausen effect. The Ettingshausen effect is described with reference to FIG. 4, and occurs when a current passes through a parallelpiped of intrinsic (n═p) material. A transverse magnetic field deflects the carriers and the net carrier transport creates an energy flow since the carriers must recombine (heating) on one side and be generated (cooling) on the other side.
The Ettingshausen cooler is preferably constructed from optimally doped n-type Bi--Sb alloys, in which the thermomagnetic effects are largest in the temperature range of 100° K.-200° K. The ΔT across the Ettingshausen cooler saturates at a critical value of the magnetic field which depends upon temperature. The condition for saturation is that the product of the charge carrier mobility in the magnetic field be much greater than unity. As the mobility falls with increasing temperature, the magnetic field required to produce saturation becomes very large at high temperatures. The thermoelectric stage 48 and the thermo magnetic stage 50, in turn, provide a heat sink for the Ettingshausen cooler which will limit the saturation field to reasonable values and allow the cooler to operate in a temperature range which will yield the largest ΔT, or the lowest overall temperature at the head piece 14.
As hereinbefore described, thermoelectric couples may be cascaded to improve the performance above that of a single couple. Similarly, the Ettingshausen device, comprising a single unit 90, is cascaded by the shaping of the single element exponentially as described in FIG. 5. Experimentally, shaped devices have more than doubled the performance of a simple parallelpiped.
The required magnetic field of 3000 to 8000 gauss in the Ettingshausen unit 52 is provided by small, lightweight samarium-cobalt magnets 92 placed between the Ettingshausen devices 90 as shown in FIGS. 1 and 2. In a manner similar to the magnets of the thermomagnetic stage 50, the magnets 92 are provided with soft iron field forming pole faces 94 to provide the required transverse magnetic field. The individual Ettingshausen devices 90 are seen to be mounted between the junctions 58 and 60 and separated therefrom by means of electrically insulating and thermally conductive material 96 and 98.
Turning now to FIG. 6, two of the Ettingshausen devices 90 are seen to be mounted, figuratively, on either side of the samarium-cobalt magnet 92. The Ettingshausen devices are seen to include electrically conductive metal pole end pieces 100 and the electrically insulative and thermally conductive pieces 96 and 98. The devices 90 are seen to be connected to the battery 102.
In another embodiment, electromagnetic coils are placed in the spaces between the Ettingshausen devices 90 as well as in the spaces between the n and p couples 82 and 84 in the thermomagnetic section 50 as hereinbefore described. The electric current which flows through the Ettingshausen units 90 and the electromagnetic section 50 is also passed through the coils to produce the required magnetic field. The number of turns in the coil is such that a field of 8K Gauss is produced. The coil is positioned in such a way that the magnetic field which it produces is directed in a direction perpendicular to the direction of current flow in the Ettingshausen units and in the thermomagnetic elements.
Calculations were performed in order to determine the amount of power required by the hypothermia instrument 10. The first part of these calculations involved developing an expression for the optimal values of the intermediate temperatures for each stage of the instrument. This calculation produced the following set of values for the intermediate cascading stages:
A. An exponentially shaped Ettingshausen stage which will take a load from 100° K. to 150° K.
B. Three stages of a thermomagnetic unit having the following values of temperature:
Tm0 =150° K.
Tm1 =163.43° K.
Tm2 =178° K.
Tm3 =194° K.
C. Six stages of a thermoelectric unit having the following values of temperature:
Te0 =194° K.
Te1 =209.76° K.
Te2 =226.8° K.
Te3 =245.22° K.
Te4 =265.15° K.
Te5 =286.69° K.
Te6 =310° K.
In order to calculate the power requirements of the instrument 10, the following assumptions were made:
A. The heat load on the probe of the instrument at the cold stage is 10mW;
B. For the Ettingshausen unit, the figure of merit is Z'=2.5×10-3 °K-1 ;
C. The figure of merit for the thermomagnetic unit 50 is Zm =5×10-3 ° K-1 ;
D. The figure of merit for the thermoelectric unit 48 is Ze =3 ×10-3 °K-1.
With the above assumptions, the following results for the power requirement of each stage were computed according to the following formulae and are shown in Table I.
T =1/2(T.sub.H +T.sub.C)
TH =Hot temperature
TC =Cold temperature
For the Ettingshausen stage, the efficiency of the exponentially shaped device is: ##EQU1## For the thermomagnetic stage, the efficiency is: ##EQU2## This calculation has to be performed for each stage using the proper values of ΔT, TH and TC for each stage. For example, ##EQU3## For the Peltier stages: ##EQU4## This calculation again has to be performed for each state using the proper values of ΔT, TH and TC for each stage.
For example, ##EQU5##
              TABLE I                                                     
______________________________________                                    
                   Heat Output                                            
                              Power Required                              
Stage  Efficiency  mw         mw                                          
______________________________________                                    
ET     0.9097      20.993     10.993                                      
M1     1.174       38.875     17.882                                      
M2     1.294       68.917     30.042                                      
M3     1.393       118.387    49.47                                       
E1     1.01        235.6      117.21                                      
E2     1.104       449.03     213.43                                      
E3     1.205       821.67     372.64                                      
E4     1.309       1449.49    627.82                                      
E5     1.418       2471.7     1022.21                                     
E6     1.53        4087.2     1615.49                                     
______________________________________                                    
This table indicates that under the conditions of the calculation, the power required is 4077.2mW i.e. just above 4 watts. Allowing for a 400% safety factor, the power requirement in practice for the instrument 10 would be 16 watts. As thermoelectric devices are preferably high current-low voltage unit, the battery 36 must supply a current of about 8 amperes at a potential of 2 volts.
Returning now to FIG. 2, the control and operation of the hypothermia instrument 10 will be further detailed. The microcooler 18 is seen to be powered by a battery 36, in this instance a rechargeable nickel cadmium battery. The battery 36 is recharged via radio frequency power transmitted from an external portable source, not shown, and received by a coil 102, by means of a recharging circuit 104. The battery pack 36 may be "quick charged" at 40mA in about 21/2hours. This system, more fully described hereinafter, will charge implanted batteries through 13 mm tissue thickness, using 50mm diameter transmitting and receiving coils. The microcooler 18 is switched off during recharging, and operated to produce the freeze/thaw cycles described herein, by an on-off switch circuit 106 which is controlled, through an implanted antenna 107, by an external radio transmitter, not shown.
The radio-controlled devices are described in detail by Jeutter in IEEE Transactions On Biomedical Engineering, Vol. BME-29, No. 5, May 1982, which is hereby incorporated by reference.
The temperature produced by the microcooler 18 at the head portion 14 is controlled by a thermistor microcircuit 108. The microcircuit 108 receives voltage from a silicone diode cryogenic temperature sensor 109 which passes increasing voltage as the temperature of the sensor decreases. For example, a silicone diode cryogenic temperature sensor may pass 0.3 volts at room temperature, 2.5 volts at helium temperatures and show a temperature sensitivity of approximately 50 millivolts per degree Kelvin. Such sensors are available from Lake Shore Cryotronics, Inc. The voltage produced by the sensor 109 is employed, by the thermistor microcircuit 108 in a manner known in the art, to maintain the proper temperature in the head piece 14 during the freeze/thaw cycles hereinafter described.
Turning now to FIG. 3, yet another embodiment of the present invention shows the electric current for the operation of the instrument 10 entering the heat sink 16 via a Teflon-coated stainless steel or copper control cable 42. Contained in the control cable 42 are power wires 110 and 112 which connect the thermoelectric stage 48, the thermomagnetic stage 50 and the Ettingshausen stage 52 to an external power source and power switch, neither shown. Also contained in the cable 42 are leads 114 from the silicone diode cryogenic temperature sensor 116, which feeds voltage to an external thermistor microcircuit, not shown, used to control the temperature of the head piece 14 as described. The sensor 116 is seen to protrude from the face of the head piece 14 to allow the direct sensing of the temperature of the tumor to be treated. It should further be noted that in FIG. 3 the instrument 10 also employs thermal junctions 118, 120 and 122, formed of ceramic material having high thermal conductivity and minimal electrical conductivity, thus obviating the need for the electrical insulating members 70, 72, 78, 80, 96 and 98 shown in FIG. 1. The junctions 118, 120 and 122 are thermally insulated from the casing 12 of the instrument 10 by elastomeric support members 124, 126, and 128, each of said support members having low thermal conductivity.
While the instrument 10 may be used to treat dermal and subdermal tumors or other diseased surface tissue, its primary utility is seen as the treatment of deep-seated tumors without repetitive invasive procedures. In this regard, the instrument 10 is implanted next to the tumor and positioned with the concave cold end 14 abutting the tumor margin by standard surgical techniques or through the use of a catheter when the tumor is within the lung, alimentary canal or genital-urinary tract. In this regard, the terms "implant" and "implantable" refer to the placement of the instrument within the body, whether by surgical or other techniques as described. Care should be taken to avoid the surgical invasion of the tumor in order to avoid the risk of metastatis. Preferably, the instrument 10 is positioned to allow external manipulation of the patient's body to reposition the instrument as the size of the tumor is reduced by necrosis.
If the instrument 10 is operated by implanted nickel cadmium batteries and the transcutaneous implanted battery recharging and power switching system hereinbefore described, the coil and antenna for the recharging and power switching system should be placed within the required distance below the skin i.e. 10 to 15mm tissue thickness for the charging unit and up to 100mm tissue thickness for the power switching system. If an external power and switching source, shown in FIG. 3, is used to operate the instrument 10, the Teflon-coated control cable 42 is led through the patient's skin to the external power source in the same manner as with other implantable instruments.
After implanting the instrument 10 and allowing for a reduction of swelling and other traumas attendant thereto, the current is caused to flow in the microcooler 18 until the temperature of the portion of the tumor adjacent the cold end 14 is reduced to at least 213° K. (-60° C.). This temperature may be ascertained by a tumor-penetrating sensor such as the sensor 116 in FIG. 3, or by allowing the cold end 14 to reach a predetermined temperature, depending upon the density of the tumor tissue, as determined by the sensor 109 as shown in FIG. 2. According to the present invention, this temperature is attained with a freezing rate of 120° C. per minute.
After the tissue reaches at least -60° C., this temperature is kept constant for three to four minutes. During this time period, the concave shape of the tumor abutting portion 24 of the cold end 14 focuses the freezing effect to form a sphere of frozen tissue adjacent the instrument 10. During the freezing cycle, the heat pumped from the cold end 14 is safely conducted to the healthy tissue by the heat sink 16.
After a frozen area of the desired size and temperature has been formed, the current to the instrument is then disconnected allowing for a slow, spontaneous thawing, and over a period of about 48 hours, the dead tumor tissue disintegrates and is carried away by body processes. The current is then switched on for another freeze/thaw cycle, and the next layer of tumor tissue is destroyed.
The hypothermia instrument of the present invention, and the method of its use, allows repeated and controlled freeze/ thaw cycles for the total and complete necrosis of deep-seated tumors without repetitive invasive procedures. The instrument attains in-situ tumor necrosis, with the accompanying enhancement of the tumor-specific immunity to subsequent tumor growth which results from the prolonged exposure of the host to tumor antigen provided by in-situ tumor necrosis. Further, the instrument allows accurate and controlled temperature as well as rate of freezing and thawing. The freezing may be focused and localized to ensure the preservation of healthy tissue adjacent the tumor. In addition, the tumor necrosis may be induced without hemorrhaging or other trauma which would serve to induce metastisis of the tumor cells.
Although the foregoing invention has been described in some detail by way of illustration and example, changes in form and the substitution of equivalents are contemplated as circumstances may suggest or render expedient. For example, while the instrument has been described as being cylindrical in form, hemispherical or other shapes may be desired or dictated by the intended use. Although specific terms have been employed herein, they are intended in a descriptive sense and not for purposes of limitation, the scope of the invention being delineated in the following claims.

