US4914794A - Method of making an abradable strain-tolerant ceramic coated turbine shroud - Google Patents

Method of making an abradable strain-tolerant ceramic coated turbine shroud Download PDF

Info

Publication number
US4914794A
US4914794A US07/125,310 US12531087A US4914794A US 4914794 A US4914794 A US 4914794A US 12531087 A US12531087 A US 12531087A US 4914794 A US4914794 A US 4914794A
Authority
US
United States
Prior art keywords
ceramic
shroud
layer
steps
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/125,310
Inventor
Thomas E. Strangman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/894,409 external-priority patent/US4764089A/en
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Priority to US07/125,310 priority Critical patent/US4914794A/en
Application granted granted Critical
Publication of US4914794A publication Critical patent/US4914794A/en
Assigned to CHASE MANHATTAN BANK, THE reassignment CHASE MANHATTAN BANK, THE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WESTINGHOUSE AIR BRAKE COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/122Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/26Manufacture essentially without removing material by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

An abradable ceramic coated turbine shroud structure includes a grid of slant-steps isolated by grooves in a superalloy metal shroud substrate. A thin NiCrAlY bonding layer is formed on the machined slant-steps. A stabilized zirconia layer is plasma sprayed on the bonding layer at a sufficiently large spray angle to cause formation of deep shadow gaps in the zirconia layer. The shadow gaps provide a high degree of thermal strain tolerance, avoiding spalling. The exposed surface of the zirconia layer is machined nearly to the shadow gap ends. The turbine blade tips are treated to minimize blade tip wear during initial abrading of the zirconia layer. The procedure results in very close blade tip-to-shroud tolerances after the initial abrading.

