Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS4855326 A
Tipo de publicaciónConcesión
Número de solicitudUS 07/169,838
Fecha de publicación8 Ago 1989
Fecha de presentación18 Mar 1988
Fecha de prioridad20 Abr 1987
TarifaPagadas
También publicado comoCA1315679C, DE3888177D1, DE3888177T2, EP0357665A1, EP0357665A4, EP0357665B1, WO1988008298A1
Número de publicación07169838, 169838, US 4855326 A, US 4855326A, US-A-4855326, US4855326 A, US4855326A
InventoresRichard C. Fuisz
Cesionario originalFuisz Pharmaceutical Ltd.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Rapidly dissoluble medicinal dosage unit and method of manufacture
US 4855326 A
Resumen
A melt spinnable carrier agent such as sugar is combined with a medicament then converted into fiber form by melt spinning with "cotton candy" fabricating equipment. The as-spun product is converted to compacted individual dosage units. For certain medicaments a binding agent is added to the carrier agent. Examples are presented for oral administration, topical application, systemic and non-systemic, intravenous and intra-muscular infusion via multicameral containers. All applications utilize the extraordinarily rapid entry into solution upon contact with a solvent.
Imágenes(11)
Previous page
Next page
Reclamaciones(59)
What is claimed is:
1. A spun fibrous pharmaceutical composition comprising a mass of spun fibers of a material capable of being spun into fibers that are readily water-soluble and a medicament distributed on or incorporated in said fibrous mass.
2. A spun fibrous pharmaceutical composition according to claim 1, wherein said material is a sugar or a cellulosic material.
3. A spun fibrous pharmaceutical composition according to claim 2, wherein said material is a sugar.
4. A spun fibrous pharmaceutical composition according to claim 3, wherein said medicament is an analgesic.
5. A spun fibrous pharmaceutical composition according to claim 3, wherein said medicament is an antihistaminic labyrinthine function depressant.
6. A spun fibrous pharmaceutical composition according to claim 3, wherein said medicament is a decongestant.
7. A spun fibrous pharmaceutical composition according to claim 1, wherein said medicament is acetaminophen.
8. A spun fibrous pharmaceutical composition according to claim 1, wherein said medicament is diethylcarbamazine citrate.
9. A spun fibrous pharmaceutical composition according to claim 1, wherein said composition further comprises an adhesion promoter for promoting adhesion between said material and said medicament.
10. A spun fibrous pharmaceutical composition according to claim 9, wherein said adhesion promoter comprises polyvinylpyrrolidone.
11. A spun fibrous pharmaceutical composition according to claim 10, wherein said medicament comprises diethylcarbamazine citrate.
12. A spun fibrous pharmaceutical composition according to claim 3, wherein said sugar is selected from the group consisting of maltose, fructose, sorbitol, dextrose, mannitol, sucrose, lactose, and combinations thereof.
13. A spun fibrous pharmaceutical composition according to claim 12, wherein said mass of spun fibers is in the form of a compacted unit-dose body of said fibers where the fibers have retained their fibrous identity.
14. A spun fibrous pharmaceutical composition according to claim 1, wherein said mass of spun fibers is in the form of a compacted unit-dose body of said fibers where the fibers have retained their fibrous identity.
15. A spun fibrous pharmaceutical composition according to claim 3, wherein said sugar comprises at least 10% lactose and the remainder sucrose.
16. A spun fibrous pharmaceutical composition according to claim 12, wherein said medicament is of the type that is rapidly assimilated when in contact with the tissues of the oral cavity.
17. A pharmaceutical dosage unit comprising compacted spun fibers of a spinnable, readily water soluble material and an effective amount of a medicament.
18. A system for topical delivery of a medicament comprising a wafer containing a mass of fibers, and means for securing said wafer in contact with a dermal area to be treated, said mass of fibers, comprising a soluble fiber forming ingredient and a medicament where at least said fiber forming ingredient has been spun into fibers, and in said fiber form said ingredient has a solubility characteristic corresponding to that of spun sugar fibers in water.
19. A system according to claim 18, wherein said ingredient in fiber form is hydrophilic.
20. A system according to claim 19, wherein said ingredient is essentially lactose.
21. A system according to claim 18, wherein said medicament is a dermatotropic agent.
22. A system according to claim 18, wherein said medicament includes an antibiotic agent.
23. A system according to claim 18, wherein said medicament includes a corticosteroid.
24. A system according to claim 18, wherein said medicament is characterized by transdermal systemic activity.
25. A multicameral container for intravenous or intra muscular administration comprising a first compartment containing a pharmaceutically acceptable solvent, and a second compartment containing a spun fibrous pharmaceutical composition comprising a mass of spun fibers of a material capable of being spun into fibers that are readily water-soluble and a medicament distributed on or incorporated in said fibrous mass.
26. A multicameral container according to claim 25, wherein said material is a sugar selected from the group consisting of maltose, fructose, sorbitol, dextrose, mannitol, sucrose, lactose, and combinations thereof.
27. A multicameral container according to claim 26, wherein said mass of spun fibers is in the form of a compacted body of said fibers where the fibers have retained their fibrous identity.
28. A multicameral container according to claim 27, wherein said sugar comprises about 10% lactose and the remainder sucrose.
29. A spun fibrous pharmaceutical composition according to claim 29, wherein said material is methyl cellulose.
30. A spun fibrous pharmaceutical composition according to claim 29, wherein said medicament comprises dimenhydrinate.
31. A method for preparing a pharmaceutical dosage unit for delivering a medicament, comprising producing a mass of medicament bearing spun fibers by melt spinning a composition containing said medicament.
32. A method according to claim 31, wherein said medicament is combined with a melt spinnable compatible water soluble carrier agent to provide an intermediate product, and said intermediate product is converted to a mass of spun fibers by melt spinning product.
33. A method according to claim 32, wherein said carrier agent comprises a mixture of sucrose and lactose.
34. A method according to claim 33, wherein said lactose is combined with said sucrose in the ratio of about 1:9 by weight.
35. A method according to claim 32, wherein said medicament has a higher melting point than said carrier agent, and said melt spinning is carried out at a temperature lying between the melting points of said medicament and said carrier agent but less than the melting point of said medicament.
36. A method for preparing a rapidly dissoluble medicinal dosage unit for administering medication comprising in combination the steps of combining a medicament with a melt spinnable compatible carrier agent to provide an intermediate product, and producing a mass of medicament bearing fibers by melt spinning said intermediate product.
37. A method according to claim 36, wherein said carrier agent is a sugar having a spinning temperature below the degradation temperature of said medicament.
38. A method according to claim 37, wherein said intermediate product is produced by coating granules of said sugar with a slurry of said medicament where the vehicle for said slurry is not a solvent for said sugar.
39. A method according to claim 38, wherein said vehicle is isopropyl alcohol.
40. A method according to claim 39, wherein said granules of sugar are added to said slurry and the slurry coated granules are thereafter dried then spun to produce said fibers.
41. A method according to claim 40, wherein said slurry is produced by admixing acetaminophen with isopropyl alcohol to produce a 60-70% w/v solution of said medicament in said vehicle.
42. A method according to claim 40, wherein said slurry is produced by adding 2-3% by weight of polyvinylpyrrolidone to isopropyl alcohol and admixing the resulting solution with diethylcarbamazine citrate to obtain a slurry containing about 60% w/v of said medicament in said vehicle.
43. A method according to claim 36, wherein the spun fiber product resulting from said melt spinning of said intermediate product is compacted to produce a body whose enclosed volume is substantially less than the as-spun enclosed volume, and the compacted product is thereafter subdivided into dosage units.
44. A method according to claim 43, wherein said compaction step is performed to produce said body with an enclosed volume at least 30% less than said as-spun enclosed volume, said compaction step being limited to less than that compaction which would result in noticeable fracturing of said fibers.
45. A rapidly dissoluble spun fibrous medicinal dosage unit for administering medication orally, sublingually, or buccally, consisting essentially of a compacted mass of spun fibers of a carrier agent capable of being spun into fibers that are readily water-soluble which dissolve in the saliva of the mouth, said mass having an enclosed volume that is at least 30% less than the as-spun enclosed volume, said carrier agent being selected from the group consisting of sugars, sugar alcohols and mixtures thereof, and an effective amount of an orally, sublingually, or buccally effective medicament distributed within or coated on said spun carrier agent fibers.
46. A rapidly dissoluble medicinal dosage unit according to claim 45, wherein said medicament is acetaminophen.
47. A rapidly dissoluble medicinal dosage unit according to claim 45, wherein said medicament is diethylcarbamazine citrate.
48. A rapidly dissoluble medicinal dosage unit according to claim 45, wherein said fibers consist essentially of a compound containing said carrier agent and said medicament.
49. A rapidly dissoluble medicinal dosage unit according to claim 48, wherein said fibers are the product resulting from melt spinning of said compound.
50. A rapidly dissoluble medicinal dosage unit according to claim 49, wherein said medicament is acetaminophen.
51. A rapidly dissoluble medicinal dosage unit according to claim 49, wherein said medicament is diethylcarbamazine citrate.
52. A rapidly dissoluble medicinal dosage unit according to claim 48, wherein said compound consists essentially of said carrier agent, said medicament, and adducts selected from the group consisting of coloring agents, flavoring agents, and promoters of adhesion between said carrier agent and the other constituents.
53. A rapidly dissoluble medicinal dosage unit according to claim 52, wherein said adhesion promoter comprises polyvinylpyrrolidine.
54. A rapidly dissoluble medicinal dosage unit according to claim 53, wherein said medicament comprises diethylcarbamazine citrate.
55. A rapidly dissoluble medicinal dosage unit according to claim 45, wherein said mass of spun fibers is in the form of a tablet of compacted spun fibers where the fibers have retained their fibrous identity.
56. A rapidly dissoluble medicinal dosage unit according to claim 55, wherein said fibers consist essentially of a compound containing said carrier agent and said medicament.
57. A rapidly dissoluble medicinal dosage unit according to claim 56, wherein said fibers are the product resulting from melt spinning of said compound.
58. A rapidly dissoluble medicinal dosage unit according to claim 57, wherein said medicament is acetaminophen.
59. A rapidly dissoluble medicinal dosage unit according to claim 57, wherein said medicament is diethylcarbamazine citrate.
Descripción
BACKGROUND OF THE INVENTION

