US4633811A - Plasma CVD apparatus - Google Patents

Plasma CVD apparatus Download PDF

Info

Publication number
US4633811A
US4633811A US06/691,861 US69186185A US4633811A US 4633811 A US4633811 A US 4633811A US 69186185 A US69186185 A US 69186185A US 4633811 A US4633811 A US 4633811A
Authority
US
United States
Prior art keywords
electrodes
high frequency
plasma cvd
supplied
cvd apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/691,861
Inventor
Kazumi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Energy Development Organization
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Assigned to FUJI ELECRIC CORPORSATE RESEARCH AND DEVELOPMENT, LTD. reassignment FUJI ELECRIC CORPORSATE RESEARCH AND DEVELOPMENT, LTD. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MARUYAMA, KAZUMI
Application granted granted Critical
Publication of US4633811A publication Critical patent/US4633811A/en
Assigned to NEW ENERGY DEVELOPMENT ORGANIZATION reassignment NEW ENERGY DEVELOPMENT ORGANIZATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FUJI ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT LTD.,
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • noncrystalline semiconductor films such as noncrystalline or amorphous silicon (hereinafter called a-Si for short)
  • plasma CVD apparatus for manufacturing plates with thin films have included a high-frequency electrode and a substrate electrode for holding a substrate, mounted in face-to-face relation in a vacuum reaction chamber.
  • a plurality of electrode pairs are alternately connected in parallel, substrates used to form the thin films are arranged on both sides of each of the substrate electrodes, and power is supplied to all the electrodes from a single power supply to provide a mass production type apparatus, as disclosed in Japanese laid-open application No. 48416/1983.
  • a thin film is normally formed by applying an AC electric field across the electrodes at a gas pressure of about 0.1 to 10 torr and decomposing a gas in the chamber by means of a glow discharge. Since a single power supply is used to apply the electric field to all electrodes, all of the electrode pairs are connected in parallel. If the size of the substrate is increased when this method is used, uniformity of the thin film formed on all of the substrates in an array cannot be attained at a frequency of 13.56 Mhz even though a film of good quality is normally obtainable at that frequency. On the other hand, if a frequency of approximately 100 KHz is used, the electrical stress applied to the film is very large and satisfactory film properties are not uniformly obtained when as a-Si film is formed.
  • an object of the present invention is to provide an apparatus for manufacturing plates having thin films which overcomes the above-mentioned disadvantages of the prior art.
  • Another object of the invention is to provide such an apparatus having pairs of electrodes in an array wherein uneven discharge problems at high frequency are eliminated and electromagnetic interference is avoided so that uniform thin films can be formed on all substrates with excellent reproducibility even if substrates having a large area are used.
  • a power supply output unit is defined as a terminal at which output power from the power supply is available at a level which is adjustable and substantially independent of the level at the other output units.
  • a power supply means which provides at least a pair of output units and the high frequency electrodes are connected into at least two sets, each connected to a separate output unit.
  • the plurality of output units which can be controlled independently of one another are supplied by a single power source so as to avoid high frequency electric field phase shift as well as electromagnetic interference, thereby assuring that the output units will supply power in the same phase relation to all of the electrodes.
  • FIG. 1 is a schematic cross-sectional view illustrating a conventional plasma CVD apparatus
  • FIG. 2 is a schematic cross-sectional view showing a representative embodiment of the present invention
  • FIGS. 3, 6 and 7 are schematic cross-sectional views illustrating additional embodiments of the present invention.
