US5091513A - Biosynthetic antibody binding sites - Google Patents

Biosynthetic antibody binding sites Download PDF

Info

Publication number
US5091513A
US5091513A US07/636,765 US63676591A US5091513A US 5091513 A US5091513 A US 5091513A US 63676591 A US63676591 A US 63676591A US 5091513 A US5091513 A US 5091513A
Authority
US
United States
Prior art keywords
polypeptide
binding
site
amino acid
terminus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/636,765
Inventor
James S. Huston
Hermann Oppermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creative Biomolecules Inc
Original Assignee
Creative Biomolecules Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Biomolecules Inc filed Critical Creative Biomolecules Inc
Priority to US07/636,765 priority Critical patent/US5091513A/en
Application granted granted Critical
Publication of US5091513A publication Critical patent/US5091513A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/464Igs containing CDR-residues from one specie grafted between FR-residues from another
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/624Disulfide-stabilized antibody (dsFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/705Fusion polypeptide containing domain for protein-protein interaction containing a protein-A fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/867Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving immunoglobulin or antibody produced via recombinant dna technology

Definitions

  • This invention relates to novel compositions of matter, hereinafter called biosynthetic antibody binding sites or BABS, useful, for example, in specific binding assays, affinity purification, biocatalysis, drug targeting, imaging, immunological treatment of various oncogenic and infectious diseases, and in other contexts. More particularly, this invention relates to biosynthetic polypeptides having a structure similar to native antibody binding sites, DNAs encoding the polypeptides prepared by recombinant DNA techniques, vectors comprising these DNAs, and methods for the design and production of these polypeptides.
  • Antibodies are proteins belonging to a group of immunoglobulins elicited by the immune system in response to a specific antigen or substance which the body deems foreign. Antibodies can both recognize and bind that antigen, and are involved in a number of effector reactions such as complement fixation and allergic responses.
  • Each antibody class has the same basic structure (see FIG. 1), or multiples thereof, consisting of two identical polypeptides called heavy or H chains (molecular weight in IgG approximately 50,000 d each) and two identical polypeptides called light or L chains (molecular weight approximately 25,000 d each).
  • Each of the five antibody classes has a similar set of light chains and a distinct set of heavy chains.
  • a light chain is composed of one variable and one constant domain, while a heavy chain is composed of one variable and three or more constant domains. The variable domains determine the specificity of the immunoglobulin, the constant regions have other functions.
  • variable domain comprises three hypervariable regions flanked by four relatively conserved framework regions (Kabat et. al., Sequences of Proteins of Immunological Interest [U.S. Department of Health and Human Services, third edition 1983, fourth edition, 1987]).
  • the hypervariable regions have been assumed to be responsible for the binding specificity of individual antibodies and to account for the diversity of binding of antibodies as a protein class.
  • Monoclonal antibodies or homogeneous antibodies of identical genetic parentage and binding specificity, have been useful both as diagnostic and therapeutic agents. They are routinely produced according to established procedures by hybridomas generated by fusion of mouse lymphoid cells with an appropriate mouse myeloma cell line. Human monoclonal antibodies are difficult to produce by cell fusion techniques since, among other problems, human hybridomas are notably unstable, and removal of immunized spleen cells from humans is not feasible as it is for rodents. Monoclonals which have specificities of significant therapeutic value are generally of murine or rat origin, and are therefore immunogenic to the human immune system.
  • Chimeric antibodies composed of human and non-human amino acid sequences potentially have improved therapeutic value as they presumably would elicit less circulating human antibody against the non-human immunoglobulin sequences. Accordingly, hybrid antibody molecules have been proposed which consist of immunoglobulin light and heavy chain amino acid sequences from different mammalian sources.
  • the chimeric antibodies designed thus far comprise variable regions from one mammalian source, and constant regions from human or another mammalian source (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A., 81:5851-6855; Neuberger et al., 1984, Nature 312:604-608; Sahagan et al., 1986, J. Immunol. 137:1066-1074; EPO application nos. 84302368.0, Genentech; 85102665.8, Research Development Corporation of Japan; 85305604.2, Stanford; P.C T. application no. PCT/GB85/00392, Celltech Limited).
  • variable regions are not required for antigen recognition or binding; these properties have been localized to the variable domains of the antibody molecule located at the amino terminal end of both the heavy and light chains.
  • the variable regions remain noncovalently associated (as V H V L dimers, termed Fv regions) even after proteolytic cleavage from the native antibody molecule, and retain much of their antigen recognition and binding capabilities (Inbar et al., Proc Natl. Acad. Sci. U.S.A., 1972, 69:2659-2662; Hochman et. al., 1973, Biochem. 12 1130-1135 and 1976, Biochem. 15:2706-2710; Sharon and Givol, 1976, Biochem. 15:1591-1594; Rosenblatt and Haber, 1978, Biochem. 17:3877-3882; Ehrlich et al., 1980, Biochem. 19:4091-40996).
  • a class of novel biosynthetic polypeptides has now been designed and engineered which comprise biosynthetic antibody binding sites, that is, "BABS” or chimeric polypeptides defining stucture capable of selective antigen recognition and preferential antigen binding.
  • this invention features polypeptides comprising biosynthetic antibody binding sites, DNA encoding these polypeptides prepared by recombinant DNA techniques, vectors comprising these DNAs, and methods for the production of these polypeptides.
  • the invention is based on the observation that three subregions of the variable domain of each of the heavy and light chains of native immunoglobulin molecules collectively are responsible for antigen recognition and binding.
  • Each of these subregions called herein "complementarity determining regions" or CDRs, consists of one of the hypervariable regions or loops and of selected amino acids or amino acid sequences disposed in the framework regions which flank that particular hypervariable region. It has now been discovered that framework regions from diverse species are effective to maintain CDRs from diverse other species in proper conformation so as to achieve true immunochemical binding properties in a biosynthetic protein.
  • BABS produced in accordance with the invention comprise biosynthetically produced novel sequences of amino acids defining polypeptides designed to bind with a preselected antigenic material.
  • the structure of these synthetic polypeptides is unlike that of naturally occurring antibodies, fragments thereof, or known synthetic polypeptides or "chimeric antibodies" in that the regions of the BABS responsible for specificity and affinity of binding, (analogous to native antibody variable regions) are themselves chimeric, e.g., comprise amino acid sequences homologous to portions of at least two different antibody molecules.
  • the invention thus provides a chimeric polypeptide defining a region capable of selective antigen binding and recognition.
  • This chimeric polypeptide comprises amino acid sequences homologous to portions of the CDRs of the variable domain of one immunoglobulin light or heavy chain, and other sequences homologous to the framework regions, or FRs, of the variable domain of a second, different immunoglobulin light or heavy chain.
  • Polypeptides so constructed bind a specific preselected antigen determined by the CDRs.
  • the chimeric polypeptides comprise an amino acid sequence homologous to at least a portion of the variable regions of a mammalian immunoglobulin, such as those of mouse, rat, or human origin.
  • the biosynthetic antibody binding site comprises FRs homologous with a portion of the FRs of a human immunoglobulin and CDRs homologous with CDRs from a mouse immunoglobulin.
  • This type of chimeric polypeptide displays the antigen binding specificity of the mouse immunoglobulin, while its human framework minimizes human immune reactions.
  • the chimeric polypeptide may comprise other amino acid sequences. It may comprise, for example, a sequence homologous to a portion of the constant domain of an immunoglobulin, but preferably is free of constant regions (other than FRs).
  • the invention also provides a single chain composite polypeptide having antigen binding abilities, and comprising a pair of amino acid sequences homologous or analogous respectively to the variable regions of an immunoglobulin light and heavy chain, (linked V H -V L or single chain Fv). Both V H and V L may copy natural monoclonal sequences, or one or both of the chains may comprise a CDR-FR construct of the type described above.
  • the separate polypeptides analogous to the variable regions of the light and heavy chains are held together by a polypeptide linker.
  • This type of chimeric polypeptide is thus a single chain composite polypeptide comprising a complete antibody binding site.
  • This single chain composite polypeptide has a structure patterned after tandem V H and V L domains, but with the carboxyl terminal of one attached through an amino acid sequence to the amino terminal of the other. It thus comprises an amino acid sequence which is homologous to a portion of the variable region of an immunoglobulin heavy chain (V H ) peptide bonded to a second amino acid sequence which is homologous to a portion of the variable region of an immunoglobulin light chain (V L ).
  • the linking amino acid sequence may or may not itself be antigenic or biologically active.
  • either the amino or carboxyl terminal ends of these chimeric, single chain Fvs may be attached to an amino acid sequence which itself is bioactive to produce a bifunctional or multifunctional protein.
  • the synthetic Fv may include a leader or trailer sequence defining a polypeptide having enzymatic activity, independent affinity for an antigen different from the antigen to which the chimeric Fv is directed, or having other functions such as to provide a convenient site of attachment for a radioactive atom, or simply to enhance expression in procaryotic host cells or yeasts.
  • V H and V L polypeptides can increase the stability of the antigen binding site and facilitate its coupling to proteins utilized in drug targeting and moieties useful in imaging.
  • the therapeutic use of such chimeric Fvs provide a number of advantages over larger fragments or complete antibody molecules: they are often quite stable and less immunogenic; they can penetrate body tissues more rapidly for purposes of imaging or drug delivery because of their smaller size; and they can facilitate accelerated clearance of targeted isotopes or drugs.
  • inventions comprise multifunctional polypeptides consisting of one or more single chain Fvs either linked V H and V L dimers, individual V L or V H , or any of the foregoing comprising CDRs and FRs from different or the same immunoglobulins, linked to a second functional protein domain such as, for example, a toxin, enzyme, or site of attachment to an immobilization matrix.
  • a polypeptide comprising several identical or non-identical BABS which recognize a group of antigenic determinants that are periodic or closely spaced in their normal environment, e.g., on a cell surface. This arrangement confers greatly augmented affinity and/or specifically on the BABS-containing protein analogous to, for example, the way IgM (containing 10 Fabs) binds to the surfaces of certain cells.
  • the invention provides DNA sequences encoding chimeric polypeptides of the type described above, vectors including such sequences, and methods employing the DNAs and vectors for producing the polypeptides.
  • a novel method of producing BABS involves the construction of a DNA containing three polynucelotide sequences (X 1 , X 2 and X 3 ). Each of the sequences contain restriction sites proximal its 3' and 5' ends, and each is flanked by polynucleotide sequences (FR 1 , FR 2 , FR 3 and FR 4 ) encoding selected framework region (FR) amino acid sequences homologous to a portion of the variable domain of an immunoglobulin.
  • This DNA has the structure:
  • R 1 is a 5' phosphate group or polynucelotide sequence and R 2 is a 3' hydroxyl group or polynucleotide sequence.
  • the X polynucleotide sequences may be selectively excised using restriction enzymes and replaced by other DNA sequences encoding the CDR amino acid sequences of a variable domain of a selected immunoglobulin.
  • This type of DNA sequence may encode at least part of the variable region of either or both a heavy or light chain of an immunoglobulin and may, in addition, comprise a third phosphodiester-linked nucleotide or polynucleotide sequence of a nature and function described above.
  • the invention provides a method for producing intact biosynthetic antibody binding sites or native Fv free of all or substantially all constant region amino acids.
  • the method involves enzymatic digestion of chimeric immunoglobulin or at least Fab regions which have been engineered to contain preferential proteolytic cleavage sites located between the variable and constant regions of the immunoglobulin heavy and light chains. Digestion of the intact immunoglobulin with the appropriate protease yields a complete antigen binding site or Fv fragment. This approach works well in myeloma or hybridoma expression systems.
  • biosynthetic antibody binding sites including an amino acid sequence homologous to specific portions of the variable region of immunoglobulin light chain and/or heavy chain, to provide DNA sequences which encode the biosynthetic antibody binding sites, and to provide replicable expression vectors capable of expressing DNA sequences encoding the biosynthetic antibody binding sites.
  • Another object is to provide a generalized method for producing biosynthetic antibody binding site polypeptides of any desired specificity.
  • FIG. 1A is a schematic representation of an intact IgG antibody molecule containing two light chains, each consisting of one variable and one constant domain, and two heavy chains, each consisting of one variable and three constant domains.
  • FIG. 1B is a schematic drawing of the structure of Fv illustrating V H and V L domains, each of which comprises four framework (FR) regions and three complementarily determining regions (CDR). Boundaries of CDRs are indicated, by way of example, for monoclonal 26-10, a well known and characterized murine monoclonal specific for digoxin.
  • FR framework
  • CDR complementarily determining regions
  • FIG. 2A-2D are schematic representations of some of the classes of reagents constructed in accordance with the invention, each of which comprises a biosynthetic antibody binding site.
  • FIG. 3 discloses five amino acid sequences (heavy chains) in single letter code lined up vertically to facilitate understanding of the invention.
  • Sequence 1 is the known native sequence of V H from murine monoclonal glp-4 (anti-lysozyme).
  • Sequence 2 is the known native sequence of V H from murine monoclonal 26-10 (anti-digoxin).
  • Sequence 3 is a BABS comprising the FRs from 26-10 V H and the CDRs from glp-4 V H . The CDRs are identified in lower case letters; restriction sites in the DNA used to produce chimeric sequence 3 are also identified.
  • Sequence 4 is the known native sequence of V H from human myeloma antibody NEWM.
  • Sequence 5 is a BABS comprising the FRs from NEWM V H and the CDRs from glp-4 V H , i.e., illustrates a binding site having a human framework but an affinity for lysozyme similar to glp-4.
  • FIGS. 4A-4F are the synthetic nucleic acid sequences and encoded amino acid sequences of (4A) the heavy chain variable domain of mouse anti-digoxin monoclonal 26-10; (4B) the light chain variable domain of mouse anti-digoxin monoclonal 26-10; (4C) a heavy chain variable domain of a chimeric Fv (BABS) comprising CDRs of glp-4 and FRs of 26-10; (4D) a light chain of the same BABS; (4E) a heavy chain variable region of a BABS comprising CDRs of glp-4 and FRs of NEWM; and (4F) a light chain variable region comprising CDRs of glp-4 and FRs of NEWM.
  • Delineated are FRs, CDRs, and restriction sites for endonuclease digestion, most of which were introduced during design of the DNA.
  • FIG. 5 is the nucleic acid and encoded amino acid sequence of a host DNA (V H ) designed to facilitate insertion of CDRs of choice.
  • the DNA was designed to have unique 6-base sites directly flanking the CDRs so that relatively small oligonucleotides defining portions of CDRs can be readily inserted, and to have other sites to facilitate manipulation of the DNA to optimize binding properties in a given construct.
  • the framework regions of the molecule correspond to mouse FRs (c.f. FIG. 4A).
  • FIG. 6 is a protein constructed in accordance with the invention comprising FB-Asp-Pro-V H -(Gly 4 -Ser) 3 -V' L .
  • FB is the FB fragment of protein A, here used as a leader, and constituting a binding site for Fc
  • Asp-Pro is a dilute acid cleavage site, and the remainder of the sequence comprises a single chain BABS comprising the V H and V' L chains of mouse monoclonal 26-10 linked together with a 15 amino acid sequence.
  • V' L is the V L of mouse monoclonal 26-10 altered at residue 4 where valine replaces methionine. This construct binds both Fc and digoxin.
  • FIG. 7 is a graph of percent of undiluted units bound versus concentration comparing the binding of native 26-10 and the construct of FIG. 6 and FIG. 2A renatured using two different procedures.
  • Plot 3 represents the data for the native 26-10 antibody;
  • plot 1 represents data from the construct of FIGS. 6 and 2A renatured using the slow folding procedures described herein; and
  • plot 2 represents data from the same construct renatured using the fast dilution/quick refolding procedure disclosed herein.
  • FIGS. 4A-4E and 6 the amino acid sequence of the expression products start after the GAATTC sequences, which codes for an EcoRI splice site, translated as Glu-Phe on the drawings.
  • Fv the minimum antibody fragment which contains a complete antigen recognition and binding site, consists of a dimer of one heavy and one light chain variable domain in tight, noncovalent association (FIG. 1). It is in this configuration that the three complementarity determining regions of each variable domain interact to define an antigen binding site on the surface of the V H -V L dimer.
  • the six complementarity determining regions confer antigen binding specificity to the antibody.
  • FRs flanking the CDRs have a tertiary structure which is essentially conserved in native immunoglobulins of species as diverse as human and mouse. These FRs serve to hold the CDRs in their appropriate orientation.
  • variable domains are not required for binding function, but may aid in stabilizing V H -V L interaction. Even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than an entire binding site (Painter et al., 1972, Biochem. 11: 1327-1337).
  • the biosynthetic antibody binding sites embodying the invention are biosynthetic in the sense that they are synthesized in a cellular host made to express a synthetic DNA, that is, a recombinant DNA made from ligation of plural, chemically synthesized oligonucleotides, or by ligation of fragments of DNA derived from the genome of a hybridoma, mature B cell clone, or a cDNA library derived from such natural sources.
  • the proteins of the invention are properly characterized as "antibody binding sites" in that these synthetic molecules are designed specifically to have at least some affinity for a preselected antigenic substance.
  • the polypeptides of the invention are antibody-like in that their structure is patterned after regions of native antibodies known to be responsible for antigen recognition.
  • these biosynthetic proteins in the region which impart the binding properties to the protein is analogous to the Fv region of a natural antibody. It comprises a series of regions consisting of amino acids defining at least three polypeptide segments which together form the tertiary molecular structure responsible for affinity and binding. These regions are herein called complementarity determining regions or CDRs. These CDR regions are held in appropriate conformation by polypeptide segments analogous to the framework regions of the Fv fragment of natural antibodies.
  • CDR refers to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site, or a synthetic polypeptide which mimics this function. CDRs typically are not wholly homologous to hypervariable regions of natural Fvs, but rather also include specific amino acids or amino acid sequences which flank the hypervariable region and have heretofore been considered framework not directly determinitive of complementarity.
  • FR refers to amino acid sequences interposed between CDRs.
  • the CDR and FR polypeptide segments are designed empirically based on sequence analysis of the Fv region of preexisting antibodies or of the DNA encoding them.
  • the amino acid sequences constituting the FR regions of the BABS are analogous to the FR sequences of a first preexisting antibody, for example, a human IgG.
  • the amino acid sequences constituting the CDR regions are analogous to the sequences from a second, different preexisting antibody, for example, the CDRs of a murine IgG.
  • the CDRs and FRs from a single preexisting antibody from, e.g., an unstable or hard to culture hybridoma may be copied in their entirety.
  • the FR regions comprise amino acids similar or identical to at least a portion of the framework region amino acids of antibodies native to that mammalian species.
  • the amino acids comprising the CDRs may be analogous to a portion of the amino acids from the hypervariable region (and certain flanking amino acids) of an antibody having a known affinity and specificity, e.g., a murine or rat monoclonal antibody.
  • the BABS of the invention may comprise additional polypeptide regions defining a bioactive region, e.g., a toxin or enzyme, or a site onto which a toxin or a remotely detectable substance can be attached.
  • the clinical administration of the BABS of the invention which display the activity of native, relatively small Fv, V H , or V L fragments, affords a number of advantages over the use of larger fragments or entire antibody molecules.
  • the BABS of this invention offer fewer cleavage sites to circulating proteolytic enzymes and thus offer greater stability. They reach their target tissue more rapidly, and are cleared more quickly from the body. They also have reduced immunogenicity. In addition, their smaller size facilitates coupling to other molecules in drug targeting and imaging application.
  • the invention thus provides intact biosynthetic antibody binding sites analogous to V H -V L dimers, either non-covalently associated, disulfide bonded, or linked by a polypeptide sequence to form a composite V H -V L or V L -V H polypeptide which is essentially free of the remainder of the antibody molecule.
  • the invention also provides proteins analogous to an independent V H or V L domain. Any of these proteins may be provided in a form linked to amino acid sequences exclusive of those of the variable domain, for example, to amino acids analogous or homologous to proteins of a constant domain, or another bioactive molecules such as a hormone or toxin.
  • a proteolytic cleavage site can also be designed into the region separating the variable region-like sequences from other pendant sequences so as to facilitate cleavage of intact V H and/or V L , free of other protein.
  • FIGS. 2A, 2B, 2C, and 2D illustrate four examples of protein structures embodying the invention that can be produced by following the teaching disclosed herein. All are characterized by one or two biosynthetic polypeptide segments defining a binding site 3, and comprising amino acid sequences comprising CDRs and FRs, often derived from different immunoglobulins, or sequences homologous to a portion of CDRs and FRs from different immunoglobulins.
  • FIG. 1 illustrates of protein structures embodying the invention that can be produced by following the teaching disclosed herein. All are characterized by one or two biosynthetic polypeptide segments defining a binding site 3, and comprising amino acid sequences comprising CDRs and FRs, often derived from different immunoglobulins, or sequences homologous to a portion of CDRs and FRs from different immunoglobulins.
  • 2A depicts a single chain Fv comprising a polypeptide 10 having an amino acid sequence analogous to the variable region of an immunoglobulin heavy chain, bound through its carboxyl end to a polypeptide linker 12, which in turn is bound to a polypeptide 14 having an amino acid sequence analogous to the variable region of an immunoglobulin light chain.
  • the linker 12 should be at least long enough (e.g., about 15 amino acids or about 40A) to permit the chains 10 and 14 to assume their proper conformation.
  • the linker 12 may comprise an amino acid sequence homologous to a sequence identified as "self" by the species into which it will be introduced, if drug use is intended.
  • Unstructured, hydrophilic amino acid sequences are preferred. It may also comprise a bioactive polypeptide such as a cell toxin which is to be targeted by the binding site, or a segment easily labeled by a radioactive reagent which is to be delivered, e.g., to the site of a tumor comprising an epitope recognized by the binding site.
  • a bioactive polypeptide such as a cell toxin which is to be targeted by the binding site, or a segment easily labeled by a radioactive reagent which is to be delivered, e.g., to the site of a tumor comprising an epitope recognized by the binding site.
  • Other proteins or polypeptides may be attached to either the amino or carboxyl terminus of protein of the type illustrated in FIG. 2A. As an example, a helically coiled polypeptide structure illustrating a leader comprising a protein A fragment is shown extending from the amino terminal end of V H domain 10.
  • FIG. 2B illustrates two separate chains non-covalently associated and defining a binding site 3. It comprises separate peptides 16 and 18 comprising a chimeric V H and V L of the type described above.
  • the carboxyl terminus of each protein chain may be designed to include one or more cysteine residues so that oxidation of properly folded structures produces disulfide bonds (see FIG. 2C) further stabilizing the BABS.
  • Either or both of the polypeptides may further comprise a fused protein imparting other biological properties to the reagent in addition t the ability to bind to the antigen as specified by the interaction of the triplet CDRs on the respective polypeptides 16 and 18.
  • FIG. 2D depicts another type of reagent, comprising only one set of three CDRs, e.g., analogous to a heavy chain variable region, which retains a measure of affinity for the antigen.
  • Attached to the carboxyl end of the polypeptide comprising the FR and CDR sequences constituting the binding site 3 is a Pendant Protein P consisting of, for example, a toxin, therapeutic drug, binding protein, enzyme or enzyme fragment, site of attachment for an imaging agent (e.g., to chelate a radioactive ion such as Indium), or site of attachment to an immobilization matrix so that the BABS can be used in affinity chromatography.
  • an imaging agent e.g., to chelate a radioactive ion such as Indium
  • the protein may comprise more than one binding site or copies of a single binding site, and a number of other functional regions.
  • the invention provides a large family of reagents comprising proteins, at least a portion of which defines a binding site patterned after the variable region or regions of natural immunoglobulins. It will be apparent that the nature of any protein fragments linked to the BABS, and used for reagents embodying the invention, are essentially unlimited, the essence of the invention being the provision, either alone or linked in various ways to other proteins, of binding sites having specificities to any antigen desired.
  • the BABS of the invention are designed at the DNA level.
  • the chimeric or synthetic DNAs are then expressed in a suitable host system, and the expressed proteins are collected and renatured if necessary.
  • the ability to design the BABS of the invention depends on the ability to determine the sequence of the amino acids in the variable region of monoclonal antibodies of interest, or the DNA encoding them.
  • Hybridoma technology enables production of cell lines secreting antibody to essentially any desired substance that produces an immune response.
  • RNA encoding the light and heavy chains of the immunoglobulin can then be obtained from the cytoplasm of the hybridoma, and the 5' end portion of the mRNA can be used to prepare the cDNA for subsequent sequencing, or the amino acid sequence of the hypervariable and flanking framework regions can be determined by amino acid sequencing of the H and L chains and their V region fragments. Such sequence analysis is now conducted routinely.
  • DNAs encoding BABS as disclosed herein can be done using known techniques involving the use of various restriction enzymes which make sequence specific cuts in DNA to produce blunt ends or cohesive ends, DNA ligases, techniques enabling enzymatic addition of sticky ends to blunt-ended DNA, construction of synthetic DNAs by assembly of short or medium length oligonucleotides, cDNA synthesis techniques, and synthetic probes for isolating immunoglobulin genes.
  • various promoter sequences and other regulatory DNA sequences used in achieving expression, and various types of host cells are also known and available.
  • Conventional transfection techniques, and equally conventional techniques for cloning and subcloning DNA are useful in the practice of this invention and known to those skilled in the art.
  • vectors may be used such as plasmids and viruses including animal viruses and bacteriophages.
  • the vectors may exploit various marker genes which impart to a successfully transfected cell a detectable phenotypic property that can be used to identify which of a family of clones has successfully incorporated the recombinant DNA of the vector.
  • One method for obtaining DNA encoding the BABS disclosed herein is by assembly of synthetic oligonucleotides produced in a conventional, automated, polynucleotide synthesizer followed by ligation with appropriate ligases.
  • overlapping, complementary DNA fragments comprising 15 bases may be synthesized semi manually using phosphoramidite chemistry, with end segments left unphosphorylated to prevent polymerization during ligation.
  • One end of the synthetic DNA is left with a "sticky end" corresponding to the site of action of a particular restriction endonuclease, and the other end is left with an end corresponding to the site of action of another restriction endonuclease.
  • this approach can be fully automated.
  • the DNA encoding the BABS may be created by synthesizing longer single strand fragments (e.g., 50-100 nucleotides long) in, for example, a Biosearch oligonucleotide synthesizer, and then ligating the fragments.
  • Still another method of producing the BABS of the invention is to produce a synthetic DNA encoding a polypeptide comprising, e.g., human FRs, and intervening "dummy" CDRs, or amino acids having no function except to define suitably situated unique restriction sites.
  • This synthetic DNA is then altered by DNA replacement, in which restriction and ligation is employ ed to insert synthetic oligonucleotides encoding CDRs defining a desired binding specificity in the proper location between the FRs.
  • This technique is dependent upon the ability to cleave a DNA corresponding in structure to a variable domain gene at specific sites flanking nucleotide sequences encoding CDRs. These restriction sites in some cases may be found in the native gene. Alternatively, non-native restriction sites may be engineered into the nucleotide sequence resulting in a synthetic gene with a different sequence of nucleotides than the native gene, but encoding the same variable region amino acids because of the degeneracy of the genetic code. The fragments resulting from endonuclease digestion, and comprising FR-encoding sequences, are then ligated to non-native CDR-encoding sequences to produce a synthetic variable domain gene with altered antigen binding specifity. Additional nucleotide sequences encoding, for example, constant region amino acids or a bioactive molecule may also be linked to the gene sequences to produce a bifunctional protein.
  • these synthetic DNA's can be achieved in both prokaryotic and eucaryotic systems via transfection with the appropriate vector.
  • the synthetic genes can be expressed as fusion protein.
  • Expression in eucaryotes can be accomplished by the transfection of DNA sequences encoding CDR and FR region amino acids into a myeloma or other type of cell line. By this strategy intact hybrid antibody molecules having hybrid Fv regions and various bioactive proteins including a biosynthetic binding domain may be produced.
  • V H and V L fusions For fusion protein expressed in bacteria subsequent proteolytic cleavage of the isolated V H and V L fusions can be performed to yield free V H and V L , which can be renatured, and reassociated (or used separately) to obtain an intact biosynthetic, hybrid antibody binding site.
  • BABS in accordance with this invention is to redesign an immunoglobulin at the DNA level so as to alter its specificity and so as to incorporate a cleavage site and "hinge region" between the variable and constant regions of both the heavy and light chains.
  • Such chimeric antibodies can be produced in transfectomas or the like and subsequently cleaved using a preselected endopeptidase.
  • the engineering principles involved in these easily cleaved constructs are disclosed in detail in copending U.S. application Ser. No. 028,484 filed Mar. 20, 1987 by Huston et al.
  • the hinge region is a sequence of amino acids which serve t o promote efficient cleavage by a preselected cleavage agent at a preselected, built-in cleavage site. It is designed to promote cleavage preferentially at the cleavage site when the polypeptide is treated with the cleavage agent in an appropriate environment.
  • the hinge can take many different forms. Its design involves selection of amino acid residues (and a DNA fragment encoding them) which impart to the region of the fused protein about the cleavage site an appropriate polarity, charge distribution, and stereochemistry which, in the aqueous environment where the cleavage takes place, efficiently exposes the cleavage site to the cleavage agent in preference to other potential cleavage sites that may be present in the polypeptide, and/or to improve the kinetics of the cleavage reaction. In specific cases the amino acids of the hinge are selected and assembled in sequence based on their known properties, and then the fused polypeptide sequence is expressed, tested, and altered for empirical refinement.
  • the hinge region is free of cysteine. This enables the cleavage reaction to be conducted under conditions in which the protein assumes its tertiary conformation, and may be held in this conformation by intramolecular disulfide bonds. It has been discovered that in these conditions access of the protease to potential cleavage sites which may be present within the target protein is hindered.
  • the hinge region may comprise an amino acid sequence which includes one or more proline residues. This allows formation of a substantially unfolded molecular segment. Aspartic acid, glutamic acid, arginine, lysine, serine, and threonine residues maximize ionic interactions and may be present in amounts and/or in sequence which renders the moiety comprising the hinge water soluble.
  • the cleavage site preferably is immediately adjacent the Fv polypeptide and comprises one or a sequence of amino acids exclusive of any one or sequence found in the amino acid structure of the BABS.
  • BABS V H and V L regions are on separate chains (i.e., see FIG. 1A).
  • the cleavage sites may be either immediately adjacent their C-terminal ends, thereby releasing Fv dimer of V H and V L upon appropriate cleavage (i.e., to yield the species of FIG. 2B), or may follow pendant polypeptides with or without cysteine that yield, respectively, the species of FIG. 2C or 2D upon digestion.
  • the cleavage site preferably is designed for cleavage by a specific selected agent. Endopeptidases are preferred, although non-enzymatic (chemical) cleavage agents may be used. Many useful cleavage agents, for instance, cyanogen bromide, dilute acid, trypsin, Staphylococcus aureus V-8 protease, post proline cleaving enzyme, blood coagulation Factor Xa, enterokinase, and renin, recognize and preferentially or exclusively cleave particular cleavage sites.
  • One currently preferred cleavage agent is V-8 protease.
  • the currently preferred cleavage site is a Glu residue.
  • cleavage site e.g., factor Xa (Ile-Glu-Gly-Arg) or enterokinase (AsP-Asp-AsP-Asp-Lys).
  • FRs from the heavy and light chain murine anti-digoxin monoclonal 26-10 were encoded on the same DNAs with CDRs from the murine anti-lysozyme monoclonal glp-4 heavy chain (FIG. 3 sequence 1) and light chain to produce heavy (FIG. 4C) and light (FIG. 4D) chain together defining a chimeric antibody binding site which is specific for . lysozyme.
  • Murine CDRs from both the heavy and light chains of monoclonal glp-4 were encoded on the same DNAs with FRs from the heavy and light chains of human myeloma antibody NEWM (FIGS. 4E and 4F).
  • the resulting interspecies chimeric antibody binding domain has reduced immunogenicity in humans because of its human FRs, and has specificity for lysozyme because of its murine CDRs.
  • a synthetic DNA was designed to facilitate CDR insertions into a human heavy chain framework and to facilitate empirical refinement of the resulting chimeric amino acid sequence. This DNA is depicted in FIG. 5.
  • a synthetic, bifunctional protein was also designed at the DNA level, expressed, purified, renatured, and shown to bind specifically with a preselected antigen (digoxin).
  • the detailed primary structure of this construct is shown in FIG. 6; its tertiary structure is illustrated schematically in FIG. 2A.
  • V L and V H genes may be designed which encode native or near native FR and CDR amino acid sequences from an antibody molecule, each separated by unique restriction sites located as close to FR-CDR and CDR-FR borders as possible.
  • genes may be designed which encode native FR sequences which are similar or identical to the FRs of an antibody molecule from a selected species, each separated by "dummy" CDR sequences containing strategically located restriction sites. These DNAs serve as starting materials for producing BABS, as the native or "dummy" CDR sequences may be excised and replaced with sequences encoding the CDR amino acids defining a selected binding site.
  • V H and V L sequences described above may be linked together directly, either via an amino acids chain or linker connecting the C-terminus of one chain with the N-terminus of the other, or via C-terminal cysteine residues on each of the V H and V L .
  • genes once synthesized, may be cloned with or without additional DNA sequences coding for, e.g., an antibody constant region, or a leader peptide which facilitates secretion or intracellular stability of a fusion polypeptide.
  • the genes then can be expressed directly in an appropriate host cell, or can be further engineered before expression by the exchange of FR, CDR, or "dummy" CDR sequences with new sequences. This manipulation is facilitated by the presence of the restriction sites which have been engineered into the gene at the FR-CDR and CDR-FR borders.
  • FIG. 3 illustrates the general approach to designing a chimeric V H ; further details of exemplary designs at the DNA level are shown in FIGS. 4A-4F.
  • FIG. 3, lines 1 and 2 show the amino acid sequences of the heavy chain variable region of the murine monoclonals glp-4 (anti-lysozyme) and 26-10 (anti-digoxin), including the four FR and three CDR sequences of each.
  • Line 3 shows the sequence of a chimeric V H which comprises 26-10 FRs and glp-4 CDRs.
  • the hybrid protein of line 3 is identical to the native protein of line 2, except that 1) the sequence TFTNYYIHWLK has replaced the sequence IFTDFYMNWVR, 2) EWIGWIYPGNGNTKYNENFKG has replaced DYIGYISPYSGVTGYNQKFKG, 3) RYTHYYF has replaced GSSGNKWAM, and 4) A has replaced V as the sixth amino acid beyond CDR-2.
  • These changes have the effect of changing the specificity of the 26-10 V H to mimic the specificity of glp-4.
  • the Ala to Val single amino acid replacement within the relatively conserved framework region of 26-10 is an example of the replacement of an amino acid outside the hypervariable region made for the purpose of altering specificity by CDR replacement.
  • Beneath sequence 3 of FIG. 3, the restriction sites in the DNA encoding the chimer V H are shown which are disposed about the CDR-FR borders.
  • Lines 4 and 5 of FIG. 3 represent another construct.
  • Line 4 is the full length V H of the human antibody NEWM. That human antibody may be made specific for lysozyme by CDR replacement as shown in line 5.
  • the segment TFTNYYIHWLK from glp-4 replaces TFSNDYYTWVR of NEWM, and its other CDRs are replaced as shown.
  • V H and V L design are possible because the amino acid sequences are determined at the DNA level, and the manipulation of DNA is now accomplished easily.
  • the DNA sequence for mouse V H and V L 26-10 containing specific restriction sites flanking each of the three CDRs was designed with the aid of a commercially available computer program which performs combined reverse translation and restriction site searches ("RV.exe” by Compugene, Inc.).
  • the known amino acid sequences for V H and V L 26-10 polypeptides were entered, and all potential DNA sequences which encode those peptides and all potential restriction sites were analyzed by the program.
  • the program can, in addition, select DNA sequences encoding the peptide using only codons preferred by E. coli if this bacterium is to be host expression organism of choice.
  • FIGS. 4A and 4B show an example of program output. The nucleic acid sequences of the synthetic gene and the corresponding amino acids are shown. Sites of restriction endonuclease cleavage are also indicated. The CDRs of these synthetic genes are underlined.
  • the DNA sequences for the synthetic 26-10 V H and V L are designed so that one or both of the restriction sites flanking each of the three CDRs are unique.
  • a six base site (such as that recognized by Bsm I or BsPM I) is preferred, but where six base sites are not possible, four or five base sites are used. These sites, if not already unique, are rendered unique within the gene by eliminating other occurrences within the gene without altering necessary amino acid sequences.
  • Preferred cleavage sites are those that, once cleaved, yield fragments with sticky ends just outside of the boundary of the CDR within the framework. However, such ideal sites are only occasionally possible because the FR-CDR boundary is not an absolute one, and because the amino acid sequence of the FR may not permit a restriction site. In these cases, flanking sites in the FR which are more distant from the predicted boundary are selected.
  • FIG. 5 discloses the nucleotide and corresponding amino acid sequence (shown in standard single letter code) of a synthetic DNA comprising a master framework gene having the generic structure:
  • R 1 and R 2 are blunt ends which are to be ligated into a vector and X 1 , X 2 , and X 3 are DNA sequences whose only function is to provide convenient restriction sites for CDR insertion.
  • This particular DNA has mouse FR sequences and unique, 6-base restriction sites adjacent the FR borders so that nucleotide sequences encoding CDRs from a desired monoclonal can be inserted easily. Restriction endonuclease digestion sites are indicated with their abbreviations; enzymes of choice for CDR replacement are underscored.
  • KPnI and BstXI are used for ligation of CDR 1 ; XbaI and DraI for CDR 2 ; and BssHII and ClaI for CDR 3 .
  • the synthetic genes and DNA fragments designed as described above preferably are produced by assembly of chemically synthesized oligonucleotides.
  • 15-100mer oligonucleotides may be synthesized on a Biosearch DNA Model 8600 Synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer (TBE). The DNA is then electroeluted from the gel.
  • Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified by PAGE.
  • the blocks or the pairs of longer oligonucleotides may be cloned into E. coli using a suitable, e.g., pUC, cloning vector.
  • this vector may be altered by single strand mutagenesis to eliminate residual six base altered sites.
  • V H may be synthesized and cloned into pUC as five primary blocks spanning the following restriction sites: 1. EcoRI to first NarI site; 2. first NarI to XbaI; 3. XbaI to SalI; 4. SalI to NcoI; 5. NcoI to BamHI. These cloned fragments may then be isolated and assembled in several three-fragment ligations and cloning steps into the pUC8 plasmid.
  • Desired ligations selected by PAGE are then transformed into, for example, E. coli strain JM83, and plated onto LB Ampicillin +Xgal Plates according to standard procedures.
  • the gene sequence may be confirmed by supercoil sequencing after cloning, or after subcloning into M13 via the dideoxy method of Sanger.
  • Three CDRs can be replaced per V H or V L .
  • this can be accomplished by cutting the shuttle pUC plasmid containing the respective genes at the two unique restriction sites flanking each CDR or FR, removing the excised sequence, and ligating the vector with a native nucleic acid sequence or a synthetic oligonucleotide encoding the desired CDR or FR. This three part procedure would have to be repeated three times for total CDR replacement and four times for total FR replacement.
  • a synthetic nucleotide encoding two consecutive CDRs separated by the appropriate FR can be ligated to a pUC or other plasmid containing a gene whose corresponding CDRs and FR have been cleaved out. This procedure reduces the number of steps required to perform CDR and/or FR exchange.
  • the engineered genes can be expressed in appropriate prokaryotic hosts such as various strains of E. coli, and in eucaryotic hosts such as Chinese hamster ovary cell, mouse myeloma, and human myeloma/transfectoma cells.
  • the gene may first be cloned into an expression vector. This is accomplished by positioning the engineered gene downstream from a promoter sequence such as Trp or Tac, and a gene coding for a leader peptide such as fragment B of protein A (FB).
  • a promoter sequence such as Trp or Tac
  • FB fragment B of protein A
  • the resulting expressed fusion protein accumulates in refractile bodies in the cytoplasm of the cells, and may be harvested after disruption of the cells by French press or sonication.
  • the refractile bodies are solubilized, and the expressed proteins refolded and cleaved by the methods already established for many other recombinant proteins.
  • the engineered gene is to be expressed in myeloma cells, the conventional expression system for immunoglobulins, it is first inserted into an expression vector containing, for example, the Ig promoter, a secretion signal, immunoglobulin enhancers, and various introns.
  • This plasmid may also contain sequences encoding all or part of a constant region, enabling an entire part of a heavy or light chain to be expressed.
  • the gene is transfected into myeloma cells via established electroporation or protoplast fusion methods.
  • Cells so transfected can express V L or V H fragments, V L -V H heterodimers, V H -V L or V L -V H single chain polypeptides, complete heavy or light immunoglobulin chains, or portions thereof, each of which may be attached in the various ways discussed above to a protein domain having another function (e.g., cytotoxicity).
  • Vectors containing a heavy chain V region can be cotransfected with analogous vectors carrying a light chain V region (or V and C regions), allowing for the expression of noncovalently associated Fvs (or complete antibody molecules).
  • the synthetic gene coding for mouse V H and V L 26-10 shown in FIGS. 4A and 4B were designed from the known amino acid sequence of the protein with the aid of Compugene, a software program. These genes, although coding for the native amino acid sequences, also contain non-native and often unique restriction sites flanking nucleic acid sequences encoding CDR's to facilitate CDR replacement as noted above.
  • Both the 3' and 5' ends of the large synthetic oligomers were designed to include 6-base restriction sites, present in the genes and the pUC vector. Furthermore, those restriction sites in the synthetic genes which were only suited for assembly but not for cloning the pUC were extended by "helper" cloning sites with matching sites in pUC.
  • Cloning of the synthetic DNA and later assembly of the gene was facilitated by the spacing of unique restriction sites along the gene. This allows corrections and modifications by cassette mutagenesis at any location. Among them are alterations near the 5' or 3' ends of the gene as needed for the adaptation to different expression vectors. For example, a PstI site is positioned near the 5' end of the V H gene. Synthetic linkers can be attached easily between this site and a restriction site in the expression plasmid. These genes were synthesized by assembling oligonucleotides as described above using a Biosearch Model 8600 DNA Synthesizer. They were ligated to vector pUC8 for transformation of E. coli.
  • Specific CDRs may be cleaved from the synthetic V H gene by digestion with the following pairs of restriction endonucleases: HpHI and BstXI for CDR 1 ; XbaI and DraI for CDR 2 ; and BanII and BanI for CDR 3 . After removal of one CDR, another CDR of desired specificity may be ligated directly into the restricted gene, in its place if the 3' and 5' ends of the restricted gene and the new CDR contain complementary single stranded DNA sequences.
  • the three CDRs of each of mouse V H 26-10 and V L 26-10 were replacead with the corresponding CDRs of glp-4.
  • the nucleic acid sequences and corresponding amino acid sequences of the chimeric V H and V L genes encoding the FRs of 26-10 and CDRs of glp-4 are shown in FIGS. 4C and 4D.
  • the positions of the restriction endonuclease cleavage sites are noted with their standard abbreviations.
  • CDR sequences are underlined as are the restriction endonucleases of choice useful for further CDR replacement.
  • V H -like gene was spliced into the EcoRl and HindIII or BamHI sites of the plasmid.
  • Direct expression of the genes may be achieved in E. coli.
  • the gene may be expressed in E. coli as a fusion product by splicing it into the host gene whose expression is regulated by interaction of a repressor with the respective operator.
  • the protein can be induced by starvation in minimal medium and by chemical inducers.
  • the V H biosynthetic 26-10 gene has been expressed as such a fusion peptide behind the Trp and Tac promoters.
  • the gene translation product must then be cleaved from the fusion protein by e.g., cyanogen bromide degradation, tryptic digestion, mild acid cleavage, and/or digestion with factor Xa protease.
  • a shuttle plasmid containing a synthetic gene encoding a leader peptide having a site for mild acid cleavage, and into which has been spliced the synthetic V H gene could be used for this purpose.
  • synthetic DNA sequences encoding a signal peptide for secretion of the fusion protein into the periplasm of the host cell can also be incorporated into the plasmid.
  • the protein forms inclusion bodies which, after harvesting, must be subjected to a specific sequence of solvent conditions (e.g., diluted 20 X from 8M urea 0.01M Tris-HCl pH9 into 0.15M NaCl, 0.01M sodium phosphate, PH 7.4 (Hochman et al., 1976 Biochem. 15:2706-2710) to assume its correct conformation and hence its active form.
  • a specific sequence of solvent conditions e.g., diluted 20 X from 8M urea 0.01M Tris-HCl pH9 into 0.15M NaCl, 0.01M sodium phosphate, PH 7.4 (Hochman et al., 1976 Biochem. 15:2706-2710) to assume its correct conformation and hence its active form.
  • FIGS. 4E and 4F show the DNA and amino acid sequence of chimeric V H and V L comprising human FRs from NEWM and mouse CDRs from glp-4.
  • the CDRs are underlined, as are restriction sites of choice for further CDR replacement or empirically determined refinement.
  • constructs also constitute master framework genes, this time constructed of human framework sequences. They may be used to construct BABS of any desired specificity by appropriate CDR replacement.
  • a nucleic acid sequence encoding a composite Fv region or single chain antibody binding site was designed with the aid of Compugene, a computer program as described above.
  • This gene contains nucleic acid sequences encoding the V H and V L regions of mouse 26-10 antibody linked together with a double-stranded synthetic oligonucleotide coding for a peptide with the amino acid sequence (Gly Gly Gly Gly Ser) 3 as shown in FIG. 6.
  • This linker oligonucleotide contains helper cloning sites EcoRI and BamHI and was designed to contain the assembly sites SacI and AatII near its 5' and 3' ends, respectively.
  • the gene fragments were synthesized using a Biosearch DNA Model 8600 Synthesizer as described above. Synthetic oligonucleotides were cloned according to established protocol described above using the pUC8 vector transfected into E. coli. The completed fused gene set forth in FIG. 6 was expressed in E. Coli.
  • inclusion bodies were collected by centrifugation, and dissolved in 6M guanidine hydrochloride (GuHCl), 0.2M Tris, and 0.1M 2-mercaptoethanol (BME) PH 8.2.
  • the protein was denatured and reduced in the solvent overnight at room temperature. Size exclusion chromatography was used to purify fusion protein from the inclusion bodies.
  • a Sepharose 4B column (1.5 ⁇ 80 cm) was run in a solvent of 6M GuHCl and 0.01M NaOAc at pH 4.75. The protein solution was applied to the column at room temperature in 0.5-1.0 ml amounts. Fractions were collected and precipitated with cold ethanol. These were run on SDS gels, and fractions rich in the recombinant protein (approximately 34,000d) were pooled. This offers a simple first step for cleaning up inclusion body preparations without suffering significant proteolytic degradation.
  • the protein was dialyzed against 100 ml of the same GuHCl-Tris-BME solution, and dialysate was diluted 11-fold over two days to 0.55M GuHCl, 0.02M Tris, and 0.01M BME.
  • the dialysis sacks were then transferred to 0.01M NaCl, and the protein was dialyzed exhaustively before being assayed by RIA's for binding of I-125 labeled digoxin.
  • the refolding procedure can be simplified by making a rapid dilution with water to reduce the GuHCl concentration to 1.1M, and then dialyzing against phosphate buffered saline (0.15M NaCl, 0.05M potassium phosphate, pH7. containing 0.03% NaN 3 ). so that it is free of any GuHCl within 12 hours.
  • Product of both types o f preparation showed binding activity.
  • Binding data were collected using goat anti-mouse Fab antisera (gAmFab) as the primary antibody that initially coats the wells of the plate. These are polyclonal antisera which recognize epitopes that appear to reside mostly on mouse V L .
  • the samples of interest are next added to the coated wells and incubated with the gAmFab, which binds species that exhibit appropriate antigenic sites. After washing away unbound protein, the wells are exposed to I-125 labeled (radioiodinated) digoxin conjugates, either as I-125-dig-BSA or I-125-dig-lysine.
  • FIG. 7 shows the results of a dilution curve experiment in which the parent 26-10 antibody was included as a control.
  • the sites were probed with I-125-dig-BSA in this assay. It was conducted as described above, with a series of dilutions prepared from initial stock solutions, including both the slowly refolded (1) and fast diluted/quickly refolded (2) single chain Fv proteins.
  • the parallelism between all three dilution curves indicates that gAmFab binding regions on the BABS molecule are essentially the same as on the Fv of authentic 26-10 antibody, i.e., the surface epitopes appear to be the same for both proteins.
  • the sensitivity of these assays is such that binding affinity of the Fv for digoxin must be at least 10 6 .
  • the parent 26-10 antibody has an affinity of 7 ⁇ 10 9 M -1 .
  • Inhibition assays indicate the binding of I-125-digoxin-lysine may be as high as 10 8 , and can be inhibited by unlabeled digoxin, digoxigenin, digitoxin, digitoxigenin, gitoxin, acetyl strophanthidin, and ouabain in a way exactly parallel to the parent 26-10 Fab. This demonstrates that the specificity of the biosynthetic protein is substantially identical to the original monoclonal.

