Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS4942035 A
Tipo de publicaciónConcesión
Número de solicitudUS 06/716,651
Fecha de publicación17 Jul 1990
Fecha de presentación27 Mar 1985
Fecha de prioridad22 Abr 1982
TarifaPagadas
También publicado comoCA1246265A1, DE3378250D1, EP0092918A2, EP0092918A3, EP0092918B1, US4526938
Número de publicación06716651, 716651, US 4942035 A, US 4942035A, US-A-4942035, US4942035 A, US4942035A
InventoresJeffrey R. Churchill, Francis G. Hutchinson
Cesionario originalImperial Chemical Industries
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Polypeptides and noncrosslinked linear, branched or graft block copolymers with hydrophobic biodegradable part and hydrophilic part
US 4942035 A
Resumen
Pharmaceutical compositions comprising a pharmacologically active polypeptide and a pharmacologically or veterinarily acceptable amphipathic, non-cross-linked linear, branched or graft block copolymer, which has a minimum weight average molecular weight of 5,000, in which the hydrophobic component is biodegradable and the hydrophilic component may or may not be biodegradable, the composition being capable of absorbing water to form a hydrogel when placed in an aqueous, physiological-type environment; copolymers suitable for use in said compositions; and method for the manufacture of such copolymers.
Imágenes(7)
Previous page
Next page
Reclamaciones(6)
What we claim is:
1. A pharmaceutical composition comprising a pharmacologically effective amount of a pharmacologically useful polypeptide and a pharmaceutically or veterinarily acceptable amphipathic, non-cross-linked linear, branched or graft block copolymer, which has a minimum weight average molecular weight of 5,000, in which the hydrophobic component is biodegradable or hydrolytically unstable under normal physiological conditions, and the hydrophilic component may or may not be biodegradable, the copolymer being capable of absorbing water to form a hydrogel when placed in water or an aqueous physiological-type environment in an animal body, the amphipathic copolymer being a linear block copolymer of the formula Am (BA)n or Bm (AB)n wherein m is 0 or 1, n is an integer, A is a pharmaceutically or veterinarily acceptable hydrophobic polymer and B is a pharmaceutically or veterinarily acceptable hydrophilic polymer, or the amphipathic copolymer is a graft or branched block copolymer of the formula ABn or BAn wherein A, B and n have the meanings stated above and wherein respectively either A or B is a backbone polymer with n units of a monomer or polymer B or A respectively grafted onto it, and wherein A is selected from poly (D-, L- and DL-lactic acids), poly (D-, L- and DL-lactides), polyglycolic acid, polyglycolide, poly-ε-caprolactone, poly(3-hydroxy-butyric acid), non-therapeutic hydrophobic polypeptides, polyacetals of the formula ##STR4## wherein R is a hydrocarbon radical, and n has the meaning stated above, polycarbonates or polyorthoesters of the formula: ##STR5## wherein R and n have the meanings stated above, and copolymers of the formula: ##STR6## wherein R and n have the meanings stated above, and copolymers derived from two or more monomers from which the above polymers are derived; and the pharmaceutically or veterinarily acceptable hydrophilic polymer B is selected from polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyacrylamide, polymethacrylamide, dextran, alginic acid, sodium alginate, and gelatine, and copolymers of two or more of the monomers from which the above polymers are derived, and polyoxyethylene/polyoxypropylene block copolymers.
2. A composition as claimed in claim 1 wherein A is a polymer of a lactide.
3. A composition as claimed in claim 2 wherein A is a polymer of a D,L-lactide and glycolide and B is polyethylene glycol.
4. A composition as claimed in claim 3 wherein the copolymer has the composition oxyethylene:lactic:glycol of 2:1:1.
5. A composition as claimed in claim 1 wherein the pharmacologically useful polypeptide is selected from the group consisting of oxytocin, vasopresin, adrenocorticotrophic hormone, epidermal growth factor, prolactin, luliberin or lutenising hormone releasing hormone, growth hormone, growth hormone releasing factor, insulin, somatostatin, glucagon, interferon, gastrin, tetragastrin, pentagastrin, urogastrone, secretin, calcitonin, enkephalins, endorphins, angiotensins, renin, bradykinin, bacitracins, polymyxins, colistins, tyrocidin, gramicidines, and synthetic analogues, modifications and pharmacologically active fragments thereof, monoclonal antibodies and soluble vaccines.
6. A composition as claimed in claim 1 wherein the polypeptide is Glu-His-Trp-Ser-Tyr-D-Ser(O-tBu)-Leu-Arg-Pro-Azgly-NH2.
Descripción

This is a division of application Ser. No. 435,454, filed Apr. 15, 1983, now U.S. Pat. No. 4,526,938.

This invention relates to pharmaceutical compositions of pharmacologically-active polypeptides, which provide continuous release of the polypeptide over an extended period when the composition is placed in an aqueous, physiological-type environment.

It has long been appreciated that the continuous release of certain drugs over an extended period following a single administration could have significant practical advantages in clinical practice, and compositions have already been developed to provide extended release of a number of clinically useful drugs, after oral dosing (see, for example, Remington's Pharmaceutical Sciences, published by Mack Publishing Company, Easton, Penn., U.S.A., 15th Edition, 1975, pages 1618-1631), after parenteral administration (ibidem, pages 1631-1643), and after topical administration (see, for example, United Kingdom Patent Number 1,351,409). A suitable method of parenteral administration is the subdermal injection or implantation of a solid body, for example a pellet or a film, containing the drug, and a variety of such implantable devices have been described. In particular, it is known that, for many drugs, suitable implantable devices for providing extended drug release may be obtained by encapsulating the drug in a biodegradable polymer, or by dispersing the drug in a matrix of such a polymer, so that the drug is released as the degradation of the polymer matrix proceeds.