  • FIGS. 4 and 5 are schematic circuit diagrams showing the arrangement of the power supplies for the embodiments of FIGS. 1 and 3, respectively.
  • FIG. 1 of the drawings shows a conventional plasma CVD apparatus comprising a vacuum chamber containing four pairs of electrodes 2 and 3. Two plate substrates 4 are mounted on opposite sides of each substrate electrode 3 and the pairs of adjacent electrodes are connected to a high frequency power supply 5. As discussed above, when the electrodes are large and are energized at high frequency, non-uniform films are produced, whereas, if lower frequency is used, satisfactory film properties may not be obtained.
  • FIG. 2 illustrates a first embodiment of the present invention wherein a series of high frequency electrodes 12 and substrate electrodes 13 are alternately positioned in a row and a series of high frequency power supplies 15 are individually connected across each pair of high frequency electrodes and substrate electrodes, respectively.
  • substrate electrodes 13 are connected together to be in phase with one another and may all be grounded but it is not always necessary to ground them.
  • a frequency of 13.56 MHz is usually employed for the high frequency field but, when nitrate film are to be formed, a frequency of about 50 KHz to 500 KHz is preferred.
  • the output of each power supply 15 is controlled by a phase regulator 16 so as to provide the desired phase for each individual power supply so that all the electrodes 12 may be kept essentially in phase.
  • the power to be applied to each pair of electrodes can be individually regulated by making the high frequency power supplies independent of one another, it is possible to allow all of the electrodes to discharge uniformly even if the shape of each electrode is different from the others. Because the phase of each of the high frequency supplies is controlled, the power is prevented from flowing backward, so to speak, and producing a phenomenon in which the reflected wave of one of the power supplies becomes abnormally large because of electromagnetic mutual interference between the electrodes.
  • FIG. 3 illustrates another embodiment of the present invention which differs from the embodiment shown in FIG. 2, primarily in the method of phase regulation.
  • FIG. 4 illustrates the details of the high frequency power which normally is used in the arrangement of supply of FIG. 1, which basically comprises a source 18, an isolation amplifier or buffer 19 including a conventional power controller for varying the output level or the like, a matching circuit 20, and an output terminal or unit 21.
  • FIG. 5 shows the details of the high frequency power supply which is used in the inventive embodiment 15 of FIG. 3 which comprises a single source 18 and a series of amplifiers 19 and corresponding matching circuits 20, each supplying a separate terminal or output unit 21.
  • FIG. 6 illustrates still another embodiment of the invention.
  • This embodiment differs from that of FIG. 3 in that the set of electrodes having equivalent geometrical shape are connected in parallel to an outlet terminal 21 of a high frequency power supply 15.
  • the set of the two outer high frequency electrodes are connected together to one terminal or output unit 21 and the set of the electrodes are connected together to a different terminal or output unit.
  • the load impedences during discharge are also the same. Accordingly, these electrodes discharge uniformly even though they are connected together so that they can be completely controlled by adjusting the length of the conductors from the output terminal so as to regulate the impedance in each of the electrode circuits.
  • FIG. 7 illustrates still another embodiment which differs from that of FIG. 3 in that substrates are provided on both sides of the high frequency electrodes 12 as well as on the substrate electrodes 13, thereby doubling the number of substrates that can be produced.
  • the substrate electrodes 13 may be grounded, it is preferred that the electrodes 13 not grounded because electric fields on the high frequency electrode and substrate electrode sides will then be unformly distributed. With this arrangement, excellent uniformity of film thickness can be realized when thin films are formed.