Abstract

Disclosed are a family of synthetic proteins having affinity for a preselected antigen. The proteins are characterized by one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BABS). The sites comprise 1) non-covalently associated or disulfide bonded synthetic VH and VL dimers, 2) VH -VL or VL -VH single chains wherein the VH and VL are attached by a polypeptide linker, or 3) individuals VH or VL domains. The binding domains comprise linked CDR and FR regions, which may be derived from separate immunoglobulins. The proteins may also include other polypeptide sequences which function e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization media or radioactive atom. Methods are disclosed for producing the proteins, for designing BABS having any specificity that can be elicited by in vivo generation of antibody, and for producing analogs thereof.

Description

The United States Government has certain rights in this application as the subject matter hereof was developed in part using funds from SBIR Grant Nos. SSS-4 1 R43 CA39870-01 and SSS-4 2 R44 CA39870-02.
REFERENCE TO RELATED APPLICATIONS
This application is a divisional of copending application Ser. No. 213,761 filed June 30, 1988, which is a continuation of copending application Ser. No. 052,800 filed May 21, 1987. Related applications include: Ser. No. 636,770 filed Jan. 2, 1991, which is a second divisional of 213,761; Ser. No. 213,671 filed June 30, 1988, which also is a continuation of 052,800, and Ser. No. 342,449, filed Feb. 6, 1989, which is a continuation-in-part of 052,800.
BACKGROUND OF THE INVENTION
This invention relates to novel compositions of matter, hereinafter called biosynthetic antibody binding sites or BABS, useful, for example, in specific binding assays, affinity purification, biocatalysis, drug targeting, imaging, immunological treatment of various oncogenic and infectious diseases, and in other contexts. More particularly, this invention relates to biosynthetic polypeptides having a structure similar to native antibody binding sites, DNAs encoding the polypeptides prepared by recombinant DNA techniques, vectors comprising these DNAs, and methods for the design and production of these polypeptides.
Antibodies are proteins belonging to a group of immunoglobulins elicited by the immune system in response to a specific antigen or substance which the body deems foreign. Antibodies can both recognize and bind that antigen, and are involved in a number of effector reactions such as complement fixation and allergic responses.
There are five classes of human antibodies which have the ability to selectively recognize and preferentially bind a specific antigen. Each antibody class has the same basic structure (see FIG. 1), or multiples thereof, consisting of two identical polypeptides called heavy or H chains (molecular weight in IgG approximately 50,000 d each) and two identical polypeptides called light or L chains (molecular weight approximately 25,000 d each). Each of the five antibody classes has a similar set of light chains and a distinct set of heavy chains. A light chain is composed of one variable and one constant domain, while a heavy chain is composed of one variable and three or more constant domains. The variable domains determine the specificity of the immunoglobulin, the constant regions have other functions.
Amino acid sequence data indicate that each variable domain comprises three hypervariable regions flanked by four relatively conserved framework regions (Kabat et. al., Sequences of Proteins of Immunological Interest [U.S. Department of Health and Human Services, third edition 1983, fourth edition, 1987]). The hypervariable regions have been assumed to be responsible for the binding specificity of individual antibodies and to account for the diversity of binding of antibodies as a protein class.
Monoclonal antibodies, or homogeneous antibodies of identical genetic parentage and binding specificity, have been useful both as diagnostic and therapeutic agents. They are routinely produced according to established procedures by hybridomas generated by fusion of mouse lymphoid cells with an appropriate mouse myeloma cell line. Human monoclonal antibodies are difficult to produce by cell fusion techniques since, among other problems, human hybridomas are notably unstable, and removal of immunized spleen cells from humans is not feasible as it is for rodents. Monoclonals which have specificities of significant therapeutic value are generally of murine or rat origin, and are therefore immunogenic to the human immune system.
Chimeric antibodies composed of human and non-human amino acid sequences potentially have improved therapeutic value as they presumably would elicit less circulating human antibody against the non-human immunoglobulin sequences. Accordingly, hybrid antibody molecules have been proposed which consist of immunoglobulin light and heavy chain amino acid sequences from different mammalian sources. The chimeric antibodies designed thus far comprise variable regions from one mammalian source, and constant regions from human or another mammalian source (Morrison et al., 1984, Proc. Natl. Acad. Sci. U.S.A., 81:5851-6855; Neuberger et al., 1984, Nature 312:604-608; Sahagan et al., 1986, J. Immunol. 137:1066-1074; EPO application nos. 84302368.0, Genentech; 85102665.8, Research Development Corporation of Japan; 85305604.2, Stanford; P.C T. application no. PCT/GB85/00392, Celltech Limited).
It has been reported that constant regions are not required for antigen recognition or binding; these properties have been localized to the variable domains of the antibody molecule located at the amino terminal end of both the heavy and light chains. The variable regions remain noncovalently associated (as VH VL dimers, termed Fv regions) even after proteolytic cleavage from the native antibody molecule, and retain much of their antigen recognition and binding capabilities (Inbar et al., Proc Natl. Acad. Sci. U.S.A., 1972, 69:2659-2662; Hochman et. al., 1973, Biochem. 12 1130-1135 and 1976, Biochem. 15:2706-2710; Sharon and Givol, 1976, Biochem. 15:1591-1594; Rosenblatt and Haber, 1978, Biochem. 17:3877-3882; Ehrlich et al., 1980, Biochem. 19:4091-40996).
SUMMARY OF THE INVENTION
A class of novel biosynthetic polypeptides has now been designed and engineered which comprise biosynthetic antibody binding sites, that is, "BABS" or chimeric polypeptides defining stucture capable of selective antigen recognition and preferential antigen binding.
In its broadest aspects, this invention features polypeptides comprising biosynthetic antibody binding sites, DNA encoding these polypeptides prepared by recombinant DNA techniques, vectors comprising these DNAs, and methods for the production of these polypeptides.
In one aspect, the invention is based on the observation that three subregions of the variable domain of each of the heavy and light chains of native immunoglobulin molecules collectively are responsible for antigen recognition and binding. Each of these subregions, called herein "complementarity determining regions" or CDRs, consists of one of the hypervariable regions or loops and of selected amino acids or amino acid sequences disposed in the framework regions which flank that particular hypervariable region. It has now been discovered that framework regions from diverse species are effective to maintain CDRs from diverse other species in proper conformation so as to achieve true immunochemical binding properties in a biosynthetic protein. Thus, BABS produced in accordance with the invention comprise biosynthetically produced novel sequences of amino acids defining polypeptides designed to bind with a preselected antigenic material. The structure of these synthetic polypeptides is unlike that of naturally occurring antibodies, fragments thereof, or known synthetic polypeptides or "chimeric antibodies" in that the regions of the BABS responsible for specificity and affinity of binding, (analogous to native antibody variable regions) are themselves chimeric, e.g., comprise amino acid sequences homologous to portions of at least two different antibody molecules.
The invention thus provides a chimeric polypeptide defining a region capable of selective antigen binding and recognition. This chimeric polypeptide comprises amino acid sequences homologous to portions of the CDRs of the variable domain of one immunoglobulin light or heavy chain, and other sequences homologous to the framework regions, or FRs, of the variable domain of a second, different immunoglobulin light or heavy chain. Polypeptides so constructed bind a specific preselected antigen determined by the CDRs. Preferably, the chimeric polypeptides comprise an amino acid sequence homologous to at least a portion of the variable regions of a mammalian immunoglobulin, such as those of mouse, rat, or human origin. In one preferred embodiment, the biosynthetic antibody binding site comprises FRs homologous with a portion of the FRs of a human immunoglobulin and CDRs homologous with CDRs from a mouse immunoglobulin. This type of chimeric polypeptide displays the antigen binding specificity of the mouse immunoglobulin, while its human framework minimizes human immune reactions. In addition, the chimeric polypeptide may comprise other amino acid sequences. It may comprise, for example, a sequence homologous to a portion of the constant domain of an immunoglobulin, but preferably is free of constant regions (other than FRs).
The invention also provides a single chain composite polypeptide having antigen binding abilities, and comprising a pair of amino acid sequences homologous or analogous respectively to the variable regions of an immunoglobulin light and heavy chain, (linked VH -VL or single chain Fv). Both VH and VL may copy natural monoclonal sequences, or one or both of the chains may comprise a CDR-FR construct of the type described above. The separate polypeptides analogous to the variable regions of the light and heavy chains are held together by a polypeptide linker.
This type of chimeric polypeptide is thus a single chain composite polypeptide comprising a complete antibody binding site. This single chain composite polypeptide has a structure patterned after tandem VH and VL domains, but with the carboxyl terminal of one attached through an amino acid sequence to the amino terminal of the other. It thus comprises an amino acid sequence which is homologous to a portion of the variable region of an immunoglobulin heavy chain (VH) peptide bonded to a second amino acid sequence which is homologous to a portion of the variable region of an immunoglobulin light chain (VL). The linking amino acid sequence may or may not itself be antigenic or biologically active. In addition, either the amino or carboxyl terminal ends of these chimeric, single chain Fvs may be attached to an amino acid sequence which itself is bioactive to produce a bifunctional or multifunctional protein. For example, the synthetic Fv may include a leader or trailer sequence defining a polypeptide having enzymatic activity, independent affinity for an antigen different from the antigen to which the chimeric Fv is directed, or having other functions such as to provide a convenient site of attachment for a radioactive atom, or simply to enhance expression in procaryotic host cells or yeasts.
Such tandem arrangement of VH and VL polypeptides can increase the stability of the antigen binding site and facilitate its coupling to proteins utilized in drug targeting and moieties useful in imaging. The therapeutic use of such chimeric Fvs provide a number of advantages over larger fragments or complete antibody molecules: they are often quite stable and less immunogenic; they can penetrate body tissues more rapidly for purposes of imaging or drug delivery because of their smaller size; and they can facilitate accelerated clearance of targeted isotopes or drugs.
Other embodiments of the invention comprise multifunctional polypeptides consisting of one or more single chain Fvs either linked VH and VL dimers, individual VL or VH, or any of the foregoing comprising CDRs and FRs from different or the same immunoglobulins, linked to a second functional protein domain such as, for example, a toxin, enzyme, or site of attachment to an immobilization matrix. Yet another embodiment is a polypeptide comprising several identical or non-identical BABS which recognize a group of antigenic determinants that are periodic or closely spaced in their normal environment, e.g., on a cell surface. This arrangement confers greatly augmented affinity and/or specifically on the BABS-containing protein analogous to, for example, the way IgM (containing 10 Fabs) binds to the surfaces of certain cells.
In other aspects, the invention provides DNA sequences encoding chimeric polypeptides of the type described above, vectors including such sequences, and methods employing the DNAs and vectors for producing the polypeptides.
A novel method of producing BABS involves the construction of a DNA containing three polynucelotide sequences (X1, X2 and X3). Each of the sequences contain restriction sites proximal its 3' and 5' ends, and each is flanked by polynucleotide sequences (FR1, FR2, FR3 and FR4) encoding selected framework region (FR) amino acid sequences homologous to a portion of the variable domain of an immunoglobulin. This DNA has the structure:
R.sub.1 -FR.sub.1 -X.sub.1 -FR.sub.2 -X.sub.2 -FR.sub.3 -X.sub.3 -FR.sub.4 -R.sub.2
where R1 is a 5' phosphate group or polynucelotide sequence and R2 is a 3' hydroxyl group or polynucleotide sequence. The X polynucleotide sequences may be selectively excised using restriction enzymes and replaced by other DNA sequences encoding the CDR amino acid sequences of a variable domain of a selected immunoglobulin. This type of DNA sequence may encode at least part of the variable region of either or both a heavy or light chain of an immunoglobulin and may, in addition, comprise a third phosphodiester-linked nucleotide or polynucleotide sequence of a nature and function described above.
In yet another aspect, the invention provides a method for producing intact biosynthetic antibody binding sites or native Fv free of all or substantially all constant region amino acids. The method involves enzymatic digestion of chimeric immunoglobulin or at least Fab regions which have been engineered to contain preferential proteolytic cleavage sites located between the variable and constant regions of the immunoglobulin heavy and light chains. Digestion of the intact immunoglobulin with the appropriate protease yields a complete antigen binding site or Fv fragment. This approach works well in myeloma or hybridoma expression systems.
Accordingly, it is an object of this invention to provide novel proteins comprising biosynthetic antibody binding sites including an amino acid sequence homologous to specific portions of the variable region of immunoglobulin light chain and/or heavy chain, to provide DNA sequences which encode the biosynthetic antibody binding sites, and to provide replicable expression vectors capable of expressing DNA sequences encoding the biosynthetic antibody binding sites. Another object is to provide a generalized method for producing biosynthetic antibody binding site polypeptides of any desired specificity.
BRIEF DESCRIPTION OF THE DRAWING
The foregoing and other objects of this invention, the various features thereof, as well as the invention itself, may be more fully understood from the following description, when read together with the accompanying drawings.
FIG. 1A is a schematic representation of an intact IgG antibody molecule containing two light chains, each consisting of one variable and one constant domain, and two heavy chains, each consisting of one variable and three constant domains.
FIG. 1B is a schematic drawing of the structure of Fv illustrating VH and VL domains, each of which comprises four framework (FR) regions and three complementarily determining regions (CDR). Boundaries of CDRs are indicated, by way of example, for monoclonal 26-10, a well known and characterized murine monoclonal specific for digoxin.
FIG. 2A-2D are schematic representations of some of the classes of reagents constructed in accordance with the invention, each of which comprises a biosynthetic antibody binding site.
FIG. 3 discloses five amino acid sequences (heavy chains) in single letter code lined up vertically to facilitate understanding of the invention. Sequence 1 is the known native sequence of VH from murine monoclonal glp-4 (anti-lysozyme). Sequence 2 is the known native sequence of VH from murine monoclonal 26-10 (anti-digoxin). Sequence 3 is a BABS comprising the FRs from 26-10 VH and the CDRs from glp-4 VH. The CDRs are identified in lower case letters; restriction sites in the DNA used to produce chimeric sequence 3 are also identified. Sequence 4 is the known native sequence of VH from human myeloma antibody NEWM. Sequence 5 is a BABS comprising the FRs from NEWM VH and the CDRs from glp-4 VH, i.e., illustrates a binding site having a human framework but an affinity for lysozyme similar to glp-4.
FIGS. 4A-4F are the synthetic nucleic acid sequences and encoded amino acid sequences of (4A) the heavy chain variable domain of mouse anti-digoxin monoclonal 26-10; (4B) the light chain variable domain of mouse anti-digoxin monoclonal 26-10; (4C) a heavy chain variable domain of a chimeric Fv (BABS) comprising CDRs of glp-4 and FRs of 26-10; (4D) a light chain of the same BABS; (4E) a heavy chain variable region of a BABS comprising CDRs of glp-4 and FRs of NEWM; and (4F) a light chain variable region comprising CDRs of glp-4 and FRs of NEWM. Delineated are FRs, CDRs, and restriction sites for endonuclease digestion, most of which were introduced during design of the DNA.
FIG. 5 is the nucleic acid and encoded amino acid sequence of a host DNA (VH) designed to facilitate insertion of CDRs of choice. The DNA was designed to have unique 6-base sites directly flanking the CDRs so that relatively small oligonucleotides defining portions of CDRs can be readily inserted, and to have other sites to facilitate manipulation of the DNA to optimize binding properties in a given construct. The framework regions of the molecule correspond to mouse FRs (c.f. FIG. 4A).
FIG. 6 is a protein constructed in accordance with the invention comprising FB-Asp-Pro-VH -(Gly4 -Ser)3 -V'L. FB is the FB fragment of protein A, here used as a leader, and constituting a binding site for Fc, Asp-Pro is a dilute acid cleavage site, and the remainder of the sequence comprises a single chain BABS comprising the VH and V'L chains of mouse monoclonal 26-10 linked together with a 15 amino acid sequence. V'L is the VL of mouse monoclonal 26-10 altered at residue 4 where valine replaces methionine. This construct binds both Fc and digoxin.
FIG. 7 is a graph of percent of undiluted units bound versus concentration comparing the binding of native 26-10 and the construct of FIG. 6 and FIG. 2A renatured using two different procedures. Plot 3 represents the data for the native 26-10 antibody; plot 1 represents data from the construct of FIGS. 6 and 2A renatured using the slow folding procedures described herein; and plot 2 represents data from the same construct renatured using the fast dilution/quick refolding procedure disclosed herein.
In FIGS. 4A-4E and 6, the amino acid sequence of the expression products start after the GAATTC sequences, which codes for an EcoRI splice site, translated as Glu-Phe on the drawings.
Description of the Invention
As is now well known, Fv, the minimum antibody fragment which contains a complete antigen recognition and binding site, consists of a dimer of one heavy and one light chain variable domain in tight, noncovalent association (FIG. 1). It is in this configuration that the three complementarity determining regions of each variable domain interact to define an antigen binding site on the surface of the VH -VL dimer. Collectively, the six complementarity determining regions (see FIG. 1B) confer antigen binding specificity to the antibody. FRs flanking the CDRs have a tertiary structure which is essentially conserved in native immunoglobulins of species as diverse as human and mouse. These FRs serve to hold the CDRs in their appropriate orientation. The constant domains are not required for binding function, but may aid in stabilizing VH -VL interaction. Even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than an entire binding site (Painter et al., 1972, Biochem. 11: 1327-1337).
This knowledge of the structure of immunoglobulin proteins has now been exploited to develop biosynthetic antibody binding sites provided by this invention.
The biosynthetic antibody binding sites embodying the invention are biosynthetic in the sense that they are synthesized in a cellular host made to express a synthetic DNA, that is, a recombinant DNA made from ligation of plural, chemically synthesized oligonucleotides, or by ligation of fragments of DNA derived from the genome of a hybridoma, mature B cell clone, or a cDNA library derived from such natural sources. The proteins of the invention are properly characterized as "antibody binding sites" in that these synthetic molecules are designed specifically to have at least some affinity for a preselected antigenic substance. The polypeptides of the invention are antibody-like in that their structure is patterned after regions of native antibodies known to be responsible for antigen recognition.
More specifically, the structure of these biosynthetic proteins in the region which impart the binding properties to the protein, is analogous to the Fv region of a natural antibody. It comprises a series of regions consisting of amino acids defining at least three polypeptide segments which together form the tertiary molecular structure responsible for affinity and binding. These regions are herein called complementarity determining regions or CDRs. These CDR regions are held in appropriate conformation by polypeptide segments analogous to the framework regions of the Fv fragment of natural antibodies.
The term CDR, as used herein, refers to amino acid sequences which together define the binding affinity and specificity of the natural Fv region of a native immunoglobulin binding site, or a synthetic polypeptide which mimics this function. CDRs typically are not wholly homologous to hypervariable regions of natural Fvs, but rather also include specific amino acids or amino acid sequences which flank the hypervariable region and have heretofore been considered framework not directly determinitive of complementarity. The term FR, as used herein, refers to amino acid sequences interposed between CDRs.
The CDR and FR polypeptide segments are designed empirically based on sequence analysis of the Fv region of preexisting antibodies or of the DNA encoding them. In one embodiment, the amino acid sequences constituting the FR regions of the BABS are analogous to the FR sequences of a first preexisting antibody, for example, a human IgG. The amino acid sequences constituting the CDR regions are analogous to the sequences from a second, different preexisting antibody, for example, the CDRs of a murine IgG. Alternatively, the CDRs and FRs from a single preexisting antibody from, e.g., an unstable or hard to culture hybridoma, may be copied in their entirety.
Practice of the invention enables the design and biosynthesis of various reagents, all of which are characterized by a region having affinity for a preselected antigenic substance. Other regions of the biosynthetic protein are designed with the particular planned utility of the protein in mind. Thus, if the reagent is designed for intravascular use in mammals, the FR regions comprise amino acids similar or identical to at least a portion of the framework region amino acids of antibodies native to that mammalian species. On the other hand, the amino acids comprising the CDRs may be analogous to a portion of the amino acids from the hypervariable region (and certain flanking amino acids) of an antibody having a known affinity and specificity, e.g., a murine or rat monoclonal antibody.
Other sections, e.g., CH and CL, of native immunoglobulin protein structure need not be present and normally are intentionally omitted from the biosynthetic proteins of this invention. However the BABS of the invention may comprise additional polypeptide regions defining a bioactive region, e.g., a toxin or enzyme, or a site onto which a toxin or a remotely detectable substance can be attached.
The clinical administration of the BABS of the invention, which display the activity of native, relatively small Fv, VH, or VL fragments, affords a number of advantages over the use of larger fragments or entire antibody molecules. The BABS of this invention offer fewer cleavage sites to circulating proteolytic enzymes and thus offer greater stability. They reach their target tissue more rapidly, and are cleared more quickly from the body. They also have reduced immunogenicity. In addition, their smaller size facilitates coupling to other molecules in drug targeting and imaging application.
The invention thus provides intact biosynthetic antibody binding sites analogous to VH -VL dimers, either non-covalently associated, disulfide bonded, or linked by a polypeptide sequence to form a composite VH -VL or VL -VH polypeptide which is essentially free of the remainder of the antibody molecule. The invention also provides proteins analogous to an independent VH or VL domain. Any of these proteins may be provided in a form linked to amino acid sequences exclusive of those of the variable domain, for example, to amino acids analogous or homologous to proteins of a constant domain, or another bioactive molecules such as a hormone or toxin. A proteolytic cleavage site can also be designed into the region separating the variable region-like sequences from other pendant sequences so as to facilitate cleavage of intact VH and/or VL, free of other protein.
FIGS. 2A, 2B, 2C, and 2D illustrate four examples of protein structures embodying the invention that can be produced by following the teaching disclosed herein. All are characterized by one or two biosynthetic polypeptide segments defining a binding site 3, and comprising amino acid sequences comprising CDRs and FRs, often derived from different immunoglobulins, or sequences homologous to a portion of CDRs and FRs from different immunoglobulins. FIG. 2A depicts a single chain Fv comprising a polypeptide 10 having an amino acid sequence analogous to the variable region of an immunoglobulin heavy chain, bound through its carboxyl end to a polypeptide linker 12, which in turn is bound to a polypeptide 14 having an amino acid sequence analogous to the variable region of an immunoglobulin light chain. Of course, the light and heavy chain domains may be in reverse order. The linker 12 should be at least long enough (e.g., about 15 amino acids or about 40A) to permit the chains 10 and 14 to assume their proper conformation. The linker 12 may comprise an amino acid sequence homologous to a sequence identified as "self" by the species into which it will be introduced, if drug use is intended. Unstructured, hydrophilic amino acid sequences are preferred. It may also comprise a bioactive polypeptide such as a cell toxin which is to be targeted by the binding site, or a segment easily labeled by a radioactive reagent which is to be delivered, e.g., to the site of a tumor comprising an epitope recognized by the binding site. Other proteins or polypeptides may be attached to either the amino or carboxyl terminus of protein of the type illustrated in FIG. 2A. As an example, a helically coiled polypeptide structure illustrating a leader comprising a protein A fragment is shown extending from the amino terminal end of VH domain 10.
FIG. 2B illustrates two separate chains non-covalently associated and defining a binding site 3. It comprises separate peptides 16 and 18 comprising a chimeric VH and VL of the type described above. The carboxyl terminus of each protein chain may be designed to include one or more cysteine residues so that oxidation of properly folded structures produces disulfide bonds (see FIG. 2C) further stabilizing the BABS. Either or both of the polypeptides may further comprise a fused protein imparting other biological properties to the reagent in addition t the ability to bind to the antigen as specified by the interaction of the triplet CDRs on the respective polypeptides 16 and 18.
FIG. 2D depicts another type of reagent, comprising only one set of three CDRs, e.g., analogous to a heavy chain variable region, which retains a measure of affinity for the antigen. Attached to the carboxyl end of the polypeptide comprising the FR and CDR sequences constituting the binding site 3 is a Pendant Protein P consisting of, for example, a toxin, therapeutic drug, binding protein, enzyme or enzyme fragment, site of attachment for an imaging agent (e.g., to chelate a radioactive ion such as Indium), or site of attachment to an immobilization matrix so that the BABS can be used in affinity chromatography.
Of course, the protein may comprise more than one binding site or copies of a single binding site, and a number of other functional regions.
As is evidenced from the foregoing, the invention provides a large family of reagents comprising proteins, at least a portion of which defines a binding site patterned after the variable region or regions of natural immunoglobulins. It will be apparent that the nature of any protein fragments linked to the BABS, and used for reagents embodying the invention, are essentially unlimited, the essence of the invention being the provision, either alone or linked in various ways to other proteins, of binding sites having specificities to any antigen desired.
The BABS of the invention are designed at the DNA level. The chimeric or synthetic DNAs are then expressed in a suitable host system, and the expressed proteins are collected and renatured if necessary.
The ability to design the BABS of the invention depends on the ability to determine the sequence of the amino acids in the variable region of monoclonal antibodies of interest, or the DNA encoding them. Hybridoma technology enables production of cell lines secreting antibody to essentially any desired substance that produces an immune response. RNA encoding the light and heavy chains of the immunoglobulin can then be obtained from the cytoplasm of the hybridoma, and the 5' end portion of the mRNA can be used to prepare the cDNA for subsequent sequencing, or the amino acid sequence of the hypervariable and flanking framework regions can be determined by amino acid sequencing of the H and L chains and their V region fragments. Such sequence analysis is now conducted routinely. This knowledge permits one to design synthetic genes encoding FR and CDR sequences which likely will bind the antigen. These synthetic genes are then prepared using known techniques, or using the technique disclosed below, and then inserted into a suitable host, expressed, and purified. Depending on the host cell, renaturation techniques may be required to attain proper conformation. The various proteins are then tested for binding ability, and one having appropriate affinity is selected for incorporation into a reagent of the type described above. If necessary, point substitutions seeking to optimize binding may be made in the DNA using conventional casette mutagenesis or other protein engineering methodology.
Of course, the processes for manipulating, amplifying, and recombining DNA which encode amino acid sequences of interest are generally well known in the art, and therefore, not described in detail herein. Methods of identifying and isolating genes encoding antibodies of interest are well understood, and described in the patent and other literature. In general, the methods involve selecting genetic material coding for amino acids which define the CDRs and FRs of interest according to the genetic code.
Accordingly, the construction of DNAs encoding BABS as disclosed herein can be done using known techniques involving the use of various restriction enzymes which make sequence specific cuts in DNA to produce blunt ends or cohesive ends, DNA ligases, techniques enabling enzymatic addition of sticky ends to blunt-ended DNA, construction of synthetic DNAs by assembly of short or medium length oligonucleotides, cDNA synthesis techniques, and synthetic probes for isolating immunoglobulin genes. Various promoter sequences and other regulatory DNA sequences used in achieving expression, and various types of host cells are also known and available. Conventional transfection techniques, and equally conventional techniques for cloning and subcloning DNA are useful in the practice of this invention and known to those skilled in the art. Various types of vectors may be used such as plasmids and viruses including animal viruses and bacteriophages. The vectors may exploit various marker genes which impart to a successfully transfected cell a detectable phenotypic property that can be used to identify which of a family of clones has successfully incorporated the recombinant DNA of the vector.
One method for obtaining DNA encoding the BABS disclosed herein is by assembly of synthetic oligonucleotides produced in a conventional, automated, polynucleotide synthesizer followed by ligation with appropriate ligases. For example, overlapping, complementary DNA fragments comprising 15 bases may be synthesized semi manually using phosphoramidite chemistry, with end segments left unphosphorylated to prevent polymerization during ligation. One end of the synthetic DNA is left with a "sticky end" corresponding to the site of action of a particular restriction endonuclease, and the other end is left with an end corresponding to the site of action of another restriction endonuclease. Alternatively, this approach can be fully automated. The DNA encoding the BABS may be created by synthesizing longer single strand fragments (e.g., 50-100 nucleotides long) in, for example, a Biosearch oligonucleotide synthesizer, and then ligating the fragments.
Still another method of producing the BABS of the invention is to produce a synthetic DNA encoding a polypeptide comprising, e.g., human FRs, and intervening "dummy" CDRs, or amino acids having no function except to define suitably situated unique restriction sites. This synthetic DNA is then altered by DNA replacement, in which restriction and ligation is employ ed to insert synthetic oligonucleotides encoding CDRs defining a desired binding specificity in the proper location between the FRs.
This technique is dependent upon the ability to cleave a DNA corresponding in structure to a variable domain gene at specific sites flanking nucleotide sequences encoding CDRs. These restriction sites in some cases may be found in the native gene. Alternatively, non-native restriction sites may be engineered into the nucleotide sequence resulting in a synthetic gene with a different sequence of nucleotides than the native gene, but encoding the same variable region amino acids because of the degeneracy of the genetic code. The fragments resulting from endonuclease digestion, and comprising FR-encoding sequences, are then ligated to non-native CDR-encoding sequences to produce a synthetic variable domain gene with altered antigen binding specifity. Additional nucleotide sequences encoding, for example, constant region amino acids or a bioactive molecule may also be linked to the gene sequences to produce a bifunctional protein.
The expression of these synthetic DNA's can be achieved in both prokaryotic and eucaryotic systems via transfection with the appropriate vector. In E. coli and other microbial hosts, the synthetic genes can be expressed as fusion protein. Expression in eucaryotes can be accomplished by the transfection of DNA sequences encoding CDR and FR region amino acids into a myeloma or other type of cell line. By this strategy intact hybrid antibody molecules having hybrid Fv regions and various bioactive proteins including a biosynthetic binding domain may be produced. For fusion protein expressed in bacteria subsequent proteolytic cleavage of the isolated VH and VL fusions can be performed to yield free VH and VL, which can be renatured, and reassociated (or used separately) to obtain an intact biosynthetic, hybrid antibody binding site.
Heretofore, it has not been possible to cleave the heavy and light chain region to separate the variable and constant regions of an immunoglobulin so as to produce intact Fv, except in specific cases not of general utility. However, one method of producing BABS in accordance with this invention is to redesign an immunoglobulin at the DNA level so as to alter its specificity and so as to incorporate a cleavage site and "hinge region" between the variable and constant regions of both the heavy and light chains. Such chimeric antibodies can be produced in transfectomas or the like and subsequently cleaved using a preselected endopeptidase. The engineering principles involved in these easily cleaved constructs are disclosed in detail in copending U.S. application Ser. No. 028,484 filed Mar. 20, 1987 by Huston et al.
The hinge region is a sequence of amino acids which serve t o promote efficient cleavage by a preselected cleavage agent at a preselected, built-in cleavage site. It is designed to promote cleavage preferentially at the cleavage site when the polypeptide is treated with the cleavage agent in an appropriate environment.
The hinge can take many different forms. Its design involves selection of amino acid residues (and a DNA fragment encoding them) which impart to the region of the fused protein about the cleavage site an appropriate polarity, charge distribution, and stereochemistry which, in the aqueous environment where the cleavage takes place, efficiently exposes the cleavage site to the cleavage agent in preference to other potential cleavage sites that may be present in the polypeptide, and/or to improve the kinetics of the cleavage reaction. In specific cases the amino acids of the hinge are selected and assembled in sequence based on their known properties, and then the fused polypeptide sequence is expressed, tested, and altered for empirical refinement.
The hinge region is free of cysteine. This enables the cleavage reaction to be conducted under conditions in which the protein assumes its tertiary conformation, and may be held in this conformation by intramolecular disulfide bonds. It has been discovered that in these conditions access of the protease to potential cleavage sites which may be present within the target protein is hindered. The hinge region may comprise an amino acid sequence which includes one or more proline residues. This allows formation of a substantially unfolded molecular segment. Aspartic acid, glutamic acid, arginine, lysine, serine, and threonine residues maximize ionic interactions and may be present in amounts and/or in sequence which renders the moiety comprising the hinge water soluble.
In the case of single chain Fv comprising fused H and L chains, the cleavage site preferably is immediately adjacent the Fv polypeptide and comprises one or a sequence of amino acids exclusive of any one or sequence found in the amino acid structure of the BABS. Where BABS VH and VL regions are on separate chains (i.e., see FIG. 1A). the cleavage sites may be either immediately adjacent their C-terminal ends, thereby releasing Fv dimer of VH and VL upon appropriate cleavage (i.e., to yield the species of FIG. 2B), or may follow pendant polypeptides with or without cysteine that yield, respectively, the species of FIG. 2C or 2D upon digestion.
The cleavage site preferably is designed for cleavage by a specific selected agent. Endopeptidases are preferred, although non-enzymatic (chemical) cleavage agents may be used. Many useful cleavage agents, for instance, cyanogen bromide, dilute acid, trypsin, Staphylococcus aureus V-8 protease, post proline cleaving enzyme, blood coagulation Factor Xa, enterokinase, and renin, recognize and preferentially or exclusively cleave particular cleavage sites. One currently preferred cleavage agent is V-8 protease. The currently preferred cleavage site is a Glu residue. Other useful enzymes recognize multiple residues as a cleavage site, e.g., factor Xa (Ile-Glu-Gly-Arg) or enterokinase (AsP-Asp-AsP-Asp-Lys).
EXEMPLIFICATION
FRs from the heavy and light chain murine anti-digoxin monoclonal 26-10 (FIGS. 4A and 4B) were encoded on the same DNAs with CDRs from the murine anti-lysozyme monoclonal glp-4 heavy chain (FIG. 3 sequence 1) and light chain to produce heavy (FIG. 4C) and light (FIG. 4D) chain together defining a chimeric antibody binding site which is specific for . lysozyme. Murine CDRs from both the heavy and light chains of monoclonal glp-4 were encoded on the same DNAs with FRs from the heavy and light chains of human myeloma antibody NEWM (FIGS. 4E and 4F). The resulting interspecies chimeric antibody binding domain has reduced immunogenicity in humans because of its human FRs, and has specificity for lysozyme because of its murine CDRs.
A synthetic DNA was designed to facilitate CDR insertions into a human heavy chain framework and to facilitate empirical refinement of the resulting chimeric amino acid sequence. This DNA is depicted in FIG. 5.
A synthetic, bifunctional protein was also designed at the DNA level, expressed, purified, renatured, and shown to bind specifically with a preselected antigen (digoxin). The detailed primary structure of this construct is shown in FIG. 6; its tertiary structure is illustrated schematically in FIG. 2A.
Details of these experiments, and the design principles on which the invention is based, are set forth below.
I. GENE DESIGN AND EXPRESSION
With the help of a computer program and known variable region DNA sequences, synthetic VL and VH genes may be designed which encode native or near native FR and CDR amino acid sequences from an antibody molecule, each separated by unique restriction sites located as close to FR-CDR and CDR-FR borders as possible. Alternatively, genes may be designed which encode native FR sequences which are similar or identical to the FRs of an antibody molecule from a selected species, each separated by "dummy" CDR sequences containing strategically located restriction sites. These DNAs serve as starting materials for producing BABS, as the native or "dummy" CDR sequences may be excised and replaced with sequences encoding the CDR amino acids defining a selected binding site. Alternatively, one may design and directly synthesize native or near-native FR sequences from a first antibody molecule, and CDR sequences from a second antibody molecule. Any one of the VH and VL sequences described above may be linked together directly, either via an amino acids chain or linker connecting the C-terminus of one chain with the N-terminus of the other, or via C-terminal cysteine residues on each of the VH and VL.
These genes, once synthesized, may be cloned with or without additional DNA sequences coding for, e.g., an antibody constant region, or a leader peptide which facilitates secretion or intracellular stability of a fusion polypeptide. The genes then can be expressed directly in an appropriate host cell, or can be further engineered before expression by the exchange of FR, CDR, or "dummy" CDR sequences with new sequences. This manipulation is facilitated by the presence of the restriction sites which have been engineered into the gene at the FR-CDR and CDR-FR borders.
FIG. 3 illustrates the general approach to designing a chimeric VH ; further details of exemplary designs at the DNA level are shown in FIGS. 4A-4F. FIG. 3, lines 1 and 2, show the amino acid sequences of the heavy chain variable region of the murine monoclonals glp-4 (anti-lysozyme) and 26-10 (anti-digoxin), including the four FR and three CDR sequences of each. Line 3 shows the sequence of a chimeric VH which comprises 26-10 FRs and glp-4 CDRs. As illustrated, the hybrid protein of line 3 is identical to the native protein of line 2, except that 1) the sequence TFTNYYIHWLK has replaced the sequence IFTDFYMNWVR, 2) EWIGWIYPGNGNTKYNENFKG has replaced DYIGYISPYSGVTGYNQKFKG, 3) RYTHYYF has replaced GSSGNKWAM, and 4) A has replaced V as the sixth amino acid beyond CDR-2. These changes have the effect of changing the specificity of the 26-10 VH to mimic the specificity of glp-4. The Ala to Val single amino acid replacement within the relatively conserved framework region of 26-10 is an example of the replacement of an amino acid outside the hypervariable region made for the purpose of altering specificity by CDR replacement. Beneath sequence 3 of FIG. 3, the restriction sites in the DNA encoding the chimer VH (see FIGS. 4A-4F) are shown which are disposed about the CDR-FR borders.
Lines 4 and 5 of FIG. 3 represent another construct. Line 4 is the full length VH of the human antibody NEWM. That human antibody may be made specific for lysozyme by CDR replacement as shown in line 5. Thus, for example, the segment TFTNYYIHWLK from glp-4 replaces TFSNDYYTWVR of NEWM, and its other CDRs are replaced as shown. This results in a VH comprising a human framework with mouse sequences determining specificity.
By sequencing any antibody, or obtaining the sequence from the literature, in view of this disclosure one skilled in the art can produce a BABS of any desired specificity comprising any desired framework region. Diagrams such as FIG. 3 comparing the amino acid sequence are valuable in suggesting which particular amino acids should be replaced to determine the desired complementarity. Expressed sequences may be tested for binding and empirically refined by exchanging selected amino acids in relatively conserved regions, based on observation of trends in amino acid sequence data and/or computer modeling techniques.
Significant flexibility in VH and VL design is possible because the amino acid sequences are determined at the DNA level, and the manipulation of DNA is now accomplished easily.
For example, the DNA sequence for mouse VH and VL 26-10 containing specific restriction sites flanking each of the three CDRs was designed with the aid of a commercially available computer program which performs combined reverse translation and restriction site searches ("RV.exe" by Compugene, Inc.). The known amino acid sequences for VH and VL 26-10 polypeptides were entered, and all potential DNA sequences which encode those peptides and all potential restriction sites were analyzed by the program. The program can, in addition, select DNA sequences encoding the peptide using only codons preferred by E. coli if this bacterium is to be host expression organism of choice. FIGS. 4A and 4B show an example of program output. The nucleic acid sequences of the synthetic gene and the corresponding amino acids are shown. Sites of restriction endonuclease cleavage are also indicated. The CDRs of these synthetic genes are underlined.
The DNA sequences for the synthetic 26-10 VH and VL are designed so that one or both of the restriction sites flanking each of the three CDRs are unique. A six base site (such as that recognized by Bsm I or BsPM I) is preferred, but where six base sites are not possible, four or five base sites are used. These sites, if not already unique, are rendered unique within the gene by eliminating other occurrences within the gene without altering necessary amino acid sequences. Preferred cleavage sites are those that, once cleaved, yield fragments with sticky ends just outside of the boundary of the CDR within the framework. However, such ideal sites are only occasionally possible because the FR-CDR boundary is not an absolute one, and because the amino acid sequence of the FR may not permit a restriction site. In these cases, flanking sites in the FR which are more distant from the predicted boundary are selected.
FIG. 5 discloses the nucleotide and corresponding amino acid sequence (shown in standard single letter code) of a synthetic DNA comprising a master framework gene having the generic structure:
R.sub.1 -FR.sub.1 -X.sub.1 -FR.sub.2 -X.sub.2 -FR.sub.3 -X.sub.3 -FR.sub.4 -R.sub.2
where R1 and R2 are blunt ends which are to be ligated into a vector and X1, X2, and X3 are DNA sequences whose only function is to provide convenient restriction sites for CDR insertion. This particular DNA has mouse FR sequences and unique, 6-base restriction sites adjacent the FR borders so that nucleotide sequences encoding CDRs from a desired monoclonal can be inserted easily. Restriction endonuclease digestion sites are indicated with their abbreviations; enzymes of choice for CDR replacement are underscored. Digestion of the gene with the following restriction endonucleases results in 3' and 5' ends which can easily be matched up with and ligated to native or synthetic CDRs of desired specificity: KPnI and BstXI are used for ligation of CDR1 ; XbaI and DraI for CDR2 ; and BssHII and ClaI for CDR3.
II. OLIGONUCLEOTIDE SYNTHESIS
The synthetic genes and DNA fragments designed as described above preferably are produced by assembly of chemically synthesized oligonucleotides. 15-100mer oligonucleotides may be synthesized on a Biosearch DNA Model 8600 Synthesizer, and purified by polyacrylamide gel electrophoresis (PAGE) in Tris-Borate-EDTA buffer (TBE). The DNA is then electroeluted from the gel. Overlapping oligomers may be phosphorylated by T4 polynucleotide kinase and ligated into larger blocks which may also be purified by PAGE.
III. CLONING OF SYNTHETIC OLIGONUCLEOTIDES
The blocks or the pairs of longer oligonucleotides may be cloned into E. coli using a suitable, e.g., pUC, cloning vector. Initially, this vector may be altered by single strand mutagenesis to eliminate residual six base altered sites. For example, VH may be synthesized and cloned into pUC as five primary blocks spanning the following restriction sites: 1. EcoRI to first NarI site; 2. first NarI to XbaI; 3. XbaI to SalI; 4. SalI to NcoI; 5. NcoI to BamHI. These cloned fragments may then be isolated and assembled in several three-fragment ligations and cloning steps into the pUC8 plasmid. Desired ligations selected by PAGE are then transformed into, for example, E. coli strain JM83, and plated onto LB Ampicillin +Xgal Plates according to standard procedures. The gene sequence may be confirmed by supercoil sequencing after cloning, or after subcloning into M13 via the dideoxy method of Sanger.
IV. CDR EXCHANGE
Three CDRs (or alternatively, four FRs) can be replaced per VH or VL. In simple cases, this can be accomplished by cutting the shuttle pUC plasmid containing the respective genes at the two unique restriction sites flanking each CDR or FR, removing the excised sequence, and ligating the vector with a native nucleic acid sequence or a synthetic oligonucleotide encoding the desired CDR or FR. This three part procedure would have to be repeated three times for total CDR replacement and four times for total FR replacement. Alternatively, a synthetic nucleotide encoding two consecutive CDRs separated by the appropriate FR can be ligated to a pUC or other plasmid containing a gene whose corresponding CDRs and FR have been cleaved out. This procedure reduces the number of steps required to perform CDR and/or FR exchange.
V. EXPRESSION OF PROTEINS
The engineered genes can be expressed in appropriate prokaryotic hosts such as various strains of E. coli, and in eucaryotic hosts such as Chinese hamster ovary cell, mouse myeloma, and human myeloma/transfectoma cells.
For example, if the gene is to be expressed in E. coli, it may first be cloned into an expression vector. This is accomplished by positioning the engineered gene downstream from a promoter sequence such as Trp or Tac, and a gene coding for a leader peptide such as fragment B of protein A (FB). The resulting expressed fusion protein accumulates in refractile bodies in the cytoplasm of the cells, and may be harvested after disruption of the cells by French press or sonication. The refractile bodies are solubilized, and the expressed proteins refolded and cleaved by the methods already established for many other recombinant proteins.
If the engineered gene is to be expressed in myeloma cells, the conventional expression system for immunoglobulins, it is first inserted into an expression vector containing, for example, the Ig promoter, a secretion signal, immunoglobulin enhancers, and various introns. This plasmid may also contain sequences encoding all or part of a constant region, enabling an entire part of a heavy or light chain to be expressed. The gene is transfected into myeloma cells via established electroporation or protoplast fusion methods. Cells so transfected can express VL or VH fragments, VL -VH heterodimers, VH -VL or VL -VH single chain polypeptides, complete heavy or light immunoglobulin chains, or portions thereof, each of which may be attached in the various ways discussed above to a protein domain having another function (e.g., cytotoxicity).
Vectors containing a heavy chain V region (or V and C regions) can be cotransfected with analogous vectors carrying a light chain V region (or V and C regions), allowing for the expression of noncovalently associated Fvs (or complete antibody molecules).
CDR Exchange in a Synthetic Gene
The synthetic gene coding for mouse VH and VL 26-10 shown in FIGS. 4A and 4B were designed from the known amino acid sequence of the protein with the aid of Compugene, a software program. These genes, although coding for the native amino acid sequences, also contain non-native and often unique restriction sites flanking nucleic acid sequences encoding CDR's to facilitate CDR replacement as noted above.
Both the 3' and 5' ends of the large synthetic oligomers were designed to include 6-base restriction sites, present in the genes and the pUC vector. Furthermore, those restriction sites in the synthetic genes which were only suited for assembly but not for cloning the pUC were extended by "helper" cloning sites with matching sites in pUC.
Cloning of the synthetic DNA and later assembly of the gene was facilitated by the spacing of unique restriction sites along the gene. This allows corrections and modifications by cassette mutagenesis at any location. Among them are alterations near the 5' or 3' ends of the gene as needed for the adaptation to different expression vectors. For example, a PstI site is positioned near the 5' end of the VH gene. Synthetic linkers can be attached easily between this site and a restriction site in the expression plasmid. These genes were synthesized by assembling oligonucleotides as described above using a Biosearch Model 8600 DNA Synthesizer. They were ligated to vector pUC8 for transformation of E. coli.
Specific CDRs may be cleaved from the synthetic VH gene by digestion with the following pairs of restriction endonucleases: HpHI and BstXI for CDR1 ; XbaI and DraI for CDR2 ; and BanII and BanI for CDR3. After removal of one CDR, another CDR of desired specificity may be ligated directly into the restricted gene, in its place if the 3' and 5' ends of the restricted gene and the new CDR contain complementary single stranded DNA sequences.
In the present example, the three CDRs of each of mouse VH 26-10 and VL 26-10 were replacead with the corresponding CDRs of glp-4. The nucleic acid sequences and corresponding amino acid sequences of the chimeric VH and VL genes encoding the FRs of 26-10 and CDRs of glp-4 are shown in FIGS. 4C and 4D. The positions of the restriction endonuclease cleavage sites are noted with their standard abbreviations. CDR sequences are underlined as are the restriction endonucleases of choice useful for further CDR replacement.
These genes were cloned into pUC8, a shuttle plasmid. To retain unique restriction sites after cloning, the VH -like gene was spliced into the EcoRl and HindIII or BamHI sites of the plasmid.
Direct expression of the genes may be achieved in E. coli. Alternatively, the gene may be expressed in E. coli as a fusion product by splicing it into the host gene whose expression is regulated by interaction of a repressor with the respective operator. The protein can be induced by starvation in minimal medium and by chemical inducers. To date, the VH biosynthetic 26-10 gene has been expressed as such a fusion peptide behind the Trp and Tac promoters. The gene translation product must then be cleaved from the fusion protein by e.g., cyanogen bromide degradation, tryptic digestion, mild acid cleavage, and/or digestion with factor Xa protease. Therefore, a shuttle plasmid containing a synthetic gene encoding a leader peptide having a site for mild acid cleavage, and into which has been spliced the synthetic VH gene could be used for this purpose. In addition, synthetic DNA sequences encoding a signal peptide for secretion of the fusion protein into the periplasm of the host cell can also be incorporated into the plasmid.
After harvesting the gene product and optionally releasing it from a fusion peptide, its activity as an antibody binding site and its specificity for glp-4 (lysozyme) epitope are assayed by established immunological techniques, e.g., radioimmunoassay. Correct folding of the protein to yield the proper three-dimensional conformation of the antibody binding site is prerequisite for its activity. This occurs spontaneously in a host such as a myeloma cell which naturally expresses immunoglobulin proteins. Alternatively, for bacterial expression, the protein forms inclusion bodies which, after harvesting, must be subjected to a specific sequence of solvent conditions (e.g., diluted 20 X from 8M urea 0.01M Tris-HCl pH9 into 0.15M NaCl, 0.01M sodium phosphate, PH 7.4 (Hochman et al., 1976 Biochem. 15:2706-2710) to assume its correct conformation and hence its active form.
FIGS. 4E and 4F show the DNA and amino acid sequence of chimeric VH and VL comprising human FRs from NEWM and mouse CDRs from glp-4. The CDRs are underlined, as are restriction sites of choice for further CDR replacement or empirically determined refinement.
These constructs also constitute master framework genes, this time constructed of human framework sequences. They may be used to construct BABS of any desired specificity by appropriate CDR replacement.
Synthesis of a Single Chain Fv
A nucleic acid sequence encoding a composite Fv region or single chain antibody binding site was designed with the aid of Compugene, a computer program as described above. This gene contains nucleic acid sequences encoding the VH and VL regions of mouse 26-10 antibody linked together with a double-stranded synthetic oligonucleotide coding for a peptide with the amino acid sequence (Gly Gly Gly Gly Ser)3 as shown in FIG. 6. This linker oligonucleotide contains helper cloning sites EcoRI and BamHI and was designed to contain the assembly sites SacI and AatII near its 5' and 3' ends, respectively. These sites enable match-up and ligation to the 3' and 5' ends VH of and VL 26-10, respectively, which also contain these sites (VH -inker-VL). However, the order of linkage to the oligonucleotide may be reversed (VL -linker-VH). Other restriction sites were designed into the gene to provide alternative assembly sites. A sequence encoding the FB fragment of protein A was used as a leader.
The gene fragments were synthesized using a Biosearch DNA Model 8600 Synthesizer as described above. Synthetic oligonucleotides were cloned according to established protocol described above using the pUC8 vector transfected into E. coli. The completed fused gene set forth in FIG. 6 was expressed in E. Coli.
After sonication, inclusion bodies were collected by centrifugation, and dissolved in 6M guanidine hydrochloride (GuHCl), 0.2M Tris, and 0.1M 2-mercaptoethanol (BME) PH 8.2. The protein was denatured and reduced in the solvent overnight at room temperature. Size exclusion chromatography was used to purify fusion protein from the inclusion bodies. A Sepharose 4B column (1.5×80 cm) was run in a solvent of 6M GuHCl and 0.01M NaOAc at pH 4.75. The protein solution was applied to the column at room temperature in 0.5-1.0 ml amounts. Fractions were collected and precipitated with cold ethanol. These were run on SDS gels, and fractions rich in the recombinant protein (approximately 34,000d) were pooled. This offers a simple first step for cleaning up inclusion body preparations without suffering significant proteolytic degradation.
For refolding, the protein was dialyzed against 100 ml of the same GuHCl-Tris-BME solution, and dialysate was diluted 11-fold over two days to 0.55M GuHCl, 0.02M Tris, and 0.01M BME. The dialysis sacks were then transferred to 0.01M NaCl, and the protein was dialyzed exhaustively before being assayed by RIA's for binding of I-125 labeled digoxin. The refolding procedure can be simplified by making a rapid dilution with water to reduce the GuHCl concentration to 1.1M, and then dialyzing against phosphate buffered saline (0.15M NaCl, 0.05M potassium phosphate, pH7. containing 0.03% NaN3). so that it is free of any GuHCl within 12 hours. Product of both types o f preparation showed binding activity.
All of the assays were conducted by a modification of the procedure of Mudgett-Hunter et al., (1982, J. Immunol. 129:1165-1172; 1985, Molec. Immunol. 22:477-488), so that they could be run on microtiter plates as a solid phase sandwich assay. Binding data were collected using goat anti-mouse Fab antisera (gAmFab) as the primary antibody that initially coats the wells of the plate. These are polyclonal antisera which recognize epitopes that appear to reside mostly on mouse VL. The samples of interest are next added to the coated wells and incubated with the gAmFab, which binds species that exhibit appropriate antigenic sites. After washing away unbound protein, the wells are exposed to I-125 labeled (radioiodinated) digoxin conjugates, either as I-125-dig-BSA or I-125-dig-lysine.
The data are plotted in FIG. 7, which shows the results of a dilution curve experiment in which the parent 26-10 antibody was included as a control. The sites were probed with I-125-dig-BSA in this assay. It was conducted as described above, with a series of dilutions prepared from initial stock solutions, including both the slowly refolded (1) and fast diluted/quickly refolded (2) single chain Fv proteins. The parallelism between all three dilution curves indicates that gAmFab binding regions on the BABS molecule are essentially the same as on the Fv of authentic 26-10 antibody, i.e., the surface epitopes appear to be the same for both proteins.
The sensitivity of these assays is such that binding affinity of the Fv for digoxin must be at least 106. The parent 26-10 antibody has an affinity of 7×109 M-1. Inhibition assays indicate the binding of I-125-digoxin-lysine may be as high as 108, and can be inhibited by unlabeled digoxin, digoxigenin, digitoxin, digitoxigenin, gitoxin, acetyl strophanthidin, and ouabain in a way exactly parallel to the parent 26-10 Fab. This demonstrates that the specificity of the biosynthetic protein is substantially identical to the original monoclonal.
The invention may be embodied in other specific forms without departing from the spirit and scope thereof. Accordingly, other embodiments are within the following claims.