Claims (11)

What is claimed is:
1. A hypothermia instrument for the application of cytostatic freezing temperatures to selected portions of the body, said instrument comprising:
an outer casing;
an outwardly concave cold end of heat conducting material at a first end of the casing;
a hot end of heat conducting material at a second end of the casing opposite the first end;
an array of thermally consecutive cooling means having serially increasing cooling ability disposed between the hot end and the cold end, the hot end serving as a heat sink for a thermoelectric Peltier first cooling means, said first cooling means serving as a heat sink for a thermoelectric-thermomagnetic Peltier second cooling means, said second cooling means serving as a heat sink for a thermomagnetic Ettingshausen third cooling means, the third cooling means serving as a heat sink for the cold end and pumping heat therefrom through the preceding cooling means to the hot end;
means providing electric current to said array and means for interrupting said current,
said array being capable of producing a cold end temperature of about 100° kelvin.
2. An instrument according to claim 1 which is constructed of biocompatible material and is implantable in the body, and wherein the thermoelectric Peltier first cooling means is capable of providing a temperature of about 190° kelvin, the thermoelectric-thermomagnetic secon cooling means is capable of providing a temperature of about 150° kelvin, and the thermomagnetic Ettingshausen third cooling means is capable of providing a temperature of about 100° kelvin.
3. An instrument according to claim 2 wherein the current for the array of cooling means is provided by a battery contained in said hot end.
4. An instrument according to claim 2 which further includes a temperature sensing means extending from the outwardly concave cold end to determine the temperature produced within the selected body portion.
5. A hypothermia instrument for the application of cytostatic freezing temperatures to selected portions of the body, said instrument comprising an outer casing; an outwardly concave head portion of heat-conducting material; solid state cooling means with said casing in a heat-exchanging relationship with the head portion and adapted to produce a sub-freezing temperature at said head portion, said cooling means including a first Peltier effect means disposed as a heat sink for a second Peltier effect means having a first applied magnetic field thereacross, said second Peltier means disposed as a heat sink for an Ettingshausen effect means including a second applied magnetic field thereacross, the Ettingshausen effect means disposed as a heat sink for said head portion; and means providing electric current to the cooling means and means for interrupting said current.
6. An instrument according to claim 5, wherein the first cooling means is capable of producing a temperature of about 190° delvin at a hot end of the second cooling means which, in turn, is capable of producing a temperature of about 150° kelvin at a hot end of the third cooling means which in turn, is capable of producing a temperature of about 100° kelvin at the head portion.
7. An instrument according to claim 6 wherein current for the array of cooling means is provided by a battery contained in said hot end.
8. An instrument according to claim 6, which further includes a temperature sensing means extending form the outwardly concave head portion, said sensing means adapted to determine the temperature produced within the selected body portion.
9. A method for the in-situ necrosis of a tumor in a body, comprising the steps of;
providing an instrument comprising an outer casing with an outwardly concave cold end of heat conducting material at a first end thereof and a hot end of heat conducting material at a second end of the casing, with an array of thermally consecutive cooling means disposed between the hot end and the cold end with serially increasing freezing ability, wherein the hot end serves as a heat sink for a thermoelectric Peltier first cooling means, the first cooling means serves as a heat sink for a thermoelectric-thermomagnetic Peltier second cooling means and the second cooling means serves as a heat sink for a thermomagnetic Ettingshausen third cooling means, with the third cooling means in turn serving as a heat sink for the cold end and pumping heat therefrom to the hot end, and means providing electric current to said array and means for interrupting said current;
implanting said instrument in the body with the concavity of the cold end adjacent to and facing the tumor;
allowing current to flow for a time sufficient to cause a portion of the tumor to be frozen and reduced to a temperature of at least 213° kelvin;
interrupting the current for a time sufficient to cause said portion to thaw and to allow necrotic tissue formed by the freezing to be carried away by body processes; and
repeating the allowing and interrupting steps.
10. The method of claim 9 wherein the first cooling means provides a temperature of about 190° kelvin, the second cooling means provides a temperature of about 150° kelvin, and the third cooling means provides a temperature of about 100° kelvin.
11. A method for the in-situ necrosis of a tumor in the body, comprising the steps of:
providing an instrument comprising an outer casing, an outwardly concave head portion of heat conducting material and cooling means within said casing in a heat exchanging relationship with the head portion and adapted to produce a sub-freezing temperature, said cooling means including a first Peltier effect means disposed as a heat sink for and providing a temperature of about 190° kelvin to a hot end of a second Peltier effect means having a first applied magnetic field thereacross, said second Peltier means disposed as a heat sink of r and providing a temperature of about 150° kelvin to a hot end of an Ettingshausen effect means including a second applied magnetic field thereacross, wherein the Ettingshausen effect means serves as a heat sink for and provides a temperature of about 100° kelvin to said head portion, and means providing electric current to the cooling means and means for interrupting said current;
implanting the instrument in the body with the concavity of the head portion adjacent to and facing the tumor;
allowing current to flow for a time sufficient to allow a portion of the tumor to be frozen and reduced to a temperature of at least 213° kelvin;
interrupting the current for a time sufficient to allow necrotic tissue formed by the freezing to thaw; and
repeating the allowing and interrupting steps.
US06/448,114 1982-12-09 1982-12-09 Therapeutic hypothermia instrument Expired - Fee Related US4483341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/448,114 US4483341A (en) 1982-12-09 1982-12-09 Therapeutic hypothermia instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/448,114 US4483341A (en) 1982-12-09 1982-12-09 Therapeutic hypothermia instrument