This application is a continuation-in-part of application Ser. No. 040,371, filed Apr. 20, 1987 and now abandoned.

The present invention relates to a medicinal dosage unit, e.g., a tablet or the like, and to a method of producing the same. More particularly, it relates to a non-liquid dosage unit that is rapidly dissoluble for use in administering a medicinal substance either orally, topically or by infusion.

It is well known that a substance placed in the oral cavity of an animal, if absorbable by body tissue, is absorbed much more effectively than if the same substance were introduced directly into the stomach or digestive tract. Therefore, many medicinal substances are administered either lingually, sublingually or buccally. However, some medicinal substances, while for the sake of effectiveness and economy would best be administered lingually, sublingually or buccally, cannot be so administered because of an undesirable taste attribute and/or a slowness to dissolve.

In pediatric practice, when oral administration is desired, there exists the additional problem of insuring that the medication remains in the mouth and is swallowed and not expelled even if there is no antagonistic taste characteristic. In animal husbandry much the same problem exists regardless of taste.

Consequently, there is a great need for some form by which medication can be administered orally and be rapidly dissolved and absorbed with sufficient speed as to avoid significantly the foregoing problems. Others have recognized and worked on the problem. In Gregory et al. U.S. Pat. No. 4,371,516 issued Feb. 1, 1983, there is described a shaped article or pharmaceutical dosage form carrying a pharmaceutical in which the article comprises an open matrix network of carrier material which is prepared by subliming solvent from a composition comprising the pharmaceutical and a solution of the carrier material in a solvent, e.g., a hydrolyzed gelatin solution. According to the patent some embodiments dissolve in the saliva of the mouth in one or two seconds. The patent describes the open matrix network as being similar in structure to a solid foam. Unfortunately, the Gregory et al. product is still too slow to dissolve for many purposes and has other drawbacks.

Certain drugs in solid or tablet form or the like are intended to be ingested and are therefore taken with water or other liquid. Among such drugs, the therapeutic value is a function of the speed with which they dissolve. While some are deliberately designed with a delayed action, others should dissolve as rapidly as possible. Ideally, the medicament should dissolve so rapidly that when taken with a liquid it is swallowed practically as a solution.

There are various forms for administering a medicament topically. Salves and ointments immediately come to mind. However, there are various situations where the medicament is required only when the dermal area becomes moist such as when a wound bleeds or produces a secretion. Also, release of the active agent from a salve or ointment is comparatively slow whereas there are occasions when rapid delivery is desirable. Moreover, salves and ointments tend to be messy, the major constituent is the vehicle and not the active agent, and they are difficult if not impossible to spread uniformly over the skin. The amount of material and therefore the concentration of medicament is greatest at the point of direct application, and then, as with a snowplow, gradually thins out as it is spread from the point of application over the surface of the skin.

In another area, packaging of generally unstable dry medicaments for production of intravenous solutions currently involves use of a costly production technique whereby the medicament is lyophilized using a freeze drying procedure. A bicameral container is then employed to isolate the dry freeze dried pharmaceutical from a solvent such as distilled water or the like, until immediately prior to infusion. Immediate sediment-free dissolution in the solvent is required.

SUMMARY OF THE PRESENT INVENTION

It is an object of the present invention to provide a rapidly dissoluble medicinal dosage unit that is more rapidly dissolved and absorbed and is more palatable than anything known heretofore.

It is another object of the present invention to provide a rapidly dissoluble medicinal dosage unit of controllable potency that is relatively inexpensive to produce.

Another object is to provide a dry medicinal form that is less expensive to manufacture than freeze dried product yet dissolves at least as rapidly if not more rapidly than lyophilized material.

Other objects will occur to those skilled in the subject art after reading the following detailed description.

In accordance with one aspect of the present invention there is provided a spun fibrous pharmaceutical composition comprising a mass of spun fibers of a readily water-soluble material capable of being spun into fibers and a medicament distributed on or incorporated in said fibrous mass.

In accordance with another aspect of the present invention there is provided a system for topical transdermal delivery of a medicament comprising a wafer containing a mass of fibers, and means for securing said wafer in contact with a dermal area to be treated, said mass of fibers comprising a soluble fiber forming ingredient and a medicament where at least said fiber forming ingredient has been spun into fibers, and in said fiber form said ingredient has a solubility characteristic corresponding to that of spun sugar fibers in water.

In accordance with a further aspect of the present invention a bicameral container for intravenous administration is provided with a first compartment containing a pharmaceutically acceptable solvent, and a second compartment containing a spun fibrous pharmaceutical composition comprising a mass of spun fibers of a readily water-soluble material capable of being spun into fibers and a medicament distributed on or incorporated in said fibrous mass.

Yet, in accordance with another aspect of the present invention there is provided a method for preparing a rapidly dissoluble medicinal dosage unit for administering medication orally, comprising in combination the steps of combining a medicament with a melt spinnable compatible carrier agent to provide an intermediate product, and producing a mass of medicament bearing fibers by melt spinning said intermediate product.

The invention will be better understood after reading the following detailed description of the presently preferred embodiments thereof.

DETAILED DESCRIPTION OF THE

PRESENTLY PREFERRED EMBODIMENTS

The spun sugar fiber confection of sucrose, commonly referred to as cotton candy, is well known to children and most adults. Also, it should be obvious to all who have eaten cotton candy that the sucrose sugar literally melts in the mouth and seems very quickly to disappear to nothing. In its spun form the sugar is very fragile. However, the sugar fibers can be compacted to form a sheet-like body that can be handled more readily. Two patents describe methods for producing compacted confections from spun sugar, namely Warning et al. U.S. Pat. No. 3,930,043 and Oiso et al. U.S. Pat. No. 4,526,525.

In U.S. Pat. No. 4,496,592 of Kuwahara et al. a chewing gum is described that is produced in the form of composite fibers by fiberizing a sugar and/or a candy and a chewing gum base or composition through a fiberizing section, such as a rotating cylinder, of a candy floss making machine.

Of the foregoing patents, none considers or suggests the possibility of using any form of fibrous sugar or cotton candy as a carrier for a medicament, a pharmaceutical component.

With that as background, it has been discovered that many pharmaceutical compounds useful as medicaments can, in fact, be combined with a spinnable readily dissoluble material, such as sugar, in such manner that the resultant composition can still be spun into fiber form by melt spinning and without deteriorating the medicament or reducing its effectiveness. Generally speaking, the particular sugar or other material used as a carrier agent should have a melting point that is a safe distance below that temperature at which the medicament might decompose or otherwise break down, but not necessarily below the melting point of the medicament. Subject to that requirement, any material, such as sugar or a sugar-like substance that can be melt spun to produce a fibrous structure which substance dissolves rapidly in water, the saliva of the mouth, or other sera, is non-toxic, and is compatible with the particular medicament, is suitable in the practice of the present invention.

From a dosage standpoint, it has also been discovered that the method to be described is able to produce with acceptable reliability consistent and uniform distribution of the medicament throughout the carrier agent. This is essential for medicinal use where the quantity of effective medicament in each dosage unit should be known or ascertainable.

The present invention can best be explained by considering a series of examples. First, a pediatric formulation was prepared using acetaminophen (abbreviated APAP). The objective was to provide a product containing 60 mg acetaminophen per gram of product. A thick slurry of acetaminophen was prepared consisting of 60-70% w/v acetaminophen in isopropyl alcohol. A measured quantity of common granular sugar was added to the slurry and the sugar granules were coated uniformly with the slurry. The coated sugar granules were then dried for 3-4 hours at a temperature that varied between 45° C. and 65° C. (113° F.-149° F.), the target control temperature being about 50° C. (122° F.).