Suitable biodegradable polymers for use in such substained release formulations are well known, and include polyesters which gradually become degraded by hydrolysis when placed in an aqueous, physiological-type environment. Particular polyesters which have been used are those derived from hydroxycarboxylic acids, and much prior art has been directed to polymers derived from α-hydroxycarboxylic acids, especially lactic acids in both its racemic and optically active forms, and glycolic acid, and copolymers thereof - see, for example, U.S. Pat. Nos. 3,773,919 and 3,887,699; Jackanicz et al., Contraception, 1973, 8, 227-234; Anderson et al., ibidem, 1976, 11, 375-384; Wise et al., Life Sciences, 1976, 19, 867-874; Woodland et al., Journal of Medicinal Chemistry, 1973, 16, 897-901; Yolles et al., Bulletin of the Parenteral Drug Association, 1976, 30, 306-312; Wise et al., Journal of Pharmacy and Pharmacology, 1978, 30, 686-689 and 1979, 31, 201-204.

United Kingdom Patent Specification Number 1,325,209 (equivalent to U.S. Pat. No. 3,773,919) and U.S. Pat. No. 3,887,669 make reference to extended or sustained release of polypeptides. The latter mentions insulin only, but it contains no specific example of any such formulation, and the reference to polypeptides is apparently entirely speculative, appearing, as it does, only in an extensive listing of very many different classes of drugs which can allegedly be incorporated into formulations of the kind described therein. In fact, essentially all of the other drug types referred to in that specification, apart from polypeptides, are relatively hydrophobic in character and of relatively low molecular weight, and the disclosure of that specification displays no recognition of the difficulties which we have encountered when seeking to obtain satisfactory sustained release formulations of polypeptides, many of which are relatively hydrophilic, and of relatively high molecular weight.

It is to be appreciated that "sustained" or "extended" release of a drug may be either continuous or discontinuous. We have now discovered, in fact, that in many cases when the teaching of the prior art, and in particular the teaching of United Kingdom Specification No. 1,325,209, is applied to the manufacture of a formulation of a polypeptide, the release of the polypeptide from the formulation, although occurring over an extended period of time, may also be discontinuous. For example, the release of a polypeptide from a polylactide polymer as described in the said Specification is often preceded by a significant induction period, during which no polypeptide is released, or is polyphasic, and comprises an initial period during which some polypeptide is released, a second period during which little or no poly-peptide is released, and a third period during which most of the remainder of the polypeptide is released. By contrast, it is an object of the present invention to provide compositions of polypeptides from which, apart possibly from a relatively short initial induction period, the polypeptide is released continuously, with no periods during which little or no polypeptide is released. The words "continuous release" are used in this specification solely to describe a release profile which is essentially monophasic, although it may have a point of inflection, but certainly has no "plateau" phase.

United Kingdom Patent Specification Number 1,388,580 describes sustained release formulations containing insulin, which are based on hydrogels formed by reacting a water soluble polymer with a chelating agent, then cross linking the polymer-chelating agent chains by reaction with a polyvalent metal ion in aqueous solution to form a hydrogel. Insulin was incorporated in a preformed hydrogel in aqueous solution, and the whole was homogenised and injected sub-cutaneously or intramuscularly.

It is an object of the present invention to provide an implantable or injectable pharmaceutical or veterinary formulation for pharmacologically useful polypeptides, which is in solid form, and which absorbs water from the animal body, after implantation, to form a hydrogel from which the polypeptide is released continuously over an extended period of time.

Thus, according to the present invention, there is provided a pharmaceutical composition comprising a pharmacologically useful polypeptide and a pharmaceutically or veterinarily acceptable amphipathic, non-cross-linked linear, branched or graft block copolymer, which has a minimum weight average molecular weight of 5,000, in which the hydrophobic component is biodegradable or hydrolytically unstable under normal physiological conditions, and the hydrophilic component may or may not be biodegradable, the composition being capable of absorbing water to form a hydrogel when placed in water or an aqueous physiological type environment.

This invention is applicable to polypeptides quite generally, without any limitation as to structure or molecular weight, but is most useful for polypeptides which are relatively hydrophilic, and the following list, which is not intended to be exhaustive, is indicative of polypeptides which may be employed in the formulation of this invention: oxytocin, vasopressin, adrenocorticotrophic hormone (ACTH), epidermal growth factor (EGF), prolactin, luliberin or luteinizing hormone releasing hormone (LH-RH), growth hormone, growth hormone releasing factor, insulin, somatostatin, glucagon, interferon, gastrin, tetragastrin, pentagastrin, urogastrone, secretin, calcitonin, enkephalins, endorphins, angiotensins, renin, bradykinin, bacitracins, polymyxins, colistins, tyrocidin, gramicidines, and synthetic analogues and modifications and pharmaceutically-active fragments thereof, monoclonal antibodies and soluble vaccines.