Publications (1)

Publication Number Publication Date
US4483341A true US4483341A (en) 1984-11-20

Family

ID=23779058

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/448,114 Expired - Fee Related US4483341A (en) 1982-12-09 1982-12-09 Therapeutic hypothermia instrument

Country Status (1)

Country Link
US (1) US4483341A (en)

Cited By (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580465A (en) * 1984-02-24 1986-04-08 Aisin Seiki Kabushiki Kaisha Microprocessor controlled system and method for reducing the fuel flow to the prime mover of a power delivery system having a continuously variable ratio transmission upon a commanded decrease in power delivery
US4593581A (en) * 1984-02-24 1986-06-10 Aisin Seiki Kabushiki Kaisha Microprocessor controlled system and method for increasing the fuel flow to the prime mover of a power delivery system having a continuously variable ratio transmission upon a commanded increase in power delivery
WO1986005088A1 (en) * 1985-03-07 1986-09-12 Thermacor Technology, Inc. Localized cooling apparatus
US4664110A (en) * 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
US4700701A (en) * 1985-10-23 1987-10-20 Montaldi David H Sterilization method and apparatus
US4719919A (en) * 1983-01-21 1988-01-19 Ramm Associates, A Partnership Implantable hyperthermia device and system
WO1989004137A1 (en) * 1987-11-02 1989-05-18 Anand Raj K Thermoelectrically controlled heat medical catheter
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4989601A (en) * 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
US5156004A (en) * 1989-10-27 1992-10-20 Hong-Ping Wu Composite semiconductive thermoelectric refrigerating device
US5166777A (en) * 1987-04-22 1992-11-24 Sharp Kabushiki Kaisha Cooling apparatus for superconducting devices using Peltier effect cooling element
US5334207A (en) * 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
WO1994027532A1 (en) * 1993-05-27 1994-12-08 Spetsializirovannoe Konstruktorsko-Tekhnologicheskoe Buro 'nord' Device for local heat treatment
US5376184A (en) * 1992-06-17 1994-12-27 Aspden; Harold Thermoelectric heat transfer apparatus
US5385022A (en) * 1993-09-09 1995-01-31 Kornblit; Levy Apparatus and method for deep thermoelectric refrigeration
US5830208A (en) * 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
US5876422A (en) * 1998-07-07 1999-03-02 Vitatron Medical B.V. Pacemaker system with peltier cooling of A-V node for treating atrial fibrillation
US6096068A (en) * 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US6149677A (en) * 1998-03-31 2000-11-21 Innercool Therapies, Inc. Circulating fluid hypothermia method
US6224624B1 (en) 1998-03-24 2001-05-01 Innercool Therapies, Inc. Selective organ cooling apparatus and method
WO2001032090A1 (en) 1999-10-29 2001-05-10 Cryoflex, Inc. Method and apparatus for monitoring cryosurgical operations
US6235048B1 (en) 1998-01-23 2001-05-22 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6245095B1 (en) 1998-03-24 2001-06-12 Innercool Therapies, Inc. Method and apparatus for location and temperature specific drug action such as thrombolysis
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6471717B1 (en) 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6471987B1 (en) * 1999-06-09 2002-10-29 Scimed Life Systems, Inc. Drug releasing elastic band and method
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US6491716B2 (en) 1998-03-24 2002-12-10 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6558412B2 (en) 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6585752B2 (en) 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US20030183972A1 (en) * 2002-03-28 2003-10-02 Jan Weber Method and apparatus for extruding polymers employing microwave energy
US20030183966A1 (en) * 2002-03-28 2003-10-02 Lixiao Wang Method of manufacture medical devices employing microwave energy
US20030204161A1 (en) * 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US20030220674A1 (en) * 2002-03-15 2003-11-27 Anderson Richard Rox Methods and devices for selective disruption of fatty tissue by controlled cooling
US6660028B2 (en) 2000-06-02 2003-12-09 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6668560B2 (en) 2001-12-12 2003-12-30 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20040021249A1 (en) * 2002-03-28 2004-02-05 Jan Weber Polymer welding using ferromagnetic particles
US20040039381A1 (en) * 2002-06-13 2004-02-26 Bischof John C. Cryosurgery compositions and methods
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US20040118129A1 (en) * 2002-12-20 2004-06-24 Chrysler Gregory M. Thermoelectric cooling for microelectronic packages and dice
US20040193039A1 (en) * 2003-03-27 2004-09-30 Jan Weber Medical device with temperature modulator for use in magnetic resonance imaging
US6830581B2 (en) 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
US6843800B1 (en) 1998-01-23 2005-01-18 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US20050046533A1 (en) * 2003-08-29 2005-03-03 Jeremy Chell Permanent magnet assembly
US6869440B2 (en) 1999-02-09 2005-03-22 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20050080405A1 (en) * 2003-03-26 2005-04-14 Bischof John C. Thermal surgical procedures and compositions
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20050178423A1 (en) * 2004-02-12 2005-08-18 Shriram Ramanathan Microelectronic assembly having thermoelectric elements to cool a die and a method of making the same
US20050242912A1 (en) * 2004-02-03 2005-11-03 Astronautics Corporation Of America Permanent magnet assembly
US20060005944A1 (en) * 2004-07-06 2006-01-12 Jack Wang Thermoelectric heat dissipation device and method for fabricating the same
US6991645B2 (en) 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US7001378B2 (en) 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
WO2006040768A2 (en) * 2004-10-11 2006-04-20 Given Imaging Ltd. Device, system and method for in-vivo cauterization
US7038565B1 (en) 2003-06-09 2006-05-02 Astronautics Corporation Of America Rotating dipole permanent magnet assembly
WO2006083674A2 (en) * 2005-02-04 2006-08-10 Cryocor, Inc. Warming gradient control for a cryoablation applicator
US20060253114A1 (en) * 2001-11-02 2006-11-09 Vahid Saadat Methods and apparatus for cryo-therapy
WO2007001290A1 (en) * 2005-06-24 2007-01-04 Carrier Corporation A combination thermo-electric and magnetic refrigeration system
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7300453B2 (en) 2003-02-24 2007-11-27 Innercool Therapies, Inc. System and method for inducing hypothermia with control and determination of catheter pressure
US7306621B1 (en) * 2004-11-19 2007-12-11 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US20080031773A1 (en) * 2006-08-03 2008-02-07 Terumo Cardiovascular Systems Corporation Thermoelectric temperature control for extracorporeal blood circuit
US7371254B2 (en) 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US7422600B2 (en) 1999-02-09 2008-09-09 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20090064686A1 (en) * 2007-09-10 2009-03-12 Whirlpool Corporation Quick thaw/quick chill refrigerated compartment
US20090187223A1 (en) * 2006-07-13 2009-07-23 Rainbow Medical Ltd. Peltier unidirectional and selective nerve stimulation
US20100179527A1 (en) * 2009-01-15 2010-07-15 Boston Scientific Scimed, Inc. Controlling Depth of Cryoablation
US7761168B2 (en) 2006-07-13 2010-07-20 Yossi Gross Peltier unidirectional and selective nerve stimulation
US20100241113A1 (en) * 2009-03-20 2010-09-23 Boston Scientific Scimed, Inc. Protecting the phrenic nerve while ablating cardiac tissue
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US7857781B2 (en) 1998-04-21 2010-12-28 Zoll Circulation, Inc. Indwelling heat exchange catheter and method of using same
US20120042661A1 (en) * 2008-12-11 2012-02-23 Lamos Inc. Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
US20120047912A1 (en) * 2008-12-11 2012-03-01 Lamos Inc. Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8572831B2 (en) 2010-06-07 2013-11-05 Empire Technology Development Llc Disassembling an item by means of RF energy
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US8678997B2 (en) 2000-02-14 2014-03-25 Obtech Medical Ag Male impotence prosthesis apparatus with wireless energy supply
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US8734318B2 (en) 2000-02-11 2014-05-27 Obtech Medical Ag Mechanical anal incontinence
US8764627B2 (en) 2000-02-14 2014-07-01 Obtech Medical Ag Penile prosthesis
US8840608B2 (en) * 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US20140364841A1 (en) * 2011-11-14 2014-12-11 Andrew Kornstein Cryolipolyis device having a curved applicator surface
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US20150300705A1 (en) * 2014-04-19 2015-10-22 Ferrotec (Usa) Corporation Integrated thermoelectric-powered fluid heat exchanger
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US20160242956A1 (en) * 2015-02-25 2016-08-25 Jennifer Marie Pilby Gomez Pre and post anesthetic cooling device and method
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9439708B2 (en) 2010-10-26 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US20160279350A1 (en) * 2015-03-26 2016-09-29 The Regents Of The University Of Michigan Applicator for cryoanesthesia and analgesia
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9646745B2 (en) * 2014-07-29 2017-05-09 Ford Global Technologies, Llc Thermistor assembly including elastomeric body
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9814559B1 (en) * 1999-08-12 2017-11-14 Peter Forsell Medical implant apparatus with wireless energy transmission
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9872718B2 (en) 2012-04-27 2018-01-23 Medtronic Adrian Luxembourg S.a.r.l. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US20180042761A1 (en) * 2015-03-13 2018-02-15 Embr Labs Inc. Methods and apparatuses for manipulating temperature
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10004550B2 (en) 2010-08-05 2018-06-26 Medtronic Ardian Luxembourg S.A.R.L. Cryoablation apparatuses, systems, and methods for renal neuromodulation
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10588682B2 (en) 2011-04-25 2020-03-17 Medtronic Ardian Luxembourg S.A.R.L. Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10905490B2 (en) 2012-04-27 2021-02-02 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
US11747043B2 (en) 2011-05-12 2023-09-05 Nxstage Medical, Inc. Fluid heating apparatuses, systems, and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090206A (en) * 1960-06-23 1963-05-21 Frank W Anders Thermoelectric devices and circuits therefor
US3133539A (en) * 1962-08-06 1964-05-19 Eidus William Thermoelectric medical instrument
US3136134A (en) * 1960-11-16 1964-06-09 Bell Telephone Labor Inc Thermoelectric refrigerator
US3207159A (en) * 1962-06-14 1965-09-21 Tateisi Denki Kabushikikaisha Thermoelectric therapeutic instrument
US3224206A (en) * 1964-11-23 1965-12-21 John R Sizelove Contour design for "cascading by shaping" thermomagnetic devices
US3282267A (en) * 1964-05-05 1966-11-01 Eidus William Thermoelectric hypothermia instrument
US3327713A (en) * 1964-06-18 1967-06-27 Eidus William Portable thermoelectric hypothermia device
US3369549A (en) * 1965-10-05 1968-02-20 Thomas A. Armao Capsule probe having thermoelectric heat exchange means therein
US3547705A (en) * 1967-01-17 1970-12-15 George Guy Heard Jr Integral ettingshausen-peltier thermoelectric device
US3941135A (en) * 1974-03-29 1976-03-02 Siemens Aktiengesellschaft Pacemaker with biofuel cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090206A (en) * 1960-06-23 1963-05-21 Frank W Anders Thermoelectric devices and circuits therefor
US3136134A (en) * 1960-11-16 1964-06-09 Bell Telephone Labor Inc Thermoelectric refrigerator
US3207159A (en) * 1962-06-14 1965-09-21 Tateisi Denki Kabushikikaisha Thermoelectric therapeutic instrument
US3133539A (en) * 1962-08-06 1964-05-19 Eidus William Thermoelectric medical instrument
US3282267A (en) * 1964-05-05 1966-11-01 Eidus William Thermoelectric hypothermia instrument
US3327713A (en) * 1964-06-18 1967-06-27 Eidus William Portable thermoelectric hypothermia device
US3224206A (en) * 1964-11-23 1965-12-21 John R Sizelove Contour design for "cascading by shaping" thermomagnetic devices
US3369549A (en) * 1965-10-05 1968-02-20 Thomas A. Armao Capsule probe having thermoelectric heat exchange means therein
US3547705A (en) * 1967-01-17 1970-12-15 George Guy Heard Jr Integral ettingshausen-peltier thermoelectric device
US3941135A (en) * 1974-03-29 1976-03-02 Siemens Aktiengesellschaft Pacemaker with biofuel cell