Claims (19)

What is claimed is:
1. A single polypeptide chain comprising:
two polypeptide domains connected by a polypeptide linker spanning the distance between the C-terminus of one domain to the N-terminus of the other and defining a single and complete site for binding a preselected antigen, wherein the amino acid sequence of one of said polypeptide domains comprises a heavy chain variable region, and the amino acid sequence of the other of said polypeptide domains comprises a light chain variable region, wherein at least one of said polypeptide domains comprises
a recombinant polypeptide comprising:
a set of CDR amino acid sequences together defining a recognition site for said preselected antigen,
a set of FR amino acid sequences linked to said set of CDR sequences,
said linked sets of CDR and FR amino acid sequences together defining a hybrid immunoglobulin variable region binding domain which is immunologically reactive with said preselected antigen and
a third amino acid sequence, peptide bonded to the N- or C- terminus of said site for binding, said third amino acid sequence comprising a single polypeptide chain having a conformation which confers biological activity to said third sequence under the same conditions that allow binding of said site for binding to said preselected antigen, said biological activity being independent of said site for binding.
2. The polypeptide chain of claim 1 wherein said third amino acid sequence is peptide bonded to the N-terminus of said site for binding.
3. The polypeptide chain of claim 1 wherein said third amino acid sequence is peptide bonded to the C-terminus of said site for binding.
4. The polypeptide chain of claim 1 wherein said third amino acid sequence is a polypeptide immunologically reactive with an antigen.
5. The polypeptide chain of claim 1 wherein said third amino acid sequence is a polypeptide chain which binds to a site other than on said preselected antigen.
6. The polypeptide chain of claim 1 wherein said third amino acid sequence is selected from the group consisting of toxins, sites for attachment to an immobilization matrix, and sites for attachment to a remotely detectable moiety.
7. The polypeptide chain of claim 1 further comprising a radioactive atom bound to said polypeptide chain.
8. A DNA encoding the polypeptide chain of claim 1.
9. A single chain recombinant protein comprising a first polypeptide region peptide bonded to at least one other polypeptide region,
one of said regions being immunologically reactive with a preselected antigenic site and comprising two polypeptide domains with the C-terminus of one peptide bonded to the N-terminus of the other through a polypeptide linker, each of said domains comprising a set of CDR amino acid sequences interposed between a set of FR amino acid sequences, said sets of CDR and FR sequences in said domains together defining a binding site immunologically reactive with said preselected antigenic site,
another of said polypeptide regions being peptide bonded to the N- or C-terminus of said immunologically reactive binding site and comprising a single chain polypeptide having a conformation which confers biological activity to said another region under the same conditions that allow binding of said binding site region to said preselected antigenic site, said biological activity being independent of said binding site region.
10. A single chain recombinant binding protein comprising at least two regions,
one of said regions comprising two polypeptide domains connected by a polypeptide linker, the amino acid sequence of each of said polypeptide domains comprising a set of CDRs interposed between a set of FRs, said sets of CDRs and FRs together forming a single chain binding site immunologically reactive with a preselected antigenic site,
said polypeptide linker comprising plural, peptide bonded amino acids defining a polypeptide which spans the distance between the C-terminus end of one of said domains and the N-terminus and of the other of said domains when said binding site assumes a conformation suitable for binding, and comprising hydrophilic amino acids such that said linker assumes an unstructured polypeptide configuration in aqueous solution, and
another of said regions comprising an amino acid sequence, peptide bonded to the N- or C- terminus of said binding site, comprising a single chain polypeptide having a conformation which confers biological activity to said another region under the same conditions that allow binding of said binding site to said preselected antigenic site, said biological activity being independent of said binding site region.
11. A single chain recombinant binding protein comprising at least two regions,
one of said regions comprising at least two polypeptide domains connected by a polypeptide linker extending from the C-terminus of one to the N-terminus of the other, the amino acid sequence of each of said polypeptide domains comprising a set of CDRs interposed between a set of FRs, said sets of CDRs and FRs together comprising a single chain binding site immunologically reactive with a preselected antigenic site, said binding site having a binding affinity of at least 106 liters/mole, and
another of said regions comprising an amino acid sequence peptide bonded to the N- or C-terminus of said binding site, comprising a single chain polypeptide having a conformation which confers biological activity to said another region under the same conditions that allow binding of said binding site region to said preselected antigenic site, said biological activity being independent of said binding site region.
12. A single chain recombinant binding protein comprising at least two regions,
one of said regions comprising at last two polypeptide domains connected by a polypeptide linker extending form the C-terminus of one to the N-terminus of the other, the amino acid sequence of each of said polypeptide domains comprising a set of CDRs interposed between a set of FRs, said sets of CDRs and FRs together comprising a single chain binding site immunologically reactive with a preselected antigenic site, said binding site having a binding affinity of at least 106 liters/mole,
said polypeptide linker comprising plural, peptide bonded amino acids defining a polypeptide which spans the distance between the C-terminus end of one of said domains and the N-terminus end of the other of said domains when said binding site assumes a conformation suitable for binding, and comprising hydrophilic amino acids such that said linker assumes an unstructured polypeptide configuration in aqueous solution, and
another of said regions comprising an amino acid sequence peptide bonded to the N- or C-terminus of said binding site, comprising a single chain polypeptide having a conformation which confers biological activity to said another region under the same conditions that allow binding of said binding site region to said preselected antigenic site, said biological activity being independent of said binding site region.
13. The single chain protein of claim 9, 10, 11, or 12 wherein said another polypeptide region comprises a set of CDR amino acid sequences interposed between a set of FR amino acid sequences, said sets of CDR and FR sequences together comprising a binding site immunologically reactive with an antigen.
14. The single chain protein of claim 9, 10, 11, or 12 wherein said another polypeptide region is selected from the group consisting of sites for attachment to a remotely detectable moiety; sites for attachment to an immobilization matrix; and toxins.
15. The single chain protein of claim 9, 10, 11, or 12 wherein said another polypeptide region comprises a toxin.
16. The single chain protein of claim 9, 10, 11, or 12 wherein said another region is bonded to the N-terminus of said binding site.
17. The single chain protein of claim 9, 10, 11, or 12 wherein said another region is a polypeptide chain which binds to a site other than said preselected antigenic site.
18. The single chain protein of claim 9, 10, 11 or 12 further comprising a radioactive atom.
19. A DNA encoding the single chain protein of claim 9, 10, 11, or 12.
US07/636,765 1987-05-21 1991-01-02 Biosynthetic antibody binding sites Expired - Lifetime US5091513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/636,765 US5091513A (en) 1987-05-21 1991-01-02 Biosynthetic antibody binding sites

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5280087A 1987-05-21 1987-05-21
US21376188A 1988-06-30 1988-06-30
US07/636,765 US5091513A (en) 1987-05-21 1991-01-02 Biosynthetic antibody binding sites

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21376188A Division 1987-05-21 1988-06-30

Publications (1)

Publication Number Publication Date
US5091513A true US5091513A (en) 1992-02-25

Family

ID=27368274

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/636,765 Expired - Lifetime US5091513A (en) 1987-05-21 1991-01-02 Biosynthetic antibody binding sites

Country Status (1)

Country Link
US (1) US5091513A (en)