Abstract

In the particular embodiments described in the specification, a plasma CVD apparatus has a plurality of pairs of electrodes and equal discharges are attained by controlling the power supplied to the high frequency electrodes independently of one another so as to effect the formation of uniform films. Electromagnetic mutual interference between the electrodes is reduced by allowing the high frequency power supplies for supplying the power to function independently and providing a phase regulator if necessary.

Description

BACKGROUND OF THE INVENTION
This invention relates to plasma CVD apparatus for forming thin films, including noncrystalline semiconductor films such as noncrystalline or amorphous silicon (hereinafter called a-Si for short), nitrate films such as SiNx (x=0-4/3) and oxide films SiOx (x=0-2), that can be obtained by glow discharge composition.
Heretofore, plasma CVD apparatus for manufacturing plates with thin films have included a high-frequency electrode and a substrate electrode for holding a substrate, mounted in face-to-face relation in a vacuum reaction chamber. To increase the number of substrates to be processed, a plurality of electrode pairs are alternately connected in parallel, substrates used to form the thin films are arranged on both sides of each of the substrate electrodes, and power is supplied to all the electrodes from a single power supply to provide a mass production type apparatus, as disclosed in Japanese laid-open application No. 48416/1983.
A thin film is normally formed by applying an AC electric field across the electrodes at a gas pressure of about 0.1 to 10 torr and decomposing a gas in the chamber by means of a glow discharge. Since a single power supply is used to apply the electric field to all electrodes, all of the electrode pairs are connected in parallel. If the size of the substrate is increased when this method is used, uniformity of the thin film formed on all of the substrates in an array cannot be attained at a frequency of 13.56 Mhz even though a film of good quality is normally obtainable at that frequency. On the other hand, if a frequency of approximately 100 KHz is used, the electrical stress applied to the film is very large and satisfactory film properties are not uniformly obtained when as a-Si film is formed. The reasons for the inability to obtain film uniformity, particularly at high frequency, are that isometric discharging is impossible because the load impedances of the electrodes are different from one another and, in addition, the discharge condition changes with time. When the substrates are arranged in an array another disadvantage is that discharging is unstable because of electromagnetic interference between the electrodes.
Accordingly, an object of the present invention is to provide an apparatus for manufacturing plates having thin films which overcomes the above-mentioned disadvantages of the prior art.
Another object of the invention is to provide such an apparatus having pairs of electrodes in an array wherein uneven discharge problems at high frequency are eliminated and electromagnetic interference is avoided so that uniform thin films can be formed on all substrates with excellent reproducibility even if substrates having a large area are used.
SUMMARY OF THE INVENTION
These and other objects of the invention are attained by providing apparatus in which a plurality of pairs of high frequency electrodes arranged in an array are connected to separate power supply output units, each output unit being capable of controlling the applied power independently of the others. A power supply output unit is defined as a terminal at which output power from the power supply is available at a level which is adjustable and substantially independent of the level at the other output units. In the invention, there is included a power supply means which provides at least a pair of output units and the high frequency electrodes are connected into at least two sets, each connected to a separate output unit. With this arrangement the same amount of power is supplied to each pair of electrodes and the discharges are uniform even if the load impedances of the electrodes are different.
In a preferred embodiment of the present invention, the plurality of output units which can be controlled independently of one another are supplied by a single power source so as to avoid high frequency electric field phase shift as well as electromagnetic interference, thereby assuring that the output units will supply power in the same phase relation to all of the electrodes.
BRIEF DESCRIPTION OF THE DRAWINGS
Further objects and advantages of the invention will be apparent from a reading of the following description in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic cross-sectional view illustrating a conventional plasma CVD apparatus;
FIG. 2 is a schematic cross-sectional view showing a representative embodiment of the present invention;
FIGS. 3, 6 and 7 are schematic cross-sectional views illustrating additional embodiments of the present invention; and
FIGS. 4 and 5 are schematic circuit diagrams showing the arrangement of the power supplies for the embodiments of FIGS. 1 and 3, respectively.
DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 of the drawings shows a conventional plasma CVD apparatus comprising a vacuum chamber containing four pairs of electrodes 2 and 3. Two plate substrates 4 are mounted on opposite sides of each substrate electrode 3 and the pairs of adjacent electrodes are connected to a high frequency power supply 5. As discussed above, when the electrodes are large and are energized at high frequency, non-uniform films are produced, whereas, if lower frequency is used, satisfactory film properties may not be obtained.
FIG. 2 illustrates a first embodiment of the present invention wherein a series of high frequency electrodes 12 and substrate electrodes 13 are alternately positioned in a row and a series of high frequency power supplies 15 are individually connected across each pair of high frequency electrodes and substrate electrodes, respectively. As shown, substrate electrodes 13 are connected together to be in phase with one another and may all be grounded but it is not always necessary to ground them. A frequency of 13.56 MHz is usually employed for the high frequency field but, when nitrate film are to be formed, a frequency of about 50 KHz to 500 KHz is preferred. In the embodiment illustrated in FIG. 2, the output of each power supply 15 is controlled by a phase regulator 16 so as to provide the desired phase for each individual power supply so that all the electrodes 12 may be kept essentially in phase.