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Dean C. Jeutter, "A Transcutaneous Implanted Battery Recharging and Biotelemeter Power Switching System," IEEE, pp. 314-321 (1982).
Dean C. Jeutter, A Transcutaneous Implanted Battery Recharging and Biotelemeter Power Switching System, IEEE, pp. 314 321 (1982). *
Dr. Rudolf B. Horst, et al., Application of Solid State Cooling to Spaceborne Infrared Focal Planes, 3rd International Conference on Thermoelectric Energy Conversion, U. of Texas, Arlington, Texas, Mar. 1980, IEEE. *
H. Bryan Neel, III, M.D., et al., "Cryosurgery of Respiratory Structures, I. Cryonecrosis of Trachea and Bronchus", The Laryngoscope, 83, pp. 1062-1071 (1973).
H. Bryan Neel, III, M.D., et al., "Experimental Evaluation of in situ Oncocide For Primary Tumor Therapy: Comparison of Tumor-Specific Immunity After Complete Excision, Cryonecrosis and Ligation," The Laryngoscope, pp. 376-387.
H. Bryan Neel, III, M.D., et al., Cryosurgery of Respiratory Structures, I. Cryonecrosis of Trachea and Bronchus , The Laryngoscope, 83, pp. 1062 1071 (1973). *
H. Bryan Neel, III, M.D., et al., Experimental Evaluation of in situ Oncocide For Primary Tumor Therapy: Comparison of Tumor Specific Immunity After Complete Excision, Cryonecrosis and Ligation, The Laryngoscope, pp. 376 387. *
J. R. Madigan, et al., "A Hybrid Peltier-Ettingshausen Cooler for Cryogenic Temperatures," Solid-State Electronics, vol. 7, pp. 643-654 (1964).
J. R. Madigan, et al., A Hybrid Peltier Ettingshausen Cooler for Cryogenic Temperatures, Solid State Electronics, vol. 7, pp. 643 654 (1964). *
Peter Mazur, Theoretical and Experimental Effects of Cooling and Warming Velocity on the Survival of Frozen and Thawed Cells, Cryobiology, vol. 2, No. 4 (1966). *
Robert J. Carpenter, III, M.D., et al., Cryosurgery: Theory and Application to Head and Neck Neoplasia, Head & Neck Surgery, Nov. Dec. 1979. *