Cited By (783)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019094A1 (en) * 1992-03-20 1993-09-30 Board Of Trustees Of The University Of Illinois A monoclonal antibody to a human mdr1 multidrug resistance gene product, and uses
WO1993021232A1 (en) * 1992-04-10 1993-10-28 Research Development Foundation IMMUNOTOXINS DIRECTED AGAINST c-erbB-2 (HER-2/neu) RELATED SURFACE ANTIGENS
US5258498A (en) * 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
WO1994015642A1 (en) * 1993-01-08 1994-07-21 Creative Biomolecules, Inc. Methods of delivering agents to target cells
US5359046A (en) * 1990-12-14 1994-10-25 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways
US5434075A (en) * 1992-03-20 1995-07-18 Board Of Trustees Of The University Of Illinois Monoclonal antibody to a human MDR1 multidrug resistance gene product, and uses
US5455030A (en) * 1986-09-02 1995-10-03 Enzon Labs, Inc. Immunotheraphy using single chain polypeptide binding molecules
WO1995029690A1 (en) * 1994-04-29 1995-11-09 The Trustees Of The University Of Pennsylvania Biologically active peptides and methods of identifying the same
WO1995029938A1 (en) * 1994-04-28 1995-11-09 Ferring Ab Antigen/antibody specificity exchanger
US5476786A (en) * 1987-05-21 1995-12-19 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5534254A (en) * 1992-02-06 1996-07-09 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
WO1996036360A1 (en) * 1995-05-17 1996-11-21 Regents Of The University Of Minnesota Immunoconjugates comprising single-chain variable region fragments of anti-cd-19 antibodies
US5621083A (en) * 1991-11-04 1997-04-15 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US5631158A (en) * 1993-10-25 1997-05-20 Creative Biomolecules, Inc. Methods and compositions for high protein production from non-native DNA
WO1997026009A1 (en) * 1996-01-17 1997-07-24 Progenics Pharmaceuticals, Inc. Compounds capable of inhibiting hiv-1 infection
US5652118A (en) * 1991-03-11 1997-07-29 Creative Biomolecules, Inc. Nucleic acid encoding a novel morphogenic protein, OP-3
US5672683A (en) * 1989-09-07 1997-09-30 Alkermes, Inc. Transferrin neuropharmaceutical agent fusion protein
US5674844A (en) * 1991-03-11 1997-10-07 Creative Biomolecules, Inc. Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
WO1997049429A1 (en) * 1996-06-27 1997-12-31 Exocell, Inc. Genetically engineered immunoglobulins with specificity for glycated albumin
US5739107A (en) * 1991-03-11 1998-04-14 Creative Biomolecules, Inc. Morphogen treatment of gastrointestinal ulcers
US5747654A (en) * 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5763733A (en) * 1994-10-13 1998-06-09 Enzon, Inc. Antigen-binding fusion proteins
US5801064A (en) * 1995-12-04 1998-09-01 Foresman; Mark D. Assay methods and reagents for detecting autoantibodies
US5811267A (en) * 1990-10-29 1998-09-22 Chiron Corporation Isolated nucleic acid molecules encoding antigen binding sites of antibody molecules specific for cancer antigens
WO1998044001A1 (en) 1997-03-27 1998-10-08 Commonwealth Scientific And Industrial Research Organisation High avidity polyvalent and polyspecific reagents
US5837491A (en) * 1991-11-04 1998-11-17 Xoma Corporation Polynucleotides encoding gelonin sequences
US5843728A (en) * 1991-03-07 1998-12-01 The General Hospital Corporation Redirection of cellular immunity by receptor chimeras
US5849877A (en) * 1990-10-29 1998-12-15 Chiron Corporation Antigen-binding sites of antibody molecules specific for cancer antigens
US5851828A (en) * 1991-03-07 1998-12-22 The General Hospital Corporation Targeted cytolysis of HIV-infected cells by chimeric CD4 receptor-bearing cells
US5853721A (en) * 1995-01-31 1998-12-29 Hoffmann-La Roche Inc. Antibody to interleukin-12 receptor
US5854071A (en) * 1991-03-11 1998-12-29 Creative Biomolecules, Inc. OP-3- induced morphongenesis
US5858683A (en) * 1996-08-30 1999-01-12 Matritech, Inc. Methods and compositions for the detection of cervical cancer
US5869620A (en) * 1986-09-02 1999-02-09 Enzon, Inc. Multivalent antigen-binding proteins
US5877291A (en) * 1992-12-11 1999-03-02 The Dow Chemical Company Multivalent single chain antibodies
US5891680A (en) * 1995-02-08 1999-04-06 Whitehead Institute For Biomedical Research Bioactive fusion proteins comprising the p35 and p40 subunits of IL-12
US5912170A (en) * 1991-03-07 1999-06-15 The General Hospital Corporation Redirection of cellular immunity by protein-tyrosine kinase chimeras
US5914238A (en) * 1996-06-05 1999-06-22 Matritech, Inc. Materials and methods for detection of breast cancer
US5939531A (en) * 1991-07-15 1999-08-17 Novartis Corp. Recombinant antibodies specific for a growth factor receptor
US5948647A (en) * 1990-10-29 1999-09-07 Chiron Corporation Nucleic acids encoding antigen-binding sites specific for cancer antigens
US5965405A (en) * 1988-04-16 1999-10-12 Celltech Limited Method for producing Fv fragments in eukaryotic cells
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US5972884A (en) * 1991-03-11 1999-10-26 Creative Biomolecules, Inc. Morphogen treatment of gastrointestinal ulcers
US5977307A (en) * 1989-09-07 1999-11-02 Alkermes, Inc. Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins
US5980895A (en) * 1995-10-13 1999-11-09 The United States Of America As Represented By The Department Of Health And Human Services Immunotoxin containing a disulfide-stabilized antibody fragment joined to a Pseudomonas exotoxin that does not require proteolytic activation
US5990275A (en) * 1992-11-20 1999-11-23 Enzon, Inc. Linker and linked fusion polypeptides
US5993813A (en) * 1988-10-19 1999-11-30 The Dow Chemical Company Family of high affinity, modified antibodies for cancer treatment
US5994088A (en) * 1991-03-08 1999-11-30 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6004811A (en) * 1991-03-07 1999-12-21 The Massachussetts General Hospital Redirection of cellular immunity by protein tyrosine kinase chimeras
US6015555A (en) * 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
US6040137A (en) * 1995-04-27 2000-03-21 Tripep Ab Antigen/antibody specification exchanger
US6040431A (en) * 1995-06-07 2000-03-21 Stryker Corporation Single chain analogs of the TGF-β superfamily (morphons)
US6051225A (en) * 1988-10-19 2000-04-18 The Dow Chemical Company Family of high affinity, modified antibodies for cancer treatment
US6056957A (en) * 1994-08-04 2000-05-02 Schering Corporation Humanized monoclonal antibodies against human interleukin-5
US6077823A (en) * 1991-03-11 2000-06-20 Creative Biomolecules, Inc. Method for reducing tissue damage associated with ischemia-reperfusion or hypoxia injury
US6090776A (en) * 1991-03-11 2000-07-18 Creative Bio Molecules, Inc. Morphogen treatment of organ implants
US6140470A (en) * 1995-06-30 2000-10-31 Yale University Human monoclonal anti-tumor antibodies
US6146850A (en) * 1991-11-04 2000-11-14 Xoma Corporation Proteins encoding gelonin sequences
US6165476A (en) * 1997-07-10 2000-12-26 Beth Israel Deaconess Medical Center Fusion proteins with an immunoglobulin hinge region linker
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US6187564B1 (en) 1997-07-10 2001-02-13 Beth Israel Deaconess Medical Center DNA encoding erythropoietin multimers having modified 5′ and 3′ sequences and its use to prepare EPO therapeutics
US6187308B1 (en) * 1989-06-02 2001-02-13 The Johns Hopkins University School Of Medicine Monoclonal antibodies against leukocyte adhesion receptor β-chain, methods of producing these antibodies and use therefor
US6197517B1 (en) 1999-05-21 2001-03-06 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
US6200803B1 (en) 1999-05-21 2001-03-13 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
US6211146B1 (en) 1991-03-11 2001-04-03 Curis, Inc. 60A protein-induced morphogenesis
US6221597B1 (en) 1999-05-21 2001-04-24 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
WO2001029079A1 (en) 1999-10-18 2001-04-26 Prince Henry's Institute Of Medical Research IMMUNO-INTERACTIVE FRAGMENTS OF THE αC SUBUNIT OF INHIBIN
US6242570B1 (en) 1997-07-10 2001-06-05 Beth Israel Deaconess Medical Center Production and use of recombinant protein multimers with increased biological activity
WO2001068801A2 (en) * 2000-03-16 2001-09-20 Ramot At Tel-Aviv University Ltd. Single chain antibody against mutant p53
US6329508B1 (en) 1989-09-07 2001-12-11 Alkermes, Inc. Transferrin receptor reactive chimeric antibodies
US6333396B1 (en) 1998-10-20 2001-12-25 Enzon, Inc. Method for targeted delivery of nucleic acids
US6358710B1 (en) 1996-06-07 2002-03-19 Neorx Corporation Humanized antibodies that bind to the antigen bound by antibody NR-LU-13
US20020045161A1 (en) * 1995-06-07 2002-04-18 Progenics Pharmaceuticals, Inc. Fluorescence resonance energy transfer screening assay for the identification of HIV-1 envelope glycoprotein-medicated cell
US20020098192A1 (en) * 1997-04-30 2002-07-25 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US6451982B1 (en) 1992-02-06 2002-09-17 Schering Corporation Design, cloning and expression of humanized monoclonal antibodies against human interleukin-5
US20020155429A1 (en) * 1996-04-01 2002-10-24 Progenics Pharmaceuticals, Inc. Method for preventing HIV-1 infection of CD4+ cells
US6495513B1 (en) 1991-03-11 2002-12-17 Curis, Inc. Morphogen-enhanced survival and repair of neural cells
US6521404B1 (en) 1991-12-02 2003-02-18 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US20030044423A1 (en) * 2001-03-07 2003-03-06 Lexigen Pharmaceuticals Corp. Expression technology for proteins containing a hybrid isotype antibody moiety
US20030049227A1 (en) * 2000-06-29 2003-03-13 Gillies Stephen D. Enhancement of antibody-cytokine fusion protein mediated immune responses by combined treatment with immunocytokine uptake enhancing agents
WO2003023404A1 (en) 2001-09-12 2003-03-20 The Walter And Eliza Hall Institute Of Medical Research A method of diagnosis and treatment and agents useful for same
US20030064480A1 (en) * 1990-06-28 2003-04-03 Leander Lauffer Fusion proteins with immunoglobulin portions, the preparation and use thereof
US20030064069A1 (en) * 1999-04-30 2003-04-03 Thompson Julia Elizabeth Specific binding members for TGFbeta1
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US6562333B1 (en) * 1993-06-14 2003-05-13 Schering Corporation Purified mammalian CTLA-8 antigens and related reagents
WO2003040169A2 (en) 2001-11-07 2003-05-15 Celldex Therapeutics , Inc. Human monoclonal antibodies to dendritic cells
US20030104355A1 (en) * 2001-11-02 2003-06-05 Caili Wang Adapter-directed display systems
US20030105294A1 (en) * 1998-02-25 2003-06-05 Stephen Gillies Enhancing the circulating half life of antibody-based fusion proteins
WO2003053220A2 (en) 2001-12-17 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
US20030124056A1 (en) * 2001-06-26 2003-07-03 Carr Francis J. Carrier molecules
US20030157092A1 (en) * 1992-04-10 2003-08-21 Research Development Foundation Immunotoxins directed against CD33 related surface antigens
US20030157054A1 (en) * 2001-05-03 2003-08-21 Lexigen Pharmaceuticals Corp. Recombinant tumor specific antibody and use thereof
US20030166163A1 (en) * 2001-12-04 2003-09-04 Emd Lexigen Research Center Corp. Immunocytokines with modulated selectivity
US20030166877A1 (en) * 2001-03-30 2003-09-04 Lexigen Pharmaceuticals Corp. Reducing the immunogenicity of fusion proteins
WO2003076455A2 (en) 2002-03-05 2003-09-18 Ramot At Tel-Aviv University Ltd. Immunizing composition and method for inducing an immune response against the ss-secretase cleavage site of amyloid precursor protein
US20030221201A1 (en) * 2001-08-30 2003-11-27 Biorexis Pharmaceutical Corporation Modified transferrin fusion proteins
US20030225251A1 (en) * 1996-12-27 2003-12-04 Matti Sallberg Specificity exchangers that redirect antibodies to a pathogen
US20030224979A1 (en) * 1991-03-11 2003-12-04 Thangavel Kuberasampath Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US20030226155A1 (en) * 2001-08-30 2003-12-04 Biorexis Pharmaceutical Corporation Modified transferrin-antibody fusion proteins
US6660842B1 (en) 1994-04-28 2003-12-09 Tripep Ab Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
US20030235815A1 (en) * 2000-04-21 2003-12-25 Matti Sallberg Synthetic peptides that bind to the hepatitis B virus core and E antigens
WO2004003142A2 (en) 2002-06-28 2004-01-08 Xcyte Therapies, Inc. Compositions and methods for restoring immune repertoire in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US20040009166A1 (en) * 1997-04-30 2004-01-15 Filpula David R. Single chain antigen-binding polypeptides for polymer conjugation
US6685930B1 (en) 1991-03-27 2004-02-03 Tanox, Inc. Methods and substances for recruiting therapeutic agents to solid tumors
US20040023334A1 (en) * 2001-08-30 2004-02-05 Biorexis Pharmaceutical Corporation Modified transferrin fusion proteins
WO2004011617A2 (en) 2002-07-29 2004-02-05 Senomyx, Inc. Identification of a novel bitter taste receptor, t2r76
US20040072299A1 (en) * 1999-08-09 2004-04-15 Gillies Stephen D. Multiple cytokine protein complexes
US20040093164A1 (en) * 2002-11-08 2004-05-13 Carlson William D. Computer system and methods for producing morphogen analogs of human TDF-1
US20040115183A1 (en) * 2000-12-26 2004-06-17 Aharon Rabinkov Site-specific in situ generation of allicin using a targeted alliinase delivery system for the treatment of cancers, tumors, infectious diseases and other allicin-senstive diseases
US6759241B1 (en) 1999-10-04 2004-07-06 University Of Maryland Biotechnology Institute Adjuvant comprising a lipopolysaccharide antagonist
US20040157214A1 (en) * 1990-07-10 2004-08-12 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO2004083455A1 (en) 2003-03-21 2004-09-30 The Murdoch Childrens Research Institute Therapeutic, prophylactic and diagnostic agents
US6800603B2 (en) 1991-03-11 2004-10-05 Curis, Inc. Morphogen-induced neural cell adhesion
US20040203100A1 (en) * 2002-12-17 2004-10-14 Emd Lexigen Research Center Corp. Immunocytokine sequences and uses thereof
US20040228836A1 (en) * 2003-02-14 2004-11-18 University Of Southern California Compositions and methods for cancer immunotherapy
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
WO2005003158A2 (en) 2003-06-16 2005-01-13 Celltech R & D, Inc. Compositions and methods for increasing bone mineralization
US20050019333A1 (en) * 2003-02-06 2005-01-27 Matti Sallberg Glycosylated specificity exchangers
US20050042729A1 (en) * 1999-05-19 2005-02-24 Emd Lexigen Research Center Corp. Expression and export of interferon-alpha proteins as Fc fusion proteins
US20050049403A1 (en) * 1995-10-06 2005-03-03 Cambridge Antibody Technology Limited Specific binding members for human transforming growth factor beta; materials and methods
US20050058638A1 (en) * 1987-05-21 2005-03-17 Huston James S. Biosynthetic binding proteins for immuno-targeting
US20050069521A1 (en) * 2003-08-28 2005-03-31 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of interleukin-2 proteins
US20050074854A1 (en) * 2003-02-06 2005-04-07 Matti Sallberg Glycosylated specificity exchangers
US20050124862A1 (en) * 2003-09-15 2005-06-09 Mousa Shaker A. Thyroid hormone analogs and methods of use
US20050137384A1 (en) * 1997-12-08 2005-06-23 Emd Lexigen Research Center Corp. Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
WO2005059106A2 (en) 2003-12-10 2005-06-30 Medarex, Inc. Interferon alpha antibodies and their uses
US20050147612A1 (en) * 2001-06-20 2005-07-07 Avner Yayon Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US20050163774A1 (en) * 1992-04-10 2005-07-28 Research Development Foundation Immunotoxins directed against c-erbB-2(HER-2/neu) related surface antigens
US6924359B1 (en) 1999-07-01 2005-08-02 Yale University Neovascular-targeted immunoconjugates
US20050192211A1 (en) * 2003-12-31 2005-09-01 Emd Lexigen Research Center Corp. Fc-erythropoietin fusion protein with improved pharmacokinetics
US20050202021A1 (en) * 2004-01-22 2005-09-15 Emd Lexigen Research Center Corp. Anti-cancer antibodies with reduced complement fixation
US20050202538A1 (en) * 1999-11-12 2005-09-15 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
US6949505B1 (en) 1991-03-11 2005-09-27 Curis, Inc. Morphogen-induced dendritic growth
US20050214286A1 (en) * 2004-01-27 2005-09-29 University Of Southern California Polymer-bound antibody cancer therapeutic agent
US20050249739A1 (en) * 2003-11-25 2005-11-10 Wayne Marasco Antibodies against SARS-CoV and methods of use thereof
US20050255113A1 (en) * 1999-07-27 2005-11-17 New York State Department Of Health And Abgenix, Inc. Methods and compositions for inhibiting polypeptide accumulation associated with neurological disorders
US20050281781A1 (en) * 2004-06-16 2005-12-22 Ostroff Gary R Drug delivery product and methods
US20060003334A1 (en) * 1995-08-18 2006-01-05 Morphosys Ag Protein (poly)peptides libraries
US20060034836A1 (en) * 2000-02-11 2006-02-16 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US20060034845A1 (en) * 2002-11-08 2006-02-16 Karen Silence Single domain antibodies directed against tumor necrosis factor alpha and uses therefor
EP1630168A2 (en) 1997-08-27 2006-03-01 Chiron Corporation Molecular mimetics of meningococcal B peptides
WO2006021954A2 (en) 2004-08-23 2006-03-02 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Peptide inhibitors for mediating stress responses
US20060083718A1 (en) * 2004-06-16 2006-04-20 University Of Massachusetts Novel therapy for lysosomal enzyme deficiencies
US20060105387A1 (en) * 2002-08-30 2006-05-18 Prior Christopher P Transferrin fusion proteins libraries
US7049136B2 (en) 1991-03-07 2006-05-23 The General Hospital Corporation Redirection of cellular immunity by receptor chimeras
US20060130158A1 (en) * 2002-08-30 2006-06-15 Turner Andrew J Modified transferrin fusion proteins comprising duplicate transferrin amino or carboxy terminal domains
WO2006060871A1 (en) 2004-12-10 2006-06-15 The Corporation Of The Trustees Of The Order Of The Sisters Of Mercy In Queensland Binding partners of antibodies specific for dendritic cell antigens
US7063943B1 (en) 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
US20060135459A1 (en) * 2004-11-09 2006-06-22 Epstein Alan L Targeted innate immunity
WO2006063415A1 (en) 2004-12-17 2006-06-22 Monash University Regulation of metalloprotease cleavage of cell surface proteins
US20060141581A1 (en) * 2004-12-09 2006-06-29 Merck Patent Gmbh IL-7 variants with reduced immunogenicity
US20060171949A1 (en) * 2004-10-29 2006-08-03 Alan Epstein Combination cancer immunotherapy with co-stimulatory molecules
WO2006086799A2 (en) 2005-02-11 2006-08-17 Novartis Vaccines And Diagnostics Inc. Prion-specific peptide reagents
US20060194244A1 (en) * 1996-06-14 2006-08-31 Progenics Pharmaceuticals, Inc. Uses of a chemokine receptor for inhibiting HIV-1 infection
US20060204504A1 (en) * 2005-02-23 2006-09-14 Gragoudas Evangelos S Methods and compositions for treating conditions of the eye
US20060205037A1 (en) * 2003-08-28 2006-09-14 Homayoun Sadeghi Modified transferrin fusion proteins
US20060216696A1 (en) * 2004-08-23 2006-09-28 Goguen Jon D Rapid plague detection system
US7118859B2 (en) 1996-01-17 2006-10-10 Progenics Pharmaceuticals, Inc. Methods for inhibiting HIV-1 infection
US20060233798A1 (en) * 2001-04-06 2006-10-19 Progenics Pharmaceuticals, Inc. Methods for inhibiting HIV-1 infection
WO2007002223A2 (en) 2005-06-20 2007-01-04 Medarex, Inc. Cd19 antibodies and their uses
US20070014795A1 (en) * 2004-12-30 2007-01-18 Dhodapkar Madhav V Compositions and methods for enhanced dendritic cell maturation and function
US20070020280A1 (en) * 2000-09-15 2007-01-25 Progenics Pharmaceuticals, Inc. Compositions and methods for inhibition of HIV-1 infection
US20070031408A1 (en) * 2002-02-22 2007-02-08 Progenics Pharmaceuticals Inc. Anti-CCR5 antibody
US20070031440A1 (en) * 2001-08-30 2007-02-08 Prior Christopher P Modified transferin-antibody fusion proteins
US20070031931A1 (en) * 1992-02-06 2007-02-08 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US20070042443A1 (en) * 2005-08-17 2007-02-22 Quest Diagnostics Investments Incorporated Hematopoietic cell phenotyping using free circulating cellular markers
WO2007027751A2 (en) 2005-08-30 2007-03-08 University Of Miami Immunomodulating tumor necrosis factor receptor 25 (tnfr25) agonists, antagonists and immunotoxins
US20070060512A1 (en) * 2003-03-04 2007-03-15 Homayoun Sadeghi Dipeptidyl-peptidase protected protein
US7211253B1 (en) 1999-11-12 2007-05-01 Merck Patentgesellschaft Mit Beschrankter Haftung Erythropoietin forms with improved properties
EP1780277A1 (en) 1997-01-15 2007-05-02 Yeda Research And Development Company, Ltd. IFN receptor 1 binding proteins, DNA encoding them, and methods of modulating cellular response to interferons
US20070104689A1 (en) * 2005-09-27 2007-05-10 Merck Patent Gmbh Compositions and methods for treating tumors presenting survivin antigens
WO2007067992A2 (en) 2005-12-08 2007-06-14 Medarex, Inc. Human monoclonal antibodies to fucosyl-gm1 and methods for using anti-fucosyl-gm1
US20070154473A1 (en) * 2005-12-30 2007-07-05 Merck Patent Gmbh Anti-CD19 antibodies with reduced immunogenicity
US20070154453A1 (en) * 2005-12-30 2007-07-05 Merck Patent Gmbh Interleukin-12p40 variants with improved stability
US20070178082A1 (en) * 2002-11-08 2007-08-02 Ablynx N.V. Stabilized single domain antibodies
US20070186296A1 (en) * 2006-02-02 2007-08-09 Wyeth Cloning, characterization, and application of tnfrsf19 in neurological disorders
WO2007106744A2 (en) 2006-03-10 2007-09-20 Wyeth Anti-5t4 antibodies and uses thereof
WO2007109370A2 (en) 2006-03-22 2007-09-27 Viral Logic Systems Technology Corp. Methods for identifying polypeptide targets and uses thereof for treating immunological diseases
US20070231327A1 (en) * 1998-12-16 2007-10-04 Progenics Pharmaceuticals, Inc. Anti-CCR5 antibodies
US20070253950A1 (en) * 2006-03-21 2007-11-01 Wyeth Methods for Preventing and Treating Amyloidogenic Diseases
WO2007126799A2 (en) 2006-03-30 2007-11-08 Novartis Ag Compositions and methods of use for antibodies of c-met
US20070275871A1 (en) * 2003-08-28 2007-11-29 Biorexis Technology, Inc. Epo Mimetic Peptides and Fusion Proteins
US20070280882A1 (en) * 2006-05-11 2007-12-06 Wu Anna M Engineered anti-cd20 antibody fragments for in vivo targeting and therapeutics
US20070286865A1 (en) * 2006-01-04 2007-12-13 Richard Moore Use of HE4 and other biochemical markers for assessment of ovarian cancers
US20080015348A1 (en) * 1998-12-16 2008-01-17 Progenics Pharmaceuticals, Inc. Nucleic acids encoding polypeptides of anti-CCR5 antibodies
US7323549B2 (en) 2003-12-30 2008-01-29 Emd Lexigen Research Center Corp. IL-7 fusion proteins
US20080044419A1 (en) * 2003-06-17 2008-02-21 Fibron Ltd. Treatment of T Cell Mediated Diseases by Inhibition of Fgfr3
WO2008021290A2 (en) 2006-08-09 2008-02-21 Homestead Clinical Corporation Organ-specific proteins and methods of their use
WO2008030611A2 (en) 2006-09-05 2008-03-13 Medarex, Inc. Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
WO2008051761A2 (en) 2006-10-26 2008-05-02 Abbott Laboratories Assay for cardiac troponin autoantibodies
US20080124280A1 (en) * 2003-09-15 2008-05-29 Mousa Shaker A Thyroid Hormone Analogs and Methods of Use
WO2008064321A2 (en) 2006-11-21 2008-05-29 Kalobios Pharmaceuticals, Inc. Methods of treating chronic inflammatory diseases using a gm-csf antagonist
US20080131431A1 (en) * 2006-05-15 2008-06-05 Viral Logic Systems Technology Corp. CD47 related compositions and methods for treating immunological diseases and disorders
WO2008070569A2 (en) 2006-12-01 2008-06-12 Medarex, Inc. Human antibodies that bind cd22 and uses thereof
WO2008074004A2 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind cd70 and uses thereof
WO2008076560A2 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to btla and methods of use
WO2008079185A2 (en) 2006-11-13 2008-07-03 Ateris Technologies, Llc Pesticide biomarker
EP1961819A2 (en) 2000-06-28 2008-08-27 Corixa Corporation Composition and methods for the therapy and diagnosis of lung cancer
US20080260706A1 (en) * 2007-02-02 2008-10-23 Yale University Transient Transfection with RNA
US20080260744A1 (en) * 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
EP1988395A1 (en) 1997-05-30 2008-11-05 Curis, Inc. Methods for evaluating tissue morphogenesis and morphogenic activity
EP1988097A1 (en) 2001-05-09 2008-11-05 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
EP1997513A1 (en) 2000-02-10 2008-12-03 Massachussetts Eye & Ear Infirmary Photodynamic therapy for treating conditions of the eye
WO2008145338A2 (en) 2007-05-29 2008-12-04 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US20080299618A1 (en) * 1988-11-11 2008-12-04 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors
WO2008144827A1 (en) 2007-05-31 2008-12-04 The University Of Queensland Diagnostic markers for ankylosing spondylitis and uses thereof
EP2006303A1 (en) 1997-04-09 2008-12-24 Intellect Neurosciences, Inc. Recombinant antibodies specific for Beta-Amyloid ends, DNA encoding and methods of use thereof
US20090022806A1 (en) * 2006-12-22 2009-01-22 Mousa Shaker A Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists and formulations and uses thereof
EP2026073A1 (en) 2000-04-29 2009-02-18 University Of Iowa Research Foundation Diagnostics and therapeutics for macular degeneration-related disorders
US20090053225A1 (en) * 2005-05-04 2009-02-26 Roberto Marzari Recombinant antibodies against cd55 and cd59 and uses thereof
WO2009028639A1 (en) 2007-08-30 2009-03-05 Daiichi Sankyo Company, Limited Anti-epha2 antibody
EP2034009A2 (en) 2002-02-08 2009-03-11 Invitrogen Corporation Compositions and methods for restoring immune responsiveness in patients with immunological defects basing on cd3/cd28 costimulation
WO2009032845A2 (en) 2007-09-04 2009-03-12 Compugen, Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US20090068095A1 (en) * 2005-12-02 2009-03-12 Marasco Wayne A Carbonic anhydrase ix (g250) anitbodies and methods of use thereof
US20090092631A1 (en) * 2007-03-26 2009-04-09 Tripep Ab Glycosylated specificity exchangers that induce an antibody dependent cellular cytotoxicity (adcc) response
WO2009049189A2 (en) 2007-10-10 2009-04-16 Bg Medicine, Inc. Methods for detecting major adverse cardiovascular and cerebrovascular events
US20090104684A1 (en) * 2001-08-29 2009-04-23 Pacific Northwest Research Institute Diagnosis of carcinomas
WO2009054863A2 (en) 2006-12-13 2009-04-30 Medarex, Inc. Human antibodies that bind cd19 and uses thereof
WO2009053442A1 (en) 2007-10-23 2009-04-30 Novartis Ag Use of trkb antibodies for the treatment of respiratory disorders
WO2009064944A2 (en) 2007-11-16 2009-05-22 Nuvelo, Inc. Antibodies to lrp6
WO2009078875A1 (en) 2007-12-19 2009-06-25 Abbott Laboratories Immunosuppressant drug extraction reagent for immunoassays
US20090175866A1 (en) * 2004-11-04 2009-07-09 Avner Yayon Treatment of b-cell malignancies
US20090178153A1 (en) * 2002-09-09 2009-07-09 Omeros Corporation G protein coupled receptors and uses thereof
EP2085781A1 (en) 2000-10-06 2009-08-05 Life Technologies Corporation Cells having a spectral signature, and methods of preparation and use thereof
US20090209624A1 (en) * 2005-10-24 2009-08-20 University Of Massachusetts Compositions and their uses for gene therapy of bone conditions
US20090226528A1 (en) * 2007-10-29 2009-09-10 University Of Massachusetts Encapsulated nanoparticles for nucleic acid delivery
US20090226552A1 (en) * 2004-07-22 2009-09-10 Colorado State University Research Foundation Agents and methods for diagnosing osteoarthritis
US20090239795A1 (en) * 2006-07-24 2009-09-24 Pfizer Inc Exendin fusion proteins
EP2105502A1 (en) 2000-12-12 2009-09-30 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US20090246800A1 (en) * 2006-10-26 2009-10-01 Abbott Laboratories Immunoassay of analytes in samples containing endogenous anti-analyte antibodies
WO2009133208A1 (en) 2008-05-02 2009-11-05 Novartis Ag Improved fibronectin-based binding molecules and uses thereof
US20090275735A1 (en) * 1993-06-14 2009-11-05 Schering Corporation And Inserm Monoclonal antibodies to human ctla-8 (il-17a)
EP2123306A1 (en) 2004-12-03 2009-11-25 Fondazione Telethon Use of a decoy protein that interferes with the hedgehog signalling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization
US20100003253A1 (en) * 2002-11-08 2010-01-07 Ablynx N.V. Single domain antibodies directed against epidermal growth factor receptor and uses therefor
US20100021459A1 (en) * 2002-11-08 2010-01-28 Ablynx N.V. Polypeptide constructs for intracellular delivery
WO2010015608A1 (en) 2008-08-05 2010-02-11 Novartis Ag Compositions and methods for antibodies targeting complement protein c5
EP2153848A2 (en) 2005-01-27 2010-02-17 The Regents of the University of California Therapeutic monoclonal antibodies that neutralize botulinium neurotoxins
US20100047251A1 (en) * 2006-06-15 2010-02-25 Avner Yayon Antibodies blocking fibroblast growth factor receptor activation and methods of use thereof
EP2161336A1 (en) 2005-05-09 2010-03-10 ONO Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
US20100068175A1 (en) * 1999-07-21 2010-03-18 Gillies Stephen D Methods of using Fc-Cytokine fusion proteins
EP2166021A1 (en) 2008-09-16 2010-03-24 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US20100072080A1 (en) * 2008-05-05 2010-03-25 The Regents Of The University Of California Functionalized Nanopipette Biosensor
EP2172476A2 (en) 2001-10-30 2010-04-07 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
EP2181595A1 (en) 2002-08-16 2010-05-05 Yeda Research And Development Company Ltd. Tumor associated antigen, peptides thereof, and use of same as anti-tumor vaccines
US20100111975A1 (en) * 2007-03-14 2010-05-06 Ugur Sahin Monoclonal Antibodies for Treatment of Cancer
US20100119511A1 (en) * 2008-10-31 2010-05-13 Biogen Idec Ma Inc. Light targeting molecules and uses thereof
EP2186527A1 (en) 2003-11-28 2010-05-19 Micromet AG Compositions comprising polypeptides
WO2010062697A2 (en) 2008-10-30 2010-06-03 Peixuan Guo Membrane-integrated viral dna-packaging motor protein connector biosensor for dna sequencing and other uses
WO2010065437A1 (en) 2008-12-03 2010-06-10 Research Development Foundation Modulation of olfml-3 mediated angiogenesis
US20100143954A1 (en) * 2008-10-29 2010-06-10 Bg Medicine, Inc. Galectin-3 Immunoassay
US20100143349A1 (en) * 2008-08-12 2010-06-10 Wyeth Humanized anti-rage antibody
WO2010067308A2 (en) 2008-12-08 2010-06-17 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2010069331A2 (en) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
US20100159021A1 (en) * 2008-12-23 2010-06-24 Paul Davis Small Molecule Ligands of the Integrin RGD Recognition Site and Methods of Use
WO2010091189A1 (en) 2009-02-04 2010-08-12 Kalobios Pharmaceuticals, Inc. Combination antibiotic and antibody therapy for the treatment of pseudomonas aeruginosa infection
US20100209490A1 (en) * 2007-08-09 2010-08-19 Daiichi Sankyo Company, Limited Immunoliposome inducing apoptosis into cell expressing death domain-containing receptor
WO2010093814A1 (en) 2009-02-11 2010-08-19 Kalobios Pharmaceuticals, Inc. Methods of treating dementia using a gm-csf antagonist
US20100215639A1 (en) * 2003-02-14 2010-08-26 Kalayoglu Murat V Chlamydia Pneumoniae Associated Chronic Intraocular Disorders and Treatment Thereof
WO2010099477A2 (en) 2009-02-27 2010-09-02 Atyr Pharma, Inc. Polypeptide structural motifs associated with cell signaling activity
WO2010102175A1 (en) 2009-03-05 2010-09-10 Medarex, Inc. Fully human antibodies specific to cadm1
US20100239579A1 (en) * 2006-05-15 2010-09-23 Viral Logic Systems Technology Corp. CD47 Related Compositions and Methods for Treating Immunological Diseases and Disorders
WO2010107825A2 (en) 2009-03-16 2010-09-23 Pangu Biopharma Limited Compositions and methods comprising histidyl-trna synthetase splice variants having non-canonical biological activities
EP2233502A1 (en) 2009-03-27 2010-09-29 Deutsches Rheuma-Forschungszentrum Berlin Sialylated antigen-specific antibodies for treatment or prophylaxis of unwanted inflammatory immune reactions and methods of producing them
WO2010112034A2 (en) 2009-04-02 2010-10-07 Aarhus Universitet Compositions and methods for treatment and diagnosis of synucleinopathies
WO2010112458A1 (en) 2009-03-31 2010-10-07 Novartis Ag Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betal subunit
US20100255108A1 (en) * 2009-03-31 2010-10-07 Hung-Yun Lin Combination Treatment of Cancer With Cetuximab and Tetrac
WO2010117011A1 (en) 2009-04-09 2010-10-14 第一三共株式会社 ANTI-Siglec-15 ANTIBODY
WO2010120509A2 (en) 2009-03-31 2010-10-21 Atyr Pharma, Inc. Compositions and methods comprising aspartyl-trna synthetases having non-canonical biological activities
WO2010125003A1 (en) 2009-04-27 2010-11-04 Novartis Ag Compositions and methods for increasing muscle growth
EP2258726A1 (en) 1995-06-14 2010-12-08 The Regents of the University of California High affinity human antibodies to c-erbB-2
US20100310646A1 (en) * 2008-01-25 2010-12-09 Claus Oxvig Selective exosite inhibition of papp-a activity against igfbp-4
WO2010148007A2 (en) 2009-06-17 2010-12-23 Ordway Research Institute, Inc. Nanoparticle and polymer formulations for thyroid hormone, analogs, antagonists, and formulations and uses thereof
US7858298B1 (en) 1996-04-01 2010-12-28 Progenics Pharmaceuticals Inc. Methods of inhibiting human immunodeficiency virus type 1 (HIV-1) infection through the administration of CCR5 chemokine receptor antagonists
EP2270053A1 (en) 2009-05-11 2011-01-05 U3 Pharma GmbH Humanized AXL antibodies
EP2270034A2 (en) 2004-06-03 2011-01-05 Athlomics Pty Ltd Agents and methods for diagnosing stress
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
EP2292652A2 (en) 2000-11-03 2011-03-09 Pestka Biomedical Laboratories, Inc. Interferons uses and compositions related thereto
EP2293077A2 (en) 2007-03-26 2011-03-09 BG Medicine, Inc. Methods for detecting coronary artery disease
US20110059076A1 (en) * 2008-11-18 2011-03-10 Mcdonagh Charlotte Human serum albumin linkers and conjugates thereof
EP2295469A2 (en) 2005-11-24 2011-03-16 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
WO2011031493A2 (en) 2009-08-25 2011-03-17 Bg Medicine, Inc. Galectin-3 and cardiac resynchronization therapy
US20110091454A1 (en) * 2004-01-27 2011-04-21 Alex Diber Methods and systems for annotating biomolecular sequences
WO2011047083A1 (en) 2009-10-13 2011-04-21 Oxford Biotherapeutics Ltd. Antibodies against epha10
WO2011050001A2 (en) 2009-10-20 2011-04-28 The Regents Of The University Of California Anti-botulinum neurotoxin antibodies
WO2011048598A1 (en) 2009-10-22 2011-04-28 Yeda Research And Development Co. Ltd. Compositions and methods for treating aspergillosis
EP2316856A1 (en) 2002-10-17 2011-05-04 Genmab A/S Human monoclonal antibodies against CD20
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
US20110104722A1 (en) * 2003-10-09 2011-05-05 Pinto Yigal M Method for identifying a subject at risk of developing heart failure by determining the level of galectin-3 or thrombospondin-2
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011054359A2 (en) 2009-11-06 2011-05-12 University Of Copenhagen Method for early detection of cancer
US20110117091A1 (en) * 2008-06-25 2011-05-19 Esbatech, An Alcon Biomedical Research Unit Llc Humanization of rabbit antibodies using a universal antibody framework
US20110123542A1 (en) * 2008-06-24 2011-05-26 Hadasit Medical Research Services And Development Ltd. Ccl20-specific antibodies for cancer therapy
WO2011063477A1 (en) 2009-11-30 2011-06-03 Queensland University Of Technology Fibronectin: growth factor chimeras
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
WO2011072265A1 (en) 2009-12-11 2011-06-16 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating inflammation
US20110142941A1 (en) * 2006-12-22 2011-06-16 Davis Paul J Nanoparticle and Polymer Formulations for Thyroid Hormone Analogs, Antagonists, and Formulations and Uses Thereof
WO2011072266A2 (en) 2009-12-11 2011-06-16 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating hematopoiesis
US20110159007A1 (en) * 2008-06-25 2011-06-30 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting tnf alpha
EP2341346A2 (en) 2000-10-18 2011-07-06 The Regents of the University of California Methods of high-throughput screening for internalizing antibodies and metal-chelating liposomes
EP2343380A1 (en) 2004-11-16 2011-07-13 Kalobios Inc. Immunoglobulin variable region cassette exchange
US20110178277A1 (en) * 2002-11-08 2011-07-21 Ablynx N.V. Stabilized single domain antibodies
EP2348052A2 (en) 2007-09-17 2011-07-27 The Regents of The University of California Internalizing human monoclonal antibodies targeting prostate cancer cells in situ
US20110189179A1 (en) * 2005-09-12 2011-08-04 Ugur Sahin Identification of Tumor-Associated Antigens for Diagnosis and Therapy
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
EP2354230A1 (en) 1997-12-12 2011-08-10 The University of Queensland Neisseria meningitidis surface protein
EP2357195A1 (en) 2003-02-05 2011-08-17 Queensland University Of Technology Growth factor complexes and modulation of cell migration and growth
WO2011116885A1 (en) 2010-03-23 2011-09-29 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
EP2383295A1 (en) 2003-12-10 2011-11-02 Medarex, Inc. IP-10 antibodies and their uses
WO2011140151A1 (en) 2010-05-04 2011-11-10 Dyax Corp. Antibodies against epidermal growth factor receptor (egfr)
WO2011139986A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases
WO2011140135A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases
WO2011139799A2 (en) 2010-04-27 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl trna synthetases
WO2011140132A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
WO2011140254A1 (en) 2010-05-04 2011-11-10 Adimab, Llc Antibodies against epidermal growth factor receptor (egfr) and uses thereof
WO2011139714A2 (en) 2010-04-26 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase
WO2011139854A2 (en) 2010-04-29 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of asparaginyl trna synthetases
WO2011139907A2 (en) 2010-04-29 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases
WO2011139853A2 (en) 2010-04-28 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
WO2011140267A2 (en) 2010-05-04 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex
WO2011138391A1 (en) 2010-05-06 2011-11-10 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
WO2011138392A1 (en) 2010-05-06 2011-11-10 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein -related protein 6 (lrp6) antibodies
EP2386653A2 (en) 2004-09-16 2011-11-16 Turun Yliopisto Methods for the utilization of novel target genes related to immune-mediated diseases
WO2011143482A2 (en) 2010-05-14 2011-11-17 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
WO2011150279A2 (en) 2010-05-27 2011-12-01 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-trna synthetases
EP2395013A2 (en) 2000-01-25 2011-12-14 The University of Queensland Proteins comprising conserved regions of Neisseria meningitidis surface antigen NhhA
WO2012003475A1 (en) 2010-07-02 2012-01-05 Bg Medicine, Inc. Statin therapy monitored by galectin- 3 measurement
WO2012021247A2 (en) 2010-07-12 2012-02-16 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases
WO2012021229A1 (en) 2010-07-13 2012-02-16 Merck Sharp & Dohme Corp. Staphylococcus aureus surface protein sa1789 and protective vaccine based thereon
WO2012022814A1 (en) 2010-08-20 2012-02-23 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
WO2012023113A2 (en) 2010-08-20 2012-02-23 Wyeth Llc Designer osteogenic proteins
WO2012027611A2 (en) 2010-08-25 2012-03-01 Atyr Pharma, Inc. INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES
US8129504B2 (en) 2001-08-30 2012-03-06 Biorexis Technology, Inc. Oral delivery of modified transferrin fusion proteins
EP2425850A2 (en) 2005-06-15 2012-03-07 The Regents of The University of California Bispecific single chain FV antibody molecules and methods of use thereof
EP2428226A1 (en) 2001-10-22 2012-03-14 The Scripps Research Institute Antibody targeting compounds
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
WO2012040619A2 (en) 2010-09-24 2012-03-29 Massachusetts Eye And Ear Infirmary Methods and compositions for prognosing and/or detecting age-related macular degeneration
EP2436774A2 (en) 2002-08-01 2012-04-04 The Regents of The University of California Therapeutic monoclonal antibodies that neutralize botulinum neurotoxins
WO2012041863A1 (en) 2010-09-27 2012-04-05 Bioanalytica Sa Compositions and methods for treating neoplasia
WO2012045703A1 (en) 2010-10-05 2012-04-12 Novartis Ag Anti-il12rbeta1 antibodies and their use in treating autoimmune and inflammatory disorders
WO2012051734A1 (en) 2010-10-22 2012-04-26 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies
WO2012057288A1 (en) 2010-10-29 2012-05-03 第一三共株式会社 Novel anti-dr5 antibody
WO2012058393A2 (en) 2010-10-27 2012-05-03 Amgen Inc. Dkk1 antibodies and methods of use
WO2012061120A1 (en) 2010-10-25 2012-05-10 Regents Of The University Of Minnesota Therapeutic composition for treatment of glioblastoma
WO2012065034A1 (en) 2010-11-12 2012-05-18 Merck Sharp & Dohme Corp. Enolase peptide conjugate vaccines against staphylococcus aureus
WO2012065950A1 (en) 2010-11-15 2012-05-24 Novartis Ag Silent fc variants of anti-cd40 antibodies
EP2468770A1 (en) 2006-07-14 2012-06-27 AC Immune S.A. Humanized antibody against amyloid beta
EP2471817A2 (en) 2007-12-07 2012-07-04 ZymoGenetics, Inc. Humanized antibody molecules specific for IL-31
EP2476761A2 (en) 2005-07-07 2012-07-18 Athlomics Pty Ltd Polynucleotide marker genes and their expression, for diagnosis of endotoxemia
WO2012106341A1 (en) 2011-01-31 2012-08-09 Bg Medicine, Inc. Use of galectin-3 for detecting and prognosing heart failure after acute coronary syndrome
EP2486941A1 (en) 2006-10-02 2012-08-15 Medarex, Inc. Human antibodies that bind CXCR4 and uses thereof
WO2012112842A2 (en) 2011-02-17 2012-08-23 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Compositions and methods for treating poliovirus
WO2012118813A2 (en) 2011-03-03 2012-09-07 Apexigen, Inc. Anti-il-6 receptor antibodies and methods of use
WO2012118910A2 (en) 2011-03-03 2012-09-07 Quark Pharmaceuticals, Inc. Compositions and methods for treating lung disease and injury
WO2012118903A2 (en) 2011-03-01 2012-09-07 Amgen Inc. Bispecific binding agents
WO2012122513A2 (en) 2011-03-10 2012-09-13 Omeros Corporation Generation of anti-fn14 monoclonal antibodies by ex-vivo accelerated antibody evolution
EP2505640A1 (en) 2011-03-29 2012-10-03 Neo Virnatech, S.L. Vaccine compositions for birnavirus-borne diseases
WO2012138774A2 (en) 2011-04-04 2012-10-11 University Of Iowa Research Foundation Methods of improving vaccine immunogenicity
EP2511257A2 (en) 2005-03-21 2012-10-17 ViroBay, Inc. Alpha ketoamide compounds as cysteine protease inhibitors
WO2012140627A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
WO2012149356A2 (en) 2011-04-29 2012-11-01 Apexigen, Inc. Anti-cd40 antibodies and methods of use
WO2012147713A1 (en) 2011-04-25 2012-11-01 第一三共株式会社 Anti-b7-h3 antibody
US8329178B2 (en) 2005-02-18 2012-12-11 Dana-Farber Cancer Institute, Inc. Antibodies against CXCR4 and methods of use thereof
EP2532677A1 (en) 2005-10-21 2012-12-12 Novartis AG Human antibodies against il13 and therapeutic uses
EP2535355A2 (en) 2005-03-23 2012-12-19 Genmab A/S Antibodies against CD38 for treatment of multiple myeloma
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
WO2012177595A1 (en) 2011-06-21 2012-12-27 Oncofactor Corporation Compositions and methods for the therapy and diagnosis of cancer
WO2013003625A2 (en) 2011-06-28 2013-01-03 Oxford Biotherapeutics Ltd. Antibodies
WO2013003606A1 (en) 2011-06-29 2013-01-03 Amgen Inc. Predictive biomarker of survival in the treatment of renal cell carcinoma
US8349322B2 (en) 2008-06-25 2013-01-08 ESBATech, an Alcon Biomedical Research Unit, LLC Stable and soluble antibodies inhibiting VEGF
WO2013006547A2 (en) 2011-07-05 2013-01-10 Merrimack Pharmaceuticals, Inc. Antibodies against epidermal growth factor receptor (egfr) and uses thereof
WO2013006437A1 (en) 2011-07-01 2013-01-10 Novartis Ag Method for treating metabolic disorders
WO2013006706A1 (en) 2011-07-05 2013-01-10 Bioasis Technologies Inc. P97-antibody conjugates and methods of use
WO2013007839A1 (en) 2011-07-14 2013-01-17 Adx Neurosciences Nv Antibodies to phosphorylated tau aggregates
WO2013010955A1 (en) 2011-07-15 2013-01-24 Morphosys Ag Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
US8367586B2 (en) 2010-11-19 2013-02-05 Morphosys Ag Collection and methods for its use
WO2013022599A1 (en) 2011-08-05 2013-02-14 Research Development Foundation Improved methods and compositions for modulation of olfml3 mediated angiogenesis
WO2013022738A1 (en) 2011-08-05 2013-02-14 Bioasis Technologies, Inc. P97 fragments with transfer activity
EP2567709A2 (en) 2007-11-02 2013-03-13 Novartis AG Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (LRP6)
WO2013036596A2 (en) 2011-09-06 2013-03-14 Reed Guy L Serpinf2-binding molecules and methods of use
EP2574345A1 (en) 2007-06-12 2013-04-03 AC Immune S.A. Humanized antibodies to amyloid beta
WO2013054307A2 (en) 2011-10-14 2013-04-18 Novartis Ag Antibodies and methods for wnt pathway-related diseases
WO2013054331A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
EP2586796A1 (en) 2007-10-12 2013-05-01 Novartis AG Compositions and methods for use for antibodies against sclerostin
WO2013067098A1 (en) 2011-11-02 2013-05-10 Apexigen, Inc. Anti-kdr antibodies and methods of use
EP2591786A1 (en) 2003-10-16 2013-05-15 Stephen John Ralph Immunomodulating compositions and uses therefor
EP2594586A1 (en) 2006-09-01 2013-05-22 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
WO2013084148A2 (en) 2011-12-05 2013-06-13 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3) directed to domain ii of her3
WO2013084147A2 (en) 2011-12-05 2013-06-13 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
WO2013093762A1 (en) 2011-12-21 2013-06-27 Novartis Ag Compositions and methods for antibodies targeting factor p
EP2615111A1 (en) 2012-01-10 2013-07-17 Laboratorios del Dr. Esteve S.A. Method to identify ligands for sigma-1 receptors
WO2013106572A1 (en) 2012-01-11 2013-07-18 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Bispecific antibody fragments for neurological disease proteins and methods of use
WO2013112942A1 (en) 2012-01-25 2013-08-01 Dna Trix, Inc. Biomarkers and combination therapies using oncolytic virus and immunomodulation
WO2013138518A1 (en) 2012-03-15 2013-09-19 Omeros Corporation Composition and method for diversification of target sequences
EP2641612A1 (en) 2008-02-05 2013-09-25 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
WO2013147213A1 (en) 2012-03-30 2013-10-03 第一三共株式会社 Anti-siglec15 antibody with modified cdr
WO2013147212A1 (en) 2012-03-30 2013-10-03 第一三共株式会社 Novel anti-siglec15 antibody
WO2013150518A1 (en) 2012-04-01 2013-10-10 Rappaport Family Institute For Research In The Medical Sciences Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies
WO2013151762A1 (en) 2012-04-05 2013-10-10 Ac Immune S.A. Humanized tau antibody
EP2650308A2 (en) 2007-10-05 2013-10-16 Genentech, Inc. Use of anti-amyloid beta antibody in ocular diseases
WO2013154206A1 (en) 2012-04-09 2013-10-17 第一三共株式会社 Anti-fgfr2 antibody
WO2013160879A1 (en) 2012-04-27 2013-10-31 Daiichi Sankyo Company, Limited Anti-robo4-antibody
WO2013166500A1 (en) 2012-05-04 2013-11-07 Dana-Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
EP2662390A1 (en) 2004-06-21 2013-11-13 Medarex, L.L.C. Interferon alpha receptor 1 antibodies and their uses
EP2662079A1 (en) 2012-05-10 2013-11-13 Ordway Research Institute, Inc. Uses of formulations of thyroid hormone antagonists and nanoparticulate forms thereof to increase chemosensivity and radiosensitivity in tumor or cancer cells
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
US8668926B1 (en) 2003-09-15 2014-03-11 Shaker A. Mousa Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof
EP2706356A1 (en) 2012-09-06 2014-03-12 Laboratorios Del. Dr. Esteve, S.A. Methods for identifying HIV neutralizing antibodies
WO2014037899A2 (en) 2012-09-07 2014-03-13 Novartis Ag Il-18 binding molecules
US8685896B2 (en) 2009-05-29 2014-04-01 Morphosys Ag Collection and methods for its use
WO2014055897A2 (en) 2012-10-04 2014-04-10 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
WO2014066590A1 (en) 2012-10-24 2014-05-01 Research Development Foundation Jam-c antibodies and methods for treatment of cancer
EP2732823A1 (en) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation of the TrpV : Vps10p-domain receptor system for the treatment of pain
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
US8748108B2 (en) 2006-09-05 2014-06-10 Abbvie Inc. Biomarkers for identifying patient classes
US8748097B1 (en) 2011-12-02 2014-06-10 President And Fellows Of Harvard College Identification of agents for treating calcium disorders and uses thereof
WO2014089111A1 (en) 2012-12-05 2014-06-12 Novartis Ag Compositions and methods for antibodies targeting epo
WO2014099997A1 (en) 2012-12-18 2014-06-26 Novartis Ag Compositions and methods that utilize a peptide tag that binds to hyaluronan
US8802240B2 (en) 2011-01-06 2014-08-12 Nanopharmaceuticals Llc Uses of formulations of thyroid hormone analogs and nanoparticulate forms thereof to increase chemosensitivity and radiosensitivity in tumor or cancer cells
WO2014122613A1 (en) 2013-02-08 2014-08-14 Novartis Ag Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
EP2769993A1 (en) 2007-12-14 2014-08-27 Novo Nordisk A/S Antibodies against human NKG2D and uses thereof
WO2014134165A1 (en) 2013-02-26 2014-09-04 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
WO2014144542A2 (en) 2013-03-15 2014-09-18 Omeros Corporation Methods of generating bioactive peptide-bearing antibodies and compositions comprising the same
WO2014152673A1 (en) 2013-03-14 2014-09-25 Shire Human Genetic Therapies, Inc. Quantitative assessment for cap efficiency of messenger rna
WO2014159239A2 (en) 2013-03-14 2014-10-02 Novartis Ag Antibodies against notch 3
WO2014160438A1 (en) 2013-03-13 2014-10-02 Bioasis Technologies Inc. Fragments of p97 and uses thereof
WO2014165707A2 (en) 2013-04-03 2014-10-09 Memorial Sloan-Kettering Cancer Center Effective generation of tumor-targeted t-cells derived from pluripotent stem cells
WO2014176439A1 (en) 2013-04-25 2014-10-30 Sutro Biopharma, Inc. The use of lambda-gam protein in ribosomal display technology
WO2014190316A1 (en) 2013-05-23 2014-11-27 Shire Human Genetic Therapies, Inc. Anti-ccl2 and anti-loxl2 combination therapy for treatment of scleroderma
WO2014205302A2 (en) 2013-06-21 2014-12-24 Novartis Ag Lectin-like oxidized ldl receptor1 antibodies and methods of use
WO2014205300A2 (en) 2013-06-21 2014-12-24 Novartis Ag Lectin-like oxidized ldl receptor1 antibodies and methods of use
EP2829609A1 (en) 1999-08-24 2015-01-28 E. R. Squibb & Sons, L.L.C. Human CTLA-4 antibodies and their uses
WO2015022658A2 (en) 2013-08-14 2015-02-19 Novartis Ag Methods of treating sporadic inclusion body myositis
WO2015031673A2 (en) 2013-08-28 2015-03-05 Bioasis Technologies Inc. Cns-targeted conjugates having modified fc regions and methods of use thereof
WO2015042498A1 (en) 2013-09-23 2015-03-26 Engen Bio, Inc. Influenza vaccine and therapy
EP2853267A1 (en) 2007-09-21 2015-04-01 The Regents Of The University Of California Targeted interferon demonstrates potent apoptotic and anti-tumor activities
WO2015046505A1 (en) 2013-09-30 2015-04-02 第一三共株式会社 Anti-lps 011 antibody
WO2015052537A1 (en) 2013-10-11 2015-04-16 Oxford Biotherapeutics Ltd Conjugated antibodies against ly75 for the treatment of cancer
WO2015053407A1 (en) 2013-10-08 2015-04-16 第一三共株式会社 Combination of anti-fgfr2 antibody and other agent
WO2015075725A1 (en) 2013-11-25 2015-05-28 Ccam Biotherapeutics Ltd. Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
WO2015089338A2 (en) 2013-12-11 2015-06-18 Sloan-Kettering Institute For Cancer Research Glucocorticoid inhibitors for treatment of prostate cancer
US9085621B2 (en) 2010-09-10 2015-07-21 Apexigen, Inc. Anti-IL-1β antibodies
US9102724B2 (en) 2011-08-12 2015-08-11 Omeros Corporation Anti-FZD10 monoclonal antibodies and methods for their use
EP2907826A1 (en) 2007-10-11 2015-08-19 Daiichi Sankyo Company, Limited Antibody targeting osteoclast-related protein siglec-15
US9132210B2 (en) 2005-12-13 2015-09-15 President And Fellows Of Harvard College Scaffolds for cell transplantation
WO2015143194A2 (en) 2014-03-19 2015-09-24 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
WO2015142314A1 (en) 2013-03-15 2015-09-24 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
WO2015145449A2 (en) 2014-03-27 2015-10-01 Yeda Research And Development Co. Ltd. T-cell receptor cdr3 peptides and antibodies
WO2015157820A1 (en) 2014-04-15 2015-10-22 Griffith University Group a streptococcus vaccine
WO2015162590A1 (en) 2014-04-24 2015-10-29 Novartis Ag Methods of improving or accelerating physical recovery after surgery for hip fracture
WO2015176010A1 (en) 2014-05-15 2015-11-19 The United States Of America, As Represented By The Secretary, Departmentof Health & Human Services Treatment or prevention of an intestinal disease or disorder
US9198887B2 (en) 2003-09-15 2015-12-01 Nanopharmaceuticals Llc Thyroid hormone analogs and methods of use
WO2015188141A2 (en) 2014-06-06 2015-12-10 Memorial Sloan-Kettering Cancer Ceneter Mesothelin-targeted chimeric antigen receptors and uses thereof
WO2015187835A2 (en) 2014-06-06 2015-12-10 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
WO2015191312A1 (en) 2014-06-09 2015-12-17 Ultragenyx Pharmaceutical Inc. The effective and efficient control of serum phosphate for optimal bone formation
WO2015198217A2 (en) 2013-02-08 2015-12-30 Novartis Ag Compositions and methods for long-acting antibodies targeting il-17
WO2015198240A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
WO2015198243A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
EP2982379A1 (en) 2005-07-01 2016-02-10 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
WO2016020882A2 (en) 2014-08-07 2016-02-11 Novartis Ag Angiopoetin-like 4 (angptl4) antibodies and methods of use
WO2016020880A2 (en) 2014-08-07 2016-02-11 Novartis Ag Angiopoietin-like 4 antibodies and methods of use
US9272049B2 (en) 2005-09-16 2016-03-01 Nanopharmaceuticals Llc Methods of stimulating fat mobilization using a polymer conjugated polyphenol
EP2990053A1 (en) 2004-01-20 2016-03-02 KaloBios Pharmaceuticals, Inc. Antibody specificity transfer using minimal essential binding determinants
US9297005B2 (en) 2009-04-13 2016-03-29 President And Fellows Of Harvard College Harnessing cell dynamics to engineer materials
WO2016054638A1 (en) 2014-10-03 2016-04-07 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2016057846A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016057488A1 (en) 2014-10-06 2016-04-14 Dana-Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
EP3009454A2 (en) 2009-04-20 2016-04-20 Oxford Bio Therapeutics Limited Antibodies specific to cadherin-17
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
WO2016077526A1 (en) 2014-11-12 2016-05-19 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US9345766B2 (en) 2012-08-30 2016-05-24 Merrimack Pharmaceuticals, Inc. Combination therapies comprising anti-ERBB3 agents
WO2016090320A1 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting b-cell maturation antigen and uses thereof
WO2016090327A2 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting b-cell maturation antigen and methods of use
WO2016090312A1 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof
US9371386B2 (en) 2009-03-16 2016-06-21 Daniel A. Vallera Methods and compositions for bi-specific targeting of CD19/CD22
US9370558B2 (en) 2008-02-13 2016-06-21 President And Fellows Of Harvard College Controlled delivery of TLR agonists in structural polymeric devices
WO2016098079A2 (en) 2014-12-19 2016-06-23 Novartis Ag Compositions and methods for antibodies targeting bmp6
US9381235B2 (en) 2009-07-31 2016-07-05 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
WO2016111713A1 (en) 2015-01-05 2016-07-14 Wyeth Llc Improved osteogenic proteins
US9399676B2 (en) 2013-05-06 2016-07-26 Scholar Rock, Inc. Compositions and methods for growth factor modulation
WO2016131058A1 (en) 2015-02-13 2016-08-18 Biommune Technologies Inc. Antibodies to l-type voltage gated channels and related methods
WO2016132366A1 (en) 2015-02-18 2016-08-25 Enlivex Therapeutics Ltd. Combination immune therapy and cytokine control therapy for cancer treatment
US9428574B2 (en) 2011-06-30 2016-08-30 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
WO2016141185A1 (en) 2015-03-04 2016-09-09 Board Of Regents, The University Of Texas System Methods of treating cancer harboring hemizygous loss of tp53
WO2016164835A1 (en) 2015-04-08 2016-10-13 Dana-Farber Cancer Institute, Inc. Humanized influenza monoclonal antibodies and methods of use thereof
US9486512B2 (en) 2011-06-03 2016-11-08 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
WO2016178779A1 (en) 2015-05-01 2016-11-10 Dana-Farber Cancer Institute, Inc. Methods of mediating cytokine expression with anti ccr4 antibodies
US9498536B2 (en) 2005-09-15 2016-11-22 Nanopharmaceuticals Llc Method and composition of thyroid hormone analogues and nanoformulations thereof for treating anti-inflammatory disorders
US9512232B2 (en) 2012-05-09 2016-12-06 Ganymed Pharmaceuticals Ag Antibodies against Claudin 18.2 useful in cancer diagnosis
WO2016193872A2 (en) 2015-06-05 2016-12-08 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor
WO2016196228A1 (en) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Antibodies against ox40 and uses thereof
WO2016207858A1 (en) 2015-06-26 2016-12-29 Novartis Ag Factor xi antibodies and methods of use
WO2017004016A1 (en) 2015-06-29 2017-01-05 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
WO2017021893A1 (en) 2015-08-03 2017-02-09 Novartis Ag Methods of treating fgf21-associated disorders
US9572829B2 (en) 2004-02-23 2017-02-21 Massachusetts Eye & Ear Infirmary Treatment of ocular disorders
WO2017040945A1 (en) 2015-09-04 2017-03-09 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use
WO2017042701A1 (en) 2015-09-09 2017-03-16 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
WO2017048902A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
US9603894B2 (en) 2010-11-08 2017-03-28 President And Fellows Of Harvard College Materials presenting notch signaling molecules to control cell behavior
US9610328B2 (en) 2010-03-05 2017-04-04 President And Fellows Of Harvard College Enhancement of skeletal muscle stem cell engraftment by dual delivery of VEGF and IGF-1
US9617336B2 (en) 2012-02-01 2017-04-11 Compugen Ltd C10RF32 antibodies, and uses thereof for treatment of cancer
WO2017064716A1 (en) 2015-10-13 2017-04-20 Rappaport Family Institute For Research Heparanase-neutralizing monoclonal antibodies
WO2017079768A1 (en) 2015-11-08 2017-05-11 Genentech, Inc. Methods of screening for multispecific antibodies
WO2017083582A1 (en) 2015-11-12 2017-05-18 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
WO2017087678A2 (en) 2015-11-19 2017-05-26 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
EP3176261A1 (en) 2008-06-26 2017-06-07 aTyr Pharma, Inc. Compositions and methods comprising glycyl-trna synthetases having non-canonical biological activities
WO2017095875A1 (en) 2015-11-30 2017-06-08 Bristol-Myers Squibb Company Anti human ip-10 antibodies and their uses
WO2017095823A1 (en) 2015-11-30 2017-06-08 The Regents Of The University Of California Tumor-specific payload delivery and immune activation using a human antibody targeting a highly specific tumor cell surface antigen
US9675561B2 (en) 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
WO2017100428A1 (en) 2015-12-09 2017-06-15 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of using same
WO2017103895A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
US9693954B2 (en) 2010-06-25 2017-07-04 President And Fellows Of Harvard College Co-delivery of stimulatory and inhibitory factors to create temporally stable and spatially restricted zones
WO2017120537A1 (en) 2016-01-08 2017-07-13 The Regents Of The University Of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
WO2017124001A2 (en) 2016-01-14 2017-07-20 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for foxp3-derived peptides
WO2017151176A1 (en) 2016-03-04 2017-09-08 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
US9770535B2 (en) 2007-06-21 2017-09-26 President And Fellows Of Harvard College Scaffolds for cell collection or elimination
US9775785B2 (en) 2004-05-18 2017-10-03 Ganymed Pharmaceuticals Ag Antibody to genetic products differentially expressed in tumors and the use thereof
WO2017173091A1 (en) 2016-03-30 2017-10-05 Musc Foundation For Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein a repetitions predominant (garp) and for providing effective immunotherapy alone or in combination
WO2017172518A1 (en) 2016-03-29 2017-10-05 Stcube, Inc. Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
WO2017172517A1 (en) 2016-03-29 2017-10-05 Stcube & Co., Inc. Methods for selecting antibodies that specifically bind glycosylated immune checkpoint proteins
WO2017180989A2 (en) 2016-04-15 2017-10-19 Memorial Sloan Kettering Cancer Center Transgenic t cell and chimeric antigen receptor t cell compositions and related methods
WO2017189724A1 (en) 2016-04-27 2017-11-02 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof
US9821045B2 (en) 2008-02-13 2017-11-21 President And Fellows Of Harvard College Controlled delivery of TLR3 agonists in structural polymeric devices
WO2017203450A1 (en) 2016-05-25 2017-11-30 Novartis Ag Reversal binding agents for anti-factor xi/xia antibodies and uses thereof
EP3255149A2 (en) 2006-05-02 2017-12-13 Intrexon Actobiotics NV Microbial intestinal delivery of obesity related peptides
WO2017214315A1 (en) 2016-06-09 2017-12-14 The Regents Of The University Of California Biomarker concentration and signal amplification for use in paper-based immunoassays and a single platform for extracting, concentrating, and amplifying dna
WO2017216724A1 (en) 2016-06-15 2017-12-21 Novartis Ag Methods for treating disease using inhibitors of bone morphogenetic protein 6 (bmp6)
WO2018013818A2 (en) 2016-07-14 2018-01-18 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
US9873748B2 (en) 2013-12-23 2018-01-23 Genentech, Inc. Bispecific antibodies binding to beta-klotho and fibroblast growth factor receptor 1
WO2018018039A2 (en) 2016-07-22 2018-01-25 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2018017673A1 (en) 2016-07-20 2018-01-25 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated pd-l1
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US9884921B2 (en) 2014-07-01 2018-02-06 Pfizer Inc. Bispecific heterodimeric diabodies and uses thereof
WO2018026969A2 (en) 2016-08-03 2018-02-08 Achaogen, Inc. Plazomicin antibodies and methods of use
WO2018044866A1 (en) 2016-08-30 2018-03-08 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use for treating viral and other infections
WO2018045379A1 (en) 2016-09-02 2018-03-08 Dana-Farber Cancer Institute, Inc. Composition and methods of treating b cell disorders
EP3301116A1 (en) 2008-08-25 2018-04-04 Dana Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
US9937249B2 (en) 2012-04-16 2018-04-10 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
EP3309172A1 (en) 2006-07-14 2018-04-18 AC Immune S.A. Humanized antibody against amyloid beta
WO2018070390A1 (en) 2016-10-12 2018-04-19 第一三共株式会社 Composition containing anti-robo4 antibody and other agents
WO2018071898A1 (en) 2016-10-14 2018-04-19 Children's Medical Center Corporation Compositions and methods for treating diseases and disorders of the central nervous system
US9951122B2 (en) 2007-12-06 2018-04-24 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
WO2018083538A1 (en) 2016-11-07 2018-05-11 Neuracle Scienc3 Co., Ltd. Anti-family with sequence similarity 19, member a5 antibodies and method of use thereof
WO2018084706A1 (en) 2016-11-04 2018-05-11 Erasmus University Medical Center Rotterdam Markers for identifying patient classes and use thereof
WO2018089807A2 (en) 2016-11-11 2018-05-17 The Regents Of The University Of California Anti-cd46 antibodies and methods of use
EP3327039A1 (en) 2010-06-02 2018-05-30 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
DE112016004398T5 (en) 2015-09-28 2018-06-14 Limited Liability Company "Oncomax" (Llc "Oncomax") THE ANTIBODIES THAT SPECIFICALLY BIND THE TYPE-1 RECEPTOR OF THE FIBROBLAST GROWTH FACTOR, THE USE OF ANTIBODIES FOR THE TREATMENT OF ONCOLOGICAL DISEASES, A PROCESS FOR THE PREPARATION OF THE ANTIBODIES
WO2018111782A1 (en) 2016-12-12 2018-06-21 Cepheid Integrated immuno-pcr and nucleic acid analysis in an automated reaction cartridge
WO2018117237A1 (en) 2016-12-22 2018-06-28 第一三共株式会社 Anti-cd3 antibody, and molecule containing said antibody
WO2018116255A1 (en) 2016-12-23 2018-06-28 Novartis Ag Factor xi antibodies and methods of use
US10017782B2 (en) 2007-02-02 2018-07-10 Yale University Immune cells modified by transient transfection of RNA
WO2018129451A2 (en) 2017-01-09 2018-07-12 Merrimack Pharmaceuticals, Inc. Anti-fgfr antibodies and methods of use
EP3348568A1 (en) 2012-11-19 2018-07-18 Temasek Life Sciences Laboratory Limited Monoclonal antibodies targeting neutralizing epitopes on h7 influenza viruses
WO2018136435A1 (en) 2017-01-17 2018-07-26 Children's Medical Center Corporation Compositions and methods for treating lysosomal storage diseases and disorders
WO2018136664A1 (en) 2017-01-18 2018-07-26 Ichan School Of Medicine At Mount Sinai Neoantigens and uses thereof for treating cancer
US10045947B2 (en) 2011-04-28 2018-08-14 President And Fellows Of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
WO2018146594A1 (en) 2017-02-08 2018-08-16 Novartis Ag Fgf21 mimetic antibodies and uses thereof
WO2018147245A1 (en) 2017-02-07 2018-08-16 第一三共株式会社 Anti-gprc5d antibody and molecule containing same
WO2018151821A1 (en) 2017-02-17 2018-08-23 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
US10058619B2 (en) 2014-05-01 2018-08-28 Bioasis Technologies, Inc. P97-polynucleotide conjugates
US10060934B2 (en) 2013-11-18 2018-08-28 Nanopharmaceuticals Llc Methods for screening patients for resistance to angioinhibition, treatment and prophylaxis thereof
WO2018165228A1 (en) 2017-03-08 2018-09-13 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use
WO2018175460A1 (en) 2017-03-24 2018-09-27 Novartis Ag Methods for preventing and treating heart disease
US10087259B1 (en) 2014-04-28 2018-10-02 Memorial Sloan Kettering Cancer Center Depleting tumor-specific tregs
WO2018181656A1 (en) 2017-03-30 2018-10-04 第一三共株式会社 Anti-gpr20 antibody
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
US10107826B2 (en) 2011-05-20 2018-10-23 Abbott Japan Co. Ltd. Immunoassay methods and reagents for decreasing nonspecific binding
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
WO2018200496A1 (en) 2017-04-24 2018-11-01 Kite Pharma, Inc. Humanized antigen-binding domains against cd19 and methods of use
WO2018209218A1 (en) 2017-05-12 2018-11-15 Laboratory Corporation Of America Holdings Compositions and methods for detection of diseases related to exposure to inhaled carcinogens
WO2018209180A1 (en) 2017-05-12 2018-11-15 Laboratory Corporation Of America Holdings Compositions and methods to detect non-coeliac gluten sensitivity
US10130686B2 (en) 2005-09-15 2018-11-20 Nanopharmaceuticals Llc Method and composition of thyroid hormone analogues and nanoformulations thereof for treating inflammatory disorders
WO2018222689A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
WO2018222685A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
WO2018226671A1 (en) 2017-06-06 2018-12-13 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands
US10155038B2 (en) 2007-02-02 2018-12-18 Yale University Cells prepared by transient transfection and methods of use thereof
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US10166304B2 (en) 2014-07-11 2019-01-01 Regents Of The University Of Minnesota Antibody fragments for detecting cancer and methods of use
US10168322B2 (en) 2004-07-09 2019-01-01 Church & Dwight Co., Inc. Electronic analyte assaying device
WO2019004487A1 (en) 2017-06-30 2019-01-03 国立大学法人北海道大学 Pediatric osteoporosis drug that does not cause growth disorder
WO2019022187A1 (en) 2017-07-27 2019-01-31 第一三共株式会社 Anti-cd147 antibody
WO2019025866A2 (en) 2017-08-04 2019-02-07 Abcam Plc Methods and compositions for the development of antibodies specific to epitope post-translational modification status
WO2019025865A2 (en) 2017-08-04 2019-02-07 Abcam Plc Methods and compositions for ligand directed antibody design
US10201616B2 (en) 2016-06-07 2019-02-12 Nanopharmaceuticals, Llc Non-cleavable polymer conjugated with αVβ3 integrin thyroid antagonists
US10206911B2 (en) 2012-10-26 2019-02-19 Memorial Sloan-Kettering Cancer Center Androgen receptor variants and methods for making and using
WO2019070013A1 (en) 2017-10-05 2019-04-11 第一三共株式会社 Composition for cytotoxic t cell depletion
EP3470429A1 (en) 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting pdl1 and methods of use thereof
EP3470426A1 (en) 2017-10-10 2019-04-17 Numab Therapeutics AG Multispecific antibody
EP3470428A1 (en) 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting cd137 and methods of use thereof
WO2019072870A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting cd137 and methods of use thereof
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019072868A1 (en) 2017-10-10 2019-04-18 Numab Therapeutics AG Multispecific antibody
WO2019072869A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting pdl1 and methods of use thereof
WO2019083904A1 (en) 2017-10-23 2019-05-02 Chan Zuckerberg Biohub, Inc. Measurement of afucosylated igg fc glycans and related treatment methods
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
US10288622B2 (en) 2011-05-23 2019-05-14 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US10328043B1 (en) 2018-04-11 2019-06-25 Nanopharmaceuticals, Llc. Composition and method for dual targeting in treatment of neuroendocrine tumors
WO2019126818A1 (en) 2017-12-23 2019-06-27 Rubius Therapeutics, Inc. Artificial antigen presenting cells and methods of use
WO2019126249A1 (en) 2017-12-20 2019-06-27 Laboratory Corporation Of America Holdings Compositions and methods to detect head and neck cancer
WO2019133747A1 (en) 2017-12-27 2019-07-04 Bristol-Myers Squibb Company Anti-cd40 antibodies and uses thereof
WO2019140229A1 (en) 2018-01-12 2019-07-18 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
US10370455B2 (en) 2014-12-05 2019-08-06 Immunext, Inc. Identification of VSIG8 as the putative VISTA receptor (V-R) and use thereof to produce VISTA/VSIG8 agonists and antagonists
WO2019149269A1 (en) 2018-02-01 2019-08-08 信达生物制药(苏州)有限公司 Fully human anti-b cell maturation antigen (bcma) single chain variable fragment, and application thereof
WO2019161133A1 (en) 2018-02-15 2019-08-22 Memorial Sloan Kettering Cancer Center Foxp3 targeting agent compositions and methods of use for adoptive cell therapy
US10392605B2 (en) 2014-02-19 2019-08-27 Bioasis Technologies Inc. P97-IDS fusion proteins
WO2019165304A1 (en) 2018-02-23 2019-08-29 Meso Scale Technologies, Llc. Methods of screening antigen-binding molecules by normalizing for the concentration of antigen-binding molecule
US10414824B2 (en) 2002-11-22 2019-09-17 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
WO2019195514A1 (en) 2018-04-04 2019-10-10 Genentech, Inc. Methods for detecting and quantifying fgf21
WO2019195126A1 (en) 2018-04-02 2019-10-10 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
WO2019217899A2 (en) 2018-05-11 2019-11-14 Laboratory Corporation Of America Holdings Compositions and methods to detect kidney fibrosis
WO2019230869A1 (en) 2018-05-31 2019-12-05 第一三共株式会社 Anti-human tlr7 antibody
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020013170A1 (en) 2018-07-10 2020-01-16 国立大学法人神戸大学 ANTI-SIRPα ANTIBODY
US10537636B2 (en) 2017-02-06 2020-01-21 Oncoquest Inc. Treatment of cancer with therapeutic monoclonal antibody specific for a tumor associated antigen and an immune adjuvant
WO2020023300A1 (en) 2018-07-22 2020-01-30 Bioasis Technologies, Inc. Treatment of lymmphatic metastases
WO2020022475A1 (en) 2018-07-27 2020-01-30 第一三共株式会社 Protein recognizing drug moiety of antibody-drug conjugate
US10550196B2 (en) 2014-04-27 2020-02-04 Famewave Ltd. Humanized antibodies against CEACAM1
EP3604523A1 (en) 2001-12-28 2020-02-05 Chugai Seiyaku Kabushiki Kaisha Method for stabilizing proteins
US10584172B2 (en) 2007-12-28 2020-03-10 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
US10590196B2 (en) 2014-12-05 2020-03-17 Memorial Sloan-Kettering Cancer Center Antibodies targeting G-protein coupled receptor and methods of use
WO2020061210A1 (en) 2018-09-18 2020-03-26 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
EP3636320A1 (en) 2018-10-09 2020-04-15 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
WO2020076969A2 (en) 2018-10-10 2020-04-16 Tilos Therapeutics, Inc. Anti-lap antibody variants and uses thereof
WO2020074584A1 (en) 2018-10-09 2020-04-16 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
WO2020079580A1 (en) 2018-10-15 2020-04-23 Novartis Ag Trem2 stabilizing antibodies
US10633442B2 (en) 2013-08-21 2020-04-28 Board Of Regents Of The University Of Texas System Antibodies to connexin 43 (Cx43) hemichannels and methods of use thereof to inhibit Cx43 hemichannel opening
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
US10647959B2 (en) 2011-04-27 2020-05-12 President And Fellows Of Harvard College Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020102555A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
WO2020117852A1 (en) 2018-12-03 2020-06-11 Rubius Therapeutics, Inc. Artificial antigen presenting cells including hla-e and hla-g molecules and methods of use
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
US10716862B2 (en) 2002-01-11 2020-07-21 Bioasis Advanced Technologies Inc. Use of P97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
DE112018005145T5 (en) 2017-09-15 2020-07-23 The Regents Of The University Of California INHIBITION OF AMINOACYLASE 3 (AA3) IN TREATMENT OF CANCER
WO2020154293A1 (en) 2019-01-22 2020-07-30 Bristol-Myers Squibb Company Antibodies against il-7r alpha subunit and uses thereof
US10730941B2 (en) 2015-07-31 2020-08-04 Memorial Sloan-Kettering Cancer Center Antigen-binding proteins targeting CD56 and uses thereof
EP3689907A1 (en) 2019-01-31 2020-08-05 Numab Therapeutics AG Antibodies targeting il-17a and methods of use thereof
WO2020157305A1 (en) 2019-01-31 2020-08-06 Numab Therapeutics AG Multispecific antibodies having specificity for tnfa and il-17a, antibodies targeting il-17a, and methods of use thereof
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
WO2020167668A1 (en) 2019-02-11 2020-08-20 Zumutor Biologics Inc. Anti-clec2d antibodies and methods of use thereof
WO2020180712A1 (en) 2019-03-01 2020-09-10 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
WO2020185535A1 (en) 2019-03-08 2020-09-17 Genentech, Inc. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
US10781254B2 (en) 2010-03-26 2020-09-22 The Trustees Of Dartmouth College VISTA regulatory T cell mediator protein, VISTA binding agents and use thereof
US10829562B2 (en) 2015-12-10 2020-11-10 Katholieke Universiteit Leuven Haemorrhagic disorder due to ventricular assist device
WO2020227515A1 (en) 2019-05-07 2020-11-12 Voyager Therapeutics, Inc. Compositions and methods for the vectored augmentation of protein destruction, expression and/or regulation
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020240360A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
US10857181B2 (en) 2015-04-21 2020-12-08 Enlivex Therapeutics Ltd Therapeutic pooled blood apoptotic cell preparations and uses thereof
US10865445B2 (en) 2010-08-18 2020-12-15 Fred Hutchinson Cancer Research Center Methods for alleviating facioscapulohumeral dystrophy (FSHD) by N siRNA molecule inhibiting the expression of DUX4-FL
EP3753410A2 (en) 2010-09-28 2020-12-23 The Regents Of The University Of California Combinations comprising gaba agonists in treatment of hyperglycemia
US10889637B2 (en) 2016-02-26 2021-01-12 The Board Of Regents Of The University Of Texas System Methods of treating an osteolytic tumor and spinal cord injury by administering connexin (Cx) 43 hemichannel-binding antibodies
WO2021011678A1 (en) 2019-07-15 2021-01-21 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
WO2021011681A1 (en) 2019-07-15 2021-01-21 Bristol-Myers Squibb Company Antibodies against human trem-1 and uses thereof
US10899836B2 (en) 2016-02-12 2021-01-26 Janssen Pharmaceutica Nv Method of identifying anti-VISTA antibodies
US10913796B2 (en) 2015-12-04 2021-02-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting Fc receptor-like 5 and methods of use
WO2021030729A1 (en) 2019-08-15 2021-02-18 Psychemedics Corporation Homogeneous enzyme immunoassay for keratinized structures
US10933115B2 (en) 2012-06-22 2021-03-02 The Trustees Of Dartmouth College VISTA antagonist and methods of use
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
US10961204B1 (en) 2020-04-29 2021-03-30 Nanopharmaceuticals Llc Composition of scalable thyrointegrin antagonists with improved blood brain barrier penetration and retention into brain tumors
WO2021062323A1 (en) 2019-09-26 2021-04-01 Stcube & Co. Antibodies specific to glycosylated ctla-4 and methods of use thereof
US10975169B1 (en) 2019-09-27 2021-04-13 Memorial Sloan Kettering Cancer Center Methods for treating diabetic retinopathy using anti-ceramide monoclonal antibody 2A2
WO2021072277A1 (en) 2019-10-09 2021-04-15 Stcube & Co. Antibodies specific to glycosylated lag3 and methods of use thereof
EP3816185A1 (en) 2019-11-04 2021-05-05 Numab Therapeutics AG Multispecific antibody directed against pd-l1 and a tumor-associated antigen
WO2021085497A1 (en) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
US11000548B2 (en) 2015-02-18 2021-05-11 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11009509B2 (en) 2015-06-24 2021-05-18 Janssen Pharmaceutica Nv Anti-VISTA antibodies and fragments
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
WO2021102505A1 (en) 2019-11-25 2021-06-03 Griffith University Immunogenic protein against gonococcal infection
US11034943B2 (en) 2012-07-31 2021-06-15 Bioasis Technologies, Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
US11045544B2 (en) 2013-03-15 2021-06-29 Omeros Corporation Methods of generating bioactive peptide-bearing antibodies and compositions comprising the same
EP3842457A1 (en) 2015-09-09 2021-06-30 Novartis AG Thymic stromal lymphopoietin (tslp)-binding molecules and methods of using the molecules
US11059891B2 (en) 2014-12-05 2021-07-13 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting Fc receptor-like 5 and uses thereof
WO2021139777A1 (en) 2020-01-10 2021-07-15 上海复宏汉霖生物技术股份有限公司 Anti-tigit antibodies and usage method
US11085929B2 (en) 2017-08-31 2021-08-10 Arizona Board Of Regents On Behalf Of Arizona State University Nanoshell-structured material as co-matrix for peptide characterization in mass spectrometry
US11090336B2 (en) 2019-03-27 2021-08-17 The Trustees Of The University Of Pennsylvania Tn-MUC1 chimeric antigen receptor (CAR) T cell therapy
WO2021162731A1 (en) 2020-02-10 2021-08-19 Rubius Therapeutics, Inc. Engineered erythroid cells including hla-g polypeptides and methods of use thereof
WO2021167908A1 (en) 2020-02-17 2021-08-26 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof
WO2021183428A1 (en) 2020-03-09 2021-09-16 Bristol-Myers Squibb Company Antibodies to cd40 with enhanced agonist activity
WO2021183207A1 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology COMPOSITIONS AND METHODS FOR IMMUNOTHERAPY OF NPM1c-POSITIVE CANCER
US11123426B2 (en) 2014-06-11 2021-09-21 The Trustees Of Dartmouth College Use of vista agonists and antagonists to suppress or enhance humoral immunity
WO2021191870A1 (en) 2020-03-27 2021-09-30 Dcprime B.V. Ex vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021191871A1 (en) 2020-03-27 2021-09-30 Dcprime B.V. In vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
US11150242B2 (en) 2015-04-10 2021-10-19 President And Fellows Of Harvard College Immune cell trapping devices and methods for making and using the same
WO2021222719A1 (en) 2020-04-30 2021-11-04 Sutro Biopharma, Inc. Methods of producing full-length antibodies using e.coli
EP3909983A1 (en) 2015-12-02 2021-11-17 STCube & Co. Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
US11180557B2 (en) 2012-06-22 2021-11-23 King's College London Vista modulators for diagnosis and treatment of cancer
EP3915580A1 (en) 2020-05-29 2021-12-01 Numab Therapeutics AG Multispecific antibody
US11202759B2 (en) 2010-10-06 2021-12-21 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
EP3925977A1 (en) 2012-10-30 2021-12-22 Apexigen, Inc. Anti-cd40 antibodies and methods of use
WO2022006147A1 (en) 2020-06-29 2022-01-06 Cell Medica Inc. Methods and compositions for the reduction of chimeric antigen receptor tonic signaling
WO2022013787A1 (en) 2020-07-16 2022-01-20 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
US11229669B2 (en) 2018-02-11 2022-01-25 Memorial Sloan-Kettering Cancer Center Cells comprising non-HLA restricted T cell receptors
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
US11242392B2 (en) 2013-12-24 2022-02-08 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
WO2022035793A1 (en) 2020-08-10 2022-02-17 Precision Biosciences, Inc. Antibodies and fragments specific for b-cell maturation antigen and uses thereof
US11253609B2 (en) 2017-03-03 2022-02-22 Seagen Inc. Glycan-interacting compounds and methods of use
US11253590B2 (en) 2015-12-02 2022-02-22 Stsciences, Inc. Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator)
EP3964526A1 (en) 2008-06-25 2022-03-09 Novartis AG Humanization of rabbit antibodies using a universal antibody framework
EP3971571A2 (en) 2012-05-25 2022-03-23 The University of Vermont and State Agriculture College Compositions and methods for assaying platelet reactivity and treatment selection
WO2022072712A1 (en) 2020-09-30 2022-04-07 Vor Biopharma Inc. Chimeric antigen receptor expression systems
US11304976B2 (en) 2015-02-18 2022-04-19 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
EP3988568A1 (en) 2020-10-21 2022-04-27 Numab Therapeutics AG Combination treatment
US11318163B2 (en) 2015-02-18 2022-05-03 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
WO2022097065A2 (en) 2020-11-06 2022-05-12 Novartis Ag ANTIBODY Fc VARIANTS
WO2022097068A1 (en) 2020-11-05 2022-05-12 Dcprime B.V. Use of tumor-independent antigens in immunotherapies
WO2022104090A1 (en) 2020-11-13 2022-05-19 Vor Biopharma Inc. Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors
WO2022101358A1 (en) 2020-11-11 2022-05-19 BioNTech SE Monoclonal antibodies directed against programmed death-1 protein and their use in medicine
US11351137B2 (en) 2018-04-11 2022-06-07 Nanopharmaceuticals Llc Composition and method for dual targeting in treatment of neuroendocrine tumors
WO2022130206A1 (en) 2020-12-16 2022-06-23 Pfizer Inc. TGFβr1 INHIBITOR COMBINATION THERAPIES
EP4019547A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Multispecific antibodies having specificity for il-4r and il-31
EP4019090A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Antibody variable domains that bind il-4r
EP4019546A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Antibody variable domains that bind il-31
WO2022136693A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2022136675A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains that bind il-4r
US11384144B2 (en) 2015-05-22 2022-07-12 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for a PRAME peptide
US11401330B2 (en) 2016-11-17 2022-08-02 Seagen Inc. Glycan-interacting compounds and methods of use
WO2022167460A1 (en) 2021-02-02 2022-08-11 Numab Therapeutics AG Multispecific antibodies having specificity for ror1 and cd3
US11428697B2 (en) 2015-01-30 2022-08-30 Salk Institute For Biological Studies Compositions and methods for treating age-related diabetes and related disorders
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
US11427644B2 (en) 2012-01-13 2022-08-30 Julius-Maxmillians-Universitat Wurzburg Dual antigen-induced bipartite functional complementation
WO2022189620A1 (en) 2021-03-11 2022-09-15 Institut Curie Transmembrane neoantigenic peptides
WO2022189639A1 (en) 2021-03-11 2022-09-15 Mnemo Therapeutics Tumor neoantigenic peptides and uses thereof
WO2022189626A2 (en) 2021-03-11 2022-09-15 Mnemo Therapeutics Tumor neoantigenic peptides
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022213118A1 (en) 2021-03-31 2022-10-06 Entrada Therapeutics, Inc. Cyclic cell penetrating peptides
WO2022226353A1 (en) 2021-04-23 2022-10-27 Baylor College Of Medicine Car nkts expressing artificial micro rna-embedded shrna for downregulation of mhc class i & ii expression
US11484604B2 (en) 2020-08-07 2022-11-01 Fortis Therapeutics, Inc. Immunoconjugates targeting CD46 and methods of use thereof
WO2022235832A1 (en) 2021-05-06 2022-11-10 Ludwig Institute For Cancer Research Ltd Compositions and methods for immunotherapy
WO2022235940A1 (en) 2021-05-06 2022-11-10 Dana-Farber Cancer Institute, Inc. Antibodies against alk and methods of use thereof
US11497767B2 (en) 2015-02-18 2022-11-15 Enlivex Therapeutics R&D Ltd Combination immune therapy and cytokine control therapy for cancer treatment
WO2022240721A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating interferon regulatory factor-5 (irf-5) activity
WO2022241408A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating tissue distribution of intracellular therapeutics
WO2022240757A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Antigen-binding and antigen degradation constructs
WO2022238386A1 (en) 2021-05-10 2022-11-17 Institut Curie Methods for the treatment of cancer, inflammatory diseases and autoimmune diseases
WO2022248602A1 (en) 2021-05-25 2022-12-01 Institut Curie Myeloid cells overexpressing bcl2
US11525000B2 (en) 2016-04-15 2022-12-13 Immunext, Inc. Anti-human VISTA antibodies and use thereof
US11529416B2 (en) 2012-09-07 2022-12-20 Kings College London Vista modulators for diagnosis and treatment of cancer
US11547747B2 (en) 2017-09-27 2023-01-10 University Of Georgia Research Foundation, Inc. Treatment and detection of infection and disease associated with different fungal pathogens
US11555177B2 (en) 2016-07-13 2023-01-17 President And Fellows Of Harvard College Antigen-presenting cell-mimetic scaffolds and methods for making and using the same
WO2023288203A2 (en) 2021-07-12 2023-01-19 Ludwig Institute For Cancer Research Ltd T cell receptors specific for tumor-associated antigens and methods of use thereof
WO2023023055A1 (en) 2021-08-16 2023-02-23 Renagade Therapeutics Management Inc. Compositions and methods for optimizing tropism of delivery systems for rna
US11596652B2 (en) 2015-02-18 2023-03-07 Enlivex Therapeutics R&D Ltd Early apoptotic cells for use in treating sepsis
WO2023034288A1 (en) 2021-08-31 2023-03-09 Dana-Farber Cancer Institute, Inc. Compositions and methods for treatment of autoimmune disorders and cancer
WO2023044333A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Cyclic lipids and methods of use thereof
WO2023044343A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Acyclic lipids and methods of use thereof
WO2023064872A1 (en) 2021-10-14 2023-04-20 Precision Biosciences, Inc. Combinations of anti-bcma car t cells and gamma secretase inhibitors
US11643454B2 (en) 2014-02-03 2023-05-09 Bioasis Technologies, Inc. P97 fusion proteins
EP4177266A1 (en) 2021-11-05 2023-05-10 Katholieke Universiteit Leuven Neutralizing anti-sars-cov-2 human antibodies
WO2023081471A1 (en) 2021-11-05 2023-05-11 Dana-Farber Cancer Institute, Inc. Human broadly crossreactive influenza monoclonal antibodies and methods of use thereof
EP4183800A1 (en) 2021-11-19 2023-05-24 Medizinische Hochschule Hannover Novel sars-cov-2 neutralizing antibodies
WO2023097024A1 (en) 2021-11-24 2023-06-01 Dana-Farber Cancer Institute, Inc. Antibodies against ctla-4 and methods of use thereof
US11680105B2 (en) 2019-01-17 2023-06-20 Regents Of The University Of Minnesota Antibody fragments for detecting cancer and methods of use
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
WO2023114847A2 (en) 2021-12-14 2023-06-22 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating disease
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
WO2023122752A1 (en) 2021-12-23 2023-06-29 Renagade Therapeutics Management Inc. Constrained lipids and methods of use thereof
WO2023150552A1 (en) 2022-02-04 2023-08-10 Dana-Farber Cancer Institute, Inc. Compositions and methods for treatment of neurological disorders
US11723888B2 (en) 2021-12-09 2023-08-15 Nanopharmaceuticals Llc Polymer conjugated thyrointegrin antagonists
US11730761B2 (en) 2016-02-18 2023-08-22 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11746150B2 (en) 2017-12-19 2023-09-05 Surrozen Operating, Inc. Anti-LRP5/6 antibodies and methods of use
US11752238B2 (en) 2016-02-06 2023-09-12 President And Fellows Of Harvard College Recapitulating the hematopoietic niche to reconstitute immunity
WO2023172694A1 (en) 2022-03-09 2023-09-14 Dana-Farber Cancer Institute, Inc. Genetically engineered b cells and methods of use thereof
US11766474B2 (en) 2017-11-14 2023-09-26 Memorial Sloan-Kettering Cancer Center IL-36 secreting immunoresponsive cells and uses thereof
EP4249066A2 (en) 2014-12-23 2023-09-27 Bristol-Myers Squibb Company Antibodies to tigit
US11773171B2 (en) 2017-12-19 2023-10-03 Surrozen Operating, Inc. WNT surrogate molecules and uses thereof
WO2023196931A1 (en) 2022-04-07 2023-10-12 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
US11793834B2 (en) 2018-12-12 2023-10-24 Kite Pharma, Inc. Chimeric antigen and T cell receptors and methods of use
EP4273162A1 (en) 2022-05-06 2023-11-08 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2023214047A1 (en) 2022-05-06 2023-11-09 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2023217987A1 (en) 2022-05-12 2023-11-16 BioNTech SE Monoclonal antibodies directed against programmed death-1 protein and their use in medicine
WO2023223185A1 (en) 2022-05-16 2023-11-23 Mendus B.V. Use of leukemia-derived cells for enhancing natural killer (nk) cell therapy
WO2024039670A1 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against cldn4 and methods of use thereof
WO2024039672A2 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against msln and methods of use thereof
WO2024038095A1 (en) 2022-08-16 2024-02-22 Iome Bio NOVEL ANTI-RGMb ANTIBODIES
US11932690B2 (en) 2017-12-29 2024-03-19 Memorial Sloan-Kettering Cancer Center Enhanced chimeric antigen receptors and uses thereof
US11952427B2 (en) 2022-03-15 2024-04-09 Bristol-Myers Squibb Company Anti-CD40 antibodies and uses thereof