A particular LH-RH analogue to which this invention is applicable is ICI.118,630, Glu-His-Trp-Ser-Tyr-D-Ser(O-tBu)-Leu-Arg-Pro-Azgly-NH2.

By "an aqueous physiological type environment" we mean the body, particularly the musculature or the circulatory system, of a warm-blooded animal, although in laboratory investigations such an environment may be mimicked by aqueous liquids, optionally buffered to a physiological pH, at a temperature of between 35° and 40° C.

The continuous release composition of the invention may be placed in the body of an animal which it is desired to treat with a polypeptide by, for example, intramuscular or subcutaneous injection, or by sub-dermal surgical implantation, in conventional clinical or veterinary manner.

The pharmaceutically or veterinarily acceptable amphipathic copolymer may be, for example, a linear block copolymer of the formula Am (BA)n or Bm (AB)n wherein m is 0 or 1, n is an integer, A is a pharmaceutically or veterinarily acceptable hydrophobic polymer and B is a pharmaceutically or veterinarily acceptable hydrophilic polymer, or the amphipathic copolymer may be a graft or branched block copolymer of the formula ABn or BAn wherein A, B and n have the meanings stated above, and wherein respectively either A or B is a backbone polymer with n units of a monomer or polymer B or A respectively grafted onto it.

The pharmaceutically or veterinarily acceptable hydrophobic polymer A may be, for example, poly-(D-, L- or DL-lactic acid), poly(D-, L- or DL-lactide), polyglycolic acid, polyglycolide, poly-ε-caprolactone, poly(3-hydroxybutyric acid) or a non-therapeutic hydrophobic polypeptide, for example polybenzylglutamate. Alternatively, the hydrophobic polymer A may be a polyacetal of the general formula: ##STR1## wherein R is a hydrocarbon radical, or a polycarbonate or polyorthoester of the general formula: ##STR2## wherein R is a hydrocarbon radical, as described in U.S. Pat. No. 4,093,709, which is incorporated herein by reference, or it may be a copolymer comprising such acetal, carbonate, or ortho-ester units alternating with diol units, or it may be a copolymer of the formula: ##STR3## which is obtained by reacting pentaerythritol with ketene to form 3,9-bis(methylene)-2,4,8,10-tetraoxaspiro[5,5]undecane which is then copolymerised with a diol HO-R-OH, as described in Journal of Polymer Science, Polymer Letters, 1980, pages 619-624. The diol HO-R-OH may be, for example, a high molecular weight polyethylene glycol or a mixture of that with low molecular weight species, giving a random structure. The hydrophobic polymer may also itself be a copolymer derived from two or more monomers from which the above polymers are derived.

The pharmaceutically or veterinarily acceptable hydrophilic polymer B may be, for example, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyethylene glycol, polyacrylamide, polymethacrylamide, dextran, alginic acid, sodium alginate, gelatine or a copolymer of two or more of the monomers from which the above polymers are derived.

In a further alternative, the hydrophilic polymer B may itself be a copolymer, for example a polyoxyethylene/polyoxypropylene block copolymer of the type known as "Pluronics" (trade mark) or "Synperonics" (trade mark).

Various mechanisms by which drugs are released from biocrodible polymers are described in "Controlled Release of Biactive Materials", edited by R. Baker, Academic Press 1980, particularly chapter 1, pages 1-17, by J. Heller and R. W. Baker.

In the present invention, when the dry amphipathic copolymer, containing a polypeptide, is immersed in water or placed in an aqueous physiological environment within an animal body, water uptake is a function of the hydrophilic or water-interactive parts of the copolymer, and the material swells. This absorption of water, however, renders the water-insoluble parts of the copolymer incompatible, and these hydrophobic parts of the copolymer then serve as cross-linking points, which thus serve to limit further water uptake. In this swollen, hydrated state, the matrix is permeable to water-soluble polypeptides incorporated within the matrix, and such polypeptides are thus progressively desorbed from the matrix.

In the process of swelling, and when swollen to some equilibrium state, hydrolytic degradation of the hydrophobic part of the copolymer starts to occur. The partially degraded copolymer has greater swellability, so that continued hydrolysis leads to progressively further water uptake, an increasingly water-permeable matrix, and a further increase in polypeptide desorption which compensates for its decreasing concentration and maintains its continuous release. Thus, by appropriate design of the copolymer material, the initial swelling to a hydrogel and consequent desorption of active material, and the rate of subsequent hydrolytic degradation to increase the further desorption of active material to compensation for its decreasing concentration in the matrix, can be controlled so as to give continuous release of active material over an extended period of time, as defined above.

Such an ideal release profile for the active material can also be obtained by blending different copolymers, each having its own defined properties (for example, molecular weight, molecular weight distribution, block structure, hydrophilicity, degradation properties, diffusional properties), and by appropriate combination of different such materials, the rate of release, and the duration of release, of an active material can be varied as desired.

Also by appropriate choice of the above parameters, and/or appropriate blending, a copolymer material can be obtained which allows of processing into implants at relatively low temperatures, certainly below 100° C., and in some cases even at room temperature, and is thus suitable for the fabrication of implants incorporating heat sensitive or solvent sensitive polypeptide active materials. For example, block copolymers of polyethylene glycol and amorphous hydrophobic polymers, having a glass transition temperature above 37° C., are particularly useful, because the polyethylene glycol block plasticises the hydrophobic block, giving a material which is readily processed at relatively low, even at room temperature, while on subsequent standing the polyethylene glycol blocks crystallise to give a tough hard product which can be easily handled.