Since the power to be applied to each pair of electrodes can be individually regulated by making the high frequency power supplies independent of one another, it is possible to allow all of the electrodes to discharge uniformly even if the shape of each electrode is different from the others. Because the phase of each of the high frequency supplies is controlled, the power is prevented from flowing backward, so to speak, and producing a phenomenon in which the reflected wave of one of the power supplies becomes abnormally large because of electromagnetic mutual interference between the electrodes.
In order to confirm this result, an a-Si film-forming experiment was carried out using an apparatus comprising three high frequency electrodes and two substrate electrodes placed between them. When a high frequency electric field was applied by one power supply to the three high frequency electrodes in the manner shown in FIG. 1, the variation in film thickness on 40 cm square glass plate substrates attached to both sides of each substrate electrode was as high as ±28%. In particular, the a-Si film thickness formed on the substrates located on the sides of the high-frequency electrodes placed facing the central electrode was only about 40% of that on the substrates facing the external high frequency electrodes. This was evidently due to the lack of uniformity in the power supplied to the high frequency electrodes.
On the other hand, the same experiment with the arrangement shown in FIG. 2 but without phase regulation reduced the variation in film thickness on the substrates to ±6% since the power supplied to each high frequency electrode was regulated to be essentially uniform. Control of the film thickness in this manner was accomplished by the use of individual power supplies to form films without employing a phase regulator. However, mutual electromagnetic interference was large in this case and its magnitude reached approximately 5 to 30% of the net power applied. In addition, completely satisfactory matching conditions were not possible.
FIG. 3 illustrates another embodiment of the present invention which differs from the embodiment shown in FIG. 2, primarily in the method of phase regulation. FIG. 4 illustrates the details of the high frequency power which normally is used in the arrangement of supply of FIG. 1, which basically comprises a source 18, an isolation amplifier or buffer 19 including a conventional power controller for varying the output level or the like, a matching circuit 20, and an output terminal or unit 21. FIG. 5 shows the details of the high frequency power supply which is used in the inventive embodiment 15 of FIG. 3 which comprises a single source 18 and a series of amplifiers 19 and corresponding matching circuits 20, each supplying a separate terminal or output unit 21.
When separate power supplies are used and the phases are matched by a phase regulator as described in connection with FIG. 2, all of the oscillation frequencies of the power supplies must coincide exactly. It is extremely difficult to do this when a quartz oscillator having a discrete frequency is used as a power supply or when a high frequency in the megahertz band is used.
On the other hand, no interference beat signal resulting from differences in the aforementioned oscillation frequencies can occur in the preferred arrangement of FIG. 5 because a single power supply and so a single oscillation frequency is used. This may be supplied by any conventional high frequency source. Another advantage of the invention results from the simplicity of construction of the power supply, enabling the cost to be reduced and permitting integration of the power supplies and simplified control.
FIG. 6 illustrates still another embodiment of the invention. This embodiment differs from that of FIG. 3 in that the set of electrodes having equivalent geometrical shape are connected in parallel to an outlet terminal 21 of a high frequency power supply 15. As shown, the set of the two outer high frequency electrodes are connected together to one terminal or output unit 21 and the set of the electrodes are connected together to a different terminal or output unit. When geometrical shapes are equivalent, the load impedences during discharge are also the same. Accordingly, these electrodes discharge uniformly even though they are connected together so that they can be completely controlled by adjusting the length of the conductors from the output terminal so as to regulate the impedance in each of the electrode circuits. Since the output units of the high frequency power supply can be reduced in size, this permits a further advantageous simplification in the arrangement as compared with FIG. 3. By using apparatus of the type described having three high frequency electrodes, an experiment was carried out with the set of the two external high frequency electrodes being symmetrical in shape and being connected together to the same output unit and the set of the single inner high frequency electrode being connected to a different output unit. The variation in film thickness on the substrates facing the electrodes was a maximum of ±3%, thus presenting no difficulty.
FIG. 7 illustrates still another embodiment which differs from that of FIG. 3 in that substrates are provided on both sides of the high frequency electrodes 12 as well as on the substrate electrodes 13, thereby doubling the number of substrates that can be produced. Although the substrate electrodes 13 may be grounded, it is preferred that the electrodes 13 not grounded because electric fields on the high frequency electrode and substrate electrode sides will then be unformly distributed. With this arrangement, excellent uniformity of film thickness can be realized when thin films are formed.