Next, using conventional "cotton candy" spinning equipment, operating at a melt temperature that ranged between 90° C. and 130° C. (194° F.-266° F.), the coated granules were converted to spun fiber form having the consistency and physical appearance of cotton candy. In order to determine the uniformity of the resultant product, three different portions of the fibrous product were sampled from different sections of the batch and each portion was analyzed to determine the acetaminophen content. The results are in Table I.

              TABLE I______________________________________Sample mg of Acetaminophen per                    Percent AcetaminophenNo.    gram of fibrous product                    per dosage unit______________________________________1      54.6 mg           91.0%2      57.0 mg           95.0%3      52.2 mg           87.0%______________________________________

The results indicate that the medicament has been uniformly distributed. The samples were also tested for taste and were found to be slightly bitter but in the acceptable range.

Next, a formulation for animal husbandry was attempted using diethylcarbamazine citrate (abbreviated DCM citrate) for which the target dosage was 200 mg per gram of fibrous product. This medicament is useful as an anthelmintic.

A thick slurry of the medicament was prepared with 60% w/v of diethylcarbamazine citrate in isopropyl alcohol. Sugar granules were added and coated with the slurry and then dried for 3-4 hours at a temperature that varied between 45° C. and 65° C. (113° F.-149° F.), the target control temperature being about 50° C. (122° F.). Upon drying it was observed that the medicament did not adhere effectively to the sugar granules which could result in lack of uniformity in the final product.

The isopropyl alcohol (abbreviated (IPA) was then replaced with purified water but it was impossible to obtain completely dry granules.

Finally, good adhesion was obtained by adding a promoter of adhesion to the isopropyl alcohol before mixing with the drug. Specifically, a 2-3% solution by weight of polyvinylpyrrolidone (abbreviated PVP) in isopropyl alcohol was prepared, and this solution was used to prepare a thick slurry with diethylcarbamazine citrate, again incorporating about 60% w/v of the medicament in solution. A measured quantity of common granular sugar was then coated with the slurry and dried for 1-3 hours at a temperature similar to that used with the prior examples. This product was then spun in the "cotton candy" apparatus to produce an end product from which samples were taken and assayed using spectrophotometric procedures. The results were presented in Table II.

              TABLE II______________________________________  mg of diethylcarbamazine                    Percent ofSample citrate per gram of                    diethylcarbamazineNo.    fibrous product   citrate per dosage unit______________________________________1      174 mg            87%2      166 mg            83%3      188 mg            94%______________________________________

While PVP is specifically mentioned as an adhesion promoter, it is intended merely as an example of a non-toxic, compatible, pharmaceutically acceptable, ingestible film former.

The results of additional tests to produce a number of medicaments (drugs) in fiber form are tabulated below in Table III. In the column headed "DRUG", the letters identify the drug in accordance with the following list while the numbers indicate the weight in grams.

A=acetaminophen (APAP)

C=chlorpheniramine maleate (CPM)

D=diethylcarbamazine citrate (DCM)

M=metoclopramide hydrochloride

P=phenylpropanolamine (PPA)

Z=mucopolysaccharide

In the column headed "SUGAR" the numbers indicate the weight in grams of common table sugar, i.e., granulated sucrose, unless noted otherwise. Unless otherwise noted, the "SOLVENT" was isopropyl alcohol (IPA) in approximately the volume indicated in milliliters. Drying temperatures are approximate and given in degrees Celsius, and unless indicated otherwise, was accomplished at approximately 40° C. for 1/2 hour. Unless a different procedure is mentioned under "REMARK", the drug was dissolved in the solvent to produce a slurry to which the sugar was added and coated uniformly. The coated sugar was then dried and spun into fibers.

                                  TABLE III__________________________________________________________________________TEST DRUG  SUGAR SOLVENTNO.  (gms) (gms) (ml)   DRYING REMARK__________________________________________________________________________1    A-8   100   122    D-10  50    153    D-10  50    H.sub.2 O - 5                   45-60° C.                          Never                          obtained                          dry mass4    D-10  50    0.4 g PVP                   40-45° C.            in 15 ml                   for 1/2 hr.            IPA5    A-5   50    126    Coated      50    12A-57    A-5   50    IPA-12 +            4 drops of            peppermint            oil8    D-10  50    159    A-5   50    15micron-ized10   M-1.182      100   1011   A-8   100   1212   C-0.4 100   1013   P-3.75 +      295.65            20C-0.614   C-0.6 299.4 2015   Z-5   95                  Mixed drug and                          sugar and spun                          fibers16   C-0.4 99.6  10__________________________________________________________________________

The spinning process for producing "cotton candy" is a melt extrusion process in which the stock material is melted and forced through spinnerettes. The conventional equipment uses a rotating spinning head surrounded by a bowl into which the fibers are spun. Using a medicated sugar formulation, medicated fibers are obtained. In order to convert the cottonlike mass to a form that can be packaged and handled, the aspun product generally must be compacted to produce a compact body being careful not to squeeze too much. It is important that the final dosage form retains its fibrous character so that it will dissolve rapidly in the saliva of the mouth or other solvent. At present, it is believed desirable for "tablet" production to reduce the initial spun volume by approximately two thirds or until the threshold is reached beyond which the fibers would fracture or coalesce. Preferably, the material is compacted as much as possible to produce a wafer-like structure while avoiding fracturing of the fibers or loss of the discrete fibrous identity. However, it will become apparent from the ensuing description that there will be occasions when a lesser degree of compaction or even no compaction is desirable. When compaction is employed, it preferably is performed to produce a body with an enclosed volume that is at least 30% less than the as-spun enclosed volume.

Various procedures can be followed to produce discrete dosage units. It is assumed that the medicament is uniformly distributed on or incorporated in the fibrous mass. A measured weight or volume of the as-spun product can be compacted as discrete units and sealed within a moisture proof package or wrapper. Alternatively, the as-spun product can be compacted on a continuous basis to produce a sheet or web which is subsequently subdivided to produce the individual units. These units can be packaged, preferably individually, using any known and appropriate technique that will exclude moisture since, depending upon the sugar, the fiber products have varying degrees of stability under normal humidity conditions.

Compaction of the fibrous mass can be accomplished before or during packaging or both. Partial compaction can be achieved between rollers or the like, with the resultant fibrous web entering between layers of packaging film. Then platens or the like can be applied to seal the individual units with squeezing of the film layers further compacting the fibers. The units can be severed either before, after or during the sealing step. Ultrasonic devices can be used to accomplish sealing and severing, or die cutters can be employed. It is contemplated that any suitable packaging technology can be employed so long as the packaging material excludes moisture and does not compress the fibrous mass to the point of destroying its fibrous structure.

At present, it is preferred to use a foil laminate material and allow the fiber product to cool to ambient temperature under controlled dry conditions before encapsulating in a foil laminate pouch. It has been found that attempts to seal the fiber product while still warm were unsatisfactory because of the tendency for moisture in the atmosphere to condense on the cool foil and remain trapped within the pouch to cause deterioration of the fiber structure. An acceptable packaging laminate is a mylar-foil laminate.

Any material capable of being spun into fibers and readily dissoluble in water may be used as the carrier agent. Presently preferred materials are sugars such as sucrose, fructose, dextrose, mannitol, sorbitol, flucose, lactose and maltose; and water soluble cellulosic materials such as methyl cellulose, ethyl cellulose, hydroxy methyl or ethyl cellulose and alkali metal salts of carboxy methyl cellulose. Particularly useful, for example, is a mixture of sucrose and lactose, in which the useful ratio of sucrose to lactose may vary from 90:10 to 50:50. Lactose is a preferred sugar by reason of its relative stability under humid conditions. However, lactose is less sweet than sucrose and it is generally desirable to combine it with a sweetener.

Additives, such as coloring agents, flavoring agents, artificial sweeteners, having acceptable food and drug approval, and which are compatible with the carrier agent and medicament, can be included in the product that is melt extruded. For example, lactose has been spun successfully after having been combined with saccharin and aspartane.

While the components discussed herein have been produced by coating the granules of the carrier agent with the medicament, it is contemplated that the medicament can be distributed within the carrier by co-crystallization from a solution containing both the carrier agent and the medicament, or by any other known technique.

There are a number of drugs presently available which are given intravenously but which are unstable for storage in a liquid state. In order to package and supply such drugs in convenient form, bicameral or multicameral containers are used with the dry drug constituent in one compartment and a solvent such as distilled water or saline solution in another compartment isolated from the first compartment until, immediately prior to infusion, an intercompartmental seal is pierced or broken. For obvious reasons the FDA has stringent guidelines as to particulate residue that might remain undissolved at time of infusion and create a risk if such residue were to enter the veins or muscle mass of a patient. Consequently, current practice is to subject the drug to an expensive and difficult freeze drying or lyophilization process which produces particles with sponge-like pores fostering rapid entry into solution. Typical drugs presently packaged in this fashion are corticosteroids such as methylprednisolone sodium succinate sold under the "Solu-Medrol" brand name by The Upjohn Company, antibiotics such as cefazolin sodium sold under the "Kefzol" brand name by Eli Lilly and Company, vitamins such as B vitamins sold under the "Solu-B" brand name by The Upjohn Company, and numerous drug/parenteral-fluid preparations packaged by Baxter Travenol.