Cited By (341)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961422A (en) * 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4719919A (en) * 1983-01-21 1988-01-19 Ramm Associates, A Partnership Implantable hyperthermia device and system
US5197466A (en) * 1983-01-21 1993-03-30 Med Institute Inc. Method and apparatus for volumetric interstitial conductive hyperthermia
US4593581A (en) * 1984-02-24 1986-06-10 Aisin Seiki Kabushiki Kaisha Microprocessor controlled system and method for increasing the fuel flow to the prime mover of a power delivery system having a continuously variable ratio transmission upon a commanded increase in power delivery
US4580465A (en) * 1984-02-24 1986-04-08 Aisin Seiki Kabushiki Kaisha Microprocessor controlled system and method for reducing the fuel flow to the prime mover of a power delivery system having a continuously variable ratio transmission upon a commanded decrease in power delivery
WO1986005088A1 (en) * 1985-03-07 1986-09-12 Thermacor Technology, Inc. Localized cooling apparatus
US4664110A (en) * 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
US4700701A (en) * 1985-10-23 1987-10-20 Montaldi David H Sterilization method and apparatus
US5166777A (en) * 1987-04-22 1992-11-24 Sharp Kabushiki Kaisha Cooling apparatus for superconducting devices using Peltier effect cooling element
EP0386111A4 (en) * 1987-11-02 1991-01-16 Raj K. Anand Thermoelectrically controlled heat medical catheter
EP0386111A1 (en) * 1987-11-02 1990-09-12 Raj K Anand Thermoelectrically controlled heat medical catheter.
US4860744A (en) * 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
WO1989004137A1 (en) * 1987-11-02 1989-05-18 Anand Raj K Thermoelectrically controlled heat medical catheter
US4989601A (en) * 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
US5156004A (en) * 1989-10-27 1992-10-20 Hong-Ping Wu Composite semiconductive thermoelectric refrigerating device
US5376184A (en) * 1992-06-17 1994-12-27 Aspden; Harold Thermoelectric heat transfer apparatus
US5334207A (en) * 1993-03-25 1994-08-02 Allen E. Coles Laser angioplasty device with magnetic direction control
WO1994027532A1 (en) * 1993-05-27 1994-12-08 Spetsializirovannoe Konstruktorsko-Tekhnologicheskoe Buro 'nord' Device for local heat treatment
US5385022A (en) * 1993-09-09 1995-01-31 Kornblit; Levy Apparatus and method for deep thermoelectric refrigeration
WO1995007441A1 (en) * 1993-09-09 1995-03-16 Gegenheimer, Charles, Michael Apparatus and method for deep thermoelectric refrigeration
US5830208A (en) * 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
US6676689B2 (en) 1998-01-23 2004-01-13 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6464716B1 (en) 1998-01-23 2002-10-15 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6905509B2 (en) 1998-01-23 2005-06-14 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6843800B1 (en) 1998-01-23 2005-01-18 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6991645B2 (en) 1998-01-23 2006-01-31 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6786218B2 (en) 1998-01-23 2004-09-07 Innercool Therapies, Inc. Medical procedure
US6235048B1 (en) 1998-01-23 2001-05-22 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US8163000B2 (en) 1998-01-23 2012-04-24 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6238428B1 (en) 1998-01-23 2001-05-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US20040153133A1 (en) * 1998-01-23 2004-08-05 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6755850B2 (en) 1998-01-23 2004-06-29 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7063718B2 (en) 1998-01-23 2006-06-20 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7066948B2 (en) 1998-01-23 2006-06-27 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US7094253B2 (en) 1998-01-23 2006-08-22 Innercool Therapies, Inc. Fever regulation method and apparatus
US6312452B1 (en) 1998-01-23 2001-11-06 Innercool Therapies, Inc. Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6702842B2 (en) 1998-01-23 2004-03-09 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US7101386B2 (en) 1998-01-23 2006-09-05 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US7766949B2 (en) 1998-01-23 2010-08-03 Innercool Therapies, Inc. Fever regulation method and apparatus
US6468296B1 (en) * 1998-01-23 2002-10-22 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6695873B2 (en) 1998-01-23 2004-02-24 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6692488B2 (en) 1998-01-23 2004-02-17 Innercool Therapies, Inc. Apparatus for cell necrosis
US6676688B2 (en) 1998-01-23 2004-01-13 Innercool Therapies, Inc. Method of making selective organ cooling catheter
US6887262B2 (en) 1998-01-23 2005-05-03 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6478811B1 (en) 1998-01-23 2002-11-12 Innercool Therapies, Inc Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6482226B1 (en) 1998-01-23 2002-11-19 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US7311725B2 (en) 1998-01-23 2007-12-25 Innercool Therapies, Inc. Patient temperature regulation method and apparatus
US6533804B2 (en) 1998-01-23 2003-03-18 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6540771B2 (en) 1998-01-23 2003-04-01 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US7371254B2 (en) 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US6558412B2 (en) 1998-01-23 2003-05-06 Innercool Therapies, Inc. Selective organ hypothermia method and apparatus
US7998182B2 (en) 1998-01-23 2011-08-16 Innercool Therapies, Inc. Selective organ cooling apparatus
US6648908B2 (en) 1998-01-23 2003-11-18 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6096068A (en) * 1998-01-23 2000-08-01 Innercool Therapies, Inc. Selective organ cooling catheter and method of using the same
US7651518B2 (en) 1998-01-23 2010-01-26 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US7951183B2 (en) 1998-01-23 2011-05-31 Innercool Therapies, Inc. Medical procedure
US6582455B1 (en) 1998-03-24 2003-06-24 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6471717B1 (en) 1998-03-24 2002-10-29 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6224624B1 (en) 1998-03-24 2001-05-01 Innercool Therapies, Inc. Selective organ cooling apparatus and method
US6599312B2 (en) 1998-03-24 2003-07-29 Innercool Therapies, Inc. Isolated selective organ cooling apparatus
US6245095B1 (en) 1998-03-24 2001-06-12 Innercool Therapies, Inc. Method and apparatus for location and temperature specific drug action such as thrombolysis
US6576002B2 (en) 1998-03-24 2003-06-10 Innercool Therapies, Inc. Isolated selective organ cooling method and apparatus
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6551349B2 (en) 1998-03-24 2003-04-22 Innercool Therapies, Inc. Selective organ cooling apparatus
US6491716B2 (en) 1998-03-24 2002-12-10 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6478812B2 (en) 1998-03-24 2002-11-12 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6251129B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6475231B2 (en) 1998-03-24 2002-11-05 Innercool Therapies, Inc. Method and device for applications of selective organ cooling
US6740109B2 (en) 1998-03-24 2004-05-25 Innercool Therapies, Inc. Isolated selective organ cooling method
US6254626B1 (en) 1998-03-24 2001-07-03 Innercool Therapies, Inc. Articulation device for selective organ cooling apparatus
US7001378B2 (en) 1998-03-31 2006-02-21 Innercool Therapies, Inc. Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US8043351B2 (en) 1998-03-31 2011-10-25 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7449018B2 (en) 1998-03-31 2008-11-11 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6905494B2 (en) 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6818011B2 (en) 1998-03-31 2004-11-16 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US7288089B2 (en) 1998-03-31 2007-10-30 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6149677A (en) * 1998-03-31 2000-11-21 Innercool Therapies, Inc. Circulating fluid hypothermia method
US6602276B2 (en) 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8157794B2 (en) 1998-03-31 2012-04-17 Innercool Therapies, Inc. Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6231595B1 (en) 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US8043283B2 (en) 1998-03-31 2011-10-25 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7857781B2 (en) 1998-04-21 2010-12-28 Zoll Circulation, Inc. Indwelling heat exchange catheter and method of using same