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355023A (en) * 1980-09-30 1982-10-19 The Massachusetts General Hospital Antibody fragment compositions and process
US4474893A (en) * 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
GB2137631A (en) * 1983-03-25 1984-10-10 Celltech Ltd Multichain polypeptides and processes for their production
WO1986000090A1 (en) * 1984-06-07 1986-01-03 Murphy John R Hybrid protein and fused gene encoding gene
EP0173494A2 (en) * 1984-08-27 1986-03-05 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by DNA splicing and expression
WO1986001533A1 (en) * 1984-09-03 1986-03-13 Celltech Limited Production of chimeric antibodies
EP0183964A1 (en) * 1984-10-26 1986-06-11 Teijin Limited DNA sequence
EP0184187A2 (en) * 1984-12-04 1986-06-11 Teijin Limited Mouse-human chimaeric immunoglobulin heavy chain, and chimaeric DNA encoding it
EP0193161A2 (en) * 1985-02-25 1986-09-03 Xoma Corporation Antibody hybrid molecules and process for their preparation
EP0205326A2 (en) * 1985-06-07 1986-12-17 Immunomedics, Inc. Antibody conjugates
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
WO1987002671A1 (en) * 1985-11-01 1987-05-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
US4666837A (en) * 1982-05-24 1987-05-19 Smithkline-Rit DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits
GB2188638A (en) * 1986-03-27 1987-10-07 Gregory Paul Winter Chimeric antibodies
US4704692A (en) * 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
WO1988001649A1 (en) * 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
EP0171496B1 (en) * 1984-08-15 1993-05-26 Research Development Corporation of Japan Process for the production of a chimera monoclonal antibody

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355023A (en) * 1980-09-30 1982-10-19 The Massachusetts General Hospital Antibody fragment compositions and process
US4474893A (en) * 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4642334A (en) * 1982-03-15 1987-02-10 Dnax Research Institute Of Molecular And Cellular Biology, Inc. Hybrid DNA prepared binding composition
US4666837A (en) * 1982-05-24 1987-05-19 Smithkline-Rit DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits
GB2137631A (en) * 1983-03-25 1984-10-10 Celltech Ltd Multichain polypeptides and processes for their production
US4816397A (en) * 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
WO1986000090A1 (en) * 1984-06-07 1986-01-03 Murphy John R Hybrid protein and fused gene encoding gene
EP0171496B1 (en) * 1984-08-15 1993-05-26 Research Development Corporation of Japan Process for the production of a chimera monoclonal antibody
EP0173494A2 (en) * 1984-08-27 1986-03-05 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by DNA splicing and expression
WO1986001533A1 (en) * 1984-09-03 1986-03-13 Celltech Limited Production of chimeric antibodies
EP0183964A1 (en) * 1984-10-26 1986-06-11 Teijin Limited DNA sequence
EP0184187A2 (en) * 1984-12-04 1986-06-11 Teijin Limited Mouse-human chimaeric immunoglobulin heavy chain, and chimaeric DNA encoding it
EP0193161A2 (en) * 1985-02-25 1986-09-03 Xoma Corporation Antibody hybrid molecules and process for their preparation
EP0205326A2 (en) * 1985-06-07 1986-12-17 Immunomedics, Inc. Antibody conjugates
WO1987002671A1 (en) * 1985-11-01 1987-05-07 International Genetic Engineering, Inc. Modular assembly of antibody genes, antibodies prepared thereby and use
GB2188638A (en) * 1986-03-27 1987-10-07 Gregory Paul Winter Chimeric antibodies
US4704692A (en) * 1986-09-02 1987-11-03 Ladner Robert C Computer based system and method for determining and displaying possible chemical structures for converting double- or multiple-chain polypeptides to single-chain polypeptides
WO1988001775A1 (en) * 1986-09-02 1988-03-10 Genex Corporation Macromolecule construction methods
WO1988001649A1 (en) * 1986-09-02 1988-03-10 Genex Corporation Single polypeptide chain binding molecules
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules

Non-Patent Citations (97)

* Cited by examiner, † Cited by third party
Title
Abstract A: Abstract accompanying SBIR (NIH) Phase I grant application. *
Abstract B: Abstract accompanying SBIR (NIH) Phase II grant application. *
Arnon (1986) Chemical Abstracts 105(5), p. 1, Ab. No. 34903y. *
Baer et al. (1985) Cell, 43:705 713. *
Baer et al. (1985) Cell, 43:705-713.
Blue Sheets, vol. 5, p. s 5 (Jul. 3, 1985). *
Boulianne et al. (1984) Nature, 312:543 646. *
Boulianne et al. (1984) Nature, 312:543-646.
Boulianne et al. (1987) Mol. Biol. Med., 4:37 49. *
Boulianne et al. (1987) Mol. Biol. Med., 4:37-49.
Brown et al. (1987) Cancer Res., 47:3577 3583. *
Brown et al. (1987) Cancer Res., 47:3577-3583.
Cabilly et al. (1984) Proc. Natl. Acad. Sci. U.S.A., 81:3273 3277. *
Cabilly et al. (1984) Proc. Natl. Acad. Sci. U.S.A., 81:3273-3277.
Chothia et al. (1987). *
Corvalen and Smith (1987) Cancer Immunol. Immunother., 24:127 132. *
Corvalen and Smith (1987) Cancer Immunol. Immunother., 24:127-132.
Corvalen et al. (1987) Cancer Immunol. Immunother., 24:133 137. *
Corvalen et al. (1987) Cancer Immunol. Immunother., 24:133-137.
Dammacco et al. (1972) J. Immunol., 109:565 569. *
Dammacco et al. (1972) J. Immunol., 109:565-569.
Erlich et al. (1980) Biochem., 19:4091 4096. *
Erlich et al. (1980) Biochem., 19:4091-4096.
Gascoigne et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:2936 2940. *
Gascoigne et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:2936-2940.
Genex Makes a Miniatured Monoclonal Antibody , Newswatch, Monday, Oct. 20, 1986, p. 5. *
Grant Application, SBIR (NIH) Phase II. *
Greenberg (1986) G. E. News, Dec. *
Haber (1983) Biochem. Pharmacol., 32:1967 1977. *
Haber (1983) Biochem. Pharmacol., 32:1967-1977.
Haber and Novotny (1985) "The Antibody Combining Site" in Hybridoma Technology in the Biosciences and Medicine, Plenum Publishing Corp., pp. 57-76.
Haber and Novotny (1985) The Antibody Combining Site in Hybridoma Technology in the Biosciences and Medicine, Plenum Publishing Corp., pp. 57 76. *
Hochman et al., (1973) Biochem., 12:1130 1135. *
Hochman et al., (1973) Biochem., 12:1130-1135.
Huston et al. (1972) Biochem., 11:4256 4262. *
Huston et al. (1972) Biochem., 11:4256-4262.
Inbar et al. (1972) Proc. Natl. Acad. Sci. U.S.A., 69:2659 2662. *
Inbar et al. (1972) Proc. Natl. Acad. Sci. U.S.A., 69:2659-2662.
Itakura et al. (1977) Science, 198:1056 1063. *
Itakura et al. (1977) Science, 198:1056-1063.
Jones et al. (1986) Nature, 321:522 525. *
Jones et al. (1986) Nature, 321:522-525.
Kabat et al. (1978) Proc. Natl. Acad. Sci. U.S.A., 75:2429 2433. *
Kabat et al. (1978) Proc. Natl. Acad. Sci. U.S.A., 75:2429-2433.
Kabat et al. (1979) Sequence of Immunoglobulin Chains, NIH Publication No. 80 2008, pp. 1 107. *
Kabat et al. (1979) Sequence of Immunoglobulin Chains, NIH Publication No. 80-2008, pp. 1-107.
Klausner (1986) Biotechnology, 4:1041 1043. *
Klausner (1986) Biotechnology, 4:1041-1043.
Letter from Mr. Joseleff: Describes abstract A. *
Liu et al. (1987) Gene, 54:33 40. *
Liu et al. (1987) Gene, 54:33-40.
Liu et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:3439 3443. *
Liu et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:3439-3443.
Marx (1985) Science, 299: 455 456. *
Marx (1985) Science, 299: 455-456.
Morrison (1985) Science, 299:1202 1207. *
Morrison (1985) Science, 299:1202-1207.
Morrison et al. (1984) Proc. Natl. Acad. Sci. U.S.A., 81:6851 6855. *
Morrison et al. (1984) Proc. Natl. Acad. Sci. U.S.A., 81:6851-6855.
Neuberger (1986) Chemical Abstracts 105(11), p. 475, Ab. No. 95609d. *
Neuberger et al. (1984) Nature, 312:604 608. *
Neuberger et al. (1984) Nature, 312:604-608.
Nishimuru et al. (1987) Cancer Res., 47:999 1005. *
Nishimuru et al. (1987) Cancer Res., 47:999-1005.
Ohno et al. (1985) Proc. Natl. Acad. Sci. U.S.A., 82:2945 2949. *
Ohno et al. (1985) Proc. Natl. Acad. Sci. U.S.A., 82:2945-2949.
Pollack et al. (1986) Science, 234:1570 1573. *
Pollack et al. (1986) Science, 234:1570-1573.
Rice and Baltimore (1982) Proc. Natl. Acad. Sci. U.S.A., 79:7862 7865. *
Rice and Baltimore (1982) Proc. Natl. Acad. Sci. U.S.A., 79:7862-7865.
Richardson (1987) Chemical Abstracts 107(5), p. 330, Ab. No. 35697n. *
Rosemblatt and Haber (1978) Biochem., 17:3877 3882. *
Rosemblatt and Haber (1978) Biochem., 17:3877-3882.
Sahagan et al., (1986) J. Immunol., 137:1066 1074. *
Sahagan et al., (1986) J. Immunol., 137:1066-1074.
Schultz (1988) Science, 240:426 432. *
Schultz (1988) Science, 240:426-432.
Sharon and Givol (1976) Biochem., 15:1591 1594. *
Sharon and Givol (1976) Biochem., 15:1591-1594.
Sun et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:214 218. *
Sun et al. (1987) Proc. Natl. Acad. Sci. U.S.A., 84:214-218.
Takeda et al. (1985) Nature, 314:452 454. *
Takeda et al. (1985) Nature, 314:452-454.
Tan et al. (1985) J. Immunol., 135:3564 3567. *
Tan et al. (1985) J. Immunol., 135:3564-3567.
The United States Government has certain rights in this application as the subject matter hereof was developed in part using funds from SBIR Grant Nos. SSS-4 1 R43 CA39870-01 and SSS-4 2 R44 CA39870-02.
Thiesen (1987) Chemical Abstracts 106(13), p. 37, Ab. No. 95759y. *
Tonegawa et al. (1977) Proc. Natl. Acad. Sci. USA, 74:3518 3522. *
Tonegawa et al. (1977) Proc. Natl. Acad. Sci. USA, 74:3518-3522.
Tramontano et al. (1986) Science, 234:1566 1570. *
Tramontano et al. (1986) Science, 234:1566-1570.
Van Brunt (1986) Biotechnology, 4:277 283. *
Van Brunt (1986) Biotechnology, 4:277-283.
Vogel (1987) "Current Approaches of Immunotargeting in Immunoconjugates" in Antibody Conjugates in Radioimaging and Therapy of Cance
Vogel (1987) Current Approaches of Immunotargeting in Immunoconjugates in Antibody Conjugates in Radioimaging and Therapy of Cancer (C. W. Vogel, ed.) New York, Oxford University Press, pp. 3 7. *
Wetzel et al. (1981) Gene, 16:63 71. *
Williams et al. (1986). *