Description

This is a division of application Ser. No. 894,409 filed Aug. 7, 1986 now U.S. Pat. No. 4,764,089.
BACKGROUND OF THE INVENTION
The invention relates to insulative and abradable ceramic coatings, and more particularly to ceramic turbine shroud coatings, and more particularly to a segmented ceramic coated turbine shroud and a method of making by plasma spraying or other line of sight deposition processes to form shadow gaps that result in a segmented morphology.
Those skilled in the art know that the efficiency loss of a high pressure turbine increases rapidly as the blade tip-to-shroud clearance is increased, either as a result of blade tip wear resulting from contact with the turbine shroud or by design to avoid blade tip wear and abrading of the shroud. Any high pressure air that passes between the turbine blade tips and the turbine shroud without doing any work to return the turbine obviously represents a system loss. If an insulative shroud technology could be provided which allows blade tip clearances to be small over the life of the turbine, there would be an increase in overall turbine performance, including higher power output at a lower operating temperatures, better utilization of fuel, longer operating life, and reduced shroud cooling requirements.
To this end, efforts have been made in the gas turbine industry to develop abradable turbine shrouds to reduce clearance and associated leakage losses between the blade tips and the turbine shroud. Attempts by the industry to produce abradable ceramic shroud coatings have generally involved bonding a layer of yttria stabilized zirconia (YSZ) to a superalloy shroud substrate using various techniques. One approach is to braze a superalloy metallic honeycomb to the superalloy metallic shroud. The "pore spaces" in the superalloy honeycomb are filled with zirconia containing filler particles to control porosity. These techniques have exhibited certain problems. The zirconia sometimes falls out of the superalloy honeycomb structure, severely decreasing the sealing effectiveness and the insulative characteristics of the ceramic coating. Another approach that has been used to provide an abradable ceramic turbine shroud liner or coating involves use of a complex system typically including three to five ceramic and cermet layers on a metal layer bonded to the superalloy shroud substrate. A major problem with this approach, which utilizes a gradual transition in thermal expansion coefficients from that of the metal to that of the outer zirconia layer, is that oxidation of the metallic components of the cermet results in severe volumetric expansion and destruction of the smooth gradient in the thermal expansion coefficients of the layers. The result is spalling of the zirconia, shroud distortion, variation in the blade tip-to-shroud clearance, loss of performance, and expensive repairs. Yet another approach that has been used is essentially a combination of the two mentioned above, wherein an array of pegs of the superalloy shroud substrate protrude inwardly from areas that are filled with a YSZ/NiCrAlY graded system. This system has experienced problems with oxidation of the NiCrAlY within the ceramic and de-lamination of ceramic from the substrate, causing spalling of the YSZ. Another problem is that if the superalloy pegs are rubbed by the blades, blade tip wear is high, causing rapid loss of performance and necessitating replacement of the shroud and blades.
Another reason that ceramic turbine shroud liners have been of interest is the inherent low thermal conductivity of ceramic materials. The insulative properties allow increased turbine operating temperatures and reduced shroud cooling requirements.
Thus, there remains an unmet need for an improved, highly reliable, abradable ceramic turbine shroud liner or coating that avoids massive spalling of ceramic due to thermal strain, avoids weaknesses due to oxidation of metallic constituents in the shroud, and minimizes rubbing of turbine tip material onto the ceramic shroud liner.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide an improved high pressure gas turbine capable of operating at substantially higher efficiency over a longer lifetime than prior gas turbines.
It is another object of the invention to provide an abradable turbine shroud coating that allows reduced blade tip-to-shroud clearances and consequently results in substantially higher efficiency.
It is another object of the invention to increase the oxidation resistance of an abradable turbine shroud and to avoid massive spalling of the ceramic layer due to high thermal strain between the ceramic layer and the superalloy turbine shroud substrate.
It is another object of the invention to provide an abradable ceramic turbine shroud liner or coating that results in high density at a metal bonding interface and lower density and higher abradability at the gas path surface.
It is another object of the invention to provide a rub tolerant ceramic turbine shroud coating that reduces the shroud's cooling requirements, decreases shroud and retainer stresses and associated shroud distortion, minimizes leakage, and delays the onset of blade tip wear.
It is another object of the invention to provide an insulative coating which avoids spalling on a substrate that is subjected to severe high temperature cycling.
Briefly described, and in accordace with one embodiment thereof, the invention provides an abradable turbine shroud coating including a shroud substrate, wherein an array of steps is provided on the inner surface of the shroud substrate, and a segmented coating is provided on the steps such that adjacent steps are segmented from each other by shadow gaps or voids that propagate from the steps upward entirely or nearly through the coating. The shadow gaps are produced by plasma spraying ceramic onto the steps at a plasma spray angle that prevents the coating from being deposited directly on steep faces of the steps, which in the described embodiment are slant-steps. In the described embodiment of the invention, longitudinal, circular parallel grooves and slant-steps having the same or similar heights or depths are formed (by machining, casting, etc.) in the inner surface of the shroud substrate. Shadow gaps propagate upward into the coating during deposition and segment adjacent steps from each other. After a suitable cleaning operation, a thin layer of bonding metal is plasma sprayed onto the slant-steps. The ceramic then is plasma sprayed onto the metal bonding layer at a deposition angle that causes the shadow gaps to form. The metal bonding layer is composed of NiCrAlY (or other suitable oxidation resistant mwetallic layer), and the ceramic is composed of yttria-stabilized zirconia. The height of the slant-steps is 20 mils, and the spray angle of the plasma is 45 degrees, which results in the shadow-gap height being approximately twice the height of the slant-steps, or approximately 40 mils. The thickness of the ceramic layer, after machining to provide a smooth cylindrical surface, is approximately 50 mils. Thermal expansion mismatch strain between the ceramic and the substrate causes propagation of segmenting cracks from the tops of the shadow gaps to the machined ceramic surface. The shadow gaps accommodate thermal expansion mismatch strain between the metal and ceramic, preventing massive spalling of the ceramic layer. The plasma spray parameters are chosen to provide sufficient microporosity of the outer surface of the ceramic layer to allow abradability by turbine blade tips. If necessary, spray parameters are selected to provide a higher density at the ceramic-metal interface as needed to provide adequate adhesion. The turbine blade tips are hardened to provide effective brading of the ceramic surface and thereby establish a very close shroud to blade tip clearance, without smearing blade material on the ceramic layer. Very high efficiency, low loss turbine operation is thereby achieved without risk of spalling of the ceramic due to thermal strains.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a turbine shroud substrate.
FIG. 2 is an enlarged perspective view of the shroud substrate showing a pattern of the slant-steps and longitudinal isolation grooves in the inner surface of the shroud substrate.
FIG. 2A is a section view along section line 2A--2A of FIG. 2.
FIG. 2B is a section view along section line 2B--2B of FIG. 2.
FIG. 3 is a section view useful in explaining plasma spraying of a NiCrAlY bonding layer onto the slant-steps and grooves of FIG. 2.
FIG. 4 is a section view useful in explaining plasma spraying of a zirconia layer onto the NiCrAlY bonding layer of FIG. 3.
FIG. 5 is a section view showing the structure of FIG. 4 after machining of the upper surface of the zirconia layer to a smooth finish.
FIG. 6 is a diagram showing the results of experiments to determine shadow gap heighth as a function of step height and groove depth for different ceramic plasma spray angles.
FIG. 7 is a partial perspective view illustrating a hardened turbine blade tip to abrade the ceramic turbine shroud coating of the present invention.
DESCRIPTION OF THE INVENTION
Referring now to FIG. 1, the insulative abradable ceramic shroud coating is applied to a high temperature structural metallic (i.e., HS 25, Mar-M 509) or ceramic (i.e., silicon nitride) ring or ring segment 1 which has a pattern of slant-steps and/or grooves on the inner surface 2 to be coated. Depending upon the structural material, the steps and grooves (subsequently described) may be manufactured by a variety of techniques such as machining, electrodischarge machining, electrochemical machining, and laser machining. If the shroud is produced by a casting process, the steps and grooves pattern may be incorporated into the casting pattern. If the shroud is manufactured by a rolling process, the step-and-groove pattern may be rolled into surface to be coated. If the shroud is manufactured by a powder process, the step-and-groove pattern may be incorporated with the molding tool.
Referring next to FIGS. 2 and 2A-B, the inner surface of the turbine shroud 1 is fabricated to provide a grid of slant-steps 3 covering the entire inner surface 2 of the turbine shroud. The length 6 of the sides of each of the slant-steps 3 is approximately 100 mils. The vertical or nearly vertical edge 4 of each step is approximately 20 mils high, as indicated by reference numeral 5 in FIG. 2A.
The sides of the slant-steps 3 are bounded by continuous, spaced, parallel V-grooves 14, which also are 20 mils deep, measured from the peaks 4A of each of slant steps. (The grooves 14 need not be V-shaped, however.)