It has been discovered, however, that producing the drugs in fiber form as described in this application results in a dry quantum of the drug that is easier to manufacture, much less costly to produce, and that functions in the bicameral or multicameral environment as well if not better than lyophilized material. Since the fibrous product is hermetically sealed in a glass vial or other container until use, it has adequate shelf life.

In order to test this concept four glass vials of methylprednisolone sodium succinate produced by Abbott Pharmaceuticals, Inc. under its "A-Methapred" trademark, and containing 125 mg/vial, were emptied and the solid contents (the liquid diluent was discarded) were mixed with 20 grams of crystalline Lactose USP (hydrous), and granulated with isopropanol. The resulting material was dried on paper toweling and spun using commercial cotton candy apparatus at the high heat setting. A quantity of the resultant floss was rolled into a mass weighing approximately 0.5 gram and capable of being placed in the Abbott Pharmaceutical, Inc. vial. Thus, the dosage contained 0.0125 gm of medicament. This test obviously only establishes the feasibility of the concept and is not intended to produce an injectable product. For commercial production the compounding should be accomplished in a clean-room environment with the use of highly refined sugar and drug. In order to duplciate the original dosage level, either 5 grams of fiber material would have to be included in the vial or 10 times the concentration of drug would have to be used when compounding. It should be understood that in all cases appropriate steps must be taken to establish and insure sterility of the product.

Additional experiments have been performed with other drugs. Tablets of "Dramamine" (dimenhydrinate) of 50 mg concentration were crushed in a mortar and pestle, 8 tablets being granulated with 20 grams of a berry flavored floss sugar using isopropanol. The product was air dried overnight and spun using commercial cotton candy apparatus at a medium heat setting. The resultant material was packaged in various packaging material in 1 gram doses to test shelf life.

The experiment was repeated using 10 tablets of chlorpheniramine maleate, 4 mg/tablet, which were granulated with 20 grams of berry flavored floss sugar using isopropanol. The product was air dried overnight and spun using the commercial cotton candy apparatus at a medium heat setting. Doses of 1 gm each were packed in various pouches and sealed.

A sinus preparation consisting of acetaminophen, phenylpropanolamine and phenyltoloxamine, and marketed by H. L. Moore Co. under the brand name of "Sinu-Prep", was used, 8 tablets being crushed and granulated with 20 grams of berry flavored floss sugar using isopropanol. The granulation was dried overnight and spun utilizing commercial cotton candy apparatus. Pouches were filled and segregated for testing of longevity.

The result of this series of packaging tests revealed that a sucrose carrier produced an unstable product unless it could be stored in an impermeable hermetically sealed enclosure and was produced in a controlled low humidity environment.

The following additional tests were performed as set forth in Table IV, each following the same procedure of granulating, drying and spinning as described above, using a lime flavored floss sugar in the specified quantities, with small quantities of isopropanol, the product being spun at medium heat setting.

              TABLE IV______________________________________          QUANTITIESDRUG             DRUG      SUGAR______________________________________acetaminophen    4 gm      50 gmphenylpropanolamine            300 mg    50 gmchlorpheniramine maleate            100 mg    50 gmaspirin*         4 gm      50 gm______________________________________ *Some degradation of the aspirin occurred as evidenced by excessive smoking and the characteristic odor of acetic acid. However, the fiber product had the characteristic taste of aspirin.

Various considerations enter into the choice of sugar, or sugars for use as the carrier for a given drug. As mentioned previously, the spin temperature must not exceed the deterioration temperature for the specific drug or active agent. Table V lists the melting points of various sugars, all of which can be spun into fibers.

              TABLE V______________________________________         MELTING POINTSUGAR           °C.                    °F.______________________________________maltose R       103      217.4fructose USP    105      221.0sorbitol USP    110      230.0dextrose USP    146      294.8mannitol USP    166      330.8sucrose USP     186      366.8lactose R       202      395.6______________________________________

As a result of storage tests it has been discovered that sucrose is extremely susceptible to deterioration in the presence of moisture. However, it has been discovered that combining as little as 10% lactose with the sucrose produces a fibrous product after spinning that is significantly more stable. Apparently, the lactose has the physical ability of absorbing moisture without crumbling and functions as an active antidessicant. The lactose over time merely becomes softer and smoother. This becomes evident when pure lactose is spun and observed. Of course, pure lactose, with or without a separate sweetening agent, is an excellent carrier agent.

Adding lactose to the composition has another salutary effect. The spun fibers of sugar dissolve very rapidly in the mouth although unspun sugar dissolves rather slowly. As seen from Table V above, lactose has a much higher melting point and, therefore, spin temperature than sucrose. It has been discovered that by adding approximately 10% of a flavored lactose mixture to the sucrose and drug coprecipitate and spinning the resultant mixture at the sucrose temperature, the sucrose drug combination develops into fibers while the lactose, having a higher spin temperature, disperses uniformly throughout the fibrous mass as lactose granules. When administered orally the lactose dissolves more slowly in the mouth, taking perhaps one minute, and tends to eliminate any unpleasant aftertaste inherent in the drug. An example of a drug that would benefit from this treatment is acetaminophen.

Certain drugs or medicaments cannot be heated above their melting point without experiencing excessive deterioration. In such case a sugar should be chosen that can be spun effectively at a temperature below the melting point of the medicament, and the medicament should be able to disperse throughout the fibrous mass similar to the dispersal of the lactose throughout the sucrose mass as described above.

Of the various sugars, maltose and lactose when spun into fibers are much more stable than sucrose, that is, they are less affected by humidity. Consequently, it is presently preferred to include at least a small quantity of either lactose or maltose in any sugar carrier.

Experience to date has shown that sucrose and lactose can be spun with excellent results. Maltose because of its low melting point is ideal for certain drugs. However, it has been discovered that when maltose is spun using present equipment that is capable of rotating its spinnerette at 4000 R.P.M., the resultant fibers are much shorter than those obtained with sucrose or lactose. It is believed, however, that longer fibers of maltose can be obtained by using higher spinnerette speed.

Attempts to spin methyl cellulose with present equipment at 4000 R.P.M. have been met with gumming and charring of the material. It is believed that this problem also will be overcome by using higher spinnerette speed.

Because of the rapid release of a medicament when exposed to moisture, the instant product form is ideally suited for use in topical transdermal delivery of a medicament. For this purpose, the spun fibrous product can be compressed into thin sheets for production of wafers that can be combined with adhesive strips to produce bandage strips or patches. When, for example, the active agent or ingredient is an antibiotic or a clotting factor, it is released upon contact with a wound that emits blood or sera. On a burn, appropriate medicament will be released by tissue fluid. The invention is also applicable to patch technology in which sweat or skin moisture or even ambient moisture causes controlled release of a medicament or antigen from a fibrous layer held in contact with or in proximity to the skin.

In another area, certain pediatric suspension drugs, for example, amoxicillin, are provided to the pharmacists as a flavored powder in a sealed bottle. When the particular drug is to be dispensed, the pharmacist adds distilled water and shakes. However, the dissolution of the powder takes a long period of shaking wich is counterproductive and irritating to the pharmacist. When the present invention is employed and the drug is combined with a sugar carrier in fiber form, dissolution in distilled water is very rapid and occurs without shaking.

It is significant that drugs administered through the digestive tract are absorbed through the stomach and drain through the portal veins passing through the liver before entering into circulation. This reduces the drug concentration available in the blood stream and must be compensated by high dosage levels. This is avoided by the present invention when the fiber form of the medication is placed in the mouth either sublingually or buccally because it is absorbed, to a large degree, directly into the bloodstream bypassing the liver. This can be a significant advantage with drugs such as chlorpheniramine, nitroglycerin and methyltestosterone.

The present invention has a number of additional advantages. If medication in fiber form is placed on the tongue and taken with water, it behaves as if you were taking a solution, i.e., a liquid product. It eliminates the gagging phenomenon experienced by many individuals with pills or capsules. On the other hand if taken on the tongue without water, the dosage form manifests the combined characteristics of a buccal and oral dosage form.

Numerous examples have been mentioned above. However, the fundamental concept of transforming a drug or medicament into fiber form, wherein a fiber producing material acts somewhat as a scaffold to support the medicament for entry into solution almost instantaneously, can be applied to an extensive array of materials. In table VI below, the useful categories are set forth in the lefthand column in terms of pharmaceutical application, while the various forms which the fiber form product can take are specified in the righthand column using the following coding scheme:

A=fiber form for oral administration, including pre-dissolution in a liquid vehicle.

B=fiber form for incorporation in an adhesive bandage or patch.

C=fiber form for dissolution in H2 O or other liquid for topical application as a solution.

D=fiber form for bicameral or multicameral vials or pouches to replace lyophylized product.