The block copolymers defined above are themselves novel, useful materials, per se. Thus, according to a further feature of the invention, there is provided a pharmaceutically or veterinarily acceptable amphipathic linear, branched or graft block copolymer, which has a minimum weight average molecular weight of 5,000, in which the hydrophobic component is biodegradable or hydrolytically unstable under normal physiological conditions, and the hydrophilic component may or may not be biodegradable, and which copolymer is capable of absorbing water to form a hydrogel when placed in water on an aqueous environment.

Particular such copolymers are those defined above.

According to a further feature of the invention, there is provided a blend of two or more such copolymers as defined above.

These copolymers and copolymer blends are also useful more generally for the continuous release of non-peptide drugs by oral, including intra-ruminal, parenteral, ocular, rectal or vaginal administration.

Thus, according to further features of this invention there are provided pharmaceutical or veterinary compositions comprising a non-peptide pharmacologically-active compound and a block copolymer as defined above, and the use of such block copolymers for the continuous release of such a non-peptide, pharmacologically-active compound.

According to a further feature of the invention, there is provided a process for the manufacture of a pharmaceutically or veterinarily acceptable amphipathic linear, branched or graft block copolymer as defined above, which comprises copolymerising monomer A and monomer B by conventional techniques such as graft copolymerisation, polycondensation and polyaddition, optionally with an appropriate catalyst, for example zinc oxide, zinc carbonate, basic zinc carbonate, diethyl zinc, organotin compounds, for example stannous octoate (stannous 2-ethylhexanoate), tributylaluminium, titanium, magnesium or barium compounds or litharge, and of these stannous octoate is generally preferred.

The copolymerisations are otherwise carried out in conventional manner, known in the polymer art, as regards time and temperature.

The invention is illustrated but not limited by the following Examples:

EXAMPLE 1

Polyethylene glycol of molecular weight 20,000 (30 g.) was stirred and heated under vacuum (<0.1 mm. of mercury) at 120° C. for 3 hours. D,L-lactide (15 g.) and glycolide (15 g.) were added, and the mixture was stirred under a nitrogen atmosphere until the solids melted. The temperature was raised to 160° C., and stannous octoate (stannous 2-ethylhexanoate) (0.1 ml.) was added. The mixture was maintained at 160° C. for 3 hours, by which time it had become highly viscous, and it was then cooled and dissolved in acetone (200 ml.). This acetone solution was added slowly to vigorously stirred ethanol (1500 ml.), and the precipitate thus produced was filtered off, and dried in a vacuum oven for 3 hours at room temperature, then overnight at 40° C.

The n.m.r. spectrum of this copolymer, in deuteriochloroform, showed it to have the composition oxyethylene:lactic:glycolic of 2:1:1.

This copolymer was moulded at about 60° C. to a soft, plastic transparent film. A sample (39 mg.) swelled rapidly when placed in water, taking up 135 mg. of water over 4 hours, to give a transparent hydrogel which subsequently disintegrated over 2 weeks at 37° C.

EXAMPLE 2

The polymer described in Example 1 (20.2 mg.) and bovine growth hormone (BGH), (5.1 mg.) were blended together at about 40° C. to give an opaque blend, which was moulded into a slab 1 mm. thick. This slab was immersed in a buffer solution at pH 8.6 (M/15 buffer, pH 8.6, containing 0.01% sodium azide), and released a material of molecular weight about 22,000 which had the same retention time on high pressure liquid chromatography as BGH, over a period of at least 12 days.

EXAMPLE 3

Using the process described in Example 2, the copolymer/BGH blend was formed into discs weighing about 45 mg. and containing about 20% of BGH. When such discs were implanted, each in a hypophysectomised rat, the animals' weights increased by an average of 25% over 7 days, whereas the weights of control animals each given a placebo implant remained virtually unchanged.

EXAMPLE 4

The copolymer described in Example 1 (13.5 mg.) and monoclonal mouse immunoglobulin A, (IgA), with a defined antigen specificity and a molecular weight of >180000 (1.5 mg.) were blended at 50° C. to give a homogeneous mixture of the IgA in the copolymer, and the protein/copolymer mixture was moulded to give a sphere of ˜2 mm. diameter. The in vitro release of IgA was evaluated by immersing the protein copolymer in buffer (phosphate buffered saline, pH 7.2) at 37° C. Using an enzyme linked immunoassay technique the aqueous medium was assayed for active IgA, and release of the biologically active protein was shown to start after 2 days and continue for at least 9 days.

EXAMPLE 5

Polyethylene glycol having a molecular weight of 20000 (50 g.) was dissolved in chloroform (150 mg.) and washed six times with distilled water (˜300 ml.), discarding the aqueous washes. The chloroform was evaporated under reduced pressure and the purified polyethylene glycol was dried at 160° C./0.05 mm. Hg. for 1 hr.