US6261312B1 (en) 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6585752B2 (en) 1998-06-23 2003-07-01 Innercool Therapies, Inc. Fever regulation method and apparatus
US7018399B2 (en) 1998-06-23 2006-03-28 Innercool Therapies, Inc. Method of making selective organ cooling catheter
US5876422A (en) * 1998-07-07 1999-03-02 Vitatron Medical B.V. Pacemaker system with peltier cooling of A-V node for treating atrial fibrillation
US6830581B2 (en) 1999-02-09 2004-12-14 Innercool Therspies, Inc. Method and device for patient temperature control employing optimized rewarming
US7422600B2 (en) 1999-02-09 2008-09-09 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6869440B2 (en) 1999-02-09 2005-03-22 Innercool Therapies, Inc. Method and apparatus for patient temperature control employing administration of anti-shivering agents
US7351254B2 (en) 1999-02-09 2008-04-01 Innercool Therapies, Inc. Method and device for patient temperature control employing optimized rewarming
US7189254B2 (en) 1999-02-09 2007-03-13 Innercool Therapies, Inc. Method and device for patient temperature control employing optimized rewarming
US6471987B1 (en) * 1999-06-09 2002-10-29 Scimed Life Systems, Inc. Drug releasing elastic band and method
US9814559B1 (en) * 1999-08-12 2017-11-14 Peter Forsell Medical implant apparatus with wireless energy transmission
US6325818B1 (en) 1999-10-07 2001-12-04 Innercool Therapies, Inc. Inflatable cooling apparatus for selective organ hypothermia
US7052508B2 (en) 1999-10-07 2006-05-30 Innercool Therapies, Inc. Inflatable heat transfer apparatus
US6676690B2 (en) 1999-10-07 2004-01-13 Innercool Therapies, Inc. Inflatable heat transfer apparatus
US6235018B1 (en) 1999-10-29 2001-05-22 Cryoflex, Inc. Method and apparatus for monitoring cryosurgical operations
WO2001032090A1 (en) 1999-10-29 2001-05-10 Cryoflex, Inc. Method and apparatus for monitoring cryosurgical operations
US8734318B2 (en) 2000-02-11 2014-05-27 Obtech Medical Ag Mechanical anal incontinence
US8678997B2 (en) 2000-02-14 2014-03-25 Obtech Medical Ag Male impotence prosthesis apparatus with wireless energy supply
US8764627B2 (en) 2000-02-14 2014-07-01 Obtech Medical Ag Penile prosthesis
US6576001B2 (en) 2000-03-03 2003-06-10 Innercool Therapies, Inc. Lumen design for catheter
US6379378B1 (en) 2000-03-03 2002-04-30 Innercool Therapies, Inc. Lumen design for catheter
US20040143312A1 (en) * 2000-05-04 2004-07-22 Wilfred Samson Method and apparatus for providing heat exchange within a catheter body
US6592612B1 (en) 2000-05-04 2003-07-15 Cardeon Corporation Method and apparatus for providing heat exchange within a catheter body
US7211105B2 (en) 2000-06-02 2007-05-01 Innercool Therapias, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6660028B2 (en) 2000-06-02 2003-12-09 Innercool Therapies, Inc. Method for determining the effective thermal mass of a body or organ using a cooling catheter
US7491223B2 (en) 2000-06-14 2009-02-17 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US7004960B2 (en) 2000-11-07 2006-02-28 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US6719779B2 (en) 2000-11-07 2004-04-13 Innercool Therapies, Inc. Circulation set for temperature-controlled catheter and method of using the same
US20060253114A1 (en) * 2001-11-02 2006-11-09 Vahid Saadat Methods and apparatus for cryo-therapy
US7758571B2 (en) 2001-11-02 2010-07-20 Nidus Medical, Llc Methods and apparatus for cryo-therapy
US20100249766A1 (en) * 2001-11-02 2010-09-30 Vahid Saadat Methods and apparatus for cryo-therapy
US6668560B2 (en) 2001-12-12 2003-12-30 Astronautics Corporation Of America Rotating magnet magnetic refrigerator
US9358149B2 (en) 2002-03-15 2016-06-07 The General Hospital Corporation Systems for affecting subcutaneous lipid-rich cells, systems for removing heat from subcutaneous lipid-rich cells, and systems for reducing subcutaneous lipid-rich cells
US8834547B2 (en) 2002-03-15 2014-09-16 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US20030220674A1 (en) * 2002-03-15 2003-11-27 Anderson Richard Rox Methods and devices for selective disruption of fatty tissue by controlled cooling
US8840608B2 (en) * 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US7367341B2 (en) 2002-03-15 2008-05-06 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US9308120B2 (en) 2002-03-15 2016-04-12 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US9649220B2 (en) 2002-03-15 2017-05-16 The General Hospital Corporation Treatment systems for removing heat from subcutaneous lipid-rich cells
US11590020B2 (en) 2002-03-15 2023-02-28 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US7531122B2 (en) 2002-03-28 2009-05-12 Boston Scientific Scimed, Inc. Polymer welding using ferromagnetic particles
US20070102848A1 (en) * 2002-03-28 2007-05-10 Boston Scientific Scimed, Inc. Apparatus for Extruding Polymers Employing Microwave Energy
US7163655B2 (en) 2002-03-28 2007-01-16 Scimed Life Systems, Inc. Method and apparatus for extruding polymers employing microwave energy
US20040021249A1 (en) * 2002-03-28 2004-02-05 Jan Weber Polymer welding using ferromagnetic particles
US20030183966A1 (en) * 2002-03-28 2003-10-02 Lixiao Wang Method of manufacture medical devices employing microwave energy
US7458798B2 (en) 2002-03-28 2008-12-02 Boston Scientific Scimed, Inc. Apparatus for extruding polymers employing microwave energy
US7056466B2 (en) 2002-03-28 2006-06-06 Scimed Life Systems, Inc. Method of manufacture medical devices employing microwave energy
US20030183972A1 (en) * 2002-03-28 2003-10-02 Jan Weber Method and apparatus for extruding polymers employing microwave energy
US20030204161A1 (en) * 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
US20040039381A1 (en) * 2002-06-13 2004-02-26 Bischof John C. Cryosurgery compositions and methods
US20060122588A1 (en) * 2002-06-13 2006-06-08 Regents Of The University Of Minnesota Cryosurgery compositions and methods
US20040118129A1 (en) * 2002-12-20 2004-06-24 Chrysler Gregory M. Thermoelectric cooling for microelectronic packages and dice
US6981380B2 (en) * 2002-12-20 2006-01-03 Intel Corporation Thermoelectric cooling for microelectronic packages and dice
US7300453B2 (en) 2003-02-24 2007-11-27 Innercool Therapies, Inc. System and method for inducing hypothermia with control and determination of catheter pressure
US7344531B2 (en) 2003-03-26 2008-03-18 Regents Of The University Of Minnesota Thermal surgical procedures and compositions
US20050080405A1 (en) * 2003-03-26 2005-04-14 Bischof John C. Thermal surgical procedures and compositions
US20060079869A1 (en) * 2003-03-26 2006-04-13 Bischof John C Thermal surgical procedures and compositions
US20060078538A1 (en) * 2003-03-26 2006-04-13 Bischof John C Thermal surgical procedures and compositions
US7344530B2 (en) 2003-03-26 2008-03-18 Regents Of The University Of Minnesota Thermal surgical procedures and compositions
US20040193039A1 (en) * 2003-03-27 2004-09-30 Jan Weber Medical device with temperature modulator for use in magnetic resonance imaging
US8862203B2 (en) 2003-03-27 2014-10-14 Boston Scientific Scimed Inc. Medical device with temperature modulator for use in magnetic resonance imaging
US7038565B1 (en) 2003-06-09 2006-05-02 Astronautics Corporation Of America Rotating dipole permanent magnet assembly
US20050046533A1 (en) * 2003-08-29 2005-03-03 Jeremy Chell Permanent magnet assembly
US6946941B2 (en) 2003-08-29 2005-09-20 Astronautics Corporation Of America Permanent magnet assembly
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US7148777B2 (en) 2004-02-03 2006-12-12 Astronautics Corporation Of America Permanent magnet assembly
US20050242912A1 (en) * 2004-02-03 2005-11-03 Astronautics Corporation Of America Permanent magnet assembly
US20050178423A1 (en) * 2004-02-12 2005-08-18 Shriram Ramanathan Microelectronic assembly having thermoelectric elements to cool a die and a method of making the same
US7589417B2 (en) * 2004-02-12 2009-09-15 Intel Corporation Microelectronic assembly having thermoelectric elements to cool a die and a method of making the same
US20060005944A1 (en) * 2004-07-06 2006-01-12 Jack Wang Thermoelectric heat dissipation device and method for fabricating the same
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
WO2006040768A2 (en) * 2004-10-11 2006-04-20 Given Imaging Ltd. Device, system and method for in-vivo cauterization
WO2006040768A3 (en) * 2004-10-11 2007-05-03 Given Imaging Ltd Device, system and method for in-vivo cauterization
US20090299359A1 (en) * 2004-10-11 2009-12-03 Given Imaging Ltd Device, System and Method for In-Vivo Cauterization