Cited By (1358)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548640B1 (en) * 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
US20040127688A1 (en) * 1986-03-27 2004-07-01 Medical Research Council Altered antibodies
US6982321B2 (en) 1986-03-27 2006-01-03 Medical Research Council Altered antibodies
US20040192897A2 (en) * 1986-03-27 2004-09-30 Medical Research Council Altered Antibodies
US5869620A (en) * 1986-09-02 1999-02-09 Enzon, Inc. Multivalent antigen-binding proteins
US5455030A (en) * 1986-09-02 1995-10-03 Enzon Labs, Inc. Immunotheraphy using single chain polypeptide binding molecules
US5258498A (en) * 1987-05-21 1993-11-02 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US20050058638A1 (en) * 1987-05-21 2005-03-17 Huston James S. Biosynthetic binding proteins for immuno-targeting
US5476786A (en) * 1987-05-21 1995-12-19 Creative Biomolecules, Inc. Biosynthetic antibody binding sites
US5482858A (en) * 1987-05-21 1996-01-09 Creative Biomolecules, Inc. Polypeptide linkers for production of biosynthetic proteins
US5965405A (en) * 1988-04-16 1999-10-12 Celltech Limited Method for producing Fv fragments in eukaryotic cells
US5993813A (en) * 1988-10-19 1999-11-30 The Dow Chemical Company Family of high affinity, modified antibodies for cancer treatment
US6051225A (en) * 1988-10-19 2000-04-18 The Dow Chemical Company Family of high affinity, modified antibodies for cancer treatment
US20080299618A1 (en) * 1988-11-11 2008-12-04 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production and use of said ligands and receptors
US6187308B1 (en) * 1989-06-02 2001-02-13 The Johns Hopkins University School Of Medicine Monoclonal antibodies against leukocyte adhesion receptor β-chain, methods of producing these antibodies and use therefor
US5672683A (en) * 1989-09-07 1997-09-30 Alkermes, Inc. Transferrin neuropharmaceutical agent fusion protein
US6329508B1 (en) 1989-09-07 2001-12-11 Alkermes, Inc. Transferrin receptor reactive chimeric antibodies
US5977307A (en) * 1989-09-07 1999-11-02 Alkermes, Inc. Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins
US20030064480A1 (en) * 1990-06-28 2003-04-03 Leander Lauffer Fusion proteins with immunoglobulin portions, the preparation and use thereof
US6806079B1 (en) 1990-07-10 2004-10-19 Medical Research Council Methods for producing members of specific binding pairs
US20040157214A1 (en) * 1990-07-10 2004-08-12 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US7635666B1 (en) 1990-07-10 2009-12-22 Medical Research Council Methods for producing members of specific binding pairs
US7723270B1 (en) 1990-07-10 2010-05-25 Medical Research Council Methods for producing members of specific binding pairs
US20070148774A1 (en) * 1990-07-10 2007-06-28 Medical Research Council Methods for producing members of specific binding pairs
US7732377B2 (en) 1990-07-10 2010-06-08 Medical Research Council Methods for producing members of specific binding pairs
US7662557B2 (en) 1990-07-10 2010-02-16 Medical Research Council Methods for producing members of specific binding pairs
US20090155810A1 (en) * 1990-07-10 2009-06-18 Medical Research Council Methods for producing members of specific binding pairs
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US7063943B1 (en) 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
US6916605B1 (en) 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
US5849877A (en) * 1990-10-29 1998-12-15 Chiron Corporation Antigen-binding sites of antibody molecules specific for cancer antigens
US5948647A (en) * 1990-10-29 1999-09-07 Chiron Corporation Nucleic acids encoding antigen-binding sites specific for cancer antigens
US5811267A (en) * 1990-10-29 1998-09-22 Chiron Corporation Isolated nucleic acid molecules encoding antigen binding sites of antibody molecules specific for cancer antigens
US5359046A (en) * 1990-12-14 1994-10-25 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways
US7320787B2 (en) 1991-03-07 2008-01-22 The General Hospital Corporation Redirection of cellular immunity by protein tyrosine kinase chimeras
US6004811A (en) * 1991-03-07 1999-12-21 The Massachussetts General Hospital Redirection of cellular immunity by protein tyrosine kinase chimeras
US6410014B1 (en) 1991-03-07 2002-06-25 The General Hospital Corporation Redirection of cellular immunity by protein-tyrosine kinase chimeras
US5843728A (en) * 1991-03-07 1998-12-01 The General Hospital Corporation Redirection of cellular immunity by receptor chimeras
US20020176851A1 (en) * 1991-03-07 2002-11-28 Brian Seed Redirection of cellular immunity by protein-tyrosine kinase chimeras
US5851828A (en) * 1991-03-07 1998-12-22 The General Hospital Corporation Targeted cytolysis of HIV-infected cells by chimeric CD4 receptor-bearing cells
US6392013B1 (en) 1991-03-07 2002-05-21 The General Hospital Corporation Redirection of cellular immunity by protein tyrosine kinase chimeras
US7094599B2 (en) 1991-03-07 2006-08-22 The General Hospital Corporation Targeted cytolysis of HIV-infected cells by chimeric CD4 receptor-bearing cells
US7049136B2 (en) 1991-03-07 2006-05-23 The General Hospital Corporation Redirection of cellular immunity by receptor chimeras
US5912170A (en) * 1991-03-07 1999-06-15 The General Hospital Corporation Redirection of cellular immunity by protein-tyrosine kinase chimeras
US6284240B1 (en) 1991-03-07 2001-09-04 The General Hospital Corporation Targeted cytolysis of HIV-infected cells by chimeric CD4 receptor-bearing cells
US5994088A (en) * 1991-03-08 1999-11-30 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6399569B1 (en) 1991-03-11 2002-06-04 Curis, Inc. Morphogen treatments for limiting proliferation of epithelial cells
US5652118A (en) * 1991-03-11 1997-07-29 Creative Biomolecules, Inc. Nucleic acid encoding a novel morphogenic protein, OP-3
US5674844A (en) * 1991-03-11 1997-10-07 Creative Biomolecules, Inc. Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US20060025571A1 (en) * 1991-03-11 2006-02-02 Curis, Inc. Morphogen-induced dendritic growth
US6211146B1 (en) 1991-03-11 2001-04-03 Curis, Inc. 60A protein-induced morphogenesis
US20030224979A1 (en) * 1991-03-11 2003-12-04 Thangavel Kuberasampath Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US6153583A (en) * 1991-03-11 2000-11-28 Stryker Corporation OP-3 induced morphogenesis
US20030125230A1 (en) * 1991-03-11 2003-07-03 Cohen Charles M. Morphogen treatments for limiting proliferation of epithelial cells
US7060680B2 (en) 1991-03-11 2006-06-13 Curis, Inc. Morphogen treatments for limiting proliferation of epithelial cells
US5854071A (en) * 1991-03-11 1998-12-29 Creative Biomolecules, Inc. OP-3- induced morphongenesis
US6090776A (en) * 1991-03-11 2000-07-18 Creative Bio Molecules, Inc. Morphogen treatment of organ implants
US20050096339A1 (en) * 1991-03-11 2005-05-05 Thangavel Kuberasampath Morphogen-induced modulation of inflammatory response
US5972884A (en) * 1991-03-11 1999-10-26 Creative Biomolecules, Inc. Morphogen treatment of gastrointestinal ulcers
US6800603B2 (en) 1991-03-11 2004-10-05 Curis, Inc. Morphogen-induced neural cell adhesion
US7056882B2 (en) 1991-03-11 2006-06-06 Curis, Inc. Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases
US6495513B1 (en) 1991-03-11 2002-12-17 Curis, Inc. Morphogen-enhanced survival and repair of neural cells
US6077823A (en) * 1991-03-11 2000-06-20 Creative Biomolecules, Inc. Method for reducing tissue damage associated with ischemia-reperfusion or hypoxia injury
US5739107A (en) * 1991-03-11 1998-04-14 Creative Biomolecules, Inc. Morphogen treatment of gastrointestinal ulcers
US6949505B1 (en) 1991-03-11 2005-09-27 Curis, Inc. Morphogen-induced dendritic growth
US6685930B1 (en) 1991-03-27 2004-02-03 Tanox, Inc. Methods and substances for recruiting therapeutic agents to solid tumors
US6172197B1 (en) 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US5939531A (en) * 1991-07-15 1999-08-17 Novartis Corp. Recombinant antibodies specific for a growth factor receptor
US5837491A (en) * 1991-11-04 1998-11-17 Xoma Corporation Polynucleotides encoding gelonin sequences
US6376217B1 (en) 1991-11-04 2002-04-23 Xoma Technology Ltd. Fusion proteins and polynucleotides encoding gelonin sequences
US6146850A (en) * 1991-11-04 2000-11-14 Xoma Corporation Proteins encoding gelonin sequences
US6649742B1 (en) 1991-11-04 2003-11-18 Xoma Technology Ltd. Immunotoxins comprising ribosome-inactivating proteins
US20030166196A1 (en) * 1991-11-04 2003-09-04 Xoma Technology Ltd. Fusion proteins and polynucleotides encoding gelonin sequences
US5744580A (en) * 1991-11-04 1998-04-28 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US5756699A (en) * 1991-11-04 1998-05-26 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US5621083A (en) * 1991-11-04 1997-04-15 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US6146631A (en) * 1991-11-04 2000-11-14 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US6515110B1 (en) 1991-11-25 2003-02-04 Enzon, Inc. Multivalent antigen-binding proteins
US6121424A (en) * 1991-11-25 2000-09-19 Enzon, Inc. Multivalent antigen-binding proteins
US6103889A (en) * 1991-11-25 2000-08-15 Enzon, Inc. Nucleic acid molecules encoding single-chain antigen-binding proteins
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
US6027725A (en) * 1991-11-25 2000-02-22 Enzon, Inc. Multivalent antigen-binding proteins
US20080050359A1 (en) * 1991-12-02 2008-02-28 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6555313B1 (en) 1991-12-02 2003-04-29 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6544731B1 (en) 1991-12-02 2003-04-08 Medical Research Council Production of anti-self antibodies from antibody segment repertories and displayed on phage
US20030190674A1 (en) * 1991-12-02 2003-10-09 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6521404B1 (en) 1991-12-02 2003-02-18 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US7195866B2 (en) 1991-12-02 2007-03-27 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6582915B1 (en) 1991-12-02 2003-06-24 Medical Research Council Production of anti-self bodies from antibody segment repertories and displayed on phage
US20090325815A1 (en) * 1991-12-02 2009-12-31 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6593081B1 (en) 1991-12-02 2003-07-15 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US20020168375A1 (en) * 1992-02-06 2002-11-14 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US5753204A (en) * 1992-02-06 1998-05-19 Chiron Corporation Biosynthetic binding proteins for immunotargeting
US20060147444A1 (en) * 1992-02-06 2006-07-06 Huston James S Biosynthetic binding proteins for immuno-targeting
US5534254A (en) * 1992-02-06 1996-07-09 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US5877305A (en) * 1992-02-06 1999-03-02 Chiron Corporation DNA encoding biosynthetic binding protein for cancer marker
US7138497B2 (en) 1992-02-06 2006-11-21 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US20070031931A1 (en) * 1992-02-06 2007-02-08 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US5837846A (en) * 1992-02-06 1998-11-17 Creative Biomolecules, Inc. Biosynthetic binding proteins for immuno-targeting
US6451982B1 (en) 1992-02-06 2002-09-17 Schering Corporation Design, cloning and expression of humanized monoclonal antibodies against human interleukin-5
US5434075A (en) * 1992-03-20 1995-07-18 Board Of Trustees Of The University Of Illinois Monoclonal antibody to a human MDR1 multidrug resistance gene product, and uses
WO1993019094A1 (en) * 1992-03-20 1993-09-30 Board Of Trustees Of The University Of Illinois A monoclonal antibody to a human mdr1 multidrug resistance gene product, and uses
US6030796A (en) * 1992-03-20 2000-02-29 University Of Illinois Monoclonal antibody to a human MDR1 multidrug resistance gene product, and uses
AU677221B2 (en) * 1992-03-20 1997-04-17 Board Of Trustees Of The University Of Illinois, The A monoclonal antibody to a human MDR1 multidrug resistance gene product, and uses
US7297335B2 (en) 1992-04-10 2007-11-20 Research Development Foundation Immunotoxins directed against CD33 related surface antigens
US7754211B2 (en) 1992-04-10 2010-07-13 Research Development Foundation Immunotoxins directed against c-erbB-2(HER-2/neu) related surface antigens
WO1993021232A1 (en) * 1992-04-10 1993-10-28 Research Development Foundation IMMUNOTOXINS DIRECTED AGAINST c-erbB-2 (HER-2/neu) RELATED SURFACE ANTIGENS
US20030157092A1 (en) * 1992-04-10 2003-08-21 Research Development Foundation Immunotoxins directed against CD33 related surface antigens
US20080089898A1 (en) * 1992-04-10 2008-04-17 Rosenblum Michael G Immunotoxins directed against CD33 related surface antigens
US20050163774A1 (en) * 1992-04-10 2005-07-28 Research Development Foundation Immunotoxins directed against c-erbB-2(HER-2/neu) related surface antigens
US5990275A (en) * 1992-11-20 1999-11-23 Enzon, Inc. Linker and linked fusion polypeptides
US5892020A (en) * 1992-12-11 1999-04-06 The Dow Chemical Company Multivalent single chain antibodies
US5877291A (en) * 1992-12-11 1999-03-02 The Dow Chemical Company Multivalent single chain antibodies
WO1994015642A1 (en) * 1993-01-08 1994-07-21 Creative Biomolecules, Inc. Methods of delivering agents to target cells
AU673581B2 (en) * 1993-01-08 1996-11-14 Creative Biomolecules, Inc. Methods of delivering agents to target cells
US5861156A (en) * 1993-01-08 1999-01-19 Creative Biomolecules Methods of delivering agents to target cells
US7879980B2 (en) 1993-06-14 2011-02-01 Schering Corporation Monoclonal antibodies to human CTLA-8 (IL-17A)
US6147203A (en) * 1993-06-14 2000-11-14 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
EP0703926B1 (en) * 1993-06-14 1998-08-19 THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by the SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US6562333B1 (en) * 1993-06-14 2003-05-13 Schering Corporation Purified mammalian CTLA-8 antigens and related reagents
US20090275735A1 (en) * 1993-06-14 2009-11-05 Schering Corporation And Inserm Monoclonal antibodies to human ctla-8 (il-17a)
US6558672B1 (en) 1993-06-14 2003-05-06 The United States Of America As Represented By The Department Of Health And Human Services Methods of making recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5747654A (en) * 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5658763A (en) * 1993-10-25 1997-08-19 Creative Biomolecules, Inc. Methods and compositions for high protein production from non-native DNA
US5631158A (en) * 1993-10-25 1997-05-20 Creative Biomolecules, Inc. Methods and compositions for high protein production from non-native DNA
US5733782A (en) * 1993-10-25 1998-03-31 Creative Biomolecules, Inc. Methods and compositions for high protein production from non-native DNA
US5869232A (en) * 1994-04-28 1999-02-09 Tripep Ab Antigen/antibody specificity exchanger
US6660842B1 (en) 1994-04-28 2003-12-09 Tripep Ab Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
US6245895B1 (en) 1994-04-28 2001-06-12 Tripep Ab Antigen/antibody specificity exchanger
US20030129587A1 (en) * 1994-04-28 2003-07-10 Matti Sallberg Antigen/antibody specificity exchanger
WO1995029938A1 (en) * 1994-04-28 1995-11-09 Ferring Ab Antigen/antibody specificity exchanger
US7019111B2 (en) 1994-04-28 2006-03-28 Tripep Ab Glycosylated ligand/receptor specificity exchangers specific for bacterial adhesion receptors
US20040019189A1 (en) * 1994-04-28 2004-01-29 Matti Sallberg Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
US6469143B2 (en) 1994-04-28 2002-10-22 Tripep Ab Antigen/antibody specificity exchanger
US5837460A (en) * 1994-04-29 1998-11-17 Trustees Of The University Of Pennsylvania Methods of identifying biologically active receptor-binding peptides
WO1995029690A1 (en) * 1994-04-29 1995-11-09 The Trustees Of The University Of Pennsylvania Biologically active peptides and methods of identifying the same
US6056957A (en) * 1994-08-04 2000-05-02 Schering Corporation Humanized monoclonal antibodies against human interleukin-5
US5763733A (en) * 1994-10-13 1998-06-09 Enzon, Inc. Antigen-binding fusion proteins
US5767260A (en) * 1994-10-13 1998-06-16 Enzon Inc. Antigen-binding fusion proteins
US5853721A (en) * 1995-01-31 1998-12-29 Hoffmann-La Roche Inc. Antibody to interleukin-12 receptor
US5891680A (en) * 1995-02-08 1999-04-06 Whitehead Institute For Biomedical Research Bioactive fusion proteins comprising the p35 and p40 subunits of IL-12
US6040137A (en) * 1995-04-27 2000-03-21 Tripep Ab Antigen/antibody specification exchanger
WO1996036360A1 (en) * 1995-05-17 1996-11-21 Regents Of The University Of Minnesota Immunoconjugates comprising single-chain variable region fragments of anti-cd-19 antibodies
US6015555A (en) * 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US20020045161A1 (en) * 1995-06-07 2002-04-18 Progenics Pharmaceuticals, Inc. Fluorescence resonance energy transfer screening assay for the identification of HIV-1 envelope glycoprotein-medicated cell
US7901685B2 (en) 1995-06-07 2011-03-08 Progenics Pharmaceuticals Inc. Methods for assaying inhibition of HIV-1 envelope glycoprotein-mediated membrane fusion
US20030176667A1 (en) * 1995-06-07 2003-09-18 Stryker Corporation Single chain analogs of the TGF-beta superfamily (morphons)
US6479643B1 (en) 1995-06-07 2002-11-12 Stryker Corporation Single chain analogs of the TGF-β superfamily (morphons)
US6040431A (en) * 1995-06-07 2000-03-21 Stryker Corporation Single chain analogs of the TGF-β superfamily (morphons)
US20060140977A1 (en) * 1995-06-07 2006-06-29 Progenics Pharmaceuticals, Inc. Methods for assaying inhibition of HIV-1 envelope glycoprotein-mediated membrane fusion
US7862994B2 (en) 1995-06-07 2011-01-04 Progenics Pharmaceuticals Inc. Methods for inhibiting HIV-1 envelope glycoprotein-medicated membrane fusion
US20070048820A1 (en) * 1995-06-07 2007-03-01 Progenics Pharmaceuticals, Inc. Methods for assaying inhibition of HIV-1 envelope glycoprotein-mediated membrane fusion
EP2258726A1 (en) 1995-06-14 2010-12-08 The Regents of the University of California High affinity human antibodies to c-erbB-2
US6140470A (en) * 1995-06-30 2000-10-31 Yale University Human monoclonal anti-tumor antibodies
US8513164B2 (en) * 1995-08-18 2013-08-20 Morphosys Ag Protein (poly)peptides libraries
US20080026948A1 (en) * 1995-08-18 2008-01-31 Morphosys Ag Protein (poly)peptides libraries
US20060003334A1 (en) * 1995-08-18 2006-01-05 Morphosys Ag Protein (poly)peptides libraries
US7368111B2 (en) 1995-10-06 2008-05-06 Cambridge Antibody Technology Limited Human antibodies specific for TGFβ2
US20050049403A1 (en) * 1995-10-06 2005-03-03 Cambridge Antibody Technology Limited Specific binding members for human transforming growth factor beta; materials and methods
US5980895A (en) * 1995-10-13 1999-11-09 The United States Of America As Represented By The Department Of Health And Human Services Immunotoxin containing a disulfide-stabilized antibody fragment joined to a Pseudomonas exotoxin that does not require proteolytic activation
US6074644A (en) * 1995-10-13 2000-06-13 The United States Of America As Represented By The Department Of Health And Human Services Nucleic acids encoding immunotoxins containing a disulfide-stabilized antibody fragment replacing half or more of domain IB of pseudomonas exotoxin, and methods of use of the encoded immunotoxins
US5801064A (en) * 1995-12-04 1998-09-01 Foresman; Mark D. Assay methods and reagents for detecting autoantibodies
US7345153B2 (en) 1996-01-17 2008-03-18 Progenics Pharmaceuticals, Inc. Compounds capable of inhibiting HIV-1 infection
WO1997026009A1 (en) * 1996-01-17 1997-07-24 Progenics Pharmaceuticals, Inc. Compounds capable of inhibiting hiv-1 infection
US7118859B2 (en) 1996-01-17 2006-10-10 Progenics Pharmaceuticals, Inc. Methods for inhibiting HIV-1 infection
US20020155429A1 (en) * 1996-04-01 2002-10-24 Progenics Pharmaceuticals, Inc. Method for preventing HIV-1 infection of CD4+ cells
US20060029932A1 (en) * 1996-04-01 2006-02-09 Progenics Pharmaceuticals, Inc. Method for preventing HIV-1 infection of CD4+ cells
US7858298B1 (en) 1996-04-01 2010-12-28 Progenics Pharmaceuticals Inc. Methods of inhibiting human immunodeficiency virus type 1 (HIV-1) infection through the administration of CCR5 chemokine receptor antagonists
US5914238A (en) * 1996-06-05 1999-06-22 Matritech, Inc. Materials and methods for detection of breast cancer
US6218131B1 (en) 1996-06-05 2001-04-17 Matritech, Inc. Materials and methods for detection of breast cancer
US20050100545A1 (en) * 1996-06-07 2005-05-12 Neorx Corporation Methods of use of antibodies with reduced immunogenicity or toxicity
US20050008635A1 (en) * 1996-06-07 2005-01-13 Neorx Corporation Humanized antibodies that bind to the antigen bound by antibody NR-LU-13 and their use in pretargeting methods
US6358710B1 (en) 1996-06-07 2002-03-19 Neorx Corporation Humanized antibodies that bind to the antigen bound by antibody NR-LU-13
US20090094715A1 (en) * 1996-06-07 2009-04-09 Poniard Pharmaceuticals, Inc. Methods of use of antibodies with reduced immunogenicity or toxicity
US20060194244A1 (en) * 1996-06-14 2006-08-31 Progenics Pharmaceuticals, Inc. Uses of a chemokine receptor for inhibiting HIV-1 infection
WO1997049429A1 (en) * 1996-06-27 1997-12-31 Exocell, Inc. Genetically engineered immunoglobulins with specificity for glycated albumin
US5908925A (en) * 1996-06-27 1999-06-01 Exocell, Inc. Genetically engineered immunoglobulins with specificity for glycated albumin
US6803189B2 (en) 1996-08-30 2004-10-12 Matritech, Inc. Methods for the detection of cervical cancer
US5858683A (en) * 1996-08-30 1999-01-12 Matritech, Inc. Methods and compositions for the detection of cervical cancer
US6027905A (en) * 1996-08-30 2000-02-22 Matritech, Inc. Methods for the detection of cervical cancer
US6630327B1 (en) 1996-11-15 2003-10-07 Board Of Trustees Of The University Of Illinois Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US6365357B1 (en) 1996-11-15 2002-04-02 Onotech, Inc. Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US20060211051A1 (en) * 1996-11-15 2006-09-21 Eugene Mechetner Methods and reagents for preparing and using immunological agents specific for p-glycoprotein
US7144704B2 (en) 1996-11-15 2006-12-05 Oncotech, Inc. Methods and reagents for preparing and using immunological agents specific for P-glycoprotein
US20030225251A1 (en) * 1996-12-27 2003-12-04 Matti Sallberg Specificity exchangers that redirect antibodies to a pathogen
US6933366B2 (en) 1996-12-27 2005-08-23 Tripep Ab Specificity exchangers that redirect antibodies to bacterial adhesion receptors
EP1780277A1 (en) 1997-01-15 2007-05-02 Yeda Research And Development Company, Ltd. IFN receptor 1 binding proteins, DNA encoding them, and methods of modulating cellular response to interferons
EP1997514A1 (en) 1997-03-27 2008-12-03 Avipep Pty Limited High avidity polyvalent and polyspecific reagents
WO1998044001A1 (en) 1997-03-27 1998-10-08 Commonwealth Scientific And Industrial Research Organisation High avidity polyvalent and polyspecific reagents
EP2305709A1 (en) 1997-04-09 2011-04-06 Intellect Neurosciences, Inc. Recombinant antibodies specific for beta-amyloid ends, DNA encoding and methods for use thereof
EP2006303A1 (en) 1997-04-09 2008-12-24 Intellect Neurosciences, Inc. Recombinant antibodies specific for Beta-Amyloid ends, DNA encoding and methods of use thereof
US6872393B2 (en) 1997-04-30 2005-03-29 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US20040009166A1 (en) * 1997-04-30 2004-01-15 Filpula David R. Single chain antigen-binding polypeptides for polymer conjugation
US20050008650A1 (en) * 1997-04-30 2005-01-13 Marc Whitlow Polyalkylene oxide-modified single chain polypeptides
US20020098192A1 (en) * 1997-04-30 2002-07-25 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US6824782B2 (en) 1997-04-30 2004-11-30 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US7632504B2 (en) 1997-04-30 2009-12-15 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
US7150872B2 (en) 1997-04-30 2006-12-19 Enzon, Inc. Polyalkylene oxide-modified single chain polypeptides
EP2309261A1 (en) 1997-05-30 2011-04-13 Stryker Corporation Methods for evaluating tissue morphogenesis and morphogenic activity
EP1988395A1 (en) 1997-05-30 2008-11-05 Curis, Inc. Methods for evaluating tissue morphogenesis and morphogenic activity
US6187564B1 (en) 1997-07-10 2001-02-13 Beth Israel Deaconess Medical Center DNA encoding erythropoietin multimers having modified 5′ and 3′ sequences and its use to prepare EPO therapeutics
US6242570B1 (en) 1997-07-10 2001-06-05 Beth Israel Deaconess Medical Center Production and use of recombinant protein multimers with increased biological activity
US6165476A (en) * 1997-07-10 2000-12-26 Beth Israel Deaconess Medical Center Fusion proteins with an immunoglobulin hinge region linker
EP1630168A2 (en) 1997-08-27 2006-03-01 Chiron Corporation Molecular mimetics of meningococcal B peptides
US7226998B2 (en) 1997-12-08 2007-06-05 Emd Lexigen Research Center Corp. Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
US7879319B2 (en) 1997-12-08 2011-02-01 Merk Patent Gmbh Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
US7576193B2 (en) 1997-12-08 2009-08-18 Merck Patent Gmbh Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
US20050137384A1 (en) * 1997-12-08 2005-06-23 Emd Lexigen Research Center Corp. Heterodimeric fusion proteins useful for targeted immune therapy and general immune stimulation
EP2354230A1 (en) 1997-12-12 2011-08-10 The University of Queensland Neisseria meningitidis surface protein
US20090088561A1 (en) * 1998-02-25 2009-04-02 Merck Patent Gmbh Enhancing the circulating half-life of antibody-based fusion proteins
US20060194952A1 (en) * 1998-02-25 2006-08-31 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US20030105294A1 (en) * 1998-02-25 2003-06-05 Stephen Gillies Enhancing the circulating half life of antibody-based fusion proteins
US6333396B1 (en) 1998-10-20 2001-12-25 Enzon, Inc. Method for targeted delivery of nucleic acids
US6764853B2 (en) 1998-10-20 2004-07-20 Enzon Pharmaceuticals, Inc. Method for targeted delivery of nucleic acids
US20080015348A1 (en) * 1998-12-16 2008-01-17 Progenics Pharmaceuticals, Inc. Nucleic acids encoding polypeptides of anti-CCR5 antibodies
US20070231327A1 (en) * 1998-12-16 2007-10-04 Progenics Pharmaceuticals, Inc. Anti-CCR5 antibodies
US20030091566A1 (en) * 1999-04-30 2003-05-15 Thompson Julia Elizabeth Specific binding members for TGFbeta1
US7151169B2 (en) 1999-04-30 2006-12-19 Cambridge Antibody Technology Limited Specific binding members for TGFβ1
US20030064069A1 (en) * 1999-04-30 2003-04-03 Thompson Julia Elizabeth Specific binding members for TGFbeta1
US20050042729A1 (en) * 1999-05-19 2005-02-24 Emd Lexigen Research Center Corp. Expression and export of interferon-alpha proteins as Fc fusion proteins
US6200803B1 (en) 1999-05-21 2001-03-13 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
US6221597B1 (en) 1999-05-21 2001-04-24 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
US6197517B1 (en) 1999-05-21 2001-03-06 Rosetta Inpharmatics, Inc. Essential genes of yeast as targets for antifungal agents, herbicides, insecticides and anti-proliferative drugs
US8071104B2 (en) 1999-07-01 2011-12-06 Yale University Neovascular-targeted immunoconjugates
US7887809B1 (en) 1999-07-01 2011-02-15 Yale University Neovascular-targeted immunoconjugates
US8388974B2 (en) 1999-07-01 2013-03-05 Yale University Neovascular-targeted immunoconjugates
US20110117114A1 (en) * 1999-07-01 2011-05-19 Yale University Neovascular-Targeted Immunoconjugates
US6924359B1 (en) 1999-07-01 2005-08-02 Yale University Neovascular-targeted immunoconjugates
US7858092B2 (en) 1999-07-01 2010-12-28 Yale University Neovascular-targeted immunoconjugates
US20050214298A1 (en) * 1999-07-01 2005-09-29 Yale University Neovascular-targeted immunoconjugates
US20100068175A1 (en) * 1999-07-21 2010-03-18 Gillies Stephen D Methods of using Fc-Cytokine fusion proteins
US8043608B2 (en) 1999-07-21 2011-10-25 Merck Patent Gmbh Methods of using Fc-cytokine fusion proteins
US7955590B2 (en) 1999-07-21 2011-06-07 Merck Patent Gmbh Fc fusion proteins for enhancing the immunogenicity of protein and peptide antigens
US20050255113A1 (en) * 1999-07-27 2005-11-17 New York State Department Of Health And Abgenix, Inc. Methods and compositions for inhibiting polypeptide accumulation associated with neurological disorders
US7141651B2 (en) 1999-08-09 2006-11-28 Emd Lexigen Research Center Corp. Multiple cytokine protein complexes
US20070258944A1 (en) * 1999-08-09 2007-11-08 Emd Lexigen Research Center Corp. Multiple cytokine protein complexes
US20040072299A1 (en) * 1999-08-09 2004-04-15 Gillies Stephen D. Multiple cytokine protein complexes
US7582288B2 (en) 1999-08-09 2009-09-01 Merck Patent Gmbh Methods of targeting multiple cytokines
EP3214175A1 (en) 1999-08-24 2017-09-06 E. R. Squibb & Sons, L.L.C. Human ctla-4 antibodies and their uses
EP2829609A1 (en) 1999-08-24 2015-01-28 E. R. Squibb & Sons, L.L.C. Human CTLA-4 antibodies and their uses
US6759241B1 (en) 1999-10-04 2004-07-06 University Of Maryland Biotechnology Institute Adjuvant comprising a lipopolysaccharide antagonist
WO2001029079A1 (en) 1999-10-18 2001-04-26 Prince Henry's Institute Of Medical Research IMMUNO-INTERACTIVE FRAGMENTS OF THE αC SUBUNIT OF INHIBIN
EP2112159A2 (en) 1999-10-18 2009-10-28 Prince Henry's Institute of Medical Research Immuno-interactive fragments of the alpha C subunit of inhibin
US20050202538A1 (en) * 1999-11-12 2005-09-15 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
US7211253B1 (en) 1999-11-12 2007-05-01 Merck Patentgesellschaft Mit Beschrankter Haftung Erythropoietin forms with improved properties
EP2395013A2 (en) 2000-01-25 2011-12-14 The University of Queensland Proteins comprising conserved regions of Neisseria meningitidis surface antigen NhhA
EP1997513A1 (en) 2000-02-10 2008-12-03 Massachussetts Eye & Ear Infirmary Photodynamic therapy for treating conditions of the eye
US20060034836A1 (en) * 2000-02-11 2006-02-16 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US7091321B2 (en) 2000-02-11 2006-08-15 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US7790415B2 (en) 2000-02-11 2010-09-07 Merck Patent Gmbh Enhancing the circulating half-life of antibody-based fusion proteins
US7507406B2 (en) 2000-02-11 2009-03-24 Emd Serono Research Center, Inc. Enhancing the circulating half-life of antibody-based fusion proteins
US7288637B2 (en) 2000-03-16 2007-10-30 Ramot At Tel Aviv University Ltd. Single chain antibody against mutant p53
WO2001068801A2 (en) * 2000-03-16 2001-09-20 Ramot At Tel-Aviv University Ltd. Single chain antibody against mutant p53
US6630584B1 (en) * 2000-03-16 2003-10-07 Ramot At Tel-Aviv University Ltd. Single chain antibody against mutant p53
US20030022244A1 (en) * 2000-03-16 2003-01-30 Ramot University Authority For Applied Research & Industrial Development Ltd. Single chain antibody against mutant P53
WO2001068801A3 (en) * 2000-03-16 2002-02-07 Univ Ramot SINGLE CHAIN ANTIBODY AGAINST MUTANT p53
US20060020110A1 (en) * 2000-04-21 2006-01-26 Matti Sallberg Synthetic peptides that bind to the hepatitis B virus core and E antigens
US20030235815A1 (en) * 2000-04-21 2003-12-25 Matti Sallberg Synthetic peptides that bind to the hepatitis B virus core and E antigens
EP2026073A1 (en) 2000-04-29 2009-02-18 University Of Iowa Research Foundation Diagnostics and therapeutics for macular degeneration-related disorders
EP1961819A2 (en) 2000-06-28 2008-08-27 Corixa Corporation Composition and methods for the therapy and diagnosis of lung cancer
US7517526B2 (en) 2000-06-29 2009-04-14 Merck Patent Gmbh Enhancement of antibody-cytokine fusion protein mediated immune responses by combined treatment with immunocytokine uptake enhancing agents
US20100297060A1 (en) * 2000-06-29 2010-11-25 Merck Patent Gmbh Enhancement of antibody-cytokine fusion protein mediated immune responses by combined treatment with immunocytokine uptake enhancing agents
US20030049227A1 (en) * 2000-06-29 2003-03-13 Gillies Stephen D. Enhancement of antibody-cytokine fusion protein mediated immune responses by combined treatment with immunocytokine uptake enhancing agents
US20070020280A1 (en) * 2000-09-15 2007-01-25 Progenics Pharmaceuticals, Inc. Compositions and methods for inhibition of HIV-1 infection
US7736649B2 (en) 2000-09-15 2010-06-15 Progenics Pharmaceuticals, Inc. Methods of inhibiting human immunodeficiency virus infection through the administration of synergistic combinations of anti-CCR5 monoclonal antibodies, fusion inhibitors, and CD4-GP120 binding inhibitors
EP2085781A1 (en) 2000-10-06 2009-08-05 Life Technologies Corporation Cells having a spectral signature, and methods of preparation and use thereof
EP2341346A2 (en) 2000-10-18 2011-07-06 The Regents of the University of California Methods of high-throughput screening for internalizing antibodies and metal-chelating liposomes
EP2292652A2 (en) 2000-11-03 2011-03-09 Pestka Biomedical Laboratories, Inc. Interferons uses and compositions related thereto
EP2105502A1 (en) 2000-12-12 2009-09-30 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US20040115183A1 (en) * 2000-12-26 2004-06-17 Aharon Rabinkov Site-specific in situ generation of allicin using a targeted alliinase delivery system for the treatment of cancers, tumors, infectious diseases and other allicin-senstive diseases
US7445802B2 (en) 2000-12-26 2008-11-04 Yeda Research And Development Co. Ltd Site-specific in situ generation of allicin using a targeted alliinase delivery system for the treatment of cancers, tumors, infectious diseases and other allicin-sensitive diseases
US8066994B2 (en) 2001-03-07 2011-11-29 Merck Patent Gmbh Proteins comprising an IgG2 domain
US20060263856A1 (en) * 2001-03-07 2006-11-23 Emd Lexigen Research Center Corp. Expression technology for proteins containing a hybrid isotype antibody moiety
US20030044423A1 (en) * 2001-03-07 2003-03-06 Lexigen Pharmaceuticals Corp. Expression technology for proteins containing a hybrid isotype antibody moiety
US6992174B2 (en) 2001-03-30 2006-01-31 Emd Lexigen Research Center Corp. Reducing the immunogenicity of fusion proteins
US7601814B2 (en) 2001-03-30 2009-10-13 Merck Patent Gmbh Reducing the immunogenicity of fusion proteins
US20030166877A1 (en) * 2001-03-30 2003-09-04 Lexigen Pharmaceuticals Corp. Reducing the immunogenicity of fusion proteins
US8926973B2 (en) 2001-03-30 2015-01-06 Merck Patent Gmbh Reducing the immunogenicity of fusion proteins
US20100016562A1 (en) * 2001-03-30 2010-01-21 Merck Patent Gmbh Reducing the immunogenicity of fusion proteins
US7973150B2 (en) 2001-03-30 2011-07-05 Merck Patent Gmbh Reducing the immunogenicity of fusion proteins
US20060025573A1 (en) * 2001-03-30 2006-02-02 Merck Patent Gmbh Reducing the immunogenicity of fusion proteins
US20060233798A1 (en) * 2001-04-06 2006-10-19 Progenics Pharmaceuticals, Inc. Methods for inhibiting HIV-1 infection
US7459538B2 (en) 2001-05-03 2008-12-02 Merck Patent Gmbh Recombinant tumor specific antibody and use thereof
US7803618B2 (en) 2001-05-03 2010-09-28 Merck Patent Gmbh Recombinant tumor specific antibody and use thereof
US20100174056A1 (en) * 2001-05-03 2010-07-08 Merck Patent Gmbh Recombinant tumor specific antibody and use thereof
US20030157054A1 (en) * 2001-05-03 2003-08-21 Lexigen Pharmaceuticals Corp. Recombinant tumor specific antibody and use thereof
US6969517B2 (en) 2001-05-03 2005-11-29 Emd Lexigen Research Center Corp. Recombinant tumor specific antibody and use thereof
EP1988097A1 (en) 2001-05-09 2008-11-05 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US8828385B2 (en) 2001-06-20 2014-09-09 Fibron Limited Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US20050147612A1 (en) * 2001-06-20 2005-07-07 Avner Yayon Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US20090202547A1 (en) * 2001-06-20 2009-08-13 Fibron Limited Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US7498416B2 (en) 2001-06-20 2009-03-03 Fibron Limited Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US7087724B2 (en) 2001-06-26 2006-08-08 Agen Biomedical Ltd Carrier molecules
US20060239912A1 (en) * 2001-06-26 2006-10-26 Agen Biomedical Limited Carrier molecules
US20100286375A1 (en) * 2001-06-26 2010-11-11 Agen Biomedical Limited Carrier molecules
US20030124056A1 (en) * 2001-06-26 2003-07-03 Carr Francis J. Carrier molecules
US7459143B2 (en) 2001-06-26 2008-12-02 Agen Biomedical Ltd. Carrier molecules
US20090092546A1 (en) * 2001-06-26 2009-04-09 Agen Biomedical Limited Carrier molecules
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
US20050009139A1 (en) * 2001-08-01 2005-01-13 Caili Wang Compositions and methods for generating chimeric heteromultimers
US7429652B2 (en) 2001-08-01 2008-09-30 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
EP2322933A1 (en) 2001-08-29 2011-05-18 Pacific Northwest Research Institute Diagnosis of carcinomas
US20100047818A1 (en) * 2001-08-29 2010-02-25 Pacific Northwest Research Institute Diagnosis of carcinomas
US9090712B2 (en) 2001-08-29 2015-07-28 Pacific Northwest Research Institute Diagnosis of carcinomas
US20090104684A1 (en) * 2001-08-29 2009-04-23 Pacific Northwest Research Institute Diagnosis of carcinomas
EP2913673A1 (en) 2001-08-29 2015-09-02 Pacific Northwest Research Institute Diagnosis of ovarian carcinoma
US7176278B2 (en) 2001-08-30 2007-02-13 Biorexis Technology, Inc. Modified transferrin fusion proteins
US20030221201A1 (en) * 2001-08-30 2003-11-27 Biorexis Pharmaceutical Corporation Modified transferrin fusion proteins
US20080220002A1 (en) * 2001-08-30 2008-09-11 Biorexis Technology, Inc. Modified transferin-antibody fusion proteins
US20030226155A1 (en) * 2001-08-30 2003-12-04 Biorexis Pharmaceutical Corporation Modified transferrin-antibody fusion proteins
US20070066813A1 (en) * 2001-08-30 2007-03-22 Prior Christopher P Modified transferrin fusion proteins
US20070050855A1 (en) * 2001-08-30 2007-03-01 Prior Christopher P Modified transferrin fusion proteins
US20070031440A1 (en) * 2001-08-30 2007-02-08 Prior Christopher P Modified transferin-antibody fusion proteins
US20040023334A1 (en) * 2001-08-30 2004-02-05 Biorexis Pharmaceutical Corporation Modified transferrin fusion proteins
US8129504B2 (en) 2001-08-30 2012-03-06 Biorexis Technology, Inc. Oral delivery of modified transferrin fusion proteins
WO2003023404A1 (en) 2001-09-12 2003-03-20 The Walter And Eliza Hall Institute Of Medical Research A method of diagnosis and treatment and agents useful for same
EP2428226A1 (en) 2001-10-22 2012-03-14 The Scripps Research Institute Antibody targeting compounds
EP2172476A2 (en) 2001-10-30 2010-04-07 Corixa Corporation Compositions and methods for WT1 specific immunotherapy
US7175983B2 (en) 2001-11-02 2007-02-13 Abmaxis, Inc. Adapter-directed display systems
US20030104355A1 (en) * 2001-11-02 2003-06-05 Caili Wang Adapter-directed display systems
US20060281181A1 (en) * 2001-11-02 2006-12-14 Caili Wang Adaptor-directed helper systems
US7910350B2 (en) 2001-11-02 2011-03-22 Abmaxis, Inc. Adaptor-directed helper systems
WO2003040169A2 (en) 2001-11-07 2003-05-15 Celldex Therapeutics , Inc. Human monoclonal antibodies to dendritic cells
US7888071B2 (en) 2001-12-04 2011-02-15 Merck Patent Gmbh DNA encoding IL-2 fusion proteins with modulated selectivity
US20070036752A1 (en) * 2001-12-04 2007-02-15 Emd Lexigen Research Center Corp. IL-2 fusion proteins with modulated selectivity
US7186804B2 (en) 2001-12-04 2007-03-06 Emd Lexigen Research Center Corp. IL-2 fusion proteins with modulated selectivity
US20030166163A1 (en) * 2001-12-04 2003-09-04 Emd Lexigen Research Center Corp. Immunocytokines with modulated selectivity
US7462350B2 (en) 2001-12-04 2008-12-09 Emd Serono Research Center, Inc. Cancer treatments including administering IL-2 fusion proteins with modulated selectivity
EP2224012A1 (en) 2001-12-17 2010-09-01 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
WO2003053220A2 (en) 2001-12-17 2003-07-03 Corixa Corporation Compositions and methods for the therapy and diagnosis of inflammatory bowel disease
EP3604523A1 (en) 2001-12-28 2020-02-05 Chugai Seiyaku Kabushiki Kaisha Method for stabilizing proteins
EP3960855A1 (en) 2001-12-28 2022-03-02 Chugai Seiyaku Kabushiki Kaisha Method for stabilizing proteins
US10716862B2 (en) 2002-01-11 2020-07-21 Bioasis Advanced Technologies Inc. Use of P97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
EP2034009A2 (en) 2002-02-08 2009-03-11 Invitrogen Corporation Compositions and methods for restoring immune responsiveness in patients with immunological defects basing on cd3/cd28 costimulation
US20080107595A1 (en) * 2002-02-22 2008-05-08 Olson William C Anti-CCR5 antibody
US7666419B2 (en) 2002-02-22 2010-02-23 Progenics Pharmaceuticals Inc. Anti-CCR5 antibody
US7851600B2 (en) 2002-02-22 2010-12-14 Progenics Pharmaceuticals Inc. Anti-CCR5 antibody
US20070031408A1 (en) * 2002-02-22 2007-02-08 Progenics Pharmaceuticals Inc. Anti-CCR5 antibody
EP2292247A2 (en) 2002-03-05 2011-03-09 Ramot at Tel Aviv University Ltd. Immunizing composition and method for inducing an immune response against the beta-secretase cleavage site of amyloid precursor protein
WO2003076455A2 (en) 2002-03-05 2003-09-18 Ramot At Tel-Aviv University Ltd. Immunizing composition and method for inducing an immune response against the ss-secretase cleavage site of amyloid precursor protein
WO2004003142A2 (en) 2002-06-28 2004-01-08 Xcyte Therapies, Inc. Compositions and methods for restoring immune repertoire in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
WO2004011617A2 (en) 2002-07-29 2004-02-05 Senomyx, Inc. Identification of a novel bitter taste receptor, t2r76
EP2436774A2 (en) 2002-08-01 2012-04-04 The Regents of The University of California Therapeutic monoclonal antibodies that neutralize botulinum neurotoxins
EP2181595A1 (en) 2002-08-16 2010-05-05 Yeda Research And Development Company Ltd. Tumor associated antigen, peptides thereof, and use of same as anti-tumor vaccines
US20060130158A1 (en) * 2002-08-30 2006-06-15 Turner Andrew J Modified transferrin fusion proteins comprising duplicate transferrin amino or carboxy terminal domains
US20060105387A1 (en) * 2002-08-30 2006-05-18 Prior Christopher P Transferrin fusion proteins libraries
US20080260744A1 (en) * 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
US20110185439A1 (en) * 2002-09-09 2011-07-28 Omeros Corporation G protein coupled receptors and uses thereof
US8999654B2 (en) 2002-09-09 2015-04-07 Omeros Corporation Method of identifying a compound for the treatment or prevention of obesity
US10292374B2 (en) 2002-09-09 2019-05-21 Omeros Corporation G protein coupled receptor 85 and SREB3 knockout mice and uses thereof
US20090178153A1 (en) * 2002-09-09 2009-07-09 Omeros Corporation G protein coupled receptors and uses thereof
US20110214189A1 (en) * 2002-09-09 2011-09-01 Omeros Corporation G protein coupled receptors and uses thereof
EP2316856A1 (en) 2002-10-17 2011-05-04 Genmab A/S Human monoclonal antibodies against CD20
EP2330130A1 (en) 2002-10-17 2011-06-08 Genmab A/S Human monoclonal antibodies against CD20
EP3284753A2 (en) 2002-10-17 2018-02-21 Genmab A/S Human monoclonal antibodies against cd20
US20060034845A1 (en) * 2002-11-08 2006-02-16 Karen Silence Single domain antibodies directed against tumor necrosis factor alpha and uses therefor
US20110123529A1 (en) * 2002-11-08 2011-05-26 Ablynx N.V. Single domain antibodies directed against epidermal growth factor receptor and uses therefor
US20040093164A1 (en) * 2002-11-08 2004-05-13 Carlson William D. Computer system and methods for producing morphogen analogs of human TDF-1
US20110184151A1 (en) * 2002-11-08 2011-07-28 Ablynx N.V. Single domain antibodies directed against epidermal growth factor receptor and uses therefor
US20110184150A1 (en) * 2002-11-08 2011-07-28 Ablynx N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
US20100003253A1 (en) * 2002-11-08 2010-01-07 Ablynx N.V. Single domain antibodies directed against epidermal growth factor receptor and uses therefor
US20110178277A1 (en) * 2002-11-08 2011-07-21 Ablynx N.V. Stabilized single domain antibodies
US20100021459A1 (en) * 2002-11-08 2010-01-28 Ablynx N.V. Polypeptide constructs for intracellular delivery
US20070237769A1 (en) * 2002-11-08 2007-10-11 Ablynx N.V. Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor
US9371381B2 (en) 2002-11-08 2016-06-21 Ablynx, N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
US9725522B2 (en) 2002-11-08 2017-08-08 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US9243065B2 (en) 2002-11-08 2016-01-26 Ablynx N.V. Polypeptide constructs including VHH directed against EGFR for intracellular delivery
US20110027281A1 (en) * 2002-11-08 2011-02-03 Ablynx N.V. Single domain antibodies directed against tumor necrosis factor-alpha and uses therefor
US20070178082A1 (en) * 2002-11-08 2007-08-02 Ablynx N.V. Stabilized single domain antibodies
US20110184145A1 (en) * 2002-11-08 2011-07-28 Ablynx N.V. Method of administering therapeutic polypeptides, and polypeptides therefor
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
US20070077249A1 (en) * 2002-11-08 2007-04-05 Ablynx N.V. Single domain antibodies directed against tumour necrosis factor-alpha and uses therefor
US10414824B2 (en) 2002-11-22 2019-09-17 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US20100210831A1 (en) * 2002-12-17 2010-08-19 Merck Patent Gmbh Immunocytokine Sequences and Uses Thereof
US20070059282A1 (en) * 2002-12-17 2007-03-15 Emd Lexigen Research Center Corp. Immunocytokine sequences and uses thereof
US7169904B2 (en) 2002-12-17 2007-01-30 Emd Lexigen Research Center Corp. Immunocytokine sequences and uses thereof
US7767405B2 (en) 2002-12-17 2010-08-03 Merck Patent Gmbh Immunocytokine sequences and uses thereof
US8470991B2 (en) 2002-12-17 2013-06-25 Merck Patent Gmbh Immunocytokine sequences and uses thereof
US20040203100A1 (en) * 2002-12-17 2004-10-14 Emd Lexigen Research Center Corp. Immunocytokine sequences and uses thereof
EP2357194A1 (en) 2003-02-05 2011-08-17 Queensland University Of Technology Growth factor complexes and modulation of cell migration and growth
EP2357195A1 (en) 2003-02-05 2011-08-17 Queensland University Of Technology Growth factor complexes and modulation of cell migration and growth
US9079962B2 (en) 2003-02-06 2015-07-14 Tripep Ab Glycosylated specificity exchangers
US7332166B2 (en) 2003-02-06 2008-02-19 Tripep Ab Glycosylated specificity exchangers
US20050019333A1 (en) * 2003-02-06 2005-01-27 Matti Sallberg Glycosylated specificity exchangers
US8658179B2 (en) 2003-02-06 2014-02-25 Chrontech Pharma Ab Glycosylated specificity exchangers
US8303956B2 (en) 2003-02-06 2012-11-06 Chrontech Pharma Ab Glycosylated specificity exchangers
US20100183635A1 (en) * 2003-02-06 2010-07-22 Tripep Ab Glycosylated specificity exchangers
US7335359B2 (en) 2003-02-06 2008-02-26 Tripep Ab Glycosylated specificity exchangers
US7318926B2 (en) 2003-02-06 2008-01-15 Tripep Ab Glycosylated specificity exchangers
US7534435B2 (en) 2003-02-06 2009-05-19 Tripep Ab Glycosylated specificity exchangers
US20050074854A1 (en) * 2003-02-06 2005-04-07 Matti Sallberg Glycosylated specificity exchangers
US20070141025A1 (en) * 2003-02-14 2007-06-21 University Of Southern California Compositions and methods for cancer immunotherapy
US8795672B2 (en) 2003-02-14 2014-08-05 University Of Southern California Compositions and methods for cancer immunotherapy
US20100215639A1 (en) * 2003-02-14 2010-08-26 Kalayoglu Murat V Chlamydia Pneumoniae Associated Chronic Intraocular Disorders and Treatment Thereof
US20040228836A1 (en) * 2003-02-14 2004-11-18 University Of Southern California Compositions and methods for cancer immunotherapy
US8545838B2 (en) 2003-02-14 2013-10-01 University Of Southern California Compositions and methods for cancer immunotherapy
US20070060512A1 (en) * 2003-03-04 2007-03-15 Homayoun Sadeghi Dipeptidyl-peptidase protected protein
US20070128586A1 (en) * 2003-03-21 2007-06-07 Kumar Visvanathan Therapeutic, prophylactic and diagnostic agents
WO2004083455A1 (en) 2003-03-21 2004-09-30 The Murdoch Childrens Research Institute Therapeutic, prophylactic and diagnostic agents
EP2338906A1 (en) 2003-06-16 2011-06-29 UCB Manufacturing, Inc. Compostion and methods for increasing bone mineralization
EP2341071A1 (en) 2003-06-16 2011-07-06 UCB Manufacturing, Inc. Compostion and methods for increasing bone mineralization
WO2005003158A2 (en) 2003-06-16 2005-01-13 Celltech R & D, Inc. Compositions and methods for increasing bone mineralization
US20080044419A1 (en) * 2003-06-17 2008-02-21 Fibron Ltd. Treatment of T Cell Mediated Diseases by Inhibition of Fgfr3
US20070275871A1 (en) * 2003-08-28 2007-11-29 Biorexis Technology, Inc. Epo Mimetic Peptides and Fusion Proteins
US20050069521A1 (en) * 2003-08-28 2005-03-31 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of interleukin-2 proteins
US20060205037A1 (en) * 2003-08-28 2006-09-14 Homayoun Sadeghi Modified transferrin fusion proteins
US20050124862A1 (en) * 2003-09-15 2005-06-09 Mousa Shaker A. Thyroid hormone analogs and methods of use
US9579300B2 (en) 2003-09-15 2017-02-28 Nanopharmaceuticals Llc Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof
US7785632B2 (en) 2003-09-15 2010-08-31 Ordway Research Institute, Inc. Thyroid hormone analogs and methods of use
US9750709B2 (en) 2003-09-15 2017-09-05 Nanopharmaceuticals Llc Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof
US9980933B2 (en) 2003-09-15 2018-05-29 Nanopharmaceuticals Llc Thyroid hormone analogs and methods of use
US20100112079A1 (en) * 2003-09-15 2010-05-06 Ordway Research Institute, Inc. Thyroid Hormone Analogs and Methods of Use
US9198887B2 (en) 2003-09-15 2015-12-01 Nanopharmaceuticals Llc Thyroid hormone analogs and methods of use
US8071134B2 (en) 2003-09-15 2011-12-06 Ordway Research Institute, Inc. Thyroid hormone analogs and methods of use
US8668926B1 (en) 2003-09-15 2014-03-11 Shaker A. Mousa Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof
US8518451B2 (en) 2003-09-15 2013-08-27 Albany College of Pharmacy and Health Services Thyroid hormone analogs and methods of use
US20080124280A1 (en) * 2003-09-15 2008-05-29 Mousa Shaker A Thyroid Hormone Analogs and Methods of Use
US20110104722A1 (en) * 2003-10-09 2011-05-05 Pinto Yigal M Method for identifying a subject at risk of developing heart failure by determining the level of galectin-3 or thrombospondin-2
US8084276B2 (en) 2003-10-09 2011-12-27 Universiteit Maastricht Method for identifying a subject at risk of developing heart failure by determining the level of galectin-3 or thrombospondin-2
EP2591786A1 (en) 2003-10-16 2013-05-15 Stephen John Ralph Immunomodulating compositions and uses therefor
US20050249739A1 (en) * 2003-11-25 2005-11-10 Wayne Marasco Antibodies against SARS-CoV and methods of use thereof
US7750123B2 (en) 2003-11-25 2010-07-06 Dana Farber Cancer Institute, Inc. Antibodies against SARS-CoV and methods of use thereof
EP2186527A1 (en) 2003-11-28 2010-05-19 Micromet AG Compositions comprising polypeptides
EP2418220A2 (en) 2003-12-10 2012-02-15 Medarex, Inc. Interferon alpha antibodies and their uses
EP2383295A1 (en) 2003-12-10 2011-11-02 Medarex, Inc. IP-10 antibodies and their uses
WO2005059106A2 (en) 2003-12-10 2005-06-30 Medarex, Inc. Interferon alpha antibodies and their uses
EP2865687A1 (en) 2003-12-10 2015-04-29 E. R. Squibb & Sons, L.L.C. IP-10 antibodies and their uses
US7960514B2 (en) 2003-12-30 2011-06-14 Merck Patent Gmbh IL-7 fusion proteins
US7323549B2 (en) 2003-12-30 2008-01-29 Emd Lexigen Research Center Corp. IL-7 fusion proteins
US20090010875A1 (en) * 2003-12-30 2009-01-08 Scott Lauder IL-7 Fusion Proteins