Stannous octoate (stannous 2-ethylhexanoate) (˜5 g.) was purified by heating at 140° C./0.055 mm. Hg. to remove impurities. The purified polyethylene glycol (14.3 g.) was heated to 160° C. under vacuum (0.05 mm. Hg.) in a 100 ml. round bottomed flask for 1 hr. Freshly prepared, pure D,L-lactide (42.9 g.) was added under nitrogen and melted at 160° C. Stannous octoate (0.2 ml.) was added, and the mixture was stirred until the viscosity no longer allowed stirring to continue. After 3 hrs., a highly viscous product was obtained. The mixture was allowed to cool, the flask was broken, the contents of the flask were dissolved in acetone (˜300 ml.) and the solution was filtered. The filtrate was added slowly to ethanol (˜1000 ml.) with vigorous agitation to give a fibrous precipitate, which was collected and dried at 30° C. in a vacuum oven overnight. Analysis of the product by n.m.r. showed the product to have a composition of oxyethylene:lactic of 1:3, and the intrinsic viscosity in chloroform was 1.055.

The product was moulded to a thin (0.2 mm.), soft, plastic transparent film. On immersion in water, the film (0.54 g.) increased in weight to 0.95 g. in 1 day at 37° C. The hydrated transparent film had rigidity and strength superior to the initially dry copolymer. After 35 days, the film was intact and retained good mechanical properties showing that the copolymer was being degraded only slowly, as shown by change of composition by n.m.r.

When bovine growth hormone is incorporated into the dry copolymer at 60° C., the resulting polypeptide/polymer blend releases a 22000 molecular weight product into buffer (M/15 phosphate buffer, pH 8.6) over at least 7 days.

EXAMPLE 6

Polyethylene glycol having a molecular weight of 6000 (50 g.) was purified using the method described above in Example 5.

The purified dry polyethylene glycol (7.5 g.) and stannous chloride dihydrate (15 mg.) were mixed at room temperature then heated with stirring to 155° C. under high vacuum (0.1-0.01 mm. Hg.) and maintained at this temperature for 2 hrs. while freshly prepared, dry D,L-lactide (22.5 g.) was added to the mixture under nitrogen, and melted. The reaction temperature was maintained at 155°-160° C. for 3 hrs. to give a viscous product, which was poured onto poly-tetrafluoroethylene film and allowed to cool. The polymeric product was dissolved in acetone (70 ml.) with warming, and the polymer was isolated by pouring the acetone solution into ethanol (600 ml.). The precipitate was dried in a vacuum oven overnight at 60° C. The polymer had an intrinsic viscosity in chloroform of 0.41. When pressed as a thin film (0.2 mm.) and immersed in water, the polymer takes up approximately its own weight of water at 37° C. over 24 hrs. to give a tough hydrogel.

EXAMPLE 7

99 Mg. of a block copolymer as prepared in Example 6 containing 25 parts of polyethylene glycol (mol. wt. 6000) and 75 parts of poly(D,L-lactide) was dissolved in 4.5 ml. of anhydride free glacial acetic acid and 0.5 ml. of distilled water. 200 μL. of a solution containing 1.1 mg. of mouse epidermal growth factor (EGF) was added to the polymer solution, and the mixture was homogenised. The homogenised solution was frozen and then freeze dried for 18 hrs., the product was moulded at 50° C. to give an implant weighing 40 mg. (˜8 mm.×4 mm.×1 mm). The implant was placed in 1 ml. of human serum at 37° C., and the release of EGF was measured by radio immunoassay on aliquots of serum. The results showed a continuous release of peptide over at least three days.

EXAMPLE 8

25 G. of a copolymer containing equimolar proportions of D,L-lactide and glycolide and having an intrinsic viscosity in chloroform of 0.20 was dissolved in 50 ml. of dry ethyl ecetate, and the solution was heated to reflux with stirring under nitrogen. 0.25 G. of lauroyl peroxide was dissolved in freshly distilled vinyl pyrrolidone (25 ml.). The mixture was added dropwise to the refluxing polymer over 2 hrs., and the mixture was heated at reflux for a further 6 hrs. On cooling, the mixture gelled. Purification of the amphipathic block graft copolymer by removal of homo polymer of polyvinyl pyrrolidone using precipitation techniques was difficult as precipitation often resulted in colloidal suspensions, and this indicated that grafting of polyvinyl pyrrolidone to the lactide/glycolide copolymer had occurred.

The ethyl acetate mixture was therefore warmed to 70° C. and 50 ml. of ethanol was added to give a colloidal suspension, from which the polymer was isolated by precipitation into n-hexane (2 liters). The polymer thus obtained was dried at 90° C. overnight under vacuum to give on cooling a brittle product consisting of graft copolymer and homo polyvinylpyrrolidone. The product had an intrinsic viscosity of 0.29 in chloroform, and approximately 50% of polyvinyl-pyrrolidone as homo-copolymer and graft block copolymer.

The polymer thus obtained (0.45 g.) and ICI. 118,630 (0.05 g.) were dissolved in anhydride-free glacial acetic acid (5 ml.) and freeze dried at 0.01 mm. of mercury for 22 hr.

The product was moulded at 110° C. for 20 secs. to give a slab (˜0.8 cm.×1.2 mm.×2 mm., weighing 30 mg.) which, when immersed in aqueous pH 7.4 buffer at 37° C. released the peptide over a period of several days.

EXAMPLE 9

50 G. of polyvinyl alcohol having a molecular weight of 14,000 was dissolved in 500 g. of commercial D,L-lactic acid (containing ˜12% water) with stirring under nitrogen. The mixture was heated to 140° C. and water was distilled off over 8 hrs., during which time the mixture became progressively more viscous and its temperature rose to 190° C. When no further water distilled over, the pressure was reduced to ˜25 cm. of mercury, and the mixture was heated for a further 8 hrs. Finally, the pressure was reduced to 0.1 mm. of mercury and the mixture was heated at 200° C. for 8 hrs. to give a highly viscous amber product.