After a conventional grit cleaning operation, a thin layer of oxidation resistant metallic material, such as NiCrAlY having the composition 31 parts chromium, 11 parts aluminum, 0.5 parts yttrium and the rest nickel is plasma sprayed onto the slant-stepped substrate 1, as indicated in FIG. 3, thereby forming metallic layer 8. A plasma spray gun 10 oriented in the direction of dotted line 12 at an angle 13 relative to a reference line 11 that is approximately normal to the plane of the substrate 1 is provided. In the embodiment described herein, the spray angle 13 is approximately 15 degrees to ensure that the vertical walls 4 of the slant-steps 3 and the 100 mil square slant-steps are coated with the oxidation resistant metal (NiCrAlY) bonding layer materials as the shroud substrate is rotated at a uniform rate. The thickness of the NiCrAlY bonding layer 8 is 3-5 mils. A suitable NiCrAlY metal bonding layer 8 can be made by various vendors, such as Chromalloy.
The NiCrAlY layer 8 provides a high degree of adherence to the metal substrate 1, and the subsequent layer of stabilized zirconia ceramic material is highly adherent to NiCrAlY bonding layer 8.
Next, as indicated in FIG. 4, a layer of yttria stabilized zirconia approximately 50 mils thick is plasma sprayed by gun 15 onto the upper surface of the NiCrAlY bonding layer 8 as the shroud substrate is rotated at a uniform rate. The spray direction is indicated by dotted line 16, and is at an angle 18 relative to a reference line 17 that is perpendicular to a plane tangential to shroud substrate 1. Presently, a spray angle of 45 degrees in the direction shown in FIG. 4 has been found to be quite satisfactory in causing "shadow gaps" or voids 22 in the resulting zirconia layer 19. The voids occur because the plasma spray angle 18 is sufficiently large that the sprayed-on zirconia does not deposit or adhere effectively to the steeply sloped surfaces 9 of the metal bonding layer or to one of he nearly vertical walls of each of the grooves 14. This type of deposition is referred to as a "line of sight" deposition. Thus, high integrity, bonded zirconia material builds up on and adheres to the slant-stepped surfaces 8A of the NiCrAlY metal bonding layer 8, but not on the almost-vertical surfaces 9 thereof or on one nearly vertical wall of each of the grooves 14. This results in formation of either shadow gaps, composed of voids and regions of weak, relatively loosely consolidated ceramic material. These "shadow gaps" propagate upwardly most of the way through the zirconia layer 19, effectively segmenting the 100 mil square slant-steps.
The zirconia of the above-indicated composition is stabilized with 8 percent yttria to inhibit formation of large volume fractions of monoclinic phase material. This particular zirconia composition has exhibited good strain tolerance in thermal barier coating applications. Segmentation of the ceramic layer will make a large number of ceramic compositions potentially viable for abradable shroud coatings. Chromalloy Research and Technology can perform the ceramic plasma spray coating of the shroud, using the 45 degree spray angle, and selecting plasma spray parameters to apply the zirconia coating with specified microporosity to assure good abradability.
In FIG. 4, reference numeral 25 represents a final contour line. The rippled surface 20 of the zirconia layer 19 subsequently is machined down to the level of machine line 25, so that the inner surface of the abradable ceramic coated turbine shroud of the present invention is smooth.
In the present embodiment of the invention, the shadow gaps 22 have a shadow gap height of approximately 40 mils, as indicated by distance 23 in FIG. 4.
FIG. 5 shows the final machined, smooth inner surface 25 of the abradable ceramic shroud coating of the present invention.
I performed a number of experiments with different zirconia plasma spray parameters to determine a suitable spray angle, stand-off distance, and zirconia layer thickness. FIG. 6 is a graph showing the shadow gap heighth as a function of step heighth 5 (FIG. 2A). The experiments showed that the depths of the longitudinal V-grooves 14 (FIG. 2) should be at least as great as the step height 5. In FIG. 6, reference numerals 27, 28, and 29 correspond to zirconia plasma spray angles 18 (FIG. 4) of 45 degrees, 30 degrees, and 15 degrees. The experimental results of FIG. 6 show that the heights of the shadow gap 22 (FIG. 4) are approximately proportional to the step height and groove depth and also are dependent on the spray angle 18. For the experiments that I performed, the 45 degree spray angle and step heights (and groove depths) of 20 mils (the maximum values tested) resulted in shadow gaps heights of 40 mils or greater, which was adequate to accomplish the segmentation that I desired. It is expected that larger spray angles and greater step heights will result in effective segmentation of much thicker insulative barrier coatings and shroud coatings than described above.
Changing the distance of the plasma spray gun from the substrate during the plasma spraying of the yttria stabilized zirconia did not appear to affect the shadow gap height for the ranges investigated.
In order to adequately test the above-described abradable, segmented ceramic turbine shroud coating, it was necessary to modify the tips of the blades of a turbine engine used as a test vehicle by widening and hardening the blade tips to minimize wear of turbine blade tip metal on the ceramic shroud coating. In FIG. 7, blade 34 has a thin tip layer 40 of hardened material. Hardened turbine blade tips are well-known, and will not be described in detail.
A series of two tests were run with the above-described structure. The first test included several operating cycles, totalling approximately 25 hours. The purpose of this test was to verify that the morphology of the segmented ceramic layer would resist all of the thermal strains without any spalling, and would be highly resistant to high velocity gas eorsion under operating temperatures. Clearances were sufficiently large to avoid rubbing in this initial test. As expected, there was no evidence of gas erosion, and no evidence of spalling of any of the 100 mil square zirconia segments isolated by the shadow gaps. Also, there was no evidence of distortion of the metallic shroud structure.
In the second test, blade tip-shroud clearances were reduced to permit a rub and cut into the surface of the zirconia coating to test the abradability thereof. Visual examination of the ceramic coated shroud after that test indicated that it was abraded to a depth of about 10 mils. A sacrificial blade tip coating containing the abrasive particles were consumed during the cutting, and a small amount of the blade tip metal then rubbed onto the abraded ceramic coating. The relatively severe rub did not result in any spalling, further verifying the superior strain tolerance of the above-described segmented ceramic turbine shroud coating.
The above-described segmented ceramic turbine shroud coating has been shown to substantially increase turbine engine efficiency by reducing the clearance and associated leakage loss problems between the blade tips and the turbine shroud.
The above-described technique allows establishment of significantly tighter initial blade tip/shroud clearances for improved engine performance, and permits that clearance to be maintained over a long operating lifetime, because the abradability of the ceramic coating layer prevents excessive abrasion of the turbine blade tips, which obviously increases the clearance (and hence increases the losses) around the entire shroud circumference. Use of a ceramic material insulates the shroud, and consequently reduces the turbine shroud cooling requirements and decreases the shroud and retainer stresses and associated shroud ring distortion, all of which minimize leakage and delay the onset of blade tip rubbing and loss of operating efficiency.
More generally, the invention provides thick segmented ceramic coatings that can be used in other applications than those described above, where abradability is not a requirement. For example, the described segmented insulative barrier can be use in combustors of turbine engines, in ducting between stages of turbines, in exit liners, and in nozzles and the like. The segmentation provided by the present invention minimizes spalling due to thermal strains on the coated surface.
While the invention has been described with reference to a particular embodiment thereof, those skilled in the art will be able to make various modifications to the described structure and method without departing from the true spirit and scope of the invention. For example, there are numerous other ceramic materials than zirconia that could be used. Furthermore, there are numerous other elements than yttria which can be used to stabilize zirconia. Although a single microporosity was utilized in the zirconia layers tested to date, it is expected that increased microporisity can be obtained by further alteration of the plasma spray parameters, achieving additional abradability. If necessary, a graded microporosity can be provided by altering the plasma spray parameters from the bottom of the zirconia layer to the top, resulting in a combination of good abradability at the top and extremely strong adhesion to the NiCrAlY bonding metal layer at the bottom of the zirconia layer. A wide variety of regular or irregular step surface or surface "discontinuity" configurations could be used other than the slant-steps of the described embodiment, which were selected because of the convenience of making them in the prototype constructed. As long as steps on the substrate surface or discontinuities in the substrate surface have steep edge walls from which shadow voids propagate during plasma spraying at a large spray angle, so as to segment the ceramic liner into small sections, such steps or discontinuities can be used. A variety of conventional techniques can be used to fabricate the steps, including ring rolling, casting the step pattern into the inner surface shroud substrate, electrochemical machining and electrical discharging machining, and laser machining. Alternate line of sight flame spray techniques and vapor deposition techniques (e.g., electron beam evaporation/physical vapor deposition) can also apply ceramic coatings with shadow gasp. NiCrAlY is only one of many possible oxidation resistant bonding layer materials that may be used. Alternate materials include CoCrAlY, NiCoCrAlY, FeCrAlY, and NiCrAlY. Non-superalloy substrates, such as ceramic, stainless steel, or refractory material substrates may be used in the future. A bonding layer may even be unnecessary if the structural substrate has sufficient oxidation resistance under service conditions and if adequate adhesion can be obtained between the ceramic coatings and the structural metallic or ceramic substrate. The substrate need not be superalloy material; in some cases ceramic material may be used. The shroud substrate can be a unitary cylinder, or comprised of semicylindrical segments. The term "cylindrical" as used herein includes both complete shroud substrates in the form of a cylinder and cylindrical segments which when connected end to end form a cylinder. For radial turbine applications, the shroud may have a toroidal shape. For some applications, the shroud may be conical.