              TABLE VI______________________________________CATEGORY                    FORM______________________________________ACNE PREPARATIONS           A,CANALGESICS                  A,B,C,DANTIPYRETICS                A,C,DANTACIDS                    AANTIFLATULENTS              AANTHELMINTICS               A,DANTIANGINAL                 A,DANTIANXIETY                 A,B,DANTI-ARRYTHYMICS            A,DANTIARTHRITICS              A,B,C,DANTICOAGULANTS/THROMBOLYTICS                       A,DANTICONVULSANTS/ANTIPARKINSON                       A,DANTIDEPRESSANTS             A,DANTIDIARRHEAL/ELECTROLYTE SOLUTIONS                       A,DANTIFUNGAL                  A,B,C,DANTITRICHOMONAL             A,B,C,DANTIVIRAL AGENTS            A,B,C,DANTIGOUT                    A,B,C,DANTIHISTAMINES              A,B,C,DANTIPRURITICS               A,B,C,DANTIHYPERTENSIVES           A,DANTIINFECTIVES(AMINOGLYCOSIDES, SULFONAMIDES,CEPHELOSPORINS, PENICILLINS,ERYTHROMYCINS, TETRACYCLINES)SYSTEMIC OF ABOVE           A,DLOCAL OF ABOVE              A,B,C,DANTIMIGRAINES               A,B,DANTINAUSEANTS/ANTIEMETICS   A,B,DANTINEOPLASTICS             A,DANTIULCER                   A,DANTIREFLUX                  A,DANTISPASMODIC               A,DBRONCHIAL DILATERS/ANTIASTHMATICS                       A,DCARDIAC AGENTS              A,DCONTRACEPTIVES              A,DHORMONALS                   A,B,C,DSTEROIDS                    A,B,C,DCOUGH/COLD REMEDIES         A,DDIURETICS                   A,DHYPOGLYCEMICS               A,DHYPOLIPIDEMICS              A,DLAXATIVES                   ATRANQUILIZERS MAJOR & MINOR A,B,DMUSCLE RELAXANTS            A,DOPTHALMIC PREPARATIONS      A,C,DPOTASSIUM SUPPLEMENTS       A,DSEDATIVES AND HYPNOTICS     A,DURINARY ANTINFECTIVES & OTHERURINARY AGENTS              A,DVITAMINS AND MINERALS       A,D______________________________________

The foregoing tabulation is not intended to be exhaustive, but merely suggestive and illustrative of the vast area of application of the present invention.

It should be understood that reference herein to topical application of a material encompasses both those materials intended to act externally on the skin and those having the ability of being absorbed through the skin for transdermal systemic activity.

The term "medicament" and, therefore, "pharmaceutical" as used herein and in the appended claims means any drug, pharmaceutical, analytic reagent, or other ingredient having therapeutic activity or having utility in treating, testing or analyzing physiological conditions or body elements. It is intended to encompass ingredients that function as reagents in the analysis of substances that are indicative of physiological condition. For example, pyridoxal phosphate as used in LDH determination. Pyridoxal phosphate was prepared with lactose using IPA as a solvent substantially as described above with reference to the compounding of other materials with lactose. The composition was spun satisfactorily into a fibrous mass. It is advantageous in that it will dissolve in solution much more rapidly than existing tablet form of the reagent.