The polymer was allowed to cool, and the flask was broken. The product was broken up into small pieces and dissolved in methanol (1.5 liters), and the product was isolated by precipitate in 10 liters of distilled water. The precipitation was washed with a further 5 liters of water, and dried under vacuum at room temperature for 8 hrs., finally at 100° C. for 16 hrs., to give an amber glassy product which consisted of a polyvinyl alcohol back-bone containing pendant polylactic acid chains of low molecular weight, intrinsic viscosity=0.65 in chloroform. The product contained approximately 85% of polylactic acid, and the pendant polylactic acid average chain length was approximately 3.5.

The polymer was moulded at 100° C. to give a slab 1 cm.×0.2 cm.×0.2 cm. which was immersed in water at 37° C. The product absorbed water and became flexible, and eroded to give soluble products over a period of 2 months.

EXAMPLE 10

Mouse epidermal growth factor (285 μl. of a 21 mg./ml. solution in distilled water) was added to a solution of an 80/20 poly(D,L-lactide)/PEG 6000 copolymer of intrinsic viscosity 0.36 in chloroform, (45 mg.) in 2.5 ml. of 90% aqueous acetic acid. The solution of peptide and polymer was frozen and then freeze dried at ˜0.01 mm. Hg. for 24 hours to give a dried product. The freeze dried material was moulded at 60° C. to give implants weighing 13.5 mg. and 15.3 mg. containing 1.3 and 1.5 mg. of peptide respectively.

These were implanted subcutaneously into 2 cats, each fitted with a gastric fistula. Blood samples were taken, and gastric acid output in response to a histamine stimulus was measured. Peptide was detected in the blood by radioimmunassay for a minimum of 3 days subsequent to implantation, and gastric acid output showed inhibition of 3-6 days subsequent to implantation.

EXAMPLE 11

Mouse epidermal growth factor (120 μl. of 10.5 mg. peptide in 320 l. of distilled water) was added to a solution of an 85/15 poly(D,L-lactide)/PEG 6000 copolumer of intrinsic viscosity 0.39 in chloroform, (36 mg.) in 1.8 ml. of 90% aqueous acetic acid. The resultant solution was frozen and freeze-dried overnight. The freeze dried material was moulded at 70° C. to give an implant weighing 16.9 mg. (dimensions approximately 1×1×5 mm.).

Peptide was released from this implant continuously over at least 15 days into 10% human serum in water containing 0.1% sodium azide.

EXAMPLE 12

To show the effect of composition and hydrophilicity of the block copolymer on release of polypeptide from implants the following comparison was carried out.

In separate experiments implants were prepared using

(a) a block copolymer of intrinsic viscosity 0.39 in chloroform containing 25% w/w polyethylene glycol having a molecular weight of 6000 and 75% w/w of poly(D,L-lactide).

(b) a block copolymer of intrinsic viscosity 0.79 in chloroform containing 5% w/w polyethylene glycol having a molecular weight of 6000 and 95% w/w of poly(D,L-lactide).

76.2 mg. of polymer and ICI 118,630 (23.8 mg. as the acetate salt, equivalent to 20 mg. pure peptide) were dissolved in anhydride-free glacial acetic acid (1.5 ml.). The solution was frozen and freeze dried for 18 hours, and the freeze dried product was moulded at ˜70° C. to give implants weighing ˜45-50 mg. (dimensions approximately 0.2 cm.×0.2 cm.×1 cm.).

The implants were immersed in 1 ml. of McIlvains pH 7.4 buffer at 37° C., and 1 ml. samples of the aqueous medium were removed at given time points and assayed by high pressure liquid chromatography for drug content. The aqueous medium removed was replaced each time by 1 ml. of fresh buffer.

These release experiments showed that implants prepared using the more hydrophilic is polymer, containing 25% polyethylene glycol, released compounds for ˜18 days.

In contrast, the implant prepared using the less hydrophilic copolymer, containing 5% polyethylene glycol, released compound continuously for at least 250 days.

EXAMPLE 13

Poly(ethylene glycol methyl ether) having a molecular weight of 5000 was purified as in Example 5.

20 G. of the purified poly(ethylene glycol methyl ether) was dried at 160° C./0.01 mm. Hg. for 1 hour. 80 G. of dry, freshly prepared D,L-lactide were added and the mixture stirred under a nitrogen atmosphere at 160° C. When all the D,L-lactide had melted, 0.15 ml. of stannous octoate (stannous-2-ethylhexanoate) were added, and the mixture was maintained at 160° C. for 6 hours, during which time a highly viscous product was formed. The mixture was allowed to cool, the flask was broken and the contents were dissolved in 200 ml. of acetone. The actone solution of polymer was added with vigorous stirring to 2000 ml. of hexane to precipitate the polymer. The precipitated polymer was dried at 70° C. under reduced pressure for 24 hours to give a block copolymer having an AB structure where A is polylactide and B is poly(ethylene glycol methyl ether).

This copolymer is particularly useful for preparing water-in-oil dispersions, which can be used to prepare microcapsules, or in microencapsulation procedures.