Claims (5)

I claim:
1. A plasma CVD apparatus comprising:
a power supply means comprising a high frequency power source, a plurality of amplifiers each supplied by said source, and a plurality of matching circuit means each supplied from a different one of said amplifiers, and a plurality of output units each supplied by a respective one of the matching circuit means, and a common terminal;
a reaction chamber;
a plurality of electrodes disposed in spaced face-to-face relation within the chamber, at least each alternate electrode of the plurality being arranged to support on opposite faces thereof a substrate for receiving a thin film produced by a glow discharge, each of said alternate electrodes being connected to said common terminal and the remaining electrodes of the plurality being connected into at least two separate sets, each separate set being connected to a different one of the plurality of output units whereby the amount of power supplied to each adjacent pair of electrodes may be separately regulated to be substantially the same.
2. A plasma CVD apparatus in accordance with claim 1 in which said remaining electrodes are each connected separately to a different one of a plurality of output units and said high frequency power supply means comprises a like plurality of output units.
3. A plasma CVD apparatus in accordance with claim 1 in which the number of remaining electrodes is odd, including at least a pair of outer electrodes and at least one inner electrode, and in which said outside electrodes are connected together to form one set and in which said inner electrodes are connected together to form a different set.
4. A plasma CVD apparatus in accordance with claim 1 in which each said remaining electrode is also arranged to support, on opposite faces thereof, a substrate for receiving a thin film produced by a glow discharge, and in which each of said remaining electrodes is connected to a different output unit, and said high frequency power supply means comprises a like plurality of output units.
5. A plasma CVD apparatus comprising a reaction chamber, a plurality of electrodes disposed in face-to-face relation within said chamber, a plurality of high frequency sources of the same high frequency, and phase regulating means for regulating the phase of the output of each of the high frequency sources, each adjacent pair of said plurality of electrodes being supplied with the regulated output of a different one of said high frequency sources, and said phase regulating means being adjusted to keep the regulated outputs supplied to the pairs of electrodes in phase.
US06/691,861 1984-03-28 1985-01-16 Plasma CVD apparatus Expired - Lifetime US4633811A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59-60344 1984-03-28
JP59060344A JPH0644554B2 (en) 1984-03-28 1984-03-28 Plasma CVD equipment

Publications (1)

Publication Number Publication Date
US4633811A true US4633811A (en) 1987-01-06

Family

ID=13139447

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/691,861 Expired - Lifetime US4633811A (en) 1984-03-28 1985-01-16 Plasma CVD apparatus

Country Status (2)