Claims (11)

I claim:
1. A method of making a gas turbine comprising the steps of:
(a) providing a shroud substrate having a smooth inner surface;
(b) forming an array of steps on the inner surface so that each step includes a first face having a small slope and a second face adjoining the first face at a corner and having an approximately vertical slope, and also forming an array of intersecting grooves which separate the steps;
(c) performing a line of sight deposition of ceramic material uniformly over the steps at a spray angle that prevents ceramic from being directly deposited on the second faces so that a plurality of shadow gaps are formed in the ceramic layer as it is deposited, each shadow gap extending above an edge of a step through a substantial portion of the ceramic layer; and
(d) machining a major exposed surface of the ceramic layer to provide an abradable ceramic liner on the inner surface of the shroud substrate.
2. The method of claim 1 including, before step (c), applying of a bonding material onto the inner surface of the shroud substrate to coat each of the steps to cause the ceramic to adhere to the first faces.
3. The method of claim 2 including plasma spraying the ceramic to produce a sufficiently high microporosity in the ceramic layer that the ceramic layer is abradable by tips of turbine blades during operation of the turbine.
4. The method of claim 3 wherein the bonding layer metal is composed of NiCrAlY and the ceramic is composed of stabilized zirconia.
5. The method of claim 4 wherein the zirconia is yttria-stabilized zirconia.
6. The method of claim 5 including providing a plurality of turbine blades surrounded by the shroud substrate and ceramic layer thereon and rotating the turbine blades to abrade a precisely predetermined amount of ceramic from the ceramic layer and thereby produce a minimum precise clearance between the tips of the turbine blades and the ceramic layer.
7. The method of claim 6 including providing a hardened coating on the outer tip of each of the turbine blades capable of abrading the ceramic without smearing superalloy metal of the turbine blades on the ceramic.
8. The method of claim 3 including plasma spraying the ceramic to produce a lower level of microporosity in the portion of the ceramic layer adjacent to the slant-steps than at the outer surface of the ceramic layer to thereby provide a combination of high abradability of the outer surface of the ceramic layer and high adherence of the ceramic layer to the first faces of the steps.
9. A method of making a lined shroud comprising the steps of:
(a) providing a shroud substrate of material having a smooth inner surface;
(b) forming an array of discontinuities on the inner surface including an array of intersecting grooves separating an array of raised areas, each discontinuity including a steep edge; and
(c) performing a line of sight deposition of ceramic material uniformly on the inner surface at a spray angle that prevents ceramic from being directly deposited on the steep edges so that a plurality of shadow gaps are formed in the ceramic layer as it is deposited, each shadow gap extending from a steep edge through a substantial portion of the ceramic layer and segmenting the ceramic layer.
10. The method of claim 9 further including the step of machining a major exposed surface of the ceramic layer to provide a smooth inner ceramic surface.
11. The method of claim 10 including, before step (c), applying a layer of bonding material on the inner surface of the shroud substrate to coat each of the raised areas to cause the ceramic to adhere thereto.
US07/125,310 1986-08-07 1987-11-25 Method of making an abradable strain-tolerant ceramic coated turbine shroud Expired - Lifetime US4914794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/125,310 US4914794A (en) 1986-08-07 1987-11-25 Method of making an abradable strain-tolerant ceramic coated turbine shroud

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/894,409 US4764089A (en) 1986-08-07 1986-08-07 Abradable strain-tolerant ceramic coated turbine shroud
US07/125,310 US4914794A (en) 1986-08-07 1987-11-25 Method of making an abradable strain-tolerant ceramic coated turbine shroud

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/894,409 Division US4764089A (en) 1986-08-07 1986-08-07 Abradable strain-tolerant ceramic coated turbine shroud

Publications (1)

Publication Number Publication Date
US4914794A true US4914794A (en) 1990-04-10

Family

ID=26823455

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/125,310 Expired - Lifetime US4914794A (en) 1986-08-07 1987-11-25 Method of making an abradable strain-tolerant ceramic coated turbine shroud

Country Status (1)