Having described the present invention with reference to the presently preferred embodiments thereof, it will be apparent to those skilled in the subject art that various changes and modifications can be incorporated without departing from the true spirit of the invention as defined in the appended claims.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US2826169 *21 Ene 195411 Mar 1958Le Veen Harry HReflective heat insulating coating for animals
US3019745 *3 Oct 19606 Feb 1962Du Bois AlbertSugar spinning machine
US3036532 *28 Jun 196029 May 1962John BoweCotton candy machine with product of alternating colors
US3070045 *24 Abr 196125 Dic 1962John BoweMachine for spinning sugar
US3073262 *16 Ago 196115 Ene 1963John BoweSpinner head for candy cotton machine
US3324061 *15 Ene 19626 Jun 1967Minnesota Mining & MfgPreparing aqueous solutions of polypyrrolidone
US3557717 *17 May 196826 Ene 1971Gen Mills IncProcess for making candy floss
US3595675 *21 Nov 196627 Jul 1971Gen Mills IncGelatin composition
US3615671 *19 Abr 196826 Oct 1971Gen Foods CorpDry food products in spun filaments and method of making same
US3723134 *18 Sep 197027 Mar 1973Gen Mills IncProcess for making candy floss
US3856443 *6 Ago 197324 Dic 1974Gen Properties AnstaltApparatus for producing candyfloss
US3875300 *18 Dic 19721 Abr 1975Ortho Pharma CorpComposition for sustained release of a medicament and method of using same
US3930043 *19 Jul 197330 Dic 1975Tec Pak CorpMethod for making cotton candy
US3967623 *30 Jun 19756 Jul 1976Johnson & JohnsonDisposable absorbent pad
US4136145 *20 Jul 197623 Ene 1979Schering AktiengesellschaftMedicament carriers in the form of film having active substance incorporated therein
US4492685 *30 Ene 19848 Ene 1985Key Pharmaceuticals, Inc.Protective skin matrix
US4496592 *18 May 198329 Ene 1985Meiji Seika Kaisha, Ltd.Process for producing chewing gum in the form of composite fibers
US4526525 *6 Abr 19842 Jul 1985Meiji Seika Kaisha, Ltd.Fleecy confectionery producing machine
US4585797 *16 May 198429 Abr 1986Seton CompanyCosmetic and pharmaceutical sheet material containing polypeptides
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US4997856 *30 Nov 19895 Mar 1991Fuisz Pharmaceutical Ltd.Method of producing compacted dispersable systems
US5011532 *13 Dic 198830 Abr 1991Fuisz Pharmaceutical Ltd.Dispersed systems and method of manufacture
US5028632 *10 Ago 19892 Jul 1991Fuisz Pharmaceutical Ltd.Taste masked medicated pharmaceutical
US5034421 *20 Mar 198923 Jul 1991Fuisz Pharmaceutical Ltd.Moderated spun fibrous system and method of manufacture
US5236734 *16 Mar 199217 Ago 1993Fuisz Technologies Ltd.Method of preparing a proteinaceous food product containing a melt spun oleaginous matrix
US5238696 *6 May 199224 Ago 1993Fuisz Technologies Ltd.Method of preparing a frozen comestible
US5268110 *27 Ago 19927 Dic 1993Fuisz Technologies Ltd.Oil removing method
US5279849 *12 May 199218 Ene 1994Fuisz Technologies Ltd.Dispersible polydextrose, compositions containing same and method for the preparation thereof
US5286513 *22 Jun 199315 Feb 1994Fuisz Technologies Ltd.Proteinaceous food product containing a melt spun oleaginous matrix
US5288508 *20 Mar 199222 Feb 1994Fuisz Technologies, Ltd.Delivery systems containing elastomer solvents subjected to flash flow
US5346377 *7 Oct 199313 Sep 1994Fuisz Technologies Ltd.Apparatus for flash flow processing having feed rate control
US5348758 *20 Oct 199220 Sep 1994Fuisz Technologies Ltd.Controlled melting point matrix formed with admixtures of a shearform matrix material and an oleaginous material
US5370881 *30 Oct 19926 Dic 1994Fuisz Technologies Ltd.Water-soluble delivery systems for hydrophobic liquids
US5374447 *6 Dic 199320 Dic 1994Fuisz Technologies Ltd.Method of preparing a reduced-fat meat product
US5380473 *23 Oct 199210 Ene 1995Fuisz Technologies Ltd.Process for making shearform matrix
US5387431 *5 Mar 19927 Feb 1995Fuisz Technologies Ltd.Saccharide-based matrix
US5407676 *24 Dic 199218 Abr 1995Fuisz Technologies Ltd.Hydrophilic form of perfluoro compounds and a method of manufacture
US5427804 *15 Mar 199427 Jun 1995Fuisz Technologies Ltd.Low-fat edible proteins with maltodextrins and low-saturate oils
US5427811 *4 Feb 199427 Jun 1995Fuisz Technologies Ltd.Method and apparatus for spinning thermo-flow materials
US5429836 *29 Jul 19934 Jul 1995Fuisz Technologies Ltd.Saccharide-based matrix
US5445769 *27 Jun 199429 Ago 1995Fuisz Technologies Ltd.Spinner head for flash flow processing
US5447423 *30 Mar 19935 Sep 1995Fuisz Technologies, Ltd.Apparatus for transforming the physical structure of thermo-flow materials
US5456932 *22 Abr 199410 Oct 1995Fuisz Technologies Ltd.Method of converting a feedstock to a shearform product and product thereof
US5472731 *22 Mar 19955 Dic 1995Fuisz Technologies Ltd.Protein based food product
US5490993 *24 Mar 199513 Feb 1996Fuisz Technologies Ltd.Method of preparing a proteinaceous food product containing a melt spun matrix and product thereof
US5501858 *10 Sep 199326 Mar 1996Fuisz Technologies Ltd.Rapidly dispersable compositions containing polydextrose
US5503862 *26 May 19952 Abr 1996Fuisz Technologies Ltd.Method of subjecting a protein-containing material to flash flow processing and product thereof
US5516537 *4 May 199314 May 1996Fuisz Technologies Ltd.Frozen comestibles
US5518551 *10 Sep 199321 May 1996Fuisz Technologies Ltd.Spheroidal crystal sugar and method of making
US55187303 Jun 199221 May 1996Fuisz Technologies Ltd.Biodegradable controlled release flash flow melt-spun delivery system
US5520859 *8 Abr 199428 May 1996Fuisz Technologies Ltd.Method for flash flow processing having feed rate control
US5549917 *7 Jun 199527 Ago 1996Fuisz Technologies Ltd.Flash flow formed solloid delivery systems
US5556652 *5 Ago 199417 Sep 1996Fuisz Technologies Ltd.Comestibles containing stabilized highly odorous flavor component delivery systems
US5567439 *4 Nov 199422 Oct 1996Fuisz Technologies Ltd.Delivery of controlled-release systems(s)
US5576042 *2 Mar 199419 Nov 1996Fuisz Technologies Ltd.High intensity particulate polysaccharide based liquids
US5582855 *1 Jul 199410 Dic 1996Fuisz Technologies Ltd.Flash flow formed solloid delivery systems
US5587198 *31 May 199524 Dic 1996Fuisz Technologies Ltd.Positive hydration method of preparing confectionery and product therefrom
US5593502 *6 Jun 199514 Ene 1997Fuisz Technologies Ltd.Method of making crystalline sugar and products resulting therefrom
US5597416 *7 Oct 199328 Ene 1997Fuisz Technologies Ltd.Method of making crystalline sugar and products resulting therefrom
US5597608 *28 Dic 199428 Ene 1997Fuisz Technologies Ltd.Saccharide-based matrix incorporating maltodextrin and process for making
US5601076 *5 Jun 199511 Feb 1997Fuisz Technologies Ltd.Spheroidal crystal sugar and method of making
US5622717 *16 Dic 199222 Abr 1997Fuisz Technologies Ltd.Ulcer prevention method using a melt-spun hydrogel
US5622719 *23 May 199622 Abr 1997Fuisz Technologies Ltd.Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5624684 *13 May 199229 Abr 1997Fuisz Technologies Ltd.Enzyme systems
US5633015 *27 Ago 199327 May 1997Janssen Pharmaceutica NvBeads having a core coated with an antifungal and a polymer
US5633027 *7 Jun 199527 May 1997Fuisz Technologies Ltd.Confectioneries containing stabilized highly odorous flavor component delivery systems
US5641513 *17 Oct 199524 Jun 1997Warner-Lambert CompanyTablet coating method
US5641536 *6 Jun 199524 Jun 1997Warner-Lambert CompanyTablet coating method
US5651987 *27 Ago 199329 Jul 1997Fuisz Technologies Ltd.Ulcer prevention and treatment composition
US5654003 *10 Feb 19945 Ago 1997Fuisz Technologies Ltd.Process and apparatus for making tablets and tablets made therefrom
US5705183 *25 Sep 19956 Ene 1998Phillips CompanyCotton candy coated medication and a method for making and administering the same
US5709876 *7 Jun 199520 Ene 1998Fuisz Technologies Ltd.Saccharide-based matrix
US5728397 *4 Feb 199717 Mar 1998Fuisz Technologies Ltd.Polydextrose product and process
US5733577 *16 Ago 199631 Mar 1998Fuisz Technologies Ltd.Delivery of controlled-release system (s)
US5744180 *23 Oct 199628 Abr 1998Fuisz Technologies Ltd.Comestibles containing stabilized highly odorous flavor component delivery systems
US5779946 *10 Oct 199614 Jul 1998Fuisz Technologies Ltd.Method for spin processing material having temperature feedback control
US5804247 *20 Dic 19968 Sep 1998Fuisz Technologies Ltd.Positive hydration method of preparing confectionary and product therefrom
US5811123 *6 Jun 199522 Sep 1998Fuisz Technologies Ltd.Method of treating mucosal tissue
US5824342 *9 Abr 199620 Oct 1998Fuisz Technologies Ltd.Flash flow formed solloid delivery systems
US5827563 *13 Ene 199727 Oct 1998Fuisz Technologies Ltd.Spheroidal crystal sugar
US5834033 *12 May 199710 Nov 1998Fuisz Technologies Ltd.Apparatus for melt spinning feedstock material having a flow restricting ring
US5843922 *11 Jun 19961 Dic 1998Fuisz Technologies Ltd.Preparation of oligosaccharides and products therefrom
US5851552 *16 Ago 199622 Dic 1998Fuisz Technologies, Ltd.Delivery of controlled-release system(s)
US5851553 *19 Dic 199622 Dic 1998Fuisz Technologies, Ltd.Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5853762 *16 Ago 199629 Dic 1998Fuisz Technologies LtdDelivery of controlled-release system(s)