Country Link
US (1) US4633811A (en)
JP (1) JPH0644554B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802852A1 (en) * 1988-02-01 1989-08-03 Leybold Ag Device for coating a substrate with a material obtained from a plasma
FR2636079A1 (en) * 1988-09-06 1990-03-09 Schott Glaswerke METHOD FOR COATING SUBSTRATES BY VAPOR PHASE DEPOSITION
US5039376A (en) * 1989-09-19 1991-08-13 Stefan Zukotynski Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
US5041201A (en) * 1988-09-16 1991-08-20 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
US5653810A (en) * 1991-10-29 1997-08-05 Canon Kabushiki Kaisha Apparatus for forming metal film and process for forming metal film
DE19808206A1 (en) * 1998-02-27 1999-09-02 Gesche Low pressure gas discharge treatment of wafers for lacquer removal, cleaning or etching
US6042686A (en) * 1995-06-30 2000-03-28 Lam Research Corporation Power segmented electrode
WO2000032841A1 (en) * 1998-12-01 2000-06-08 Sk Corporation Apparatus for forming thin film
US6076481A (en) * 1996-04-03 2000-06-20 Canon Kabushiki Kaisha Plasma processing apparatus and plasma processing method
US6198067B1 (en) * 1998-12-28 2001-03-06 Nippon Mektron, Ltd. Plasma processing device for circuit supports
US6451160B1 (en) * 1999-03-12 2002-09-17 Sharp Kabushiki Kaisha Plasma generation apparatus with a conductive connection member that electrically connects the power source to the electrode
US20030079983A1 (en) * 2000-02-25 2003-05-01 Maolin Long Multi-zone RF electrode for field/plasma uniformity control in capacitive plasma sources
US20040187785A1 (en) * 2003-03-24 2004-09-30 Sharp Kabushiki Kaisha Deposition apparatus and deposition method
KR100489643B1 (en) * 1997-11-05 2005-09-06 에스케이 주식회사 Automation System of Thin Film Manufacturing Equipment
US20060087211A1 (en) * 2004-10-22 2006-04-27 Sharp Kabushiki Kaisha Plasma processing apparatus
US20060151319A1 (en) * 2005-01-13 2006-07-13 Sharp Kabushiki Kaish Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US20060191480A1 (en) * 2005-01-13 2006-08-31 Sharp Kabushiki Kaisha Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US20100075489A1 (en) * 2007-01-22 2010-03-25 Yuichiro Sasaki Method for producing semiconductor device and semiconductor producing apparatus
US20100199913A1 (en) * 2007-11-21 2010-08-12 Ngk Insulators, Ltd. Film deposition apparatus
US20110088849A1 (en) * 2008-05-21 2011-04-21 Sharp Kabushiki Kaisha Plasma processing apparatus
EP2327811A1 (en) * 2008-09-26 2011-06-01 NGK Insulators, Ltd. Film forming apparatus
US20110300694A1 (en) * 2008-11-12 2011-12-08 Ulvac, Inc. Electrode circuit, film formation device, electrode unit, and film formation method
WO2020208146A1 (en) * 2019-04-10 2020-10-15 Plasmetrex Gmbh Wafer boat and treatment device for wafers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101744A (en) * 1988-10-11 1990-04-13 Semiconductor Energy Lab Co Ltd Plasma reaction process
US4958592A (en) * 1988-08-22 1990-09-25 General Electric Company Resistance heater for diamond production by CVD
JPH02101745A (en) * 1988-10-11 1990-04-13 Semiconductor Energy Lab Co Ltd Plasma reaction apparatus
US5225375A (en) * 1991-05-20 1993-07-06 Process Technology (1988) Limited Plasma enhanced chemical vapor processing of semiconductor substrates
JP4659238B2 (en) * 2001-03-06 2011-03-30 株式会社カネカ Method for forming semiconductor layer
JP4870608B2 (en) * 2007-04-12 2012-02-08 株式会社アルバック Deposition equipment
KR101362811B1 (en) * 2008-02-11 2014-02-14 (주)소슬 Apparatus for supporting substrate and apparatus for treating substrate having the same
DE102014011933A1 (en) * 2014-08-14 2016-02-18 Manz Ag Plasma treatment apparatus and method for surface treatment of substrates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292153A (en) * 1979-03-19 1981-09-29 Fujitsu Limited Method for processing substrate materials by means of plasma treatment
US4381965A (en) * 1982-01-06 1983-05-03 Drytek, Inc. Multi-planar electrode plasma etching
US4464223A (en) * 1983-10-03 1984-08-07 Tegal Corp. Plasma reactor apparatus and method
US4478173A (en) * 1983-04-18 1984-10-23 Energy Conversion Devices, Inc. Method and apparatus for sensing and controlling the intensity of energy in a deposition system
US4500563A (en) * 1982-12-15 1985-02-19 Pacific Western Systems, Inc. Independently variably controlled pulsed R.F. plasma chemical vapor processing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877225A (en) * 1981-11-04 1983-05-10 Semiconductor Energy Lab Co Ltd Manufacturing device of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292153A (en) * 1979-03-19 1981-09-29 Fujitsu Limited Method for processing substrate materials by means of plasma treatment
US4381965A (en) * 1982-01-06 1983-05-03 Drytek, Inc. Multi-planar electrode plasma etching
US4500563A (en) * 1982-12-15 1985-02-19 Pacific Western Systems, Inc. Independently variably controlled pulsed R.F. plasma chemical vapor processing
US4478173A (en) * 1983-04-18 1984-10-23 Energy Conversion Devices, Inc. Method and apparatus for sensing and controlling the intensity of energy in a deposition system
US4464223A (en) * 1983-10-03 1984-08-07 Tegal Corp. Plasma reactor apparatus and method
US4464223B1 (en) * 1983-10-03 1991-04-09 Tegal Corp