Country Link
US (1) US4914794A (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352540A (en) * 1992-08-26 1994-10-04 Alliedsignal Inc. Strain-tolerant ceramic coated seal
US5397649A (en) * 1992-08-26 1995-03-14 Alliedsignal Inc. Intermediate coating layer for high temperature rubbing seals for rotary regenerators
US5575145A (en) * 1994-11-01 1996-11-19 Chevron U.S.A. Inc. Gas turbine repair
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
WO1998051906A1 (en) 1997-05-14 1998-11-19 Alliedsignal Inc. Laser segmented thick thermal barrier coatings for turbine shrouds
KR20000006199A (en) * 1998-06-18 2000-01-25 레비스 스테픈 이 Article having durable ceramic coating with localized abradable portion
US6074706A (en) * 1998-12-15 2000-06-13 General Electric Company Adhesion of a ceramic layer deposited on an article by casting features in the article surface
US6233915B1 (en) 1997-04-17 2001-05-22 Allied Signal, Inc. Injection tube for connecting a cold plenum to a hot chamber
US6365222B1 (en) 2000-10-27 2002-04-02 Siemens Westinghouse Power Corporation Abradable coating applied with cold spray technique
US6444259B1 (en) 2001-01-30 2002-09-03 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
US6443700B1 (en) * 2000-11-08 2002-09-03 General Electric Co. Transpiration-cooled structure and method for its preparation
EP1239058A2 (en) * 2001-03-06 2002-09-11 Mitsubishi Heavy Industries, Ltd. Coating for gas turbine blades
US6491208B2 (en) 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
US20030101587A1 (en) * 2001-10-22 2003-06-05 Rigney Joseph David Method for replacing a damaged TBC ceramic layer
US6702553B1 (en) 2002-10-03 2004-03-09 General Electric Company Abradable material for clearance control
US20040115351A1 (en) * 2002-12-17 2004-06-17 Yuk-Chiu Lau High temperature abradable coatings
US20050003097A1 (en) * 2003-06-18 2005-01-06 Siemens Westinghouse Power Corporation Thermal spray of doped thermal barrier coating material
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US20050129868A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Repair of zirconia-based thermal barrier coatings
US20060110247A1 (en) * 2004-11-24 2006-05-25 General Electric Company Pattern for the surface of a turbine shroud
US20070218309A1 (en) * 2001-10-10 2007-09-20 Karel Hajmrle Sprayable composition
US20080166225A1 (en) * 2005-02-01 2008-07-10 Honeywell International, Inc. Turbine blade tip and shroud clearance control coating system
US20080274336A1 (en) * 2006-12-01 2008-11-06 Siemens Power Generation, Inc. High temperature insulation with enhanced abradability
US20090151142A1 (en) * 2007-12-12 2009-06-18 General Electric Company Methods for repairing composite containment casings
US20090155044A1 (en) * 2007-12-12 2009-06-18 Ming Xie Composite containment casings having an integral fragment catcher
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
US20090196996A1 (en) * 2003-06-19 2009-08-06 Noriaki Hamaya Coated member and method of manufacture
US7614847B2 (en) 2004-11-24 2009-11-10 General Electric Company Pattern for the surface of a turbine shroud
US20100016987A1 (en) * 2008-07-16 2010-01-21 Zimmer, Inc. Thermally treated ceramic coating for implants
US20100021643A1 (en) * 2008-07-22 2010-01-28 Siemens Power Generation, Inc. Method of Forming a Turbine Engine Component Having a Vapor Resistant Layer
US20100032472A1 (en) * 2007-02-06 2010-02-11 Brigitte Heinecke Brazing composition and brazing method for superalloys
US20100080984A1 (en) * 2008-09-30 2010-04-01 Rolls-Royce Corp. Coating including a rare earth silicate-based layer including a second phase
US20100129636A1 (en) * 2008-11-25 2010-05-27 Rolls-Royce Corporation Abradable layer including a rare earth silicate
WO2010070555A1 (en) 2008-12-16 2010-06-24 Etv Motors Ltd. Rotary regenerator for gas-turbine
EP1766193B1 (en) * 2004-06-29 2011-01-26 MTU Aero Engines AG Run-in coating
US20110033630A1 (en) * 2009-08-05 2011-02-10 Rolls-Royce Corporation Techniques for depositing coating on ceramic substrate
US20110116920A1 (en) * 2009-11-19 2011-05-19 Strock Christopher W Segmented thermally insulating coating
US20120134787A1 (en) * 2010-11-30 2012-05-31 Techspace Aero S.A. Abradable For Stator Inner Shroud
US8470460B2 (en) 2008-11-25 2013-06-25 Rolls-Royce Corporation Multilayer thermal barrier coatings
US9022743B2 (en) 2011-11-30 2015-05-05 United Technologies Corporation Segmented thermally insulating coating
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US9816392B2 (en) 2013-04-10 2017-11-14 General Electric Company Architectures for high temperature TBCs with ultra low thermal conductivity and abradability and method of making
US20180010471A1 (en) * 2016-07-06 2018-01-11 Pw Power Systems, Inc. Spall break for turbine component coatings
US20180135439A1 (en) * 2016-11-17 2018-05-17 United Technologies Corporation Airfoil with geometrically segmented coating section
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US10309226B2 (en) 2016-11-17 2019-06-04 United Technologies Corporation Airfoil having panels
US10309238B2 (en) 2016-11-17 2019-06-04 United Technologies Corporation Turbine engine component with geometrically segmented coating section and cooling passage
US10329205B2 (en) 2014-11-24 2019-06-25 Rolls-Royce Corporation Bond layer for silicon-containing substrates
US10408090B2 (en) 2016-11-17 2019-09-10 United Technologies Corporation Gas turbine engine article with panel retained by preloaded compliant member
US10408082B2 (en) 2016-11-17 2019-09-10 United Technologies Corporation Airfoil with retention pocket holding airfoil piece
US10415407B2 (en) 2016-11-17 2019-09-17 United Technologies Corporation Airfoil pieces secured with endwall section
US10428658B2 (en) 2016-11-17 2019-10-01 United Technologies Corporation Airfoil with panel fastened to core structure
US10428663B2 (en) 2016-11-17 2019-10-01 United Technologies Corporation Airfoil with tie member and spring
US10436049B2 (en) 2016-11-17 2019-10-08 United Technologies Corporation Airfoil with dual profile leading end
US10436062B2 (en) 2016-11-17 2019-10-08 United Technologies Corporation Article having ceramic wall with flow turbulators
US10458262B2 (en) 2016-11-17 2019-10-29 United Technologies Corporation Airfoil with seal between endwall and airfoil section
US10480331B2 (en) 2016-11-17 2019-11-19 United Technologies Corporation Airfoil having panel with geometrically segmented coating
US10480334B2 (en) 2016-11-17 2019-11-19 United Technologies Corporation Airfoil with geometrically segmented coating section
US10502070B2 (en) 2016-11-17 2019-12-10 United Technologies Corporation Airfoil with laterally insertable baffle
US10570765B2 (en) 2016-11-17 2020-02-25 United Technologies Corporation Endwall arc segments with cover across joint
US10598025B2 (en) 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with rods adjacent a core structure
US10598029B2 (en) 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with panel and side edge cooling
US10605088B2 (en) 2016-11-17 2020-03-31 United Technologies Corporation Airfoil endwall with partial integral airfoil wall
US10662779B2 (en) 2016-11-17 2020-05-26 Raytheon Technologies Corporation Gas turbine engine component with degradation cooling scheme
US10662782B2 (en) 2016-11-17 2020-05-26 Raytheon Technologies Corporation Airfoil with airfoil piece having axial seal
US10677091B2 (en) 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with sealed baffle
US10677079B2 (en) 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with ceramic airfoil piece having internal cooling circuit
US10711794B2 (en) 2016-11-17 2020-07-14 Raytheon Technologies Corporation Airfoil with geometrically segmented coating section having mechanical secondary bonding feature
US10711616B2 (en) 2016-11-17 2020-07-14 Raytheon Technologies Corporation Airfoil having endwall panels
US10731495B2 (en) 2016-11-17 2020-08-04 Raytheon Technologies Corporation Airfoil with panel having perimeter seal
US10746038B2 (en) 2016-11-17 2020-08-18 Raytheon Technologies Corporation Airfoil with airfoil piece having radial seal
US10767487B2 (en) 2016-11-17 2020-09-08 Raytheon Technologies Corporation Airfoil with panel having flow guide
US10808554B2 (en) 2016-11-17 2020-10-20 Raytheon Technologies Corporation Method for making ceramic turbine engine article
US10823412B2 (en) 2017-04-03 2020-11-03 Raytheon Technologies Corporation Panel surface pockets for coating retention
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating
US10870152B2 (en) * 2015-12-14 2020-12-22 Safran Aircraft Engines Abradable coating having variable densities
US10927695B2 (en) 2018-11-27 2021-02-23 Raytheon Technologies Corporation Abradable coating for grooved BOAS
US11174749B2 (en) 2015-12-14 2021-11-16 Safran Aircraft Engines Abradable coating having variable densities
WO2022133546A1 (en) * 2020-12-24 2022-06-30 Commonwealth Scientific And Industrial Research Organisation Process for producing a metallic structure by additive manufacturing
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507079A (en) * 1946-06-19 1950-05-09 Charles H Zimmerman Abrading mechanism
US3042365A (en) * 1957-11-08 1962-07-03 Gen Motors Corp Blade shrouding
US3970319A (en) * 1972-11-17 1976-07-20 General Motors Corporation Seal structure
US4063742A (en) * 1976-08-18 1977-12-20 Kentucky Metals, Inc. Abradable fluid seal for aircraft gas turbines
US4323394A (en) * 1979-08-06 1982-04-06 Motoren-Und Turbinen-Union Munchen Gmbh Method for manufacturing turborotors such as gas turbine rotor wheels, and wheel produced thereby
US4405284A (en) * 1980-05-16 1983-09-20 Mtu Motoren-Und-Turbinen-Union Munchen Gmbh Casing for a thermal turbomachine having a heat-insulating liner
US4460311A (en) * 1980-05-24 1984-07-17 MTU Motogren-Und Turbinen-Union Apparatus for minimizing and maintaining constant the blade tip clearance of axial-flow turbines in gas turbine engines
US4610320A (en) * 1984-09-19 1986-09-09 Directional Enterprises, Inc. Stabilizer blade
US4623087A (en) * 1983-05-26 1986-11-18 Rolls-Royce Limited Application of coatings to articles
US4646810A (en) * 1984-10-30 1987-03-03 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Method for the manufacture of a ceramic turbine ring integral with a metallic annular carrier
US4764089A (en) * 1986-08-07 1988-08-16 Allied-Signal Inc. Abradable strain-tolerant ceramic coated turbine shroud