US5866163 *19 Dic 19962 Feb 1999Fuisz Technologies Ltd.Process and apparatus for making rapidly dissolving dosage units and product therefrom
US5871781 *19 Dic 199616 Feb 1999Fuisz Technologies Ltd.Apparatus for making rapidly-dissolving dosage units
US5876759 *16 Abr 19972 Mar 1999Mcneil-Ppc, Inc.Rapidly disintegrating pharmaceutical dosage form and process for preparation thereof
US5895664 *14 Jun 199420 Abr 1999Fuisz Technologies Ltd.Process for forming quickly dispersing comestible unit and product therefrom
US5935600 *16 Jun 199810 Ago 1999Fuisz Technologies Ltd.Process for forming chewable quickly dispersing comestible unit and product therefrom
US5939091 *18 Mar 199817 Ago 1999Warner Lambert CompanyMethod for making fast-melt tablets
US5939120 *7 Nov 199717 Ago 1999Fuisz Technologies Ltd.Externally heated material processing apparatus and method
US6020002 *5 Nov 19971 Feb 2000Fuisz Technologies Ltd.Delivery of controlled-release system(s)
US6028222 *5 Ago 199722 Feb 2000Scr PharmatopStable liquid paracetamol compositions, and method for preparing same
US6083430 *29 Abr 19964 Jul 2000Fuisz Technologies Ltd.Method of preparing a dosage unit by direct tableting and product therefrom
US6103257 *17 Jul 199815 Ago 2000Num-Pop, Inc.System for delivering pharmaceuticals to the buccal mucosa
US6116880 *10 Jul 199812 Sep 2000Fuisz Technologies Ltd.Apparatus for melt spinning feedstock material
US6123980 *1 Dic 199726 Sep 2000Imperial Sugar CompanyPreparing granulated sugar blends and products
US6129926 *13 May 199210 Oct 2000Fuisz Technologies Ltd.Flash flow processing of thermoplastic polymers and products made therefrom
US617160728 Sep 19989 Ene 2001Fuisz Technologies Ltd.Process and apparatus for producing shearform matrix material
US62909912 Dic 199418 Sep 2001Quandrant Holdings Cambridge LimitedSolid dose delivery vehicle and methods of making same
US63313101 Ago 200018 Dic 2001Quadrant Holdings Cambridge LimitedSolid dose delivery vehicle and methods of making same
US63442222 Sep 19995 Feb 2002Jsr LlcMedicated chewing gum delivery system for nicotine
US63580603 Sep 199819 Mar 2002Jsr LlcTwo-stage transmucosal medicine delivery system for symptom relief
US639133821 Ago 199821 May 2002Biovail Technologies Ltd.System for rendering substantially non-dissoluble bio-affecting agents bio-available
US64167871 Jul 19989 Jul 2002Implico B.V.Quick release compositions
US64687824 Dic 199722 Oct 2002Quadrant Healthcare (Uk) LimitedMethods of preserving prokaryotic cells and compositions obtained thereby
US647199220 Feb 199829 Oct 2002Therics, Inc.Dosage form exhibiting rapid disperse properties, methods of use and process for the manufacture of same
US648246526 May 200019 Nov 2002Biovail Technologies Ltd.Positive hydration method of preparing confectionery and product therefrom
US656587131 Ago 200120 May 2003Elan Drug Delivery Ltd.Solid dose delivery vehicle and methods of making same
US6586006 *5 Ene 20011 Jul 2003Elan Drug Delivery LimitedSolid delivery systems for controlled release of molecules incorporated therein and methods of making same
US66800712 Mar 200020 Ene 2004R. P. Scherer Technologies, Inc.Opioid agonist in a fast dispersing dosage form
US672692818 Abr 200027 Abr 2004R.P. Scherer Technologies, Inc.Process for preparing solid dosage forms for unpalatable pharmaceuticals
US681179225 Oct 20022 Nov 2004Quadrant Drug Delivery Ltd.Solid dose delivery vehicle and methods of making same
US695606027 Nov 200218 Oct 2005Teva Pharmaceutical Industries, Ltd.Use of R-enantiomer of N-propargyl-1-aminoindan, salts, and compositions thereof
US69647714 Sep 199715 Nov 2005Elan Drug Delivery LimitedMethod for stably incorporating substances within dry, foamed glass matrices
US705649529 Ago 20036 Jun 2006Quadrant Drug Delivery Ltd.Solid dose delivery vehicle and methods of making same
US728221730 Ago 200416 Oct 2007Kv Pharmaceutical CompanyRapidly disintegrable tablets
US730091918 Sep 200227 Nov 2007Nektar TherapeuticsPulmonary delivery of active fragments of parathyroid hormone
US730678712 Mar 200211 Dic 2007Nektar TherapeuticsEngineered particles and methods of use
US742534111 Sep 200716 Sep 2008K.V. Pharmaceutical CompanyRapidly disintegrable tablets
US75210691 Jul 200321 Abr 2009Novartis AgMethods and compositions for pulmonary delivery of insulin
US762897819 Ago 20038 Dic 2009Novartis Pharma AgStabilized preparations for use in metered dose inhalers
US774492520 May 200529 Jun 2010Quadrant Drug Delivery LimitedSolid dose delivery vehicle and methods of making same
US778099120 May 200524 Ago 2010Quadrant Drug Delivery LimitedSolid dose delivery vehicle and methods of making same
US778563120 May 200531 Ago 2010Quadrant Drug Delivery LimitedSolid dose delivery vehicle and methods of making same
US787159810 May 200018 Ene 2011Novartis AgStable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US79726225 May 20005 Jul 2011Battelle (Memorial Institute)Method and apparatus for manufacturing dissolvable tablets
US816822321 Jun 20011 May 2012Novartis Pharma AgEngineered particles and methods of use
US82469343 Sep 201021 Ago 2012Novartis AgRespiratory dispersion for metered dose inhalers comprising perforated microstructures
US834929414 Dic 20108 Ene 2013Novartis AgStable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US840421722 Jul 200526 Mar 2013Novartis AgFormulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US86132859 Abr 201024 Dic 2013Philip Morris Products S.A.Extrudable and extruded compositions for delivery of bioactive agents, method of making same and method of using same
US864201620 Jul 20074 Feb 2014Jsrnti, LlcMedicinal delivery system, and related methods
US865312210 Nov 200318 Feb 2014Santhera Pharmaceuticals (Switzerland) Ltd.Oromucosal formulation and process for preparing the same
US8679525 *12 Oct 200625 Mar 2014David M. DixonWound care dressing and method using same
US870948424 Oct 200829 Abr 2014Novartis AgPhospholipid-based powders for drug delivery
US871562331 Oct 20076 May 2014Novartis AgPulmonary delivery of aminoglycoside
US88771626 Dic 20124 Nov 2014Novartis AgStable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US91140729 Feb 201225 Ago 2015Massachusetts Institute Of TechnologyDosage form exhibiting rapid disperse properties, methods of use and process for the manufacture of same
US931442927 Ago 201519 Abr 2016Aprecia Pharmaceuticals CompanyRapidly dispersible dosage form of oxcarbazepine
US933948915 May 201417 May 2016Aprecia Pharmaceuticals CompanyRapid disperse dosage form containing levetiracetam
US94211668 Abr 201423 Ago 2016Novartis AgPulmonary delivery of aminoglycoside
US94398622 Abr 201413 Sep 2016Novartis AgPhospholipid-based powders for drug delivery
US946316019 Jul 200211 Oct 2016Massachusetts Institute Of TechnologyDosage form exhibiting rapid disperse properties, methods of use and process for the manufacture of same
US949238027 Ago 201515 Nov 2016Aprecia Pharmaceuticals CompanyRapidly dispersible dosage form of topiramate
US95549935 May 201031 Ene 2017Novartis AgPulmonary delivery particles comprising an active agent
US961601817 Feb 201611 Abr 2017Aprecia Pharmaceuticals CompanyRapidly dispersible dosage form of oxcarbazepine
US966900911 Abr 20166 Jun 2017Aprecia Pharmaceuticals CompanyRapid disperse dosage form containing levetiracetam
US97176813 Nov 20031 Ago 2017R.P. Scherer Technologies, LlcFormulations containing substituted imidazole derivatives
US980183014 May 201331 Oct 2017The Procter & Gamble CompanyMethods of delivering a health care active by administering personal health care articles comprising a filmament
US20030017208 *25 Ene 200123 Ene 2003Francis IgnatiousElectrospun pharmaceutical compositions
US20030022912 *7 Feb 200230 Ene 2003Martino Alice C.Rapid-onset medicament for treatment of sexual dysfunction
US20030091626 *2 Jul 200215 May 2003Toshifumi KatsutaOrally disintegrating solid preparations and processes for the production thereof
US20030113900 *7 Ago 200219 Jun 2003Tunnacliffe Alan G.Methods of preserving prokaryotic cells and compositions obtained thereby
US20030147961 *27 Feb 20037 Ago 2003Roser Bruce J.Solid dose delivery vehicle and methods of making same
US20030175355 *7 Mar 200318 Sep 2003Tobyn Michael JohnFast melt multiparticulate formulations for oral delivery
US20030212145 *27 Nov 200213 Nov 2003Teva Pharmaceutical Industries, Ltd.Use of R-enantiomer of N-propargyl-1-aminoindan, salts, and compositions thereof
US20030225030 *4 Dic 20024 Dic 2003Allen Robert HNon-liquid vitamin compositions
US20040023948 *26 Feb 20035 Feb 2004Green Richard DavidFast-dispersing dosage form containing 5-HT1 agonists
US20040052825 *29 Ago 200318 Mar 2004Roser Bruce J.Solid dose delivery vehicle and methods of making same
US20040062814 *14 Oct 20031 Abr 2004Therics, Inc.Method and materials for controlling migration of binder liquid in a powder
US20040131673 *22 Mar 20028 Jul 2004Coffee Ronald AlanManufacturing dissolvable dosage forms
US20040192781 *31 Mar 200330 Sep 2004Haley Eugene T.Method of administration for metoclopramide and pharmaceutical formulation therefor
US20040265377 *30 Abr 200430 Dic 2004Harry SeagerSolid dispersing vaccine composition for oral delivery
US20040266724 *4 Dic 200230 Dic 2004Allen Robert H.Non-liquid vitamin compositions
US20050043296 *2 Oct 200324 Feb 2005Michael HawleyCompositions and methods for treating sexual dysfunction
US20050074494 *6 Oct 20037 Abr 2005Xiu-Xiu ChengItraconazole immediate release formulation