US8597286B2 (en) 2004-10-11 2013-12-03 Given Imaging Ltd Device, system and method for in-vivo cauterization
US8478415B1 (en) 2004-11-19 2013-07-02 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US7306621B1 (en) * 2004-11-19 2007-12-11 National Semiconductor Corporation Heat transfer control for a prosthetic retinal device
US20060178662A1 (en) * 2005-02-04 2006-08-10 Ripley Kenneth L Warming gradient control for a cryoablation applicator
WO2006083674A3 (en) * 2005-02-04 2007-10-18 Cryocor Inc Warming gradient control for a cryoablation applicator
WO2006083674A2 (en) * 2005-02-04 2006-08-10 Cryocor, Inc. Warming gradient control for a cryoablation applicator
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
WO2007001290A1 (en) * 2005-06-24 2007-01-04 Carrier Corporation A combination thermo-electric and magnetic refrigeration system
EP1899659A4 (en) * 2005-06-24 2009-03-04 Carrier Corp A combination thermo-electric and magnetic refrigeration system
US20090133409A1 (en) * 2005-06-24 2009-05-28 Lei Chen Combination Thermo-Electric and Magnetic Refrigeration System
EP1899659A1 (en) * 2005-06-24 2008-03-19 Carrier Corporation A combination thermo-electric and magnetic refrigeration system
US8337539B2 (en) 2006-02-22 2012-12-25 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US7761168B2 (en) 2006-07-13 2010-07-20 Yossi Gross Peltier unidirectional and selective nerve stimulation
US20090187223A1 (en) * 2006-07-13 2009-07-23 Rainbow Medical Ltd. Peltier unidirectional and selective nerve stimulation
US8135478B2 (en) 2006-07-13 2012-03-13 Rainbow Medical Ltd Peltier unidirectional and selective nerve stimulation
US7588549B2 (en) * 2006-08-03 2009-09-15 Terumo Cardiovascular Systems Corporation Thermoelectric temperature control for extracorporeal blood circuit
US20080031773A1 (en) * 2006-08-03 2008-02-07 Terumo Cardiovascular Systems Corporation Thermoelectric temperature control for extracorporeal blood circuit
US11395760B2 (en) 2006-09-26 2022-07-26 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9375345B2 (en) 2006-09-26 2016-06-28 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US10292859B2 (en) 2006-09-26 2019-05-21 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US11179269B2 (en) 2006-09-26 2021-11-23 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US11219549B2 (en) 2006-09-26 2022-01-11 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US10383787B2 (en) 2007-05-18 2019-08-20 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US11291606B2 (en) 2007-05-18 2022-04-05 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
US9655770B2 (en) 2007-07-13 2017-05-23 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US11583438B1 (en) 2007-08-21 2023-02-21 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8285390B2 (en) 2007-08-21 2012-10-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9408745B2 (en) 2007-08-21 2016-08-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US10675178B2 (en) 2007-08-21 2020-06-09 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US9322578B2 (en) * 2007-09-10 2016-04-26 Whirlpool Corporation Quick thaw/quick chill refrigerated compartment
US20090064686A1 (en) * 2007-09-10 2009-03-12 Whirlpool Corporation Quick thaw/quick chill refrigerated compartment
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US20120042661A1 (en) * 2008-12-11 2012-02-23 Lamos Inc. Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
US20120047912A1 (en) * 2008-12-11 2012-03-01 Lamos Inc. Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US9737434B2 (en) 2008-12-17 2017-08-22 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US8480664B2 (en) 2009-01-15 2013-07-09 Boston Scientific Scimed, Inc. Controlling depth of cryoablation
US20100179527A1 (en) * 2009-01-15 2010-07-15 Boston Scientific Scimed, Inc. Controlling Depth of Cryoablation
US20100241113A1 (en) * 2009-03-20 2010-09-23 Boston Scientific Scimed, Inc. Protecting the phrenic nerve while ablating cardiac tissue
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11224536B2 (en) 2009-04-30 2022-01-18 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9861520B2 (en) 2009-04-30 2018-01-09 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US11452634B2 (en) 2009-04-30 2022-09-27 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US9844461B2 (en) 2010-01-25 2017-12-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9266201B2 (en) 2010-06-07 2016-02-23 Empire Technology Development Llc System to facilitate disassembly of components
US8572831B2 (en) 2010-06-07 2013-11-05 Empire Technology Development Llc Disassembling an item by means of RF energy
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US10092346B2 (en) 2010-07-20 2018-10-09 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US10004550B2 (en) 2010-08-05 2018-06-26 Medtronic Ardian Luxembourg S.A.R.L. Cryoablation apparatuses, systems, and methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9439708B2 (en) 2010-10-26 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US10188445B2 (en) 2010-10-26 2019-01-29 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US10842547B2 (en) 2010-10-26 2020-11-24 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US10722395B2 (en) 2011-01-25 2020-07-28 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US10588682B2 (en) 2011-04-25 2020-03-17 Medtronic Ardian Luxembourg S.A.R.L. Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US11747043B2 (en) 2011-05-12 2023-09-05 Nxstage Medical, Inc. Fluid heating apparatuses, systems, and methods
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US20140364841A1 (en) * 2011-11-14 2014-12-11 Andrew Kornstein Cryolipolyis device having a curved applicator surface
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9402684B2 (en) 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US11751931B2 (en) 2012-04-27 2023-09-12 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US10905490B2 (en) 2012-04-27 2021-02-02 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US9872718B2 (en) 2012-04-27 2018-01-23 Medtronic Adrian Luxembourg S.a.r.l. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US10575890B2 (en) 2014-01-31 2020-03-03 Zeltiq Aesthetics, Inc. Treatment systems and methods for affecting glands and other targeted structures
US10806500B2 (en) 2014-01-31 2020-10-20 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US11819257B2 (en) 2014-01-31 2023-11-21 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10201380B2 (en) 2014-01-31 2019-02-12 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
US10912599B2 (en) 2014-01-31 2021-02-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11406437B2 (en) 2014-03-07 2022-08-09 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US20150300705A1 (en) * 2014-04-19 2015-10-22 Ferrotec (Usa) Corporation Integrated thermoelectric-powered fluid heat exchanger
US10054341B2 (en) * 2014-04-19 2018-08-21 Ferrotec (Usa) Corporation Integrated thermoelectric-powered fluid heat exchanger
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US9646745B2 (en) * 2014-07-29 2017-05-09 Ford Global Technologies, Llc Thermistor assembly including elastomeric body
US10818984B2 (en) 2014-07-29 2020-10-27 Ford Global Technologies, Llc Thermistor assembly including elastomeric body
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US20160242956A1 (en) * 2015-02-25 2016-08-25 Jennifer Marie Pilby Gomez Pre and post anesthetic cooling device and method
US20180042761A1 (en) * 2015-03-13 2018-02-15 Embr Labs Inc. Methods and apparatuses for manipulating temperature
US10322248B2 (en) * 2015-03-26 2019-06-18 The Regents Of The University Of Michigan Applicator for cryoanesthesia and analgesia
US20160279350A1 (en) * 2015-03-26 2016-09-29 The Regents Of The University Of Michigan Applicator for cryoanesthesia and analgesia
US11389600B2 (en) 2015-03-26 2022-07-19 The Regents Of The University Of Michigan Applicator for cryoanesthesia and analgesia
US10238814B2 (en) 2015-03-26 2019-03-26 The Regents Of The University Of Michigan Applicator for cryoanesthesia and analgesia
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
US10524956B2 (en) 2016-01-07 2020-01-07 Zeltiq Aesthetics, Inc. Temperature-dependent adhesion between applicator and skin during cooling of tissue
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11446175B2 (en) 2018-07-31 2022-09-20 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics

Similar Documents

Publication Publication Date Title
US4483341A (en) Therapeutic hypothermia instrument
US3238944A (en) Temperature controlling device for living organs
US5139496A (en) Ultrasonic freeze ablation catheters and probes
US5207674A (en) Electronic cryogenic surgical probe apparatus and method
Short et al. Physical hyperthermia and cancer therapy
US8267983B2 (en) Medical devices incorporating thermoelectric transducer and controller
US20080168775A1 (en) Temperature Control Including Integrated Thermoelectric Temperature Sensing and Related Methods and Systems
EP1049412B1 (en) Selective organ hypothermia apparatus
EP2056686B1 (en) Cooling apparatus for reducing risk of male infertility in heated environments
US3369550A (en) Cryogenic clamps
US20080264464A1 (en) Temperature Control Including Integrated Thermoelectric Sensing and Heat Pumping Devices and Related Methods and Systems
US6149677A (en) Circulating fluid hypothermia method
US5190539A (en) Micro-heat-pipe catheter
US7127293B2 (en) Biothermal power source for implantable devices
EP2988690A1 (en) Cyrocatheter with coolant fluid cooled thermoelectric module
JP2006130055A (en) Cryotherapy apparatus by peltier module/element and temperature control method for cryotherapy by peltier module/element
US11331215B2 (en) Implantable thermal therapy devices
CN104334128A (en) Method and apparatus for cryogenic treatment of skin tissue
JP2001517966A (en) Body temperature control method and device
CN107714172A (en) Thermometric and the cryoablation pin of rewarming function are realized by thermocouple wire simultaneously
WO2018152068A1 (en) Handheld battery powered cold therapy device
JP4160906B2 (en) Equipment for cooling spacecraft components
RU2488364C2 (en) Cryomedical apparatus
JP3999755B2 (en) Thermal therapy probe
CN2136644Y (en) Semiconductor cooling therapeutic instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATLANTIC RICHFIELD COMPANY,LOS ANGELES,CA. A CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WITTELES, ELEONORA M.;REEL/FRAME:004105/0861

Effective date: 19821206

AS Assignment

Owner name: WITTELES, ELEONRA M.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ATLANTIC RICHFIELD COMPANY;REEL/FRAME:004312/0320

Effective date: 19840913

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - INDIV INVENTOR (ORIGINAL EVENT CODE: SM01); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19961120

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362