US8338575B2 (en) 2003-12-30 2012-12-25 Merck Patent Gmbh IL-7 fusion proteins
US7465447B2 (en) 2003-12-31 2008-12-16 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
US20050192211A1 (en) * 2003-12-31 2005-09-01 Emd Lexigen Research Center Corp. Fc-erythropoietin fusion protein with improved pharmacokinetics
US20090092607A1 (en) * 2003-12-31 2009-04-09 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
EP2990053A1 (en) 2004-01-20 2016-03-02 KaloBios Pharmaceuticals, Inc. Antibody specificity transfer using minimal essential binding determinants
US9617349B2 (en) 2004-01-22 2017-04-11 Merck Patent Gmbh Anti-cancer antibodies with reduced complement fixation
US10633452B2 (en) 2004-01-22 2020-04-28 Merck Patent Gmbh Anti-cancer antibodies with reduced complement fixation
US20090148441A1 (en) * 2004-01-22 2009-06-11 Merck Patent Gmbh Anti-Cancer Antibodies With Reduced Complement Fixation
US10017579B2 (en) 2004-01-22 2018-07-10 Meck Patent Gmbh Anti-cancer antibodies with reduced complement fixation
US8835606B2 (en) 2004-01-22 2014-09-16 Merck Patent Gmbh Anti-cancer antibodies with reduced complement fixation
US7432357B2 (en) 2004-01-22 2008-10-07 Merck Patent Gmbh Anti-cancer antibodies with reduced complement fixation
US20050202021A1 (en) * 2004-01-22 2005-09-15 Emd Lexigen Research Center Corp. Anti-cancer antibodies with reduced complement fixation
US20110091454A1 (en) * 2004-01-27 2011-04-21 Alex Diber Methods and systems for annotating biomolecular sequences
US20050214286A1 (en) * 2004-01-27 2005-09-29 University Of Southern California Polymer-bound antibody cancer therapeutic agent
US9572829B2 (en) 2004-02-23 2017-02-21 Massachusetts Eye & Ear Infirmary Treatment of ocular disorders
US9775785B2 (en) 2004-05-18 2017-10-03 Ganymed Pharmaceuticals Ag Antibody to genetic products differentially expressed in tumors and the use thereof
EP2270034A2 (en) 2004-06-03 2011-01-05 Athlomics Pty Ltd Agents and methods for diagnosing stress
EP2527447A1 (en) 2004-06-03 2012-11-28 Athlomics Pty Ltd Agents and methods for diagnosing stress
EP2527446A1 (en) 2004-06-03 2012-11-28 Athlomics Pty Ltd Agents and methods for diagnosing stress
US20060083718A1 (en) * 2004-06-16 2006-04-20 University Of Massachusetts Novel therapy for lysosomal enzyme deficiencies
US8580275B2 (en) 2004-06-16 2013-11-12 University Of Massachusetts Drug delivery product and methods
US8637045B2 (en) 2004-06-16 2014-01-28 University Of Massachusetts Therapy for lysosomal enzyme deficiencies
US20100221357A1 (en) * 2004-06-16 2010-09-02 University Of Massachusetts Drug delivery product and methods
US20050281781A1 (en) * 2004-06-16 2005-12-22 Ostroff Gary R Drug delivery product and methods
US8007814B2 (en) 2004-06-16 2011-08-30 University Of Massachusetts Therapy for lysosomal enzyme deficiencies
US9682135B2 (en) 2004-06-16 2017-06-20 University Of Massachusetts Drug delivery product and methods
US7740861B2 (en) 2004-06-16 2010-06-22 University Of Massachusetts Drug delivery product and methods
EP2662390A1 (en) 2004-06-21 2013-11-13 Medarex, L.L.C. Interferon alpha receptor 1 antibodies and their uses
US10168322B2 (en) 2004-07-09 2019-01-01 Church & Dwight Co., Inc. Electronic analyte assaying device
US20090226552A1 (en) * 2004-07-22 2009-09-10 Colorado State University Research Foundation Agents and methods for diagnosing osteoarthritis
WO2006021954A2 (en) 2004-08-23 2006-03-02 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Peptide inhibitors for mediating stress responses
EP2578226A1 (en) 2004-08-23 2013-04-10 Yeda Research And Development Co., Ltd. Peptide inhibitors for mediating stress responses
US20080267983A1 (en) * 2004-08-23 2008-10-30 Yeda Research And Development Co. Ltd. Peptide Inhibitors for Mediating Stress Responses
US20060216696A1 (en) * 2004-08-23 2006-09-28 Goguen Jon D Rapid plague detection system
US8067008B2 (en) 2004-08-23 2011-11-29 Yeda Research And Development Co. Peptide inhibitors for mediating stress responses
US8790653B2 (en) 2004-08-23 2014-07-29 Yeda Research And Development Co. Ltd. Peptide inhibitors for mediating stress responses
EP2386653A2 (en) 2004-09-16 2011-11-16 Turun Yliopisto Methods for the utilization of novel target genes related to immune-mediated diseases
US8207130B2 (en) 2004-10-29 2012-06-26 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
US20110002921A1 (en) * 2004-10-29 2011-01-06 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
EP2366717A2 (en) 2004-10-29 2011-09-21 University of Southern California Combination Cancer Immunotherapy with Co-Stimulatory Molecules
US7696175B2 (en) 2004-10-29 2010-04-13 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
US20060171949A1 (en) * 2004-10-29 2006-08-03 Alan Epstein Combination cancer immunotherapy with co-stimulatory molecules
US8268788B2 (en) 2004-10-29 2012-09-18 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
US20110002920A1 (en) * 2004-10-29 2011-01-06 University Of Southern California Combination cancer immunotherapy with co-stimulatory molecules
US20090175866A1 (en) * 2004-11-04 2009-07-09 Avner Yayon Treatment of b-cell malignancies
US9522958B2 (en) 2004-11-09 2016-12-20 University Of Southern California Cancer targeted innate immunity
US20060135459A1 (en) * 2004-11-09 2006-06-22 Epstein Alan L Targeted innate immunity
EP2343380A1 (en) 2004-11-16 2011-07-13 Kalobios Inc. Immunoglobulin variable region cassette exchange
EP3540062A1 (en) 2004-11-16 2019-09-18 Humanigen, Inc. Immunoglobulin variable region cassette exchange
EP2123306A1 (en) 2004-12-03 2009-11-25 Fondazione Telethon Use of a decoy protein that interferes with the hedgehog signalling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization
US20060141581A1 (en) * 2004-12-09 2006-06-29 Merck Patent Gmbh IL-7 variants with reduced immunogenicity
US7589179B2 (en) 2004-12-09 2009-09-15 Merck Patent Gmbh IL-7 variants with reduced immunogenicity
WO2006060871A1 (en) 2004-12-10 2006-06-15 The Corporation Of The Trustees Of The Order Of The Sisters Of Mercy In Queensland Binding partners of antibodies specific for dendritic cell antigens
WO2006063415A1 (en) 2004-12-17 2006-06-22 Monash University Regulation of metalloprotease cleavage of cell surface proteins
US20070014795A1 (en) * 2004-12-30 2007-01-18 Dhodapkar Madhav V Compositions and methods for enhanced dendritic cell maturation and function
EP2153848A2 (en) 2005-01-27 2010-02-17 The Regents of the University of California Therapeutic monoclonal antibodies that neutralize botulinium neurotoxins
WO2006086799A2 (en) 2005-02-11 2006-08-17 Novartis Vaccines And Diagnostics Inc. Prion-specific peptide reagents
US8329178B2 (en) 2005-02-18 2012-12-11 Dana-Farber Cancer Institute, Inc. Antibodies against CXCR4 and methods of use thereof
US20060204504A1 (en) * 2005-02-23 2006-09-14 Gragoudas Evangelos S Methods and compositions for treating conditions of the eye
US7803375B2 (en) 2005-02-23 2010-09-28 Massachusetts Eye And Ear Infirmary Methods and compositions for treating conditions of the eye
US20110189191A1 (en) * 2005-02-23 2011-08-04 Gragoudas Evangelos S Methods and Compositions for Treating Conditions of the Eye
EP2511257A2 (en) 2005-03-21 2012-10-17 ViroBay, Inc. Alpha ketoamide compounds as cysteine protease inhibitors
EP2551282A2 (en) 2005-03-23 2013-01-30 Genmab A/S Antibodies against CD38 for treatment of multiple myeloma
EP2567976A2 (en) 2005-03-23 2013-03-13 Genmab A/S Antibodies against CD38 for treatment of multiple myeloma
EP2535355A2 (en) 2005-03-23 2012-12-19 Genmab A/S Antibodies against CD38 for treatment of multiple myeloma
EP3153525A1 (en) 2005-03-23 2017-04-12 Genmab A/S Antibodies against cd38 for treatment of multiple myeloma
EP3312196A1 (en) 2005-03-23 2018-04-25 Genmab A/S Antibodies against cd38 for treatment of multiple myeloma
US8034902B2 (en) 2005-05-04 2011-10-11 Quark Pharmaceuticals, Inc. Recombinant antibodies against CD55 and CD59 and uses thereof
US20090053225A1 (en) * 2005-05-04 2009-02-26 Roberto Marzari Recombinant antibodies against cd55 and cd59 and uses thereof
EP2439272A2 (en) 2005-05-09 2012-04-11 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
EP2418278A2 (en) 2005-05-09 2012-02-15 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
EP2161336A1 (en) 2005-05-09 2010-03-10 ONO Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
EP3530736A2 (en) 2005-05-09 2019-08-28 ONO Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1 (pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
EP2439273A2 (en) 2005-05-09 2012-04-11 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
EP2425850A2 (en) 2005-06-15 2012-03-07 The Regents of The University of California Bispecific single chain FV antibody molecules and methods of use thereof
WO2007002223A2 (en) 2005-06-20 2007-01-04 Medarex, Inc. Cd19 antibodies and their uses
EP2982379A1 (en) 2005-07-01 2016-02-10 E. R. Squibb & Sons, L.L.C. Human monoclonal antibodies to programmed death ligand 1 (pd-l1)
EP2476761A2 (en) 2005-07-07 2012-07-18 Athlomics Pty Ltd Polynucleotide marker genes and their expression, for diagnosis of endotoxemia
US10067133B2 (en) 2005-08-17 2018-09-04 Quest Diagnostics Investments Incorporated Hematopoietic cell phenotyping using circulating cell-free markers
US11828760B2 (en) 2005-08-17 2023-11-28 Quest Diagnostics Investments Llc Hematopoietic cell phenotyping using circulating cell-free markers
US20070042443A1 (en) * 2005-08-17 2007-02-22 Quest Diagnostics Investments Incorporated Hematopoietic cell phenotyping using free circulating cellular markers
US20100028930A1 (en) * 2005-08-17 2010-02-04 Maher Albitar Hematopoietic cell phenotyping using circulating cell-free markers
US9255926B2 (en) 2005-08-17 2016-02-09 Quest Diagnostics Investments Incorporated Hematopoietic cell phenotyping using circulating cell-free markers
WO2007027751A2 (en) 2005-08-30 2007-03-08 University Of Miami Immunomodulating tumor necrosis factor receptor 25 (tnfr25) agonists, antagonists and immunotoxins
US9919036B2 (en) 2005-09-12 2018-03-20 Ganymed Pharmaceuticals Ag Identification of tumor-associated antigens for diagnosis and therapy
US8975375B2 (en) 2005-09-12 2015-03-10 Ganymed Pharmaceuticals Ag Identification of tumor-associated antigens for diagnosis and therapy
US20110189179A1 (en) * 2005-09-12 2011-08-04 Ugur Sahin Identification of Tumor-Associated Antigens for Diagnosis and Therapy
US10130686B2 (en) 2005-09-15 2018-11-20 Nanopharmaceuticals Llc Method and composition of thyroid hormone analogues and nanoformulations thereof for treating inflammatory disorders
US9498536B2 (en) 2005-09-15 2016-11-22 Nanopharmaceuticals Llc Method and composition of thyroid hormone analogues and nanoformulations thereof for treating anti-inflammatory disorders
US9272049B2 (en) 2005-09-16 2016-03-01 Nanopharmaceuticals Llc Methods of stimulating fat mobilization using a polymer conjugated polyphenol
US20070104689A1 (en) * 2005-09-27 2007-05-10 Merck Patent Gmbh Compositions and methods for treating tumors presenting survivin antigens
EP2532679A1 (en) 2005-10-21 2012-12-12 Novartis AG Human antibodies against il13 and therapeutic uses
EP2532677A1 (en) 2005-10-21 2012-12-12 Novartis AG Human antibodies against il13 and therapeutic uses
US20090209624A1 (en) * 2005-10-24 2009-08-20 University Of Massachusetts Compositions and their uses for gene therapy of bone conditions
EP2311878A2 (en) 2005-11-24 2011-04-20 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
US9751934B2 (en) 2005-11-24 2017-09-05 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
EP3312197A1 (en) 2005-11-24 2018-04-25 Ganymed Pharmaceuticals GmbH Monoclonal antibodies against claudin-18 for treatment of cancer
EP3656793A1 (en) 2005-11-24 2020-05-27 Astellas Pharma Inc. Monoclonal antibodies against claudin-18 for treatment of cancer
US10738108B2 (en) 2005-11-24 2020-08-11 Astellas Pharma Inc. Monoclonal antibodies against claudin-18 for treatment of cancer
EP2295469A2 (en) 2005-11-24 2011-03-16 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
US10174104B2 (en) 2005-11-24 2019-01-08 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
EP3421498A1 (en) 2005-11-24 2019-01-02 Astellas Pharma Inc. Monoclonal antibodies against claudin-18 for treatment of cancer
US9499609B2 (en) 2005-11-24 2016-11-22 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US11739139B2 (en) 2005-11-24 2023-08-29 Astellas Pharma Inc. Monoclonal antibodies against Claudin-18 for treatment of cancer
US9212228B2 (en) 2005-11-24 2015-12-15 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
EP2311877A2 (en) 2005-11-24 2011-04-20 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
US10017564B2 (en) 2005-11-24 2018-07-10 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
EP2311879A2 (en) 2005-11-24 2011-04-20 Ganymed Pharmaceuticals AG Monoclonal antibodies against claudin-18 for treatment of cancer
US9676867B2 (en) 2005-12-02 2017-06-13 Dana-Farber Cancer Institute Inc. Chimeric T cell receptor comprising carbonic anhydrase IX (G250) antibody
US11174323B2 (en) 2005-12-02 2021-11-16 Dana-Farber Cancer Institute, Inc. Method of treating renal cancer using carbonic anhydrase IX (G250) antibodies
US20090068095A1 (en) * 2005-12-02 2009-03-12 Marasco Wayne A Carbonic anhydrase ix (g250) anitbodies and methods of use thereof
US8466263B2 (en) 2005-12-02 2013-06-18 Dana-Farber Cancer Institute, Inc. Carbonic anhydrase IX (G250) anitbodies
US10450383B2 (en) 2005-12-02 2019-10-22 Dana-Farber Cancer Institute, Inc. Carbonic anhydrase IX (G250) antibodies and methods of use thereof
WO2007067992A2 (en) 2005-12-08 2007-06-14 Medarex, Inc. Human monoclonal antibodies to fucosyl-gm1 and methods for using anti-fucosyl-gm1
US9446107B2 (en) 2005-12-13 2016-09-20 President And Fellows Of Harvard College Scaffolds for cell transplantation
US11096997B2 (en) 2005-12-13 2021-08-24 President And Fellows Of Harvard College Scaffolds for cell transplantation
US10149897B2 (en) 2005-12-13 2018-12-11 President And Fellows Of Harvard College Scaffolds for cell transplantation
US9132210B2 (en) 2005-12-13 2015-09-15 President And Fellows Of Harvard College Scaffolds for cell transplantation
US10137184B2 (en) 2005-12-13 2018-11-27 President And Fellows Of Harvard College Scaffolds for cell transplantation
US8188248B2 (en) 2005-12-30 2012-05-29 Merck Patent Gmbh Nucleic acids encoding interleukin-12P40 variants with improved stability
US9029330B2 (en) 2005-12-30 2015-05-12 Merck Patent Gmbh Methods of treating cancer using interleukin-12p40 variants having improved stability
US20070154453A1 (en) * 2005-12-30 2007-07-05 Merck Patent Gmbh Interleukin-12p40 variants with improved stability
US8691952B2 (en) 2005-12-30 2014-04-08 Merck Patent Gmbh Anti-CD19 antibodies with reduced immunogenicity
US10072092B2 (en) 2005-12-30 2018-09-11 Merck Patent Gmbh Methods of use of anti-CD19 antibodies with reduced immunogenicity
US20110097792A1 (en) * 2005-12-30 2011-04-28 Merck Patent Gmbh Interleukin-12p40 variants with improved stability
US7872107B2 (en) 2005-12-30 2011-01-18 Merck Patent Gmbh Interleukin-12p40 variants with improved stability
US11208496B2 (en) 2005-12-30 2021-12-28 Cancer Research Technology Ltd. Anti-CD19 antibodies with reduced immunogenicity
US8957195B2 (en) 2005-12-30 2015-02-17 Merck Patent Gmbh Anti-CD19 antibodies with reduced immunogenicity
US20070154473A1 (en) * 2005-12-30 2007-07-05 Merck Patent Gmbh Anti-CD19 antibodies with reduced immunogenicity
EP3026119A1 (en) 2006-01-04 2016-06-01 Fujirebio America, Inc. Use of he4 and other biochemical markers for assessment of ovarian cancers
EP2982761A1 (en) 2006-01-04 2016-02-10 Fujirebio America, Inc. Use of he4 and other biochemical markers for assessment of endometrial and uterine cancers
US20080020473A1 (en) * 2006-01-04 2008-01-24 Richard Moore Use of HE4 and other biochemical markers for assessment of endometrial and uterine cancers
EP2423321A2 (en) 2006-01-04 2012-02-29 Fujirebio America, Inc. Use of HE4 and other biochemical markers for assessment of endometrial and uterine cancers
EP2420576A2 (en) 2006-01-04 2012-02-22 Fujirebio America, Inc. Use of HE4 and other biochemical markers for assessment of ovarian cancers
US20070286865A1 (en) * 2006-01-04 2007-12-13 Richard Moore Use of HE4 and other biochemical markers for assessment of ovarian cancers
US20070186296A1 (en) * 2006-02-02 2007-08-09 Wyeth Cloning, characterization, and application of tnfrsf19 in neurological disorders
EP3539989A1 (en) 2006-03-10 2019-09-18 Wyeth LLC Anti-5t4 antibodies and uses thereof
WO2007106744A2 (en) 2006-03-10 2007-09-20 Wyeth Anti-5t4 antibodies and uses thereof
EP2368914A1 (en) 2006-03-10 2011-09-28 Wyeth LLC Anti-5T4 antibodies and uses thereof
US20070253950A1 (en) * 2006-03-21 2007-11-01 Wyeth Methods for Preventing and Treating Amyloidogenic Diseases
US20070286858A1 (en) * 2006-03-21 2007-12-13 Wyeth Methods and Compositions for Antagonism of RAGE
WO2007109370A2 (en) 2006-03-22 2007-09-27 Viral Logic Systems Technology Corp. Methods for identifying polypeptide targets and uses thereof for treating immunological diseases
EP2275816A2 (en) 2006-03-22 2011-01-19 Viral Logic Systems Technology Corp. Methods for identifying polypeptide targets and uses thereof for treating immunological diseases
EP2322931A2 (en) 2006-03-22 2011-05-18 Viral Logic Systems Technology Corp. Methods for identifying polypeptide targets and uses thereof for treating immunological diseases
WO2007126799A2 (en) 2006-03-30 2007-11-08 Novartis Ag Compositions and methods of use for antibodies of c-met
EP3255149A2 (en) 2006-05-02 2017-12-13 Intrexon Actobiotics NV Microbial intestinal delivery of obesity related peptides
US7727525B2 (en) 2006-05-11 2010-06-01 City Of Hope Engineered anti-CD20 antibody fragments for in vivo targeting and therapeutics
US20070280882A1 (en) * 2006-05-11 2007-12-06 Wu Anna M Engineered anti-cd20 antibody fragments for in vivo targeting and therapeutics
US20080131431A1 (en) * 2006-05-15 2008-06-05 Viral Logic Systems Technology Corp. CD47 related compositions and methods for treating immunological diseases and disorders
US8377448B2 (en) 2006-05-15 2013-02-19 The Board Of Trustees Of The Leland Standford Junior University CD47 related compositions and methods for treating immunological diseases and disorders
US20100239579A1 (en) * 2006-05-15 2010-09-23 Viral Logic Systems Technology Corp. CD47 Related Compositions and Methods for Treating Immunological Diseases and Disorders
US20100047251A1 (en) * 2006-06-15 2010-02-25 Avner Yayon Antibodies blocking fibroblast growth factor receptor activation and methods of use thereof
US8101721B2 (en) 2006-06-15 2012-01-24 Fibron Ltd. Antibodies blocking fibroblast growth factor receptor activation and methods of use thereof
EP3309172A1 (en) 2006-07-14 2018-04-18 AC Immune S.A. Humanized antibody against amyloid beta
EP2468770A1 (en) 2006-07-14 2012-06-27 AC Immune S.A. Humanized antibody against amyloid beta
US20090239795A1 (en) * 2006-07-24 2009-09-24 Pfizer Inc Exendin fusion proteins
US8158579B2 (en) 2006-07-24 2012-04-17 Biorexis Pharmaceutical Corporation Fusion protein of an exendin to modified transferrin
US7867972B2 (en) 2006-07-24 2011-01-11 Pharmacia & Upjohn Company, Llc Fusion protein of exendin-4 to a transferrin (Tf) polypeptide
WO2008021290A2 (en) 2006-08-09 2008-02-21 Homestead Clinical Corporation Organ-specific proteins and methods of their use
EP2520935A2 (en) 2006-08-09 2012-11-07 Homestead Clinical Corporation Organ-specific proteins and methods of their use
EP2759549A2 (en) 2006-09-01 2014-07-30 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
EP2594586A1 (en) 2006-09-01 2013-05-22 ZymoGenetics, Inc. IL-31 monoclonal antibodies and methods of use
WO2008030611A2 (en) 2006-09-05 2008-03-13 Medarex, Inc. Antibodies to bone morphogenic proteins and receptors therefor and methods for their use
US8748108B2 (en) 2006-09-05 2014-06-10 Abbvie Inc. Biomarkers for identifying patient classes
EP2486941A1 (en) 2006-10-02 2012-08-15 Medarex, Inc. Human antibodies that bind CXCR4 and uses thereof
US20100311079A1 (en) * 2006-10-26 2010-12-09 Abbott Laboratories Assay for cardiac troponin autoantibodies
US8357495B2 (en) 2006-10-26 2013-01-22 Abbott Laboratories Immunoassay of analytes in samples containing endogenous anti-analyte antibodies
US8173382B2 (en) 2006-10-26 2012-05-08 Abbott Laboratories Assay for cardiac troponin autoantibodies
US20090246800A1 (en) * 2006-10-26 2009-10-01 Abbott Laboratories Immunoassay of analytes in samples containing endogenous anti-analyte antibodies
WO2008051761A2 (en) 2006-10-26 2008-05-02 Abbott Laboratories Assay for cardiac troponin autoantibodies
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
WO2008079185A2 (en) 2006-11-13 2008-07-03 Ateris Technologies, Llc Pesticide biomarker
WO2008076560A2 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to btla and methods of use
EP2402013A1 (en) 2006-11-21 2012-01-04 Kalobios Pharmaceuticals, Inc. Methods of Treating Chronic Inflammatory Diseases using a GM-CSF Antagonist
WO2008064321A2 (en) 2006-11-21 2008-05-29 Kalobios Pharmaceuticals, Inc. Methods of treating chronic inflammatory diseases using a gm-csf antagonist
WO2008070569A2 (en) 2006-12-01 2008-06-12 Medarex, Inc. Human antibodies that bind cd22 and uses thereof
WO2009054863A2 (en) 2006-12-13 2009-04-30 Medarex, Inc. Human antibodies that bind cd19 and uses thereof
WO2008074004A2 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind cd70 and uses thereof
US9289395B2 (en) 2006-12-22 2016-03-22 Nanopharmaceuticals Llc Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof
US20090022806A1 (en) * 2006-12-22 2009-01-22 Mousa Shaker A Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists and formulations and uses thereof
US20110142941A1 (en) * 2006-12-22 2011-06-16 Davis Paul J Nanoparticle and Polymer Formulations for Thyroid Hormone Analogs, Antagonists, and Formulations and Uses Thereof
US10155038B2 (en) 2007-02-02 2018-12-18 Yale University Cells prepared by transient transfection and methods of use thereof
US8859229B2 (en) 2007-02-02 2014-10-14 Yale University Transient transfection with RNA
US20080260706A1 (en) * 2007-02-02 2008-10-23 Yale University Transient Transfection with RNA
US10017782B2 (en) 2007-02-02 2018-07-10 Yale University Immune cells modified by transient transfection of RNA
US9475867B2 (en) 2007-03-14 2016-10-25 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
US20100111975A1 (en) * 2007-03-14 2010-05-06 Ugur Sahin Monoclonal Antibodies for Treatment of Cancer
US10125196B2 (en) 2007-03-14 2018-11-13 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
US8354104B2 (en) 2007-03-14 2013-01-15 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
EP2487189A1 (en) 2007-03-14 2012-08-15 GANYMED Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US8961980B2 (en) 2007-03-14 2015-02-24 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
US20090092631A1 (en) * 2007-03-26 2009-04-09 Tripep Ab Glycosylated specificity exchangers that induce an antibody dependent cellular cytotoxicity (adcc) response
EP2293077A2 (en) 2007-03-26 2011-03-09 BG Medicine, Inc. Methods for detecting coronary artery disease
WO2008145338A2 (en) 2007-05-29 2008-12-04 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
WO2008144827A1 (en) 2007-05-31 2008-12-04 The University Of Queensland Diagnostic markers for ankylosing spondylitis and uses thereof
EP2574345A1 (en) 2007-06-12 2013-04-03 AC Immune S.A. Humanized antibodies to amyloid beta
US9770535B2 (en) 2007-06-21 2017-09-26 President And Fellows Of Harvard College Scaffolds for cell collection or elimination
US10695468B2 (en) 2007-06-21 2020-06-30 President And Fellows Of Harvard College Scaffolds for cell collection or elimination
US20100209490A1 (en) * 2007-08-09 2010-08-19 Daiichi Sankyo Company, Limited Immunoliposome inducing apoptosis into cell expressing death domain-containing receptor
WO2009028639A1 (en) 2007-08-30 2009-03-05 Daiichi Sankyo Company, Limited Anti-epha2 antibody
EP2769729A1 (en) 2007-09-04 2014-08-27 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US9375466B2 (en) 2007-09-04 2016-06-28 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US9107862B2 (en) 2007-09-04 2015-08-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US9555087B2 (en) 2007-09-04 2017-01-31 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2009032845A2 (en) 2007-09-04 2009-03-12 Compugen, Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US10098934B2 (en) 2007-09-04 2018-10-16 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP2769728A1 (en) 2007-09-04 2014-08-27 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
US8415455B2 (en) 2007-09-04 2013-04-09 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP2348052A2 (en) 2007-09-17 2011-07-27 The Regents of The University of California Internalizing human monoclonal antibodies targeting prostate cancer cells in situ
EP2853267A1 (en) 2007-09-21 2015-04-01 The Regents Of The University Of California Targeted interferon demonstrates potent apoptotic and anti-tumor activities
EP3150218A1 (en) 2007-09-21 2017-04-05 The Regents Of The University Of California Targeted interferon demonstrates potent apoptotic and anti-tumor activities
EP2650308A2 (en) 2007-10-05 2013-10-16 Genentech, Inc. Use of anti-amyloid beta antibody in ocular diseases
WO2009049189A2 (en) 2007-10-10 2009-04-16 Bg Medicine, Inc. Methods for detecting major adverse cardiovascular and cerebrovascular events
EP2907826A1 (en) 2007-10-11 2015-08-19 Daiichi Sankyo Company, Limited Antibody targeting osteoclast-related protein siglec-15
EP2586796A1 (en) 2007-10-12 2013-05-01 Novartis AG Compositions and methods for use for antibodies against sclerostin
WO2009053442A1 (en) 2007-10-23 2009-04-30 Novartis Ag Use of trkb antibodies for the treatment of respiratory disorders
US20090226528A1 (en) * 2007-10-29 2009-09-10 University Of Massachusetts Encapsulated nanoparticles for nucleic acid delivery
US8389485B2 (en) 2007-10-29 2013-03-05 University Of Massachusetts Encapsulated nanoparticles for nucleic acid delivery
EP3305324A1 (en) 2007-11-02 2018-04-11 Novartis AG Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (lrp6)
EP2567709A2 (en) 2007-11-02 2013-03-13 Novartis AG Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (LRP6)
EP3211011A1 (en) 2007-11-16 2017-08-30 Nuvelo, Inc. Antibodies to lrp6
WO2009064944A2 (en) 2007-11-16 2009-05-22 Nuvelo, Inc. Antibodies to lrp6
EP3333187A1 (en) 2007-12-06 2018-06-13 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
US9951122B2 (en) 2007-12-06 2018-04-24 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
EP3524619A1 (en) 2007-12-06 2019-08-14 Dana-Farber Cancer Institute, Inc. Antibodies against influenza virus and methods of use thereof
EP2796466A2 (en) 2007-12-07 2014-10-29 ZymoGenetics, Inc. Humanized antibody molecules specific for IL-31
EP2471817A2 (en) 2007-12-07 2012-07-04 ZymoGenetics, Inc. Humanized antibody molecules specific for IL-31
EP2769993A1 (en) 2007-12-14 2014-08-27 Novo Nordisk A/S Antibodies against human NKG2D and uses thereof
WO2009078875A1 (en) 2007-12-19 2009-06-25 Abbott Laboratories Immunosuppressant drug extraction reagent for immunoassays
US10584172B2 (en) 2007-12-28 2020-03-10 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
US20100310646A1 (en) * 2008-01-25 2010-12-09 Claus Oxvig Selective exosite inhibition of papp-a activity against igfbp-4
US8653020B2 (en) 2008-01-25 2014-02-18 Aarhus Universitet Selective exosite inhibition of PAPP-A activity against IGFBP-4
EP2650017A2 (en) 2008-02-05 2013-10-16 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
EP2641612A1 (en) 2008-02-05 2013-09-25 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
US10328133B2 (en) 2008-02-13 2019-06-25 President And Fellows Of Harvard College Continuous cell programming devices
US10258677B2 (en) 2008-02-13 2019-04-16 President And Fellows Of Harvard College Continuous cell programming devices
US9821045B2 (en) 2008-02-13 2017-11-21 President And Fellows Of Harvard College Controlled delivery of TLR3 agonists in structural polymeric devices
US10568949B2 (en) 2008-02-13 2020-02-25 President And Fellows Of Harvard College Method of eliciting an anti-tumor immune response with controlled delivery of TLR agonists in porous polymerlc devices
US9370558B2 (en) 2008-02-13 2016-06-21 President And Fellows Of Harvard College Controlled delivery of TLR agonists in structural polymeric devices
EP2383292A1 (en) 2008-05-02 2011-11-02 Novartis AG Improved fibronectin-based binding molecules and uses thereof
EP2439212A1 (en) 2008-05-02 2012-04-11 Novartis AG Improved fibronectin-based binding molecules and uses thereof
EP3173424A1 (en) 2008-05-02 2017-05-31 Novartis Ag Improved fibronectin-based binding molecules and uses thereof
WO2009133208A1 (en) 2008-05-02 2009-11-05 Novartis Ag Improved fibronectin-based binding molecules and uses thereof
US20100072080A1 (en) * 2008-05-05 2010-03-25 The Regents Of The University Of California Functionalized Nanopipette Biosensor
US11255814B2 (en) 2008-05-05 2022-02-22 The Regents Of The University Of California Functionalized nanopipette biosensor
US8940142B2 (en) 2008-05-05 2015-01-27 The Regents Of The University Of California Functionalized nanopipette biosensor
US11940410B2 (en) 2008-05-05 2024-03-26 The Regents Of The University Of California Functionalized nanopipette biosensor
US9766204B2 (en) 2008-05-05 2017-09-19 The Regents Of The University Of California Functionalized nanopipette biosensor
US20110123542A1 (en) * 2008-06-24 2011-05-26 Hadasit Medical Research Services And Development Ltd. Ccl20-specific antibodies for cancer therapy
US8673310B2 (en) 2008-06-25 2014-03-18 ESBA Tech, an Alcon Biomedical Research Unit LLC Stable and soluble antibodies inhibiting TNFα
US20110117091A1 (en) * 2008-06-25 2011-05-19 Esbatech, An Alcon Biomedical Research Unit Llc Humanization of rabbit antibodies using a universal antibody framework
US8349322B2 (en) 2008-06-25 2013-01-08 ESBATech, an Alcon Biomedical Research Unit, LLC Stable and soluble antibodies inhibiting VEGF
US10087244B2 (en) 2008-06-25 2018-10-02 Esbatech, An Alcon Biomedical Research Unit Llc Humanization of rabbit antibodies using a universal antibody framework
EP3722310A1 (en) 2008-06-25 2020-10-14 Novartis AG Stable and soluble antibodies inhibiting vegf
US8937162B2 (en) 2008-06-25 2015-01-20 ESBATech, an Alcon Biomedical Research Unit, LLC Humanization of rabbit antibodies using a universal antibody framework
EP2732823A1 (en) 2008-06-25 2014-05-21 H. Lundbeck A/S Modulation of the TrpV : Vps10p-domain receptor system for the treatment of pain
EP3964526A1 (en) 2008-06-25 2022-03-09 Novartis AG Humanization of rabbit antibodies using a universal antibody framework
US9090684B2 (en) 2008-06-25 2015-07-28 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting VEGF
US20110159007A1 (en) * 2008-06-25 2011-06-30 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting tnf alpha
US10590193B2 (en) 2008-06-25 2020-03-17 Novartis Ag Stable and soluble antibodies inhibiting VEGF
US9873737B2 (en) 2008-06-25 2018-01-23 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting VEGF
US9422366B2 (en) 2008-06-25 2016-08-23 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting TNF alpha
EP2752428A1 (en) 2008-06-25 2014-07-09 ESBATech, an Alcon Biomedical Research Unit LLC Humanization of rabbit antibodies using a universal antibody framework
US8293235B2 (en) 2008-06-25 2012-10-23 ESBATech, an Alcon Biomedical Research Unit, LLC Humanization of rabbit antibodies using a universal antibody framework
US10100111B2 (en) 2008-06-25 2018-10-16 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies inhibiting TNF alpha
US9593161B2 (en) 2008-06-25 2017-03-14 Esbatech, An Alcon Biomedical Research Unit Llc Humanization of rabbit antibodies using a universal antibody framework
US11858981B2 (en) 2008-06-25 2024-01-02 Novartis Ag Humanization of rabbit antibodies using a universal antibody framework
EP3628686A1 (en) 2008-06-25 2020-04-01 ESBATech, an Alcon Biomedical Research Unit LLC Humanization of rabbit antibodies using a universal antibody framework
US11578123B2 (en) 2008-06-25 2023-02-14 Novartis Ag Stable and soluble antibodies inhibiting TNFα
EP3176261A1 (en) 2008-06-26 2017-06-07 aTyr Pharma, Inc. Compositions and methods comprising glycyl-trna synthetases having non-canonical biological activities
EP2815766A1 (en) 2008-08-05 2014-12-24 Novartis AG Compositions and methods for antibodies targeting complement protein C5
EP2837388A1 (en) 2008-08-05 2015-02-18 Novartis AG Compositions and methods for antibodies targeting complement protein C5
WO2010015608A1 (en) 2008-08-05 2010-02-11 Novartis Ag Compositions and methods for antibodies targeting complement protein c5
US20100143349A1 (en) * 2008-08-12 2010-06-10 Wyeth Humanized anti-rage antibody
EP4071169A2 (en) 2008-08-25 2022-10-12 Dana Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
EP3301116A1 (en) 2008-08-25 2018-04-04 Dana Farber Cancer Institute, Inc. Conserved influenza hemagglutinin epitope and antibodies thereto
US8946388B2 (en) 2008-09-16 2015-02-03 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
EP3312198A1 (en) 2008-09-16 2018-04-25 Ganymed Pharmaceuticals GmbH Monoclonal anti-gt468 antibodies for treatment of cancer
EP2166021A1 (en) 2008-09-16 2010-03-24 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US20110223182A1 (en) * 2008-09-16 2011-09-15 Ugur Sahin Monoclonal antibodies for treatment of cancer
US20100143954A1 (en) * 2008-10-29 2010-06-10 Bg Medicine, Inc. Galectin-3 Immunoassay
WO2010062697A2 (en) 2008-10-30 2010-06-03 Peixuan Guo Membrane-integrated viral dna-packaging motor protein connector biosensor for dna sequencing and other uses
US20100119511A1 (en) * 2008-10-31 2010-05-13 Biogen Idec Ma Inc. Light targeting molecules and uses thereof
US8734795B2 (en) 2008-10-31 2014-05-27 Biogen Idec Ma Inc. Light targeting molecules and uses thereof
US20110059076A1 (en) * 2008-11-18 2011-03-10 Mcdonagh Charlotte Human serum albumin linkers and conjugates thereof
US8927694B2 (en) 2008-11-18 2015-01-06 Merrimack Pharmaceuticals, Inc. Human serum albumin linkers and conjugates thereof
WO2010065437A1 (en) 2008-12-03 2010-06-10 Research Development Foundation Modulation of olfml-3 mediated angiogenesis
EP2865689A1 (en) 2008-12-08 2015-04-29 Compugen Ltd. FAM26F polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
WO2010067308A2 (en) 2008-12-08 2010-06-17 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
EP3165537A1 (en) 2008-12-19 2017-05-10 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
WO2010069331A2 (en) 2008-12-19 2010-06-24 H. Lundbeck A/S Modulation of the vps 10-domain receptor family for the treatment of mental and behavioural disorders
US20100159021A1 (en) * 2008-12-23 2010-06-24 Paul Davis Small Molecule Ligands of the Integrin RGD Recognition Site and Methods of Use
WO2010091189A1 (en) 2009-02-04 2010-08-12 Kalobios Pharmaceuticals, Inc. Combination antibiotic and antibody therapy for the treatment of pseudomonas aeruginosa infection
WO2010093814A1 (en) 2009-02-11 2010-08-19 Kalobios Pharmaceuticals, Inc. Methods of treating dementia using a gm-csf antagonist
WO2010099477A2 (en) 2009-02-27 2010-09-02 Atyr Pharma, Inc. Polypeptide structural motifs associated with cell signaling activity
WO2010102175A1 (en) 2009-03-05 2010-09-10 Medarex, Inc. Fully human antibodies specific to cadm1
WO2010107825A2 (en) 2009-03-16 2010-09-23 Pangu Biopharma Limited Compositions and methods comprising histidyl-trna synthetase splice variants having non-canonical biological activities
EP3255146A1 (en) 2009-03-16 2017-12-13 Pangu Biopharma Limited Compositions and methods comprising histidyl-trna synthetase splice variants having non-canonical biological activities
US9371386B2 (en) 2009-03-16 2016-06-21 Daniel A. Vallera Methods and compositions for bi-specific targeting of CD19/CD22
EP2233502A1 (en) 2009-03-27 2010-09-29 Deutsches Rheuma-Forschungszentrum Berlin Sialylated antigen-specific antibodies for treatment or prophylaxis of unwanted inflammatory immune reactions and methods of producing them
WO2010109010A1 (en) 2009-03-27 2010-09-30 Deutsches Rheuma-Forschungszentrum Berlin (Drfz) Sialylated antigen-specific antibodies for treatment or prophylaxis of unwanted inflammatory immune reactions and methods of producing them
US20100255108A1 (en) * 2009-03-31 2010-10-07 Hung-Yun Lin Combination Treatment of Cancer With Cetuximab and Tetrac
US9180107B2 (en) 2009-03-31 2015-11-10 Nanopharmaceuticals Llc Combination treatment of cancer with cetuximab and tetrac
WO2010120509A2 (en) 2009-03-31 2010-10-21 Atyr Pharma, Inc. Compositions and methods comprising aspartyl-trna synthetases having non-canonical biological activities
WO2010112458A1 (en) 2009-03-31 2010-10-07 Novartis Ag Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betal subunit
WO2010112034A2 (en) 2009-04-02 2010-10-07 Aarhus Universitet Compositions and methods for treatment and diagnosis of synucleinopathies
WO2010117011A1 (en) 2009-04-09 2010-10-14 第一三共株式会社 ANTI-Siglec-15 ANTIBODY
EP3699277A1 (en) 2009-04-09 2020-08-26 Daiichi Sankyo Company, Limited Anti-siglec-15 antibody
US9297005B2 (en) 2009-04-13 2016-03-29 President And Fellows Of Harvard College Harnessing cell dynamics to engineer materials
EP3009454A2 (en) 2009-04-20 2016-04-20 Oxford Bio Therapeutics Limited Antibodies specific to cadherin-17
WO2010125003A1 (en) 2009-04-27 2010-11-04 Novartis Ag Compositions and methods for increasing muscle growth
EP3275900A1 (en) 2009-04-27 2018-01-31 Novartis AG Compositions and methods for increasing muscle growth
EP2270053A1 (en) 2009-05-11 2011-01-05 U3 Pharma GmbH Humanized AXL antibodies
US10647757B2 (en) 2009-05-29 2020-05-12 Morphosys Ag Collection and methods for its use
US8685896B2 (en) 2009-05-29 2014-04-01 Morphosys Ag Collection and methods for its use
US9624293B2 (en) 2009-05-29 2017-04-18 Morphosys Ag Collection and methods for its use
WO2010148007A2 (en) 2009-06-17 2010-12-23 Ordway Research Institute, Inc. Nanoparticle and polymer formulations for thyroid hormone, analogs, antagonists, and formulations and uses thereof
US9839614B2 (en) 2009-06-17 2017-12-12 Nanopharmaceuticals, Llc Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof
US9220788B2 (en) 2009-06-17 2015-12-29 Nanopharmaceuticals Llc Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof
US20110052715A1 (en) * 2009-06-17 2011-03-03 Davis Paul J Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations and uses thereof
US9381235B2 (en) 2009-07-31 2016-07-05 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
US10080789B2 (en) 2009-07-31 2018-09-25 President And Fellows Of Harvard College Programming of cells for tolerogenic therapies
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
US20110071583A1 (en) * 2009-08-25 2011-03-24 Bg Medicine, Inc. Galectin-3 and Cardiac Resynchronization Therapy
WO2011031493A2 (en) 2009-08-25 2011-03-17 Bg Medicine, Inc. Galectin-3 and cardiac resynchronization therapy
US8672857B2 (en) 2009-08-25 2014-03-18 Bg Medicine, Inc. Galectin-3 and cardiac resynchronization therapy
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
WO2011047083A1 (en) 2009-10-13 2011-04-21 Oxford Biotherapeutics Ltd. Antibodies against epha10
WO2011050001A2 (en) 2009-10-20 2011-04-28 The Regents Of The University Of California Anti-botulinum neurotoxin antibodies
WO2011048598A1 (en) 2009-10-22 2011-04-28 Yeda Research And Development Co. Ltd. Compositions and methods for treating aspergillosis
WO2011051327A2 (en) 2009-10-30 2011-05-05 Novartis Ag Small antibody-like single chain proteins
WO2011051466A1 (en) 2009-11-02 2011-05-05 Novartis Ag Anti-idiotypic fibronectin-based binding molecules and uses thereof
WO2011054359A2 (en) 2009-11-06 2011-05-12 University Of Copenhagen Method for early detection of cancer
WO2011063477A1 (en) 2009-11-30 2011-06-03 Queensland University Of Technology Fibronectin: growth factor chimeras
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
EP2939689A1 (en) 2009-12-11 2015-11-04 Atyr Pharma, Inc. Glutaminyl tRNA synthetases for modulating inflammation
WO2011072265A1 (en) 2009-12-11 2011-06-16 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating inflammation
WO2011072266A2 (en) 2009-12-11 2011-06-16 Atyr Pharma, Inc. Aminoacyl trna synthetases for modulating hematopoiesis
WO2011092233A1 (en) 2010-01-29 2011-08-04 Novartis Ag Yeast mating to produce high-affinity combinations of fibronectin-based binders
US9610328B2 (en) 2010-03-05 2017-04-04 President And Fellows Of Harvard College Enhancement of skeletal muscle stem cell engraftment by dual delivery of VEGF and IGF-1
WO2011116885A1 (en) 2010-03-23 2011-09-29 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
EP2371864A1 (en) 2010-03-23 2011-10-05 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
US9216218B2 (en) 2010-03-23 2015-12-22 Ganymed Pharmaceuticals Ag Monoclonal antibodies for treatment of cancer
US10596256B2 (en) 2010-03-23 2020-03-24 TRON—Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz gemeinnützige GmbH Monoclonal anti-GT 468 antibodies for treatment of cancer
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
US10781254B2 (en) 2010-03-26 2020-09-22 The Trustees Of Dartmouth College VISTA regulatory T cell mediator protein, VISTA binding agents and use thereof
WO2011139714A2 (en) 2010-04-26 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of cysteinyl-trna synthetase
WO2011139799A2 (en) 2010-04-27 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of isoleucyl trna synthetases
WO2011139853A2 (en) 2010-04-28 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl trna synthetases
WO2011139907A2 (en) 2010-04-29 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of valyl trna synthetases
WO2011139854A2 (en) 2010-04-29 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of asparaginyl trna synthetases
WO2011140135A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of methionyl-trna synthetases
WO2011139986A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of arginyl-trna synthetases
WO2011140132A2 (en) 2010-05-03 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
WO2011140267A2 (en) 2010-05-04 2011-11-10 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of p38 multi-trna synthetase complex
WO2011140254A1 (en) 2010-05-04 2011-11-10 Adimab, Llc Antibodies against epidermal growth factor receptor (egfr) and uses thereof
WO2011140151A1 (en) 2010-05-04 2011-11-10 Dyax Corp. Antibodies against epidermal growth factor receptor (egfr)
EP3345926A1 (en) 2010-05-06 2018-07-11 Novartis AG Compositions and methods of use for therapeutic low density lipoprotein-related protein 6 (lrp6) antibodies
WO2011138391A1 (en) 2010-05-06 2011-11-10 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
WO2011138392A1 (en) 2010-05-06 2011-11-10 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein -related protein 6 (lrp6) antibodies
EP4234698A2 (en) 2010-05-06 2023-08-30 Novartis AG Compositions and methods of use for therapeutic low density lipoprotein-related protein 6 (lrp6) antibodies
WO2011143482A2 (en) 2010-05-14 2011-11-17 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-beta-trna synthetases
WO2011150279A2 (en) 2010-05-27 2011-12-01 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glutaminyl-trna synthetases
US10179822B2 (en) 2010-06-02 2019-01-15 Dana-Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
EP3327039A1 (en) 2010-06-02 2018-05-30 Dana Farber Cancer Institute, Inc. Humanized monoclonal antibodies and methods of use
US9693954B2 (en) 2010-06-25 2017-07-04 President And Fellows Of Harvard College Co-delivery of stimulatory and inhibitory factors to create temporally stable and spatially restricted zones
WO2012003475A1 (en) 2010-07-02 2012-01-05 Bg Medicine, Inc. Statin therapy monitored by galectin- 3 measurement
WO2012021247A2 (en) 2010-07-12 2012-02-16 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of glycyl-trna synthetases
WO2012021229A1 (en) 2010-07-13 2012-02-16 Merck Sharp & Dohme Corp. Staphylococcus aureus surface protein sa1789 and protective vaccine based thereon
US10865445B2 (en) 2010-08-18 2020-12-15 Fred Hutchinson Cancer Research Center Methods for alleviating facioscapulohumeral dystrophy (FSHD) by N siRNA molecule inhibiting the expression of DUX4-FL
EP2949338A1 (en) 2010-08-20 2015-12-02 Wyeth LLC Designer osteogenic proteins
EP3124039A2 (en) 2010-08-20 2017-02-01 Wyeth LLC Designer osteogenic proteins
WO2012023113A2 (en) 2010-08-20 2012-02-23 Wyeth Llc Designer osteogenic proteins
WO2012022814A1 (en) 2010-08-20 2012-02-23 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
EP3320913A2 (en) 2010-08-20 2018-05-16 Wyeth LLC Designer osteogenic proteins
WO2012027611A2 (en) 2010-08-25 2012-03-01 Atyr Pharma, Inc. INNOVATIVE DISCOVERY OF THERAPEUTIC, DIAGNOSTIC, AND ANTIBODY COMPOSITIONS RELATED TO PROTEIN FRAGMENTS OF TYROSYL-tRNA SYNTHETASES
US9085621B2 (en) 2010-09-10 2015-07-21 Apexigen, Inc. Anti-IL-1β antibodies
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
WO2012040619A2 (en) 2010-09-24 2012-03-29 Massachusetts Eye And Ear Infirmary Methods and compositions for prognosing and/or detecting age-related macular degeneration
WO2012041863A1 (en) 2010-09-27 2012-04-05 Bioanalytica Sa Compositions and methods for treating neoplasia
EP3753410A2 (en) 2010-09-28 2020-12-23 The Regents Of The University Of California Combinations comprising gaba agonists in treatment of hyperglycemia
WO2012045703A1 (en) 2010-10-05 2012-04-12 Novartis Ag Anti-il12rbeta1 antibodies and their use in treating autoimmune and inflammatory disorders
US11202759B2 (en) 2010-10-06 2021-12-21 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
WO2012051734A1 (en) 2010-10-22 2012-04-26 Esbatech, An Alcon Biomedical Research Unit Llc Stable and soluble antibodies
US9598487B2 (en) 2010-10-22 2017-03-21 ESBATech, an Alcon Biomedical Unit LLC Stable and soluble antibodies
US8545849B2 (en) 2010-10-22 2013-10-01 ESBATech, an Aclon Biomedical Research Unit LLC Stable and soluble antibodies
US10570198B2 (en) 2010-10-22 2020-02-25 Novartis Ag Stable and soluble antibodies
EP3336105A1 (en) 2010-10-22 2018-06-20 ESBATech - a Novartis Company LLC Stable and soluble human tnf alpha antibodies
WO2012061120A1 (en) 2010-10-25 2012-05-10 Regents Of The University Of Minnesota Therapeutic composition for treatment of glioblastoma
US9364505B2 (en) 2010-10-25 2016-06-14 Regents Of The University Of Minnesota Therapeutic composition for treatment of glioblastoma
US9662377B2 (en) 2010-10-25 2017-05-30 Regents Of The University Of Minneosta Therapeutic composition for treatment of glioblastoma
EP3838922A1 (en) 2010-10-27 2021-06-23 Amgen Inc. Dkk1 antibodies and methods of use
EP3219725A2 (en) 2010-10-27 2017-09-20 Amgen, Inc Dkk1 antibodies and methods of use
WO2012058393A2 (en) 2010-10-27 2012-05-03 Amgen Inc. Dkk1 antibodies and methods of use
US10800839B2 (en) 2010-10-27 2020-10-13 Amgen Inc. DKK1 antibodies and methods of use
WO2012057288A1 (en) 2010-10-29 2012-05-03 第一三共株式会社 Novel anti-dr5 antibody
EP3020812A1 (en) 2010-10-29 2016-05-18 Daiichi Sankyo Company, Limited Novel anti-dr5 antibody
US9603894B2 (en) 2010-11-08 2017-03-28 President And Fellows Of Harvard College Materials presenting notch signaling molecules to control cell behavior
WO2012065034A1 (en) 2010-11-12 2012-05-18 Merck Sharp & Dohme Corp. Enolase peptide conjugate vaccines against staphylococcus aureus
WO2012065950A1 (en) 2010-11-15 2012-05-24 Novartis Ag Silent fc variants of anti-cd40 antibodies
EP3222636A1 (en) 2010-11-15 2017-09-27 Novartis AG Silent fc variants of anti-cd40 antibodies
EP3502138A1 (en) 2010-11-15 2019-06-26 Novartis AG Silent fc variants of anti-cd40 antibodies
EP4023676A1 (en) 2010-11-15 2022-07-06 Novartis AG Silent fc variants of anti-cd40 antibodies
US8367586B2 (en) 2010-11-19 2013-02-05 Morphosys Ag Collection and methods for its use
US8728981B2 (en) 2010-11-19 2014-05-20 Morphosys Ag Collection and methods for its use
US9541559B2 (en) 2010-11-19 2017-01-10 Morphosys Ag Collection and methods for its use
US8802240B2 (en) 2011-01-06 2014-08-12 Nanopharmaceuticals Llc Uses of formulations of thyroid hormone analogs and nanoparticulate forms thereof to increase chemosensitivity and radiosensitivity in tumor or cancer cells
WO2012106341A1 (en) 2011-01-31 2012-08-09 Bg Medicine, Inc. Use of galectin-3 for detecting and prognosing heart failure after acute coronary syndrome
WO2012112842A2 (en) 2011-02-17 2012-08-23 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Compositions and methods for treating poliovirus
WO2012118903A2 (en) 2011-03-01 2012-09-07 Amgen Inc. Bispecific binding agents
WO2012118813A2 (en) 2011-03-03 2012-09-07 Apexigen, Inc. Anti-il-6 receptor antibodies and methods of use
WO2012118910A2 (en) 2011-03-03 2012-09-07 Quark Pharmaceuticals, Inc. Compositions and methods for treating lung disease and injury
US9951136B2 (en) 2011-03-03 2018-04-24 Apexigen, Inc. Anti-IL-6 receptor antibodies and methods of use
US8753634B2 (en) 2011-03-03 2014-06-17 Apexigen, Inc. Anti-IL-6 receptor antibodies and methods of use
WO2012122513A2 (en) 2011-03-10 2012-09-13 Omeros Corporation Generation of anti-fn14 monoclonal antibodies by ex-vivo accelerated antibody evolution
WO2012131139A1 (en) 2011-03-29 2012-10-04 Neo Virnatech, S.L. Vaccine compositions for diseases transmitted by birnaviruses
EP2505640A1 (en) 2011-03-29 2012-10-03 Neo Virnatech, S.L. Vaccine compositions for birnavirus-borne diseases
WO2012138774A2 (en) 2011-04-04 2012-10-11 University Of Iowa Research Foundation Methods of improving vaccine immunogenicity
US10059746B2 (en) 2011-04-04 2018-08-28 University Of Iowa Research Foundation Methods of improving vaccine immunogenicity
WO2012140627A1 (en) 2011-04-15 2012-10-18 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof for treatment of immune related disorders and cancer
WO2012147713A1 (en) 2011-04-25 2012-11-01 第一三共株式会社 Anti-b7-h3 antibody
US10647959B2 (en) 2011-04-27 2020-05-12 President And Fellows Of Harvard College Cell-friendly inverse opal hydrogels for cell encapsulation, drug and protein delivery, and functional nanoparticle encapsulation
US9675561B2 (en) 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
US10045947B2 (en) 2011-04-28 2018-08-14 President And Fellows Of Harvard College Injectable preformed macroscopic 3-dimensional scaffolds for minimally invasive administration
WO2012149356A2 (en) 2011-04-29 2012-11-01 Apexigen, Inc. Anti-cd40 antibodies and methods of use
EP3508500A1 (en) 2011-04-29 2019-07-10 Apexigen, Inc. Anti-cd40 antibodies and methods of use
US10107826B2 (en) 2011-05-20 2018-10-23 Abbott Japan Co. Ltd. Immunoassay methods and reagents for decreasing nonspecific binding
US10288622B2 (en) 2011-05-23 2019-05-14 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US11852634B2 (en) 2011-05-23 2023-12-26 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US9486512B2 (en) 2011-06-03 2016-11-08 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
US10406216B2 (en) 2011-06-03 2019-09-10 President And Fellows Of Harvard College In situ antigen-generating cancer vaccine
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
WO2012177595A1 (en) 2011-06-21 2012-12-27 Oncofactor Corporation Compositions and methods for the therapy and diagnosis of cancer
WO2013003625A2 (en) 2011-06-28 2013-01-03 Oxford Biotherapeutics Ltd. Antibodies
WO2013003606A1 (en) 2011-06-29 2013-01-03 Amgen Inc. Predictive biomarker of survival in the treatment of renal cell carcinoma
US9428574B2 (en) 2011-06-30 2016-08-30 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