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507079A (en) * 1946-06-19 1950-05-09 Charles H Zimmerman Abrading mechanism
US3042365A (en) * 1957-11-08 1962-07-03 Gen Motors Corp Blade shrouding
US3970319A (en) * 1972-11-17 1976-07-20 General Motors Corporation Seal structure
US4063742A (en) * 1976-08-18 1977-12-20 Kentucky Metals, Inc. Abradable fluid seal for aircraft gas turbines
US4323394A (en) * 1979-08-06 1982-04-06 Motoren-Und Turbinen-Union Munchen Gmbh Method for manufacturing turborotors such as gas turbine rotor wheels, and wheel produced thereby
US4405284A (en) * 1980-05-16 1983-09-20 Mtu Motoren-Und-Turbinen-Union Munchen Gmbh Casing for a thermal turbomachine having a heat-insulating liner
US4460311A (en) * 1980-05-24 1984-07-17 MTU Motogren-Und Turbinen-Union Apparatus for minimizing and maintaining constant the blade tip clearance of axial-flow turbines in gas turbine engines
US4623087A (en) * 1983-05-26 1986-11-18 Rolls-Royce Limited Application of coatings to articles
US4610320A (en) * 1984-09-19 1986-09-09 Directional Enterprises, Inc. Stabilizer blade
US4646810A (en) * 1984-10-30 1987-03-03 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "S.N.E.C.M.A." Method for the manufacture of a ceramic turbine ring integral with a metallic annular carrier
US4764089A (en) * 1986-08-07 1988-08-16 Allied-Signal Inc. Abradable strain-tolerant ceramic coated turbine shroud