US20050136112 *19 Dic 200323 Jun 2005Pediamed Pharmaceuticals, Inc.Oral medicament delivery system
US20050137265 *7 Feb 200523 Jun 2005Haley Eugene T.Rapidly dissolving metoclopramide solid oral dosage and method thereof
US20050147670 *30 Dic 20047 Jul 2005Impax Laboratories Inc.Oral disintegrating dosage forms
US20050186254 *15 Mar 200525 Ago 2005Elan Drug Delivery LimitedMethods for stably incorporating substances within dry, foamed glass matrices and compositions obtained thereby
US20050214229 *16 May 200529 Sep 2005Jsr, LlcTwo-stage transmucosal medicine delivery system for symptom relief
US20060040030 *4 Dic 200323 Feb 2006Daisuke AwakuraMethod for preventing wheat from mycotoxin contamination
US20060052429 *10 Nov 20039 Mar 2006Juha-Matti SavolaOromucosal formulation and process for preparing the same
US20060068021 *11 Oct 200530 Mar 2006Kuhrts Eric HSustained-release microencapsulated delivery system
US20060073189 *11 Jul 20056 Abr 2006Npd, LlcChewing gums, lozenges, candies, tablets, liquids, and sprays for efficient delivery of medications and dietary supplements
US20060094783 *17 Jun 20054 May 2006Tava Pharmaceutical Industries, Ltd.Use of R-enantiomer of N-propargyl-1-aminoindan, salts, compositions and uses thereof
US20060134194 *3 Nov 200322 Jun 2006Susan BanburyFormulations containing substituted imidazole derivatives
US20070082036 *12 Oct 200612 Abr 2007Dixon David MWound care dressing and method using same
US20070190117 *23 Abr 200416 Ago 2007Bodo AsmussenBuccal formulations of galanthamine and uses thereof
US20080020050 *20 Jul 200724 Ene 2008Chau Tommy LMedicinal delivery system, and related methods
US20080050422 *26 Sep 200628 Feb 2008Monosolrx, Llc.Method of administering a film product containing a drug
US20090095313 *16 May 200816 Abr 2009Fuisz Richard CSmokeless Tobacco Product, Smokeless Tobacco Product in the Form of a Sheet, Extrudable Tobacco Composition, Method for Manufacturing a Smokeless Tobacco Product, Method for Delivering Super Bioavailable Nicotine Contained in Tobacco to a User, and Packaged Smokeless Tobacco Product Sheet
US20090098192 *10 Oct 200816 Abr 2009Fuisz Richard CExtrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same
US20100266668 *27 May 201021 Oct 2010Battelle Memorial InstituteManufacturing Dissolvable Dosage Forms
US20100326454 *30 Jun 200930 Dic 2010Fuisz Richard CSmokeless Tobacco Product
US20100330183 *1 Mar 201030 Dic 2010Harry SeagerSolid dispersing vaccine composition for oral delivery
US20130136784 *23 Ene 201330 May 2013Robert J. StaabMethods for delivery of medication using dissolvable devices
US20160051496 *14 Jul 201525 Feb 2016Tsu-I Catherine WangOral Transmucosal Compositions Including C-SERMs for Treating Female Infertility
CN105362269A *1 Sep 20142 Mar 2016天津药物研究院Saccharose containing roflumilast tablets and preparation method thereof
EP0601965A2 *21 Oct 199315 Jun 1994Fuisz Technologies Ltd.Process for making shearform matrix
EP0601965A3 *21 Oct 199331 Ago 1994Fuisz Technologies LtdTítulo no disponible
EP0646650A29 Sep 19945 Abr 1995Fuisz Technologies Ltd.New spheroidal crystal sugar and method of manufacuture
EP0667147A2 *8 Feb 199516 Ago 1995Fuisz Technologies Ltd.Process and apparatus for making tablets and tablets made therefrom
EP0667147A3 *8 Feb 199524 Abr 1996Fuisz Technologies LtdProcess and apparatus for making tablets and tablets made therefrom.
EP0679339A1 *21 Abr 19952 Nov 1995Fuisz Technologies Ltd.Processing aid for making shearform matrix
EP0690154A121 Jun 19953 Ene 1996Fuisz Technologies Ltd.Spinner head for flash flow processing
EP0709035A223 Oct 19951 May 1996Fuisz Technologies Ltd.Method and apparatus for spinning meltable material
EP0711547A1 *26 Oct 199515 May 1996Fuisz Technologies Ltd.Delivery of controlled-release system(s) with shearform matrix
EP1314422A2 *19 Jul 200228 May 2003Scg, Inc.Orally disintegrating solid preparations and processes for the production thereof
EP1314422A3 *19 Jul 200218 Feb 2004Scg, Inc.Orally disintegrating solid preparations and processes for the production thereof
WO1990006969A1 *16 Nov 198928 Jun 1990Fuisz Technologies Ltd.Dispersed systems and method of manufacture
WO1990011017A1 *22 Feb 19904 Oct 1990Fuisz Pharmaceutical Ltd.A moderated spun fibrous system and method of manuacture
WO1991007952A1 *24 Oct 199013 Jun 1991Fuisz Pharmaceutical Ltd.Method of producing compacted dispersable systems
WO1992006603A1 *10 Oct 199030 Abr 1992Fuisz Technologies Ltd.Taste masked medicated floss
WO1992020329A1 *13 May 199226 Nov 1992Fuisz Technologies Ltd.Enzyme systems
WO1993008699A1 *30 Oct 199213 May 1993Fuisz Technologies Ltd.Water-soluble delivery systems for hydrophobic liquids
WO1993011750A1 *16 Dic 199224 Jun 1993Fuisz Technologies Ltd.Ulcer prevention and treatment composition and method
WO1995034293A1 *6 Jun 199521 Dic 1995Fuisz Technologies Ltd.Process and apparatus for making rapidly dissolving dosage units and product therefrom
WO1996003894A1 *4 Ago 199515 Feb 1996Fuisz Technologies Ltd.Comestibles containing stabilized highly odorous flavor component delivery systems
WO1997008950A1 *9 Sep 199613 Mar 1997Fuisz Technologies, Ltd.System for rendering substantially non-dissoluble bio-affecting agents bio-available
WO2000018250A127 Sep 19996 Abr 2000Fuisz Technologies Ltd.Process and apparatus for producing shearform matrix material
WO2004000202A1 *20 Jun 200331 Dic 2003Grünenthal GmbHAdministration form for the oral administration of active substances, vitamins, and/or nutrients
WO2006034414A221 Sep 200530 Mar 2006Hypnion, Inc.Loxapine analogs and methods of use thereof
WO2006073729A1 *15 Dic 200513 Jul 2006Impax Laboratories, Inc.Oral disintegrating dosage forms
WO2007044916A2 *12 Oct 200619 Abr 2007Dixon David MWound care dressing and method using same
WO2007044916A3 *12 Oct 20067 May 2009David M DixonWound care dressing and method using same
WO2008002676A229 Jun 20073 Ene 2008Kinex Pharmaceuticals, LlcBiaryl compositions and methods for modulating a kinase cascade
WO2012056319A126 Oct 20113 May 2012Dynamix Pharmaceuticals Ltd.Sulfonamides for the modulation of pkm2
WO2012094302A2 *3 Ene 201212 Jul 2012Knovation, Inc.Drug delivery using fine fiber encapsulation
WO2012094302A3 *3 Ene 201218 Abr 2013Knovation, Inc.Drug delivery using fine fiber encapsulation
WO2012160447A123 May 201229 Nov 2012Dynamix Pharmaceuticals Ltd.3, 5 -diphenyl- substituted pyrazolines for the treatment of cancer, proliferative, inflammatory or autoimmune diseases
WO2012172438A27 Jun 201220 Dic 2012Dynamix Pharmaceuticals Ltd.Compositions and methods for modulating a kinase
WO2017168174A131 Mar 20175 Oct 2017N4 Pharma Uk LimitedNew pharmaceutical forms of sildenafil
Clasificaciones
Clasificación de EE.UU.514/777, 514/781, 424/439, 424/443, 206/569
Clasificación internacionalA61K9/70, A61Q5/12, A61Q17/04, A61K8/73, A61K8/02, A61K47/26, A61K8/44, A23L1/314, A61K9/00, A61K8/60, A23L1/00, A23L1/307, A61K47/38
Clasificación cooperativaA23L33/20, A23P10/25, A61K8/735, A23P10/28, A23L13/43, A61K8/445, A61Q5/12, A61K8/027, A61K8/02, A61K9/70, A61Q17/04, A61K8/60
Clasificación europeaA61K8/02N4, A23L1/314B10, A61K9/70, A61Q17/04, A61Q5/12, A23L1/307, A61K8/60, A61K8/44G, A61K8/02, A23L1/00P2D, A61K8/73L, A23L1/00P2C
Eventos legales
FechaCódigoEventoDescripción
8 Ago 1988ASAssignment
Owner name: FUISZ PHARMACEUTICAL LTD., 3050 K STREET N.W. WASH
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FUISZ, RICHARD C.;REEL/FRAME:004928/0019
Effective date: 19880722
Owner name: FUISZ PHARMACEUTICAL LTD., A CORP. OF DELAWARE, DI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUISZ, RICHARD C.;REEL/FRAME:004928/0019
Effective date: 19880722
7 Jun 1991ASAssignment
Owner name: FUISZ TECHNOLOGIES LTD.
Free format text: CHANGE OF NAME;ASSIGNOR:FUISZ PHARMACEUTICAL LTD.;REEL/FRAME:005736/0215
Effective date: 19910517
19 Nov 1991CCCertificate of correction
15 Ene 1993FPAYFee payment
Year of fee payment: 4
6 Feb 1997FPAYFee payment
Year of fee payment: 8
6 Feb 2001FPAYFee payment
Year of fee payment: 12
16 Jul 2007ASAssignment
Owner name: BIOVAIL LABORATORIES INTERNATIONAL SRL, BARBADOS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVAIL TECHNOLOGIES LIMITED;REEL/FRAME:019562/0470
Effective date: 20070110
Owner name: BIOVAIL LABORATORIES INTERNATIONAL SRL,BARBADOS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVAIL TECHNOLOGIES LIMITED;REEL/FRAME:019562/0470
Effective date: 20070110
30 Jun 2008ASAssignment
Owner name: BIOVAIL TECHNOLOGIES LTD., VIRGINIA
Free format text: CHANGE OF NAME;ASSIGNOR:FUISZ TECHNOLOGIES LTD.;REEL/FRAME:021172/0272
Effective date: 19991223
4 Oct 2010ASAssignment
Owner name: GOLDMAN SACHS LENDING PARTNERS LLC, AS COLLATERAL
Free format text: SECURITY AGREEMENT;ASSIGNORS:BIOVAIL INTERNATIONAL LABORATORIES SRL;BIOVAIL INTERNATIONAL LABORATORIES (BARBADOS) SRL;REEL/FRAME:025084/0022
Effective date: 20100928
14 Mar 2011ASAssignment
Owner name: BIOVAIL INTERNATIONAL LABORATORIES SRL, BARBADOS
Free format text: PATENT SECURITY RELEASE AGREEMENT;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS LLC;REEL/FRAME:025950/0073
Effective date: 20110308
Owner name: BIOVAIL INTERNATIONAL LABORATORIES (BARBADOS) SRL,
Free format text: PATENT SECURITY RELEASE AGREEMENT;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS LLC;REEL/FRAME:025950/0073
Effective date: 20110308