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802852A1 (en) * 1988-02-01 1989-08-03 Leybold Ag Device for coating a substrate with a material obtained from a plasma
FR2636079A1 (en) * 1988-09-06 1990-03-09 Schott Glaswerke METHOD FOR COATING SUBSTRATES BY VAPOR PHASE DEPOSITION
US5017404A (en) * 1988-09-06 1991-05-21 Schott Glaswerke Plasma CVD process using a plurality of overlapping plasma columns
US5041201A (en) * 1988-09-16 1991-08-20 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
US5039376A (en) * 1989-09-19 1991-08-13 Stefan Zukotynski Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
US5653810A (en) * 1991-10-29 1997-08-05 Canon Kabushiki Kaisha Apparatus for forming metal film and process for forming metal film
EP0871975B1 (en) * 1995-06-30 2003-08-20 Lam Research Corporation Power segmented electrode
US6042686A (en) * 1995-06-30 2000-03-28 Lam Research Corporation Power segmented electrode
US6239403B1 (en) 1995-06-30 2001-05-29 Lam Research Corporation Power segmented electrode
US6076481A (en) * 1996-04-03 2000-06-20 Canon Kabushiki Kaisha Plasma processing apparatus and plasma processing method
KR100489643B1 (en) * 1997-11-05 2005-09-06 에스케이 주식회사 Automation System of Thin Film Manufacturing Equipment
DE19808206A1 (en) * 1998-02-27 1999-09-02 Gesche Low pressure gas discharge treatment of wafers for lacquer removal, cleaning or etching
WO2000032841A1 (en) * 1998-12-01 2000-06-08 Sk Corporation Apparatus for forming thin film
US6198067B1 (en) * 1998-12-28 2001-03-06 Nippon Mektron, Ltd. Plasma processing device for circuit supports
US6451160B1 (en) * 1999-03-12 2002-09-17 Sharp Kabushiki Kaisha Plasma generation apparatus with a conductive connection member that electrically connects the power source to the electrode
US20030079983A1 (en) * 2000-02-25 2003-05-01 Maolin Long Multi-zone RF electrode for field/plasma uniformity control in capacitive plasma sources
US20040187785A1 (en) * 2003-03-24 2004-09-30 Sharp Kabushiki Kaisha Deposition apparatus and deposition method
US7927455B2 (en) 2004-10-22 2011-04-19 Sharp Kabushiki Kaisha Plasma processing apparatus
EP1650326A3 (en) * 2004-10-22 2007-03-14 Sharp Kabushiki Kaisha Plasma processing apparatus
US20060087211A1 (en) * 2004-10-22 2006-04-27 Sharp Kabushiki Kaisha Plasma processing apparatus
US8092640B2 (en) 2005-01-13 2012-01-10 Sharp Kabushiki Kaisha Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US20060191480A1 (en) * 2005-01-13 2006-08-31 Sharp Kabushiki Kaisha Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US7540257B2 (en) * 2005-01-13 2009-06-02 Sharp Kabushiki Kaisha Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US20060151319A1 (en) * 2005-01-13 2006-07-13 Sharp Kabushiki Kaish Plasma processing apparatus and semiconductor device manufactured by the same apparatus
US20100075489A1 (en) * 2007-01-22 2010-03-25 Yuichiro Sasaki Method for producing semiconductor device and semiconductor producing apparatus
US7754503B2 (en) * 2007-01-22 2010-07-13 Panasonic Corporation Method for producing semiconductor device and semiconductor producing apparatus
US20100199913A1 (en) * 2007-11-21 2010-08-12 Ngk Insulators, Ltd. Film deposition apparatus
US20110088849A1 (en) * 2008-05-21 2011-04-21 Sharp Kabushiki Kaisha Plasma processing apparatus
EP2327811A1 (en) * 2008-09-26 2011-06-01 NGK Insulators, Ltd. Film forming apparatus
EP2327811A4 (en) * 2008-09-26 2012-07-04 Ngk Insulators Ltd Film forming apparatus
US20110300694A1 (en) * 2008-11-12 2011-12-08 Ulvac, Inc. Electrode circuit, film formation device, electrode unit, and film formation method
WO2020208146A1 (en) * 2019-04-10 2020-10-15 Plasmetrex Gmbh Wafer boat and treatment device for wafers