For example, 5 g. of the copolymer was dissolved in 200 ml. of methylene chloride, and 1 ml. of an aqueous solution of ICI.118,630 containing 20 mg. of compound was added with vigorous stirring, to produce a stable water in oil dispersion.

The water-in-oil emulsion was stirred vigorously and a non-solvent, such as hexane (2000 ml.) was added slowly to produce microcapsules, which were isolated by filtration, and dried, to give a drug/polymer mixture which even in this microcapsule or microencapsulated form gives sustained release over a period of several days.

The poly(ethylene glycol methyl ether) used in the above process was replaced by other derivatives of pol (ethylene glycol) to prepare similar block copolymers, and suitable examples are the monocetyl ethers (ceto macrogols) and stearate esters.

Otras citas
Referencia
1Das, "Controlled Release Technology" John Wiley and Sons, Inc. 1983 pp. 9-10.
2 *Das, Controlled Release Technology John Wiley and Sons, Inc. 1983 pp. 9 10.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US5225205 *18 Feb 19926 Jul 1993Debiopharm S.A.Pharmaceutical composition in the form of microparticles
US5320840 *22 Jul 199114 Jun 1994Imperial Chemical Industries PlcContinuous release pharmaceutical compositions
US5352515 *2 Mar 19924 Oct 1994American Cyanamid CompanyCoating for tissue drag reduction
US5410016 *1 Mar 199325 Abr 1995Board Of Regents, The University Of Texas SystemA curable additional polymerizable macromolecular monomers comprising at least one water soluble region, at least one degradable, hydrolyzable region and free radical polymerizable end groups; drug delivery
US5444113 *29 Sep 199322 Ago 1995Ecopol, LlcEnd use applications of biodegradable polymers
US5462990 *5 Oct 199331 Oct 1995Board Of Regents, The University Of Texas SystemBlock copolymers with a non-binding polynonionic component and a water soluble polycationic portion for tissue binding; useful in inhibiting post-surgical adhesions
US5476909 *7 Feb 199419 Dic 1995Sam Yang Co., Ltd.Triblock copolymer,end block of polylactide, polyglycolide or copolymer, middle block of succinic acid modified polyoxyethylene glycol; improved hydrogel material
US5530074 *7 Jun 199525 Jun 1996American Cyanamid CompanyHydrophilic coating; blend of a polylactone and polyoxyalkylene glycol
US5548035 *4 May 199420 Ago 1996Sam Yang Co., Ltd.Biodegradable copolymer as drug delivery matrix comprising polyethyleneoxide and aliphatic polyester blocks
US5567435 *6 Jun 199522 Oct 1996Board Of Regents, The University Of Texas SystemMixing active material with a solution of polymerizable macromer comprising degradable region and free radical polymerizable end groups
US5573934 *1 Mar 199312 Nov 1996Board Of Regents, The University Of Texas SystemPhotopolymerization of acrylated resin, initiator
US5618850 *9 Mar 19958 Abr 1997Focal, Inc.Hydroxy-acid cosmetics
US5621050 *7 Jun 199515 Abr 1997American Cyanamid CompanyBlock polymer containing polyalkylene oxide and caprolactone linkages; improved friction properties
US5626863 *27 Ene 19956 May 1997Board Of Regents, The University Of Texas SystemPhotopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5627233 *6 Jun 19956 May 1997Board Of Regents, The University Of Texas SystemBiocompatability
US5760118 *5 Jun 19952 Jun 1998Chronopol, Inc.Paper products
US5766704 *13 Mar 199616 Jun 1998Acushnet CompanyConforming shoe construction and gel compositions therefor
US5773019 *27 Sep 199530 Jun 1998The University Of Kentucky Research FoundationInner core containing an effective amount of a low solubility agent covered by a non-bioerodible polymer coating layer that is permeable to the low solubility agent
US5785993 *29 Jul 199628 Jul 1998Focal, Inc.Reduction of adhesions using controlled delivery of active oxygen inhibitors
US5858746 *25 Ene 199512 Ene 1999Board Of Regents, The University Of Texas SystemAddition polymerization of a water-soluble macromolecular monamer to coat, support, microencapsulate, plug, adhere cells, cell aggregates or tissue
US5879688 *30 Oct 19969 Mar 1999Focal, Inc.Treatment of skin disorders, wrinkling, aging
US5904935 *7 Jun 199518 May 1999Alza CorporationDelivery of drugs with peptides and proteins
US5939157 *30 Oct 199517 Ago 1999Acushnet CompanyConforming shoe construction using gels and method of making the same
US5955159 *27 Oct 199521 Sep 1999Acushnet CompanyConforming shoe construction using gels and method of making the same
US5972370 *28 Ene 199926 Oct 1999Alza CorporationPeptide/protein suspending formulations
US5985383 *14 Mar 199616 Nov 1999Acushnet CompanyConforming shoe construction and gel compositions therefor
US6060582 *4 Ago 19989 May 2000The Board Of Regents, The University Of Texas SystemPhotopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US6197350 *18 Dic 19976 Mar 2001Takeda Chemical Industries, Ltd.Method of producing a sustained-release preparation
US625838210 Ene 200010 Jul 2001Takai Chemical Co.Drug sustained-released biomaterial