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352540A (en) * 1992-08-26 1994-10-04 Alliedsignal Inc. Strain-tolerant ceramic coated seal
US5397649A (en) * 1992-08-26 1995-03-14 Alliedsignal Inc. Intermediate coating layer for high temperature rubbing seals for rotary regenerators
US5575145A (en) * 1994-11-01 1996-11-19 Chevron U.S.A. Inc. Gas turbine repair
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
US6233915B1 (en) 1997-04-17 2001-05-22 Allied Signal, Inc. Injection tube for connecting a cold plenum to a hot chamber
WO1998051906A1 (en) 1997-05-14 1998-11-19 Alliedsignal Inc. Laser segmented thick thermal barrier coatings for turbine shrouds
KR20000006199A (en) * 1998-06-18 2000-01-25 레비스 스테픈 이 Article having durable ceramic coating with localized abradable portion
US6074706A (en) * 1998-12-15 2000-06-13 General Electric Company Adhesion of a ceramic layer deposited on an article by casting features in the article surface
US6365222B1 (en) 2000-10-27 2002-04-02 Siemens Westinghouse Power Corporation Abradable coating applied with cold spray technique
US6443700B1 (en) * 2000-11-08 2002-09-03 General Electric Co. Transpiration-cooled structure and method for its preparation
US6491208B2 (en) 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
US6444259B1 (en) 2001-01-30 2002-09-03 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique
EP1239058A2 (en) * 2001-03-06 2002-09-11 Mitsubishi Heavy Industries, Ltd. Coating for gas turbine blades
EP1239058A3 (en) * 2001-03-06 2004-03-17 Mitsubishi Heavy Industries, Ltd. Coating for gas turbine blades
US6811373B2 (en) 2001-03-06 2004-11-02 Mitsubishi Heavy Industries, Ltd. Turbine moving blade, turbine stationary blade, turbine split ring, and gas turbine
US20070218309A1 (en) * 2001-10-10 2007-09-20 Karel Hajmrle Sprayable composition
US20030101587A1 (en) * 2001-10-22 2003-06-05 Rigney Joseph David Method for replacing a damaged TBC ceramic layer
US6702553B1 (en) 2002-10-03 2004-03-09 General Electric Company Abradable material for clearance control
US20040115351A1 (en) * 2002-12-17 2004-06-17 Yuk-Chiu Lau High temperature abradable coatings
US6887528B2 (en) * 2002-12-17 2005-05-03 General Electric Company High temperature abradable coatings
US20050164027A1 (en) * 2002-12-17 2005-07-28 General Electric Company High temperature abradable coatings
US20050003097A1 (en) * 2003-06-18 2005-01-06 Siemens Westinghouse Power Corporation Thermal spray of doped thermal barrier coating material
US20090196996A1 (en) * 2003-06-19 2009-08-06 Noriaki Hamaya Coated member and method of manufacture
US7150926B2 (en) 2003-07-16 2006-12-19 Honeywell International, Inc. Thermal barrier coating with stabilized compliant microstructure
US20050013994A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Thermal barrier coating with stabilized compliant microstructure
US20050129868A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Repair of zirconia-based thermal barrier coatings
EP1766193B1 (en) * 2004-06-29 2011-01-26 MTU Aero Engines AG Run-in coating
US20060110247A1 (en) * 2004-11-24 2006-05-25 General Electric Company Pattern for the surface of a turbine shroud
US7600968B2 (en) 2004-11-24 2009-10-13 General Electric Company Pattern for the surface of a turbine shroud
US7614847B2 (en) 2004-11-24 2009-11-10 General Electric Company Pattern for the surface of a turbine shroud
US20080166225A1 (en) * 2005-02-01 2008-07-10 Honeywell International, Inc. Turbine blade tip and shroud clearance control coating system
US7510370B2 (en) 2005-02-01 2009-03-31 Honeywell International Inc. Turbine blade tip and shroud clearance control coating system
US20080274336A1 (en) * 2006-12-01 2008-11-06 Siemens Power Generation, Inc. High temperature insulation with enhanced abradability
US20100032472A1 (en) * 2007-02-06 2010-02-11 Brigitte Heinecke Brazing composition and brazing method for superalloys
US7946471B2 (en) * 2007-02-06 2011-05-24 Siemens Aktiengesellschaft Brazing composition and brazing method for superalloys
US20090155044A1 (en) * 2007-12-12 2009-06-18 Ming Xie Composite containment casings having an integral fragment catcher
US8403624B2 (en) 2007-12-12 2013-03-26 General Electric Company Composite containment casings having an integral fragment catcher
US8371009B2 (en) * 2007-12-12 2013-02-12 General Electric Company Methods for repairing composite containment casings
US20090151142A1 (en) * 2007-12-12 2009-06-18 General Electric Company Methods for repairing composite containment casings
US20090184280A1 (en) * 2008-01-18 2009-07-23 Rolls-Royce Corp. Low Thermal Conductivity, CMAS-Resistant Thermal Barrier Coatings
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US20100016987A1 (en) * 2008-07-16 2010-01-21 Zimmer, Inc. Thermally treated ceramic coating for implants
US8642112B2 (en) 2008-07-16 2014-02-04 Zimmer, Inc. Thermally treated ceramic coating for implants
US20100021643A1 (en) * 2008-07-22 2010-01-28 Siemens Power Generation, Inc. Method of Forming a Turbine Engine Component Having a Vapor Resistant Layer
US10717678B2 (en) 2008-09-30 2020-07-21 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
US20100080984A1 (en) * 2008-09-30 2010-04-01 Rolls-Royce Corp. Coating including a rare earth silicate-based layer including a second phase
US8124252B2 (en) 2008-11-25 2012-02-28 Rolls-Royce Corporation Abradable layer including a rare earth silicate
US20100129636A1 (en) * 2008-11-25 2010-05-27 Rolls-Royce Corporation Abradable layer including a rare earth silicate
US8470460B2 (en) 2008-11-25 2013-06-25 Rolls-Royce Corporation Multilayer thermal barrier coatings
WO2010070555A1 (en) 2008-12-16 2010-06-24 Etv Motors Ltd. Rotary regenerator for gas-turbine
US20110033630A1 (en) * 2009-08-05 2011-02-10 Rolls-Royce Corporation Techniques for depositing coating on ceramic substrate
US8506243B2 (en) 2009-11-19 2013-08-13 United Technologies Corporation Segmented thermally insulating coating
US20110116920A1 (en) * 2009-11-19 2011-05-19 Strock Christopher W Segmented thermally insulating coating
EP2325347A1 (en) * 2009-11-19 2011-05-25 United Technologies Corporation Segmented thermally insulating coating
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
US10125618B2 (en) 2010-08-27 2018-11-13 Rolls-Royce Corporation Vapor deposition of rare earth silicate environmental barrier coatings
US8926271B2 (en) * 2010-11-30 2015-01-06 Techspace Aero S.A. Abradable for stator inner shroud
US20120134787A1 (en) * 2010-11-30 2012-05-31 Techspace Aero S.A. Abradable For Stator Inner Shroud
US9022743B2 (en) 2011-11-30 2015-05-05 United Technologies Corporation Segmented thermally insulating coating
US9816392B2 (en) 2013-04-10 2017-11-14 General Electric Company Architectures for high temperature TBCs with ultra low thermal conductivity and abradability and method of making
US10329205B2 (en) 2014-11-24 2019-06-25 Rolls-Royce Corporation Bond layer for silicon-containing substrates
US11174749B2 (en) 2015-12-14 2021-11-16 Safran Aircraft Engines Abradable coating having variable densities
US10870152B2 (en) * 2015-12-14 2020-12-22 Safran Aircraft Engines Abradable coating having variable densities
US20180010471A1 (en) * 2016-07-06 2018-01-11 Pw Power Systems, Inc. Spall break for turbine component coatings
US10344605B2 (en) * 2016-07-06 2019-07-09 Mechanical Dynamics & Analysis Llc Spall break for turbine component coatings
US10598029B2 (en) 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with panel and side edge cooling
US10711794B2 (en) 2016-11-17 2020-07-14 Raytheon Technologies Corporation Airfoil with geometrically segmented coating section having mechanical secondary bonding feature
US10415407B2 (en) 2016-11-17 2019-09-17 United Technologies Corporation Airfoil pieces secured with endwall section
US10428658B2 (en) 2016-11-17 2019-10-01 United Technologies Corporation Airfoil with panel fastened to core structure
US10428663B2 (en) 2016-11-17 2019-10-01 United Technologies Corporation Airfoil with tie member and spring
US10436049B2 (en) 2016-11-17 2019-10-08 United Technologies Corporation Airfoil with dual profile leading end
US10436062B2 (en) 2016-11-17 2019-10-08 United Technologies Corporation Article having ceramic wall with flow turbulators
US10458262B2 (en) 2016-11-17 2019-10-29 United Technologies Corporation Airfoil with seal between endwall and airfoil section
US10480331B2 (en) 2016-11-17 2019-11-19 United Technologies Corporation Airfoil having panel with geometrically segmented coating
US10480334B2 (en) 2016-11-17 2019-11-19 United Technologies Corporation Airfoil with geometrically segmented coating section
US10502070B2 (en) 2016-11-17 2019-12-10 United Technologies Corporation Airfoil with laterally insertable baffle
US10570765B2 (en) 2016-11-17 2020-02-25 United Technologies Corporation Endwall arc segments with cover across joint
US10598025B2 (en) 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with rods adjacent a core structure
US10408090B2 (en) 2016-11-17 2019-09-10 United Technologies Corporation Gas turbine engine article with panel retained by preloaded compliant member
US10605088B2 (en) 2016-11-17 2020-03-31 United Technologies Corporation Airfoil endwall with partial integral airfoil wall
US10662779B2 (en) 2016-11-17 2020-05-26 Raytheon Technologies Corporation Gas turbine engine component with degradation cooling scheme
US10662782B2 (en) 2016-11-17 2020-05-26 Raytheon Technologies Corporation Airfoil with airfoil piece having axial seal
US10677091B2 (en) 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with sealed baffle
US10677079B2 (en) 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with ceramic airfoil piece having internal cooling circuit
US10408082B2 (en) 2016-11-17 2019-09-10 United Technologies Corporation Airfoil with retention pocket holding airfoil piece
US10711624B2 (en) * 2016-11-17 2020-07-14 Raytheon Technologies Corporation Airfoil with geometrically segmented coating section
US10711616B2 (en) 2016-11-17 2020-07-14 Raytheon Technologies Corporation Airfoil having endwall panels
US10309238B2 (en) 2016-11-17 2019-06-04 United Technologies Corporation Turbine engine component with geometrically segmented coating section and cooling passage
US10731495B2 (en) 2016-11-17 2020-08-04 Raytheon Technologies Corporation Airfoil with panel having perimeter seal
US10746038B2 (en) 2016-11-17 2020-08-18 Raytheon Technologies Corporation Airfoil with airfoil piece having radial seal
US10767487B2 (en) 2016-11-17 2020-09-08 Raytheon Technologies Corporation Airfoil with panel having flow guide
US10808554B2 (en) 2016-11-17 2020-10-20 Raytheon Technologies Corporation Method for making ceramic turbine engine article
US11333036B2 (en) 2016-11-17 2022-05-17 Raytheon Technologies Article having ceramic wall with flow turbulators
US11319817B2 (en) 2016-11-17 2022-05-03 Raytheon Technologies Corporation Airfoil with panel and side edge cooling
US10309226B2 (en) 2016-11-17 2019-06-04 United Technologies Corporation Airfoil having panels
US20180135439A1 (en) * 2016-11-17 2018-05-17 United Technologies Corporation Airfoil with geometrically segmented coating section
US11092016B2 (en) 2016-11-17 2021-08-17 Raytheon Technologies Corporation Airfoil with dual profile leading end
US11149573B2 (en) 2016-11-17 2021-10-19 Raytheon Technologies Corporation Airfoil with seal between end wall and airfoil section
US10823412B2 (en) 2017-04-03 2020-11-03 Raytheon Technologies Corporation Panel surface pockets for coating retention
US11851770B2 (en) 2017-07-17 2023-12-26 Rolls-Royce Corporation Thermal barrier coatings for components in high-temperature mechanical systems
US11655543B2 (en) 2017-08-08 2023-05-23 Rolls-Royce Corporation CMAS-resistant barrier coatings
US10851656B2 (en) 2017-09-27 2020-12-01 Rolls-Royce Corporation Multilayer environmental barrier coating
US10927695B2 (en) 2018-11-27 2021-02-23 Raytheon Technologies Corporation Abradable coating for grooved BOAS
WO2022133546A1 (en) * 2020-12-24 2022-06-30 Commonwealth Scientific And Industrial Research Organisation Process for producing a metallic structure by additive manufacturing