Also Published As

Publication number Publication date
JPS60202929A (en) 1985-10-14
JPH0644554B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4633811A (en) Plasma CVD apparatus
KR100523766B1 (en) Capacitively coupled RF-plasma reactor
EP0742848B1 (en) Plasma treatment in electronic device manufacture
JP2673571B2 (en) Multi-electrode plasma reactor power distribution device
JP3576188B2 (en) Gas phase reaction apparatus and gas phase reaction method
US6359250B1 (en) RF matching network with distributed outputs
US7164236B2 (en) Method and apparatus for improved plasma processing uniformity
KR100388530B1 (en) Rf powered plasma enhanced chemical vapor deposition reactor and methods of effecting plasma enhanced chemical vapor deposition
KR20010098519A (en) Thin film forming method, thin film forming apparatus and solar cell
JP3182702B2 (en) Method and apparatus for treating a substrate with low pressure plasma
KR20080043597A (en) Apparatus and method for generation a plasma
US5492735A (en) Process for plasma deposition
JP2003031504A (en) Plasma processing apparatus and method and semiconductor device manufactured by using them
US6451160B1 (en) Plasma generation apparatus with a conductive connection member that electrically connects the power source to the electrode
JP2003109908A (en) Device and method for plasma treatment, substrate, and semiconductor device
JPH03191068A (en) Microwave plasma device
JP2002313743A (en) Plasma treating equipment, plasma treating method, thin film formed by the equipment and the method, substrate and semiconductor device
JPH01108382A (en) Plasma vapor growth device
JP2001032077A (en) Plasma cvd film forming method
JPH08172054A (en) Plasma cvd method, device thereof and manufacture of semiconductor device using said device
KR102077512B1 (en) A appratus for supplying the radiofrequency power by multi-channel
JP4264321B2 (en) Plasma chemical vapor deposition apparatus, plasma generation method, plasma chemical vapor deposition method
JP2809041B2 (en) Plasma CVD apparatus and plasma CVD method
JP3071657B2 (en) Thin film forming apparatus and thin film forming method
JPH06120153A (en) Film-forming apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI ELECRIC CORPORSATE RESEARCH AND DEVELOPMENT,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MARUYAMA, KAZUMI;REEL/FRAME:004357/0779

Effective date: 19850110

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: NEW ENERGY DEVELOPMENT ORGANIZATION, NO. 1-1, HIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FUJI ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT LTD.,;REEL/FRAME:004985/0549

Effective date: 19880913

Owner name: NEW ENERGY DEVELOPMENT ORGANIZATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJI ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT LTD.,;REEL/FRAME:004985/0549

Effective date: 19880913

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12