US626154415 Feb 199917 Jul 2001Focal, Inc.Poly(hydroxy acid)/polymer conjugates for skin applications
US630692226 Ene 200023 Oct 2001Boards Of Regents, The University Of Texas SystemMacromer polymers crosslinked by photopolymerization
US6399103 *14 Nov 20004 Jun 2002Takeda Chemical Industries, Inc.Dispersing physiologically active polypeptide into biodegradable polymer and zinc oxide; high entrapment ratio; high blood concentration levels over extended period
US64650013 Mar 199815 Oct 2002Board Of Regents, The University Of Texas SystemsTreating medical conditions by polymerizing macromers to form polymeric materials
US652143122 Jun 199918 Feb 2003Access Pharmaceuticals, Inc.Biodegradable cross-linkers having a polyacid connected to reactive groups for cross-linking polymer filaments
US660297522 Oct 20015 Ago 2003Board Of Regents, The University Of Texas SystemPhotopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US663244623 Oct 200014 Oct 2003The Board Of Regents, University Of Texas SystemBiocompatible substrates; free radical polymerization initiator; crosslinked networks of water soluble polymers; acrylated polyethylene glycol; microencapsulation
US664916817 Sep 200118 Nov 2003Novartis AgPharmaceutical compositions comprising TGF-beta
US678042727 Jul 199824 Ago 2004Genzyme CorporationSuperoxide dismutase or other antioxidant are directly applied in combination with polymeric hydrogels at local sites of tissue injury to prevent or decrease formation of adhesions and undesirable proliferation of cells
US682830331 Ago 20017 Dic 2004Scios, Inc.Treatment of noninsulin dependent diabetes mellitus in a mammal by administering a sustained-release form of a glucagon-like protein (GLP-1 (7-37) having insulintropic activity; drug delivery
US6927282 *27 Ago 20019 Ago 2005Monsanto Technology LlcClarification of protein precipitate suspensions using anionic polymeric flocculants
US7087244 *16 Abr 20028 Ago 2006Battelle Memorial InstituteThermogelling oligopeptide polymers
US715351925 Jun 200326 Dic 2006Board Of Regents, The University Of Texas SystemImplantable substrate coated with a macromer having free radical polymerizable substituents
US7193007 *15 Mar 200120 Mar 2007Yu-Ling ChengEnvironment responsive gelling copolymer
US728221612 Nov 200216 Oct 2007Alkermes Controlled Therapeutics, Inc.Prepared by blending hydrophobic biocompatible, biodegradable polymers or copolymers, such as poly(lactide-co-glycolide), and a biocompatible, amphipathic copolymer having a water absorption ratio of 2 or less; sustained release drug delivery
US764902328 Jun 200219 Ene 2010Novartis AgUsing polyoxyethylene glycol solutions; mixing with drug
US778622026 Ene 200531 Ago 2010Sungyunkwan University Foundation For Corporate CollaborationContaining an ethylene oxide block coupled to a biodegradable polymer block, such as a polylactone, coupled to a sulfonamide oligomer, such as methacrylated sulfamethazine; forms hydrogel by sol-gel transition in response to a change in temperature and pH; for use in medical and drug delivery fields
US82469903 May 200621 Ago 2012Suprapolix B.V.Hydrogen bonded hydrogels
US824752419 Oct 201021 Ago 2012Suprapolix B.V.Preparation of supramolecular polymers containing quadruple hydrogen bonding units in the polymer backbone
US826310821 Jun 200211 Sep 2012Durect CorporationBiodegradable insert; drug delivery
US826895211 Jul 200518 Sep 2012Suprapolix B.V.Supramolecular ionomers
US832369312 Mar 20034 Dic 2012Medrx Co., Ltd.External preparation for wounds
US862878921 Mar 200814 Ene 2014Suprapolix, B.V.Strong reversible hydrogels
US864266624 Jun 20094 Feb 2014Protherics Salt Lake City, Inc.Biodegradable block copolymeric compositions for drug delivery
US864765731 Jul 200711 Feb 2014Durect CorporationPolymeric devices for controlled release of active agents
US872207831 Jul 200713 May 2014Durect CorporationPolymeric device for controlled release of active agents
US87542136 Jul 200917 Jun 2014Suprapolix B.V.High flow supramolecular compounds
DE10005433B4 *8 Feb 20004 Nov 2004Kunio Matsumoto TakaokaBiomaterialien
EP0752840A1 *24 Mar 199515 Ene 1997E.R. SQUIBB &amp; SONS, INC.Thermoplastic hydrogel impregnated composite material
EP1988108A126 Mar 20085 Nov 2008Sungkyunkwan University Foundation for Corporate CollaborationTemperature and pH-sensitive block copolymer having having excellent gel strength, method of preparing the same, and drug delivery system using the same
EP2286791A123 Dic 200423 Feb 2011Durect CorporationPolymeric implants, preferably containing a mixture of PEG and PLG, for controlled release of active agents, preferably a GnRH
EP2343342A123 Mar 200713 Jul 2011SupraPolix B.V.Strong reversible hydrogels
WO1999007343A1 *8 Ago 199818 Feb 1999Univ Utah Res FoundInjectable biodegradable block copolymer gels for use in drug delivery
Eventos legales
FechaCódigoEventoDescripción
28 Dic 2001FPAYFee payment
Year of fee payment: 12
5 Ene 1998FPAYFee payment
Year of fee payment: 8
9 Dic 1993FPAYFee payment
Year of fee payment: 4