WO2013006437A1 (en) 2011-07-01 2013-01-10 Novartis Ag Method for treating metabolic disorders
WO2013006706A1 (en) 2011-07-05 2013-01-10 Bioasis Technologies Inc. P97-antibody conjugates and methods of use
EP3088005A1 (en) 2011-07-05 2016-11-02 biOasis Technologies Inc P97-antibody conjugates
US9850472B2 (en) 2011-07-05 2017-12-26 Bioasis Technologies, Inc. P97-antibody conjugates and methods of use
WO2013006547A2 (en) 2011-07-05 2013-01-10 Merrimack Pharmaceuticals, Inc. Antibodies against epidermal growth factor receptor (egfr) and uses thereof
US9150846B2 (en) 2011-07-05 2015-10-06 Bioasis Technologies, Inc. P97-antibody conjugates and methods of use
EP3090759A1 (en) 2011-07-05 2016-11-09 Merrimack Pharmaceuticals, Inc. Antibodies against epidermal growth factor receptor (egfr) and uses thereof
WO2013007839A1 (en) 2011-07-14 2013-01-17 Adx Neurosciences Nv Antibodies to phosphorylated tau aggregates
WO2013010955A1 (en) 2011-07-15 2013-01-24 Morphosys Ag Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
WO2013022599A1 (en) 2011-08-05 2013-02-14 Research Development Foundation Improved methods and compositions for modulation of olfml3 mediated angiogenesis
US8722019B2 (en) 2011-08-05 2014-05-13 Bioasis Technologies, Inc. P97 fragments with transfer activity
WO2013022738A1 (en) 2011-08-05 2013-02-14 Bioasis Technologies, Inc. P97 fragments with transfer activity
US9161992B2 (en) 2011-08-05 2015-10-20 Bioasis Technologies, Inc. P97 fragments with transfer activity
EP3321281A1 (en) 2011-08-05 2018-05-16 biOasis Technologies Inc P97 fragments with transfer activity
EP3783028A1 (en) 2011-08-12 2021-02-24 Omeros Corporation Anti-fzd10 monoclonal antibodies and methods for their use
US9777065B2 (en) 2011-08-12 2017-10-03 Omeros Corporation Anti-FZD10 monoclonal antibodies and methods for their use
EP3392274A1 (en) 2011-08-12 2018-10-24 Omeros Corporation Anti-fzd10 monoclonal antibodies and methods for their use
US9102724B2 (en) 2011-08-12 2015-08-11 Omeros Corporation Anti-FZD10 monoclonal antibodies and methods for their use
WO2013036596A2 (en) 2011-09-06 2013-03-14 Reed Guy L Serpinf2-binding molecules and methods of use
WO2013054331A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
US9771431B2 (en) 2011-10-11 2017-09-26 Ccam Biotherapeutics Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
US11891453B2 (en) 2011-10-11 2024-02-06 Famewave Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (CEACAM)
EP3360899A1 (en) 2011-10-11 2018-08-15 Tel HaShomer Medical Research Infrastructure and Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
WO2013054307A2 (en) 2011-10-14 2013-04-18 Novartis Ag Antibodies and methods for wnt pathway-related diseases
EP3653222A1 (en) 2011-10-14 2020-05-20 Novartis AG Antibodies and methods for wnt pathway-related diseases
WO2013067098A1 (en) 2011-11-02 2013-05-10 Apexigen, Inc. Anti-kdr antibodies and methods of use
US8748097B1 (en) 2011-12-02 2014-06-10 President And Fellows Of Harvard College Identification of agents for treating calcium disorders and uses thereof
EP3590538A1 (en) 2011-12-05 2020-01-08 Novartis AG Antibodies for epidermal growth factor receptor 3 (her3)
WO2013084148A2 (en) 2011-12-05 2013-06-13 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3) directed to domain ii of her3
WO2013084147A2 (en) 2011-12-05 2013-06-13 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
WO2013093762A1 (en) 2011-12-21 2013-06-27 Novartis Ag Compositions and methods for antibodies targeting factor p
EP3330288A1 (en) 2011-12-21 2018-06-06 Novartis AG Compositions and methods for antibodies targeting factor p
WO2013104648A1 (en) 2012-01-10 2013-07-18 Laboratorios Del Dr. Esteve, S.A. Method to identify ligands for sigma-1 receptors
EP2615111A1 (en) 2012-01-10 2013-07-17 Laboratorios del Dr. Esteve S.A. Method to identify ligands for sigma-1 receptors
WO2013106572A1 (en) 2012-01-11 2013-07-18 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Bispecific antibody fragments for neurological disease proteins and methods of use
US11427644B2 (en) 2012-01-13 2022-08-30 Julius-Maxmillians-Universitat Wurzburg Dual antigen-induced bipartite functional complementation
EP3578198A1 (en) 2012-01-25 2019-12-11 DNAtrix, Inc. Biomarkers and combination therapies using oncolytic virus and immunomodulation
WO2013112942A1 (en) 2012-01-25 2013-08-01 Dna Trix, Inc. Biomarkers and combination therapies using oncolytic virus and immunomodulation
US9617336B2 (en) 2012-02-01 2017-04-11 Compugen Ltd C10RF32 antibodies, and uses thereof for treatment of cancer
US9677070B2 (en) 2012-03-15 2017-06-13 Omeros Corporation Composition and method for diversification of target sequences
WO2013138518A1 (en) 2012-03-15 2013-09-19 Omeros Corporation Composition and method for diversification of target sequences
WO2013147213A1 (en) 2012-03-30 2013-10-03 第一三共株式会社 Anti-siglec15 antibody with modified cdr
WO2013147212A1 (en) 2012-03-30 2013-10-03 第一三共株式会社 Novel anti-siglec15 antibody
US11081235B2 (en) 2012-04-01 2021-08-03 Mor-Research Applications Ltd. Extracellular matrix metalloproteinase inducer (EMMPRIN) peptides and binding antibodies
WO2013150518A1 (en) 2012-04-01 2013-10-10 Rappaport Family Institute For Research In The Medical Sciences Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies
US9688732B2 (en) 2012-04-01 2017-06-27 Mor—Research Applications Ltd. Extracellular matrix metalloproteinase inducer (EMMPRIN) peptides and binding antibodies
EP3492095A1 (en) 2012-04-01 2019-06-05 Technion Research & Development Foundation Limited Extracellular matrix metalloproteinase inducer (emmprin) peptides and binding antibodies
WO2013151762A1 (en) 2012-04-05 2013-10-10 Ac Immune S.A. Humanized tau antibody
WO2013154206A1 (en) 2012-04-09 2013-10-17 第一三共株式会社 Anti-fgfr2 antibody
US11278604B2 (en) 2012-04-16 2022-03-22 President And Fellows Of Harvard College Mesoporous silica compositions comprising inflammatory cytokines comprising inflammatory cytokines for modulating immune responses
US9937249B2 (en) 2012-04-16 2018-04-10 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
WO2013160879A1 (en) 2012-04-27 2013-10-31 Daiichi Sankyo Company, Limited Anti-robo4-antibody
WO2013166500A1 (en) 2012-05-04 2013-11-07 Dana-Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
EP3511343A1 (en) 2012-05-04 2019-07-17 Dana Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
US10053512B2 (en) 2012-05-09 2018-08-21 Ganymed Pharmaceuticals Ag Antibodies against claudin 18.2 useful in cancer diagnosis
US9512232B2 (en) 2012-05-09 2016-12-06 Ganymed Pharmaceuticals Ag Antibodies against Claudin 18.2 useful in cancer diagnosis
EP2662079A1 (en) 2012-05-10 2013-11-13 Ordway Research Institute, Inc. Uses of formulations of thyroid hormone antagonists and nanoparticulate forms thereof to increase chemosensivity and radiosensitivity in tumor or cancer cells
EP3971571A2 (en) 2012-05-25 2022-03-23 The University of Vermont and State Agriculture College Compositions and methods for assaying platelet reactivity and treatment selection
US11752189B2 (en) 2012-06-22 2023-09-12 The Trustees Of Dartmouth College Vista antagonist and methods of use
US10933115B2 (en) 2012-06-22 2021-03-02 The Trustees Of Dartmouth College VISTA antagonist and methods of use
US11180557B2 (en) 2012-06-22 2021-11-23 King's College London Vista modulators for diagnosis and treatment of cancer
US11034943B2 (en) 2012-07-31 2021-06-15 Bioasis Technologies, Inc. Dephosphorylated lysosomal storage disease proteins and methods of use thereof
US9345766B2 (en) 2012-08-30 2016-05-24 Merrimack Pharmaceuticals, Inc. Combination therapies comprising anti-ERBB3 agents
EP2706356A1 (en) 2012-09-06 2014-03-12 Laboratorios Del. Dr. Esteve, S.A. Methods for identifying HIV neutralizing antibodies
US9952218B2 (en) 2012-09-06 2018-04-24 Laboratorios Del Dr. Esteve S.A. Methods for identifying HIV neutralizing antibodies
WO2014037490A1 (en) 2012-09-06 2014-03-13 Laboratorios Del Dr. Esteve, S.A. Methods for identifying hiv neutralizing antibodies
US11529416B2 (en) 2012-09-07 2022-12-20 Kings College London Vista modulators for diagnosis and treatment of cancer
WO2014037899A2 (en) 2012-09-07 2014-03-13 Novartis Ag Il-18 binding molecules
EP3725805A1 (en) 2012-09-07 2020-10-21 Novartis AG Il-18 binding molecules
US10604581B2 (en) 2012-10-04 2020-03-31 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-PD-L1 antibodies and methods of use
US9828434B2 (en) 2012-10-04 2017-11-28 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-PD-L1 antibodies and methods of use
WO2014055897A2 (en) 2012-10-04 2014-04-10 Dana-Farber Cancer Institute, Inc. Human monoclonal anti-pd-l1 antibodies and methods of use
WO2014066590A1 (en) 2012-10-24 2014-05-01 Research Development Foundation Jam-c antibodies and methods for treatment of cancer
US10206911B2 (en) 2012-10-26 2019-02-19 Memorial Sloan-Kettering Cancer Center Androgen receptor variants and methods for making and using
EP3925977A1 (en) 2012-10-30 2021-12-22 Apexigen, Inc. Anti-cd40 antibodies and methods of use
EP3348568A1 (en) 2012-11-19 2018-07-18 Temasek Life Sciences Laboratory Limited Monoclonal antibodies targeting neutralizing epitopes on h7 influenza viruses
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
WO2014089111A1 (en) 2012-12-05 2014-06-12 Novartis Ag Compositions and methods for antibodies targeting epo
EP3851454A1 (en) 2012-12-05 2021-07-21 Novartis AG Compositions and methods for antibodies targeting epo
WO2014099997A1 (en) 2012-12-18 2014-06-26 Novartis Ag Compositions and methods that utilize a peptide tag that binds to hyaluronan
WO2014122613A1 (en) 2013-02-08 2014-08-14 Novartis Ag Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
EP3656786A1 (en) 2013-02-08 2020-05-27 Novartis AG Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
WO2015198217A2 (en) 2013-02-08 2015-12-30 Novartis Ag Compositions and methods for long-acting antibodies targeting il-17
WO2014134165A1 (en) 2013-02-26 2014-09-04 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
EP3811954A1 (en) 2013-02-26 2021-04-28 Memorial Sloan Kettering Cancer Center Compositions and methods for immunotherapy
US10772939B2 (en) 2013-03-13 2020-09-15 Bioasis Technologies, Inc. Fragments of P97 and uses thereof
US9364567B2 (en) 2013-03-13 2016-06-14 Bioasis Technologies, Inc. Fragments of p97 and uses thereof
US9993530B2 (en) 2013-03-13 2018-06-12 Bioasis Technologies, Inc. Fragments of P97 and uses thereof
WO2014160438A1 (en) 2013-03-13 2014-10-02 Bioasis Technologies Inc. Fragments of p97 and uses thereof
WO2014159239A2 (en) 2013-03-14 2014-10-02 Novartis Ag Antibodies against notch 3
EP3495505A1 (en) 2013-03-14 2019-06-12 Translate Bio, Inc. Quantitative assessment for cap efficiency of messenger rna
EP3611189A1 (en) 2013-03-14 2020-02-19 Novartis AG Antibodies against notch 3
WO2014152673A1 (en) 2013-03-14 2014-09-25 Shire Human Genetic Therapies, Inc. Quantitative assessment for cap efficiency of messenger rna
EP4098275A1 (en) 2013-03-15 2022-12-07 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
WO2015142314A1 (en) 2013-03-15 2015-09-24 Memorial Sloan-Kettering Cancer Center Compositions and methods for immunotherapy
US11045544B2 (en) 2013-03-15 2021-06-29 Omeros Corporation Methods of generating bioactive peptide-bearing antibodies and compositions comprising the same
WO2014144542A2 (en) 2013-03-15 2014-09-18 Omeros Corporation Methods of generating bioactive peptide-bearing antibodies and compositions comprising the same
WO2014165707A2 (en) 2013-04-03 2014-10-09 Memorial Sloan-Kettering Cancer Center Effective generation of tumor-targeted t-cells derived from pluripotent stem cells
EP3789487A1 (en) 2013-04-03 2021-03-10 Memorial Sloan Kettering Cancer Center Effective generation of tumor-targeted t-cells derived from pluripotent stem cells
WO2014176439A1 (en) 2013-04-25 2014-10-30 Sutro Biopharma, Inc. The use of lambda-gam protein in ribosomal display technology
US10981981B2 (en) 2013-05-06 2021-04-20 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US9758576B2 (en) 2013-05-06 2017-09-12 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US10597443B2 (en) 2013-05-06 2020-03-24 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US11827698B2 (en) 2013-05-06 2023-11-28 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US9573995B2 (en) 2013-05-06 2017-02-21 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US9399676B2 (en) 2013-05-06 2016-07-26 Scholar Rock, Inc. Compositions and methods for growth factor modulation
US11059906B2 (en) 2013-05-23 2021-07-13 Takeda Pharmaceutical Company Limited Anti-CCL2 and anti-LOXL2 combination therapy for treatment of scleroderma
WO2014190316A1 (en) 2013-05-23 2014-11-27 Shire Human Genetic Therapies, Inc. Anti-ccl2 and anti-loxl2 combination therapy for treatment of scleroderma
WO2014205302A2 (en) 2013-06-21 2014-12-24 Novartis Ag Lectin-like oxidized ldl receptor1 antibodies and methods of use
WO2014205300A2 (en) 2013-06-21 2014-12-24 Novartis Ag Lectin-like oxidized ldl receptor1 antibodies and methods of use
WO2015022658A2 (en) 2013-08-14 2015-02-19 Novartis Ag Methods of treating sporadic inclusion body myositis
US11208479B2 (en) 2013-08-21 2021-12-28 Board Of Regents, The University Of Texas System CX43 hemichannel antibodies and methods of use
US10633442B2 (en) 2013-08-21 2020-04-28 Board Of Regents Of The University Of Texas System Antibodies to connexin 43 (Cx43) hemichannels and methods of use thereof to inhibit Cx43 hemichannel opening
US11912762B2 (en) 2013-08-21 2024-02-27 Board Of Regents Of The University Of Texas System Method of treating osteoarthritis by administering an anti-connexin 43 antibody
WO2015031673A2 (en) 2013-08-28 2015-03-05 Bioasis Technologies Inc. Cns-targeted conjugates having modified fc regions and methods of use thereof
WO2015042498A1 (en) 2013-09-23 2015-03-26 Engen Bio, Inc. Influenza vaccine and therapy
WO2015046505A1 (en) 2013-09-30 2015-04-02 第一三共株式会社 Anti-lps 011 antibody
EP3835422A1 (en) 2013-09-30 2021-06-16 Daiichi Sankyo Company, Limited Anti-lps o11 antibody
WO2015053407A1 (en) 2013-10-08 2015-04-16 第一三共株式会社 Combination of anti-fgfr2 antibody and other agent
WO2015052537A1 (en) 2013-10-11 2015-04-16 Oxford Biotherapeutics Ltd Conjugated antibodies against ly75 for the treatment of cancer
US10060934B2 (en) 2013-11-18 2018-08-28 Nanopharmaceuticals Llc Methods for screening patients for resistance to angioinhibition, treatment and prophylaxis thereof
WO2015075725A1 (en) 2013-11-25 2015-05-28 Ccam Biotherapeutics Ltd. Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
US10081679B2 (en) 2013-11-25 2018-09-25 Ccam Biotherapeutics Ltd. Compositions comprising anti-CEACAM1 and anti-PD antibodies for cancer therapy
EP3763387A1 (en) 2013-11-25 2021-01-13 FameWave Ltd Compositions comprising anti-ceacam1 and anti-pd antibodies for cancer therapy
WO2015089338A2 (en) 2013-12-11 2015-06-18 Sloan-Kettering Institute For Cancer Research Glucocorticoid inhibitors for treatment of prostate cancer
US10246518B2 (en) 2013-12-23 2019-04-02 Genentech, Inc. Nucleic acids encoding bispecific antibodies binding to beta-Klotho and fibroblast growth factor receptor 1
US9873748B2 (en) 2013-12-23 2018-01-23 Genentech, Inc. Bispecific antibodies binding to beta-klotho and fibroblast growth factor receptor 1
US9884919B2 (en) 2013-12-23 2018-02-06 Genentech, Inc. Methods of treatment with bispecific antibodies binding to beta-klotho and fibroblast growth factor receptor 1
US10882921B2 (en) 2013-12-23 2021-01-05 Genentech, Inc. Host cell comprising nucleic acids encoding bispecific antibodies binding to beta-klotho and fibroblast growth factor receptor 1 and antibody production
EP4219555A1 (en) 2013-12-23 2023-08-02 F. Hoffmann-La Roche AG Antibodies and methods of use
US11242392B2 (en) 2013-12-24 2022-02-08 Janssen Pharmaceutica Nv Anti-vista antibodies and fragments
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
US11643454B2 (en) 2014-02-03 2023-05-09 Bioasis Technologies, Inc. P97 fusion proteins
US10392605B2 (en) 2014-02-19 2019-08-27 Bioasis Technologies Inc. P97-IDS fusion proteins
US11124781B2 (en) 2014-02-19 2021-09-21 Bioasis Technologies, Inc. P97-IDS fusion proteins
WO2015143194A2 (en) 2014-03-19 2015-09-24 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
EP4043489A1 (en) 2014-03-19 2022-08-17 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
US11104722B2 (en) 2014-03-19 2021-08-31 Dana-Farber Cancer Institute, Inc. Immunogenetic restriction on elicitation of antibodies
WO2015145449A2 (en) 2014-03-27 2015-10-01 Yeda Research And Development Co. Ltd. T-cell receptor cdr3 peptides and antibodies
WO2015157820A1 (en) 2014-04-15 2015-10-22 Griffith University Group a streptococcus vaccine
EP3461495A1 (en) 2014-04-24 2019-04-03 Novartis AG Methods of improving or accelerating physical recovery after surgery for hip fracture
WO2015162590A1 (en) 2014-04-24 2015-10-29 Novartis Ag Methods of improving or accelerating physical recovery after surgery for hip fracture
US10550196B2 (en) 2014-04-27 2020-02-04 Famewave Ltd. Humanized antibodies against CEACAM1
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
US11866509B2 (en) 2014-04-27 2024-01-09 Famewave Ltd. Humanized antibodies against CEACAM1
US10087259B1 (en) 2014-04-28 2018-10-02 Memorial Sloan Kettering Cancer Center Depleting tumor-specific tregs
US10682400B2 (en) 2014-04-30 2020-06-16 President And Fellows Of Harvard College Combination vaccine devices and methods of killing cancer cells
US10058619B2 (en) 2014-05-01 2018-08-28 Bioasis Technologies, Inc. P97-polynucleotide conjugates
WO2015176010A1 (en) 2014-05-15 2015-11-19 The United States Of America, As Represented By The Secretary, Departmentof Health & Human Services Treatment or prevention of an intestinal disease or disorder
US10058559B2 (en) 2014-05-15 2018-08-28 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Treatment or prevention of an intestinal disease or disorder
EP4166148A1 (en) 2014-06-06 2023-04-19 Memorial Sloan-Kettering Cancer Center Mesothelin-targeted chimeric antigen receptors and uses thereof
WO2015187835A2 (en) 2014-06-06 2015-12-10 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
EP3685842A1 (en) 2014-06-06 2020-07-29 Memorial Sloan-Kettering Cancer Center Mesothelin-targeted chimeric antigen receptors and uses thereof
WO2015188141A2 (en) 2014-06-06 2015-12-10 Memorial Sloan-Kettering Cancer Ceneter Mesothelin-targeted chimeric antigen receptors and uses thereof
EP3610924A1 (en) 2014-06-06 2020-02-19 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
EP3998079A1 (en) 2014-06-06 2022-05-18 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
EP3845245A1 (en) 2014-06-09 2021-07-07 Ultragenyx Pharmaceutical Inc. The effective and efficient control of serum phosphate for optimal bone formation
WO2015191312A1 (en) 2014-06-09 2015-12-17 Ultragenyx Pharmaceutical Inc. The effective and efficient control of serum phosphate for optimal bone formation
US11123426B2 (en) 2014-06-11 2021-09-21 The Trustees Of Dartmouth College Use of vista agonists and antagonists to suppress or enhance humoral immunity
WO2015198243A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
WO2015198240A2 (en) 2014-06-25 2015-12-30 Novartis Ag Compositions and methods for long acting proteins
US9884921B2 (en) 2014-07-01 2018-02-06 Pfizer Inc. Bispecific heterodimeric diabodies and uses thereof
US10166304B2 (en) 2014-07-11 2019-01-01 Regents Of The University Of Minnesota Antibody fragments for detecting cancer and methods of use
WO2016020880A2 (en) 2014-08-07 2016-02-11 Novartis Ag Angiopoietin-like 4 antibodies and methods of use
WO2016020882A2 (en) 2014-08-07 2016-02-11 Novartis Ag Angiopoetin-like 4 (angptl4) antibodies and methods of use
EP4122957A1 (en) 2014-08-07 2023-01-25 Novartis AG Angiopoietin-like 4 antibodies and methods of use
US10463732B2 (en) 2014-10-03 2019-11-05 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (GITR) antibodies and methods of use thereof
WO2016054638A1 (en) 2014-10-03 2016-04-07 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
US10675349B2 (en) 2014-10-06 2020-06-09 Dana-Farber Cancer Institute, Inc. Humanized CC chemokine receptor 4 (CCR4) antibodies and methods of use thereof
EP3699196A1 (en) 2014-10-06 2020-08-26 Dana Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
WO2016057488A1 (en) 2014-10-06 2016-04-14 Dana-Farber Cancer Institute, Inc. Humanized cc chemokine receptor 4 (ccr4) antibodies and methods of use thereof
US11723973B2 (en) 2014-10-06 2023-08-15 Dana-Farber Cancer Institute, Inc. Humanized CC chemokine receptor 4 (CCR4) antibodies and methods of use thereof
WO2016057846A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016057841A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
WO2016077526A1 (en) 2014-11-12 2016-05-19 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
EP4183806A2 (en) 2014-11-12 2023-05-24 Seagen Inc. Glycan-interacting compounds and methods of use
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
USRE49435E1 (en) 2014-11-12 2023-02-28 Seagen Inc. Glycan-interacting compounds and methods of use
EP3872094A2 (en) 2014-12-05 2021-09-01 Memorial Sloan Kettering Cancer Center Antibodies targeting b-cell maturation antigen and methods of use
WO2016090320A1 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting b-cell maturation antigen and uses thereof
US11866478B2 (en) 2014-12-05 2024-01-09 Memorial Sloan-Kettering Cancer Center Nucleic acid molecules encoding chimeric antigen receptors targeting G-protein coupled receptor
EP4310097A2 (en) 2014-12-05 2024-01-24 Memorial Sloan Kettering Cancer Center Chimeric antigen receptors targeting b-cell maturation antigen and uses thereof
US10947314B2 (en) 2014-12-05 2021-03-16 Memorial Sloan Kettering Cancer Center Antibodies targeting b-cell maturation antigen and methods of use
US11820806B2 (en) 2014-12-05 2023-11-21 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting G-protein coupled receptor and uses thereof
US10821135B2 (en) 2014-12-05 2020-11-03 Memorial Sloan Kettering Cancer Center Nucleic acid molecules encoding chimeric antigen receptors targeting B-cell maturation antigen and uses thereof
EP4015534A1 (en) 2014-12-05 2022-06-22 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof
WO2016090327A2 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting b-cell maturation antigen and methods of use
US10633426B2 (en) 2014-12-05 2020-04-28 Memorial Sloan Kettering Cancer Center Chimeric antigen receptors targeting G-protein coupled receptor and uses thereof
US10906956B2 (en) 2014-12-05 2021-02-02 Memorial Sloan Kettering Cancer Center Methods of treatments using chimeric antigen receptors targeting G-protein coupled receptor
US11725059B2 (en) 2014-12-05 2023-08-15 Memorial Sloan Kettering Cancer Center Antibodies targeting B-cell maturation antigen and methods of use
US11000549B2 (en) 2014-12-05 2021-05-11 Memorial Sloan Kettering Cancer Center Methods of using chimeric antigen receptors targeting B-cell maturation antigen and uses thereof
US10370455B2 (en) 2014-12-05 2019-08-06 Immunext, Inc. Identification of VSIG8 as the putative VISTA receptor (V-R) and use thereof to produce VISTA/VSIG8 agonists and antagonists
US11059891B2 (en) 2014-12-05 2021-07-13 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting Fc receptor-like 5 and uses thereof
US10562972B2 (en) 2014-12-05 2020-02-18 Memorial Sloan Kettering Cancer Center Antibodies targeting B-cell maturation antigen and methods of use
WO2016090312A1 (en) 2014-12-05 2016-06-09 Memorial Sloan-Kettering Cancer Center Chimeric antigen receptors targeting g-protein coupled receptor and uses thereof
US10590196B2 (en) 2014-12-05 2020-03-17 Memorial Sloan-Kettering Cancer Center Antibodies targeting G-protein coupled receptor and methods of use
US11566071B2 (en) 2014-12-05 2023-01-31 Memorial Sloan Kettering Cancer Center Nucleic acid molecules encoding anti-GPRC5D antibodies
US10918665B2 (en) 2014-12-05 2021-02-16 Memorial Sloan Kettering Cancer Center Chimeric antigen receptors targeting B-cell maturation antigen and uses thereof
WO2016098079A2 (en) 2014-12-19 2016-06-23 Novartis Ag Compositions and methods for antibodies targeting bmp6
EP4249066A2 (en) 2014-12-23 2023-09-27 Bristol-Myers Squibb Company Antibodies to tigit
WO2016111713A1 (en) 2015-01-05 2016-07-14 Wyeth Llc Improved osteogenic proteins
US11428697B2 (en) 2015-01-30 2022-08-30 Salk Institute For Biological Studies Compositions and methods for treating age-related diabetes and related disorders
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
WO2016131058A1 (en) 2015-02-13 2016-08-18 Biommune Technologies Inc. Antibodies to l-type voltage gated channels and related methods
US11304976B2 (en) 2015-02-18 2022-04-19 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11596652B2 (en) 2015-02-18 2023-03-07 Enlivex Therapeutics R&D Ltd Early apoptotic cells for use in treating sepsis
WO2016132366A1 (en) 2015-02-18 2016-08-25 Enlivex Therapeutics Ltd. Combination immune therapy and cytokine control therapy for cancer treatment
EP3865139A1 (en) 2015-02-18 2021-08-18 Enlivex Therapeutics Ltd. Combination immune therapy and cytokine control therapy for cancer treatment
US11000548B2 (en) 2015-02-18 2021-05-11 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11512289B2 (en) 2015-02-18 2022-11-29 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11497767B2 (en) 2015-02-18 2022-11-15 Enlivex Therapeutics R&D Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US11717539B2 (en) 2015-02-18 2023-08-08 Enlivex Therapeutics RDO Ltd. Combination immune therapy and cytokine control therapy for cancer treatment
US11318163B2 (en) 2015-02-18 2022-05-03 Enlivex Therapeutics Ltd Combination immune therapy and cytokine control therapy for cancer treatment
WO2016141185A1 (en) 2015-03-04 2016-09-09 Board Of Regents, The University Of Texas System Methods of treating cancer harboring hemizygous loss of tp53
EP3741855A1 (en) 2015-03-04 2020-11-25 Board of Regents, The University of Texas System Methods of treating cancer harboring hemizygous loss of tp53
US11135282B2 (en) 2015-04-08 2021-10-05 Dana-Farber Cancer Institute, Inc. Humanized influenza monoclonal antibodies and methods of use thereof
WO2016164835A1 (en) 2015-04-08 2016-10-13 Dana-Farber Cancer Institute, Inc. Humanized influenza monoclonal antibodies and methods of use thereof
US11150242B2 (en) 2015-04-10 2021-10-19 President And Fellows Of Harvard College Immune cell trapping devices and methods for making and using the same
US10857181B2 (en) 2015-04-21 2020-12-08 Enlivex Therapeutics Ltd Therapeutic pooled blood apoptotic cell preparations and uses thereof
US11883429B2 (en) 2015-04-21 2024-01-30 Enlivex Therapeutics Rdo Ltd Therapeutic pooled blood apoptotic cell preparations and uses thereof
US10556956B2 (en) 2015-05-01 2020-02-11 Dana-Farber Cancer Institute, Inc. Pharmaceutical compositions comprising humanized anti-CCR4 IgG4 antibody
US11261256B2 (en) 2015-05-01 2022-03-01 Dana-Farber Cancer Institute, Inc. Methods for depleting or inhibiting the migration of regulatory T-cells in early or late stages of cancer
WO2016178779A1 (en) 2015-05-01 2016-11-10 Dana-Farber Cancer Institute, Inc. Methods of mediating cytokine expression with anti ccr4 antibodies
US11384144B2 (en) 2015-05-22 2022-07-12 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for a PRAME peptide
WO2016196228A1 (en) 2015-05-29 2016-12-08 Bristol-Myers Squibb Company Antibodies against ox40 and uses thereof
WO2016193872A2 (en) 2015-06-05 2016-12-08 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor
US11009509B2 (en) 2015-06-24 2021-05-18 Janssen Pharmaceutica Nv Anti-VISTA antibodies and fragments
WO2016207858A1 (en) 2015-06-26 2016-12-29 Novartis Ag Factor xi antibodies and methods of use
WO2017004016A1 (en) 2015-06-29 2017-01-05 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
US10730941B2 (en) 2015-07-31 2020-08-04 Memorial Sloan-Kettering Cancer Center Antigen-binding proteins targeting CD56 and uses thereof
WO2017021893A1 (en) 2015-08-03 2017-02-09 Novartis Ag Methods of treating fgf21-associated disorders
US11242375B2 (en) 2015-09-04 2022-02-08 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use
WO2017040945A1 (en) 2015-09-04 2017-03-09 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use
WO2017042701A1 (en) 2015-09-09 2017-03-16 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
EP3842457A1 (en) 2015-09-09 2021-06-30 Novartis AG Thymic stromal lymphopoietin (tslp)-binding molecules and methods of using the molecules
WO2017048902A1 (en) 2015-09-15 2017-03-23 Board Of Regents, The University Of Texas System T-cell receptor (tcr)-binding antibodies and uses thereof
DE112016004398T5 (en) 2015-09-28 2018-06-14 Limited Liability Company "Oncomax" (Llc "Oncomax") THE ANTIBODIES THAT SPECIFICALLY BIND THE TYPE-1 RECEPTOR OF THE FIBROBLAST GROWTH FACTOR, THE USE OF ANTIBODIES FOR THE TREATMENT OF ONCOLOGICAL DISEASES, A PROCESS FOR THE PREPARATION OF THE ANTIBODIES
WO2017064716A1 (en) 2015-10-13 2017-04-20 Rappaport Family Institute For Research Heparanase-neutralizing monoclonal antibodies
WO2017079768A1 (en) 2015-11-08 2017-05-11 Genentech, Inc. Methods of screening for multispecific antibodies
WO2017083582A1 (en) 2015-11-12 2017-05-18 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US11028181B2 (en) 2015-11-12 2021-06-08 Seagen Inc. Glycan-interacting compounds and methods of use
WO2017087678A2 (en) 2015-11-19 2017-05-26 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
WO2017095823A1 (en) 2015-11-30 2017-06-08 The Regents Of The University Of California Tumor-specific payload delivery and immune activation using a human antibody targeting a highly specific tumor cell surface antigen
WO2017095875A1 (en) 2015-11-30 2017-06-08 Bristol-Myers Squibb Company Anti human ip-10 antibodies and their uses
EP3909983A1 (en) 2015-12-02 2021-11-17 STCube & Co. Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
US11253590B2 (en) 2015-12-02 2022-02-22 Stsciences, Inc. Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator)
US10913796B2 (en) 2015-12-04 2021-02-09 Memorial Sloan-Kettering Cancer Center Antibodies targeting Fc receptor-like 5 and methods of use
WO2017100428A1 (en) 2015-12-09 2017-06-15 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of using same
US11648268B2 (en) 2015-12-09 2023-05-16 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of using same
US10829562B2 (en) 2015-12-10 2020-11-10 Katholieke Universiteit Leuven Haemorrhagic disorder due to ventricular assist device
US11427649B2 (en) 2015-12-10 2022-08-30 Katholieke Universiteit Leuven Haemorrhagic disorder due to ventricular assist device
WO2017103895A1 (en) 2015-12-18 2017-06-22 Novartis Ag Antibodies targeting cd32b and methods of use thereof
EP4218739A2 (en) 2016-01-08 2023-08-02 The Regents of The University of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
WO2017120537A1 (en) 2016-01-08 2017-07-13 The Regents Of The University Of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
US11505599B2 (en) 2016-01-14 2022-11-22 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for Foxp3-derived peptides
WO2017124001A2 (en) 2016-01-14 2017-07-20 Memorial Sloan-Kettering Cancer Center T cell receptor-like antibodies specific for foxp3-derived peptides
US11752238B2 (en) 2016-02-06 2023-09-12 President And Fellows Of Harvard College Recapitulating the hematopoietic niche to reconstitute immunity
US10899836B2 (en) 2016-02-12 2021-01-26 Janssen Pharmaceutica Nv Method of identifying anti-VISTA antibodies
US11730761B2 (en) 2016-02-18 2023-08-22 Enlivex Therapeutics Rdo Ltd Combination immune therapy and cytokine control therapy for cancer treatment
US10889637B2 (en) 2016-02-26 2021-01-12 The Board Of Regents Of The University Of Texas System Methods of treating an osteolytic tumor and spinal cord injury by administering connexin (Cx) 43 hemichannel-binding antibodies
US11912758B2 (en) 2016-02-26 2024-02-27 The Board Of Regents Of The University Of Texas System Methods of treating metastasis, including inhibiting bone cancer metastasis, by administering an antibody which binds connexin 43 (Cx43) hemichannel
WO2017151176A1 (en) 2016-03-04 2017-09-08 The Rockefeller University Antibodies to cd40 with enhanced agonist activity
WO2017172518A1 (en) 2016-03-29 2017-10-05 Stcube, Inc. Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
WO2017172517A1 (en) 2016-03-29 2017-10-05 Stcube & Co., Inc. Methods for selecting antibodies that specifically bind glycosylated immune checkpoint proteins
EP3943508A1 (en) 2016-03-29 2022-01-26 Board Of Regents, The University Of Texas System Dual function antibodies specific to glycosylated pd-l1 and methods of use thereof
WO2017173091A1 (en) 2016-03-30 2017-10-05 Musc Foundation For Research Development Methods for treatment and diagnosis of cancer by targeting glycoprotein a repetitions predominant (garp) and for providing effective immunotherapy alone or in combination
US11377637B2 (en) 2016-04-15 2022-07-05 Memorial Sloan Kettering Cancer Center Transgenic T cell and chimeric antigen receptor T cell compositions and related methods
US11649283B2 (en) 2016-04-15 2023-05-16 Immunext, Inc. Anti-human vista antibodies and use thereof
WO2017180989A2 (en) 2016-04-15 2017-10-19 Memorial Sloan Kettering Cancer Center Transgenic t cell and chimeric antigen receptor t cell compositions and related methods
US11525000B2 (en) 2016-04-15 2022-12-13 Immunext, Inc. Anti-human VISTA antibodies and use thereof
US11603403B2 (en) 2016-04-15 2023-03-14 Immunext, Inc. Anti-human vista antibodies and use thereof
EP4180519A1 (en) 2016-04-15 2023-05-17 Memorial Sloan Kettering Cancer Center Transgenic t cell and chimeric antigen receptor t cell compositions and related methods
US11603402B2 (en) 2016-04-15 2023-03-14 Immunext, Inc. Anti-human vista antibodies and use thereof
WO2017189724A1 (en) 2016-04-27 2017-11-02 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof
WO2017203450A1 (en) 2016-05-25 2017-11-30 Novartis Ag Reversal binding agents for anti-factor xi/xia antibodies and uses thereof
US10695436B2 (en) 2016-06-07 2020-06-30 Nanopharmaceuticals, Llc Non-cleavable polymer conjugated with alpha V beta 3 integrin thyroid antagonists
US10201616B2 (en) 2016-06-07 2019-02-12 Nanopharmaceuticals, Llc Non-cleavable polymer conjugated with αVβ3 integrin thyroid antagonists
EP4202439A1 (en) 2016-06-09 2023-06-28 The Regents of the University of California Method of purifying and amplifying a nucleic acid
WO2017214315A1 (en) 2016-06-09 2017-12-14 The Regents Of The University Of California Biomarker concentration and signal amplification for use in paper-based immunoassays and a single platform for extracting, concentrating, and amplifying dna
WO2017216724A1 (en) 2016-06-15 2017-12-21 Novartis Ag Methods for treating disease using inhibitors of bone morphogenetic protein 6 (bmp6)
US11555177B2 (en) 2016-07-13 2023-01-17 President And Fellows Of Harvard College Antigen-presenting cell-mimetic scaffolds and methods for making and using the same
US10077306B2 (en) 2016-07-14 2018-09-18 Bristol-Myers Squibb Company Antibodies against TIM3 and uses thereof
US10533052B2 (en) 2016-07-14 2020-01-14 Bristol-Myers Squibb Company Antibodies against TIM3 and uses thereof
WO2018013818A2 (en) 2016-07-14 2018-01-18 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
US11591392B2 (en) 2016-07-14 2023-02-28 Bristol-Myers Squibb Company Antibodies against TIM3 and uses thereof
WO2018017673A1 (en) 2016-07-20 2018-01-25 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated pd-l1
US11046777B2 (en) 2016-07-22 2021-06-29 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (GITR) antibodies and methods of use thereof
WO2018018039A2 (en) 2016-07-22 2018-01-25 Dana-Farber Cancer Institute, Inc. Glucocorticoid-induced tumor necrosis factor receptor (gitr) antibodies and methods of use thereof
WO2018026969A2 (en) 2016-08-03 2018-02-08 Achaogen, Inc. Plazomicin antibodies and methods of use
US11738048B2 (en) 2016-08-30 2023-08-29 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use for treating viral and other infections
WO2018044866A1 (en) 2016-08-30 2018-03-08 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use for treating viral and other infections
US10870694B2 (en) 2016-09-02 2020-12-22 Dana Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
WO2018045379A1 (en) 2016-09-02 2018-03-08 Dana-Farber Cancer Institute, Inc. Composition and methods of treating b cell disorders
WO2018070390A1 (en) 2016-10-12 2018-04-19 第一三共株式会社 Composition containing anti-robo4 antibody and other agents
WO2018071898A1 (en) 2016-10-14 2018-04-19 Children's Medical Center Corporation Compositions and methods for treating diseases and disorders of the central nervous system
WO2018084706A1 (en) 2016-11-04 2018-05-11 Erasmus University Medical Center Rotterdam Markers for identifying patient classes and use thereof
WO2018083538A1 (en) 2016-11-07 2018-05-11 Neuracle Scienc3 Co., Ltd. Anti-family with sequence similarity 19, member a5 antibodies and method of use thereof
WO2018089807A2 (en) 2016-11-11 2018-05-17 The Regents Of The University Of California Anti-cd46 antibodies and methods of use
US11401330B2 (en) 2016-11-17 2022-08-02 Seagen Inc. Glycan-interacting compounds and methods of use
WO2018111782A1 (en) 2016-12-12 2018-06-21 Cepheid Integrated immuno-pcr and nucleic acid analysis in an automated reaction cartridge
WO2018117237A1 (en) 2016-12-22 2018-06-28 第一三共株式会社 Anti-cd3 antibody, and molecule containing said antibody
WO2018116255A1 (en) 2016-12-23 2018-06-28 Novartis Ag Factor xi antibodies and methods of use
WO2018129451A2 (en) 2017-01-09 2018-07-12 Merrimack Pharmaceuticals, Inc. Anti-fgfr antibodies and methods of use
WO2018136435A1 (en) 2017-01-17 2018-07-26 Children's Medical Center Corporation Compositions and methods for treating lysosomal storage diseases and disorders
WO2018136664A1 (en) 2017-01-18 2018-07-26 Ichan School Of Medicine At Mount Sinai Neoantigens and uses thereof for treating cancer
US10537636B2 (en) 2017-02-06 2020-01-21 Oncoquest Inc. Treatment of cancer with therapeutic monoclonal antibody specific for a tumor associated antigen and an immune adjuvant
US11351255B2 (en) 2017-02-06 2022-06-07 Oncoquest Inc. Treatment of cancer with therapeutic monoclonal antibody specific for a tumor associated antigen and an immune adjuvant
WO2018147245A1 (en) 2017-02-07 2018-08-16 第一三共株式会社 Anti-gprc5d antibody and molecule containing same
WO2018146594A1 (en) 2017-02-08 2018-08-16 Novartis Ag Fgf21 mimetic antibodies and uses thereof
US11827695B2 (en) 2017-02-17 2023-11-28 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
US11142570B2 (en) 2017-02-17 2021-10-12 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
WO2018151821A1 (en) 2017-02-17 2018-08-23 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
US11253609B2 (en) 2017-03-03 2022-02-22 Seagen Inc. Glycan-interacting compounds and methods of use
WO2018165228A1 (en) 2017-03-08 2018-09-13 Memorial Sloan Kettering Cancer Center Immune cell compositions and methods of use
WO2018175460A1 (en) 2017-03-24 2018-09-27 Novartis Ag Methods for preventing and treating heart disease
WO2018181656A1 (en) 2017-03-30 2018-10-04 第一三共株式会社 Anti-gpr20 antibody
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
US10844120B2 (en) 2017-04-24 2020-11-24 Kite Pharma, Inc. Humanized antigen-binding domains and methods of use
WO2018200496A1 (en) 2017-04-24 2018-11-01 Kite Pharma, Inc. Humanized antigen-binding domains against cd19 and methods of use
EP4286415A2 (en) 2017-04-24 2023-12-06 Kite Pharma, Inc. Humanized antigen-binding domains against cd19 and methods of use
WO2018209180A1 (en) 2017-05-12 2018-11-15 Laboratory Corporation Of America Holdings Compositions and methods to detect non-coeliac gluten sensitivity
WO2018209218A1 (en) 2017-05-12 2018-11-15 Laboratory Corporation Of America Holdings Compositions and methods for detection of diseases related to exposure to inhaled carcinogens
US11125759B2 (en) 2017-05-12 2021-09-21 Laboratory Corporation Of America Holdings Compositions and methods to detect non-coeliac gluten sensitivity
WO2018222689A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
WO2018222685A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
WO2018226671A1 (en) 2017-06-06 2018-12-13 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands
US11542331B2 (en) 2017-06-06 2023-01-03 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that bind to BTN1A1 or BTN1A1-ligands
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
WO2019004487A1 (en) 2017-06-30 2019-01-03 国立大学法人北海道大学 Pediatric osteoporosis drug that does not cause growth disorder
WO2019022187A1 (en) 2017-07-27 2019-01-31 第一三共株式会社 Anti-cd147 antibody
WO2019025865A2 (en) 2017-08-04 2019-02-07 Abcam Plc Methods and compositions for ligand directed antibody design
WO2019025866A2 (en) 2017-08-04 2019-02-07 Abcam Plc Methods and compositions for the development of antibodies specific to epitope post-translational modification status
US11085929B2 (en) 2017-08-31 2021-08-10 Arizona Board Of Regents On Behalf Of Arizona State University Nanoshell-structured material as co-matrix for peptide characterization in mass spectrometry
DE112018005145T5 (en) 2017-09-15 2020-07-23 The Regents Of The University Of California INHIBITION OF AMINOACYLASE 3 (AA3) IN TREATMENT OF CANCER
US11464784B2 (en) 2017-09-15 2022-10-11 The Regents Of The University Of California Inhibition of aminocylase 3 (AA3) in the treatment of cancer
US11547747B2 (en) 2017-09-27 2023-01-10 University Of Georgia Research Foundation, Inc. Treatment and detection of infection and disease associated with different fungal pathogens
WO2019070013A1 (en) 2017-10-05 2019-04-11 第一三共株式会社 Composition for cytotoxic t cell depletion
EP3470426A1 (en) 2017-10-10 2019-04-17 Numab Therapeutics AG Multispecific antibody
WO2019072870A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting cd137 and methods of use thereof
US11230601B2 (en) 2017-10-10 2022-01-25 Tilos Therapeutics, Inc. Methods of using anti-lap antibodies
EP3470429A1 (en) 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting pdl1 and methods of use thereof
WO2019072869A1 (en) 2017-10-10 2019-04-18 Numab Innovation Ag Antibodies targeting pdl1 and methods of use thereof
WO2019072868A1 (en) 2017-10-10 2019-04-18 Numab Therapeutics AG Multispecific antibody
WO2019075090A1 (en) 2017-10-10 2019-04-18 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
EP3470428A1 (en) 2017-10-10 2019-04-17 Numab Innovation AG Antibodies targeting cd137 and methods of use thereof
WO2019083904A1 (en) 2017-10-23 2019-05-02 Chan Zuckerberg Biohub, Inc. Measurement of afucosylated igg fc glycans and related treatment methods
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
US11766474B2 (en) 2017-11-14 2023-09-26 Memorial Sloan-Kettering Cancer Center IL-36 secreting immunoresponsive cells and uses thereof
US11773171B2 (en) 2017-12-19 2023-10-03 Surrozen Operating, Inc. WNT surrogate molecules and uses thereof
US11746150B2 (en) 2017-12-19 2023-09-05 Surrozen Operating, Inc. Anti-LRP5/6 antibodies and methods of use
US11933784B2 (en) 2017-12-20 2024-03-19 Laboratory Corporation Of America Holdings Compositions and methods to detect head and neck cancer
WO2019126249A1 (en) 2017-12-20 2019-06-27 Laboratory Corporation Of America Holdings Compositions and methods to detect head and neck cancer
WO2019126818A1 (en) 2017-12-23 2019-06-27 Rubius Therapeutics, Inc. Artificial antigen presenting cells and methods of use
WO2019133747A1 (en) 2017-12-27 2019-07-04 Bristol-Myers Squibb Company Anti-cd40 antibodies and uses thereof
US11306149B2 (en) 2017-12-27 2022-04-19 Bristol-Myers Squibb Company Anti-CD40 antibodies and uses thereof
US11932690B2 (en) 2017-12-29 2024-03-19 Memorial Sloan-Kettering Cancer Center Enhanced chimeric antigen receptors and uses thereof
WO2019140229A1 (en) 2018-01-12 2019-07-18 Bristol-Myers Squibb Company Antibodies against tim3 and uses thereof
US11807663B2 (en) 2018-02-01 2023-11-07 Innovent Biologics (Suzhou) Co., Ltd. Fully humanized anti-B cell maturation antigen (BCMA) single-chain antibody and use thereof
WO2019149269A1 (en) 2018-02-01 2019-08-08 信达生物制药(苏州)有限公司 Fully human anti-b cell maturation antigen (bcma) single chain variable fragment, and application thereof
US11229669B2 (en) 2018-02-11 2022-01-25 Memorial Sloan-Kettering Cancer Center Cells comprising non-HLA restricted T cell receptors
WO2019161133A1 (en) 2018-02-15 2019-08-22 Memorial Sloan Kettering Cancer Center Foxp3 targeting agent compositions and methods of use for adoptive cell therapy
WO2019165304A1 (en) 2018-02-23 2019-08-29 Meso Scale Technologies, Llc. Methods of screening antigen-binding molecules by normalizing for the concentration of antigen-binding molecule
EP4310184A2 (en) 2018-02-23 2024-01-24 Meso Scale Technologies, LLC. Methods of screening antigen-binding molecules by normalizing for the concentration of antigen-binding molecule
US11686013B2 (en) 2018-02-23 2023-06-27 Meso Scale Technologies, Llc. Methods of screening antigen-binding molecules by normalizing for the concentration of antigen-binding molecule
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
WO2019195126A1 (en) 2018-04-02 2019-10-10 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
US11155618B2 (en) 2018-04-02 2021-10-26 Bristol-Myers Squibb Company Anti-TREM-1 antibodies and uses thereof
WO2019195514A1 (en) 2018-04-04 2019-10-10 Genentech, Inc. Methods for detecting and quantifying fgf21
US11351137B2 (en) 2018-04-11 2022-06-07 Nanopharmaceuticals Llc Composition and method for dual targeting in treatment of neuroendocrine tumors
US11077082B2 (en) 2018-04-11 2021-08-03 Nanopharmaceuticals, Llc Composition and method for dual targeting in treatment of neuroendocrine tumors
US10328043B1 (en) 2018-04-11 2019-06-25 Nanopharmaceuticals, Llc. Composition and method for dual targeting in treatment of neuroendocrine tumors
WO2019217899A2 (en) 2018-05-11 2019-11-14 Laboratory Corporation Of America Holdings Compositions and methods to detect kidney fibrosis
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019230869A1 (en) 2018-05-31 2019-12-05 第一三共株式会社 Anti-human tlr7 antibody
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020013170A1 (en) 2018-07-10 2020-01-16 国立大学法人神戸大学 ANTI-SIRPα ANTIBODY
WO2020023300A1 (en) 2018-07-22 2020-01-30 Bioasis Technologies, Inc. Treatment of lymmphatic metastases
WO2020022475A1 (en) 2018-07-27 2020-01-30 第一三共株式会社 Protein recognizing drug moiety of antibody-drug conjugate
WO2020061210A1 (en) 2018-09-18 2020-03-26 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
WO2020074584A1 (en) 2018-10-09 2020-04-16 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
EP3636320A1 (en) 2018-10-09 2020-04-15 Numab Therapeutics AG Antibodies targeting cd137 and methods of use thereof
WO2020076969A2 (en) 2018-10-10 2020-04-16 Tilos Therapeutics, Inc. Anti-lap antibody variants and uses thereof
US11130802B2 (en) 2018-10-10 2021-09-28 Tilos Therapeutics, Inc. Anti-lap antibody variants
WO2020079580A1 (en) 2018-10-15 2020-04-23 Novartis Ag Trem2 stabilizing antibodies
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020102555A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
WO2020117852A1 (en) 2018-12-03 2020-06-11 Rubius Therapeutics, Inc. Artificial antigen presenting cells including hla-e and hla-g molecules and methods of use
US11793834B2 (en) 2018-12-12 2023-10-24 Kite Pharma, Inc. Chimeric antigen and T cell receptors and methods of use
US11680105B2 (en) 2019-01-17 2023-06-20 Regents Of The University Of Minnesota Antibody fragments for detecting cancer and methods of use
US11008395B2 (en) 2019-01-22 2021-05-18 Bristol Myers-Squibb Company Antibodies against IL-7R alpha subunit and uses thereof
US11919962B2 (en) 2019-01-22 2024-03-05 Bristol Myers-Squibb Company Antibodies against IL-7R alpha subunit and uses thereof
WO2020154293A1 (en) 2019-01-22 2020-07-30 Bristol-Myers Squibb Company Antibodies against il-7r alpha subunit and uses thereof
EP3689907A1 (en) 2019-01-31 2020-08-05 Numab Therapeutics AG Antibodies targeting il-17a and methods of use thereof
WO2020157305A1 (en) 2019-01-31 2020-08-06 Numab Therapeutics AG Multispecific antibodies having specificity for tnfa and il-17a, antibodies targeting il-17a, and methods of use thereof
US11827710B2 (en) 2019-02-11 2023-11-28 Zumutor Biologics Inc. Antibodies that bind to c-type lectin domain family 2 member d (CLEC2D)
WO2020167668A1 (en) 2019-02-11 2020-08-20 Zumutor Biologics Inc. Anti-clec2d antibodies and methods of use thereof
WO2020180712A1 (en) 2019-03-01 2020-09-10 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
WO2020185535A1 (en) 2019-03-08 2020-09-17 Genentech, Inc. Methods for detecting and quantifying membrane-associated proteins on extracellular vesicles
US11090336B2 (en) 2019-03-27 2021-08-17 The Trustees Of The University Of Pennsylvania Tn-MUC1 chimeric antigen receptor (CAR) T cell therapy
WO2020227515A1 (en) 2019-05-07 2020-11-12 Voyager Therapeutics, Inc. Compositions and methods for the vectored augmentation of protein destruction, expression and/or regulation
WO2020240360A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2021011678A1 (en) 2019-07-15 2021-01-21 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
WO2021011681A1 (en) 2019-07-15 2021-01-21 Bristol-Myers Squibb Company Antibodies against human trem-1 and uses thereof
WO2021030729A1 (en) 2019-08-15 2021-02-18 Psychemedics Corporation Homogeneous enzyme immunoassay for keratinized structures
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
WO2021062323A1 (en) 2019-09-26 2021-04-01 Stcube & Co. Antibodies specific to glycosylated ctla-4 and methods of use thereof
US10975169B1 (en) 2019-09-27 2021-04-13 Memorial Sloan Kettering Cancer Center Methods for treating diabetic retinopathy using anti-ceramide monoclonal antibody 2A2
WO2021072277A1 (en) 2019-10-09 2021-04-15 Stcube & Co. Antibodies specific to glycosylated lag3 and methods of use thereof
WO2021085497A1 (en) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
WO2021089609A1 (en) 2019-11-04 2021-05-14 Numab Therapeutics AG Multispecific antibody
EP3816185A1 (en) 2019-11-04 2021-05-05 Numab Therapeutics AG Multispecific antibody directed against pd-l1 and a tumor-associated antigen
WO2021102505A1 (en) 2019-11-25 2021-06-03 Griffith University Immunogenic protein against gonococcal infection
WO2021139777A1 (en) 2020-01-10 2021-07-15 上海复宏汉霖生物技术股份有限公司 Anti-tigit antibodies and usage method
WO2021162731A1 (en) 2020-02-10 2021-08-19 Rubius Therapeutics, Inc. Engineered erythroid cells including hla-g polypeptides and methods of use thereof
WO2021167908A1 (en) 2020-02-17 2021-08-26 Board Of Regents, The University Of Texas System Methods for expansion of tumor infiltrating lymphocytes and use thereof
WO2021183428A1 (en) 2020-03-09 2021-09-16 Bristol-Myers Squibb Company Antibodies to cd40 with enhanced agonist activity
WO2021183207A1 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology COMPOSITIONS AND METHODS FOR IMMUNOTHERAPY OF NPM1c-POSITIVE CANCER
WO2021191871A1 (en) 2020-03-27 2021-09-30 Dcprime B.V. In vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021191870A1 (en) 2020-03-27 2021-09-30 Dcprime B.V. Ex vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021207449A1 (en) 2020-04-09 2021-10-14 Merck Sharp & Dohme Corp. Affinity matured anti-lap antibodies and uses thereof
US11186551B2 (en) 2020-04-29 2021-11-30 Nanopharmaceuticals