Similar Documents

Publication Publication Date Title
US4914794A (en) Method of making an abradable strain-tolerant ceramic coated turbine shroud
US4764089A (en) Abradable strain-tolerant ceramic coated turbine shroud
US6224963B1 (en) Laser segmented thick thermal barrier coatings for turbine shrouds
EP2275646B1 (en) Airfoil tip comprising stress mitigating features
US6703137B2 (en) Segmented thermal barrier coating and method of manufacturing the same
US5681616A (en) Thick thermal barrier coating having grooves for enhanced strain tolerance
US20050003172A1 (en) 7FAstage 1 abradable coatings and method for making same
US6887528B2 (en) High temperature abradable coatings
EP0765951B1 (en) Abradable ceramic coating
EP2325347B1 (en) Segmented thermally insulating coating
US6830428B2 (en) Abradable coating for gas turbine walls
US4273824A (en) Ceramic faced structures and methods for manufacture thereof
EP0965730B1 (en) Article having durable ceramic coating with localised abradable portion
EP2053202B1 (en) Blade outer air seal with improved thermomechanical fatigue life
US4289446A (en) Ceramic faced outer air seal for gas turbine engines
US11920478B2 (en) Substrate edge configurations for ceramic coatings
EP3725909A1 (en) Geometrically segmented thermal barrier coating with spall interrupter features
EP3907375A1 (en) Thermal barrier coating with reduced edge crack initiation stress and high insulating factor
Strangman Thermal strain-tolerant Abradable thermal barrier coatings
Strangman Thermal Strain Tolerant Abradable Thermal Barrier Coatings

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CHASE MANHATTAN BANK, THE, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WESTINGHOUSE AIR BRAKE COMPANY;REEL/FRAME:009423/0239

Effective date: 19980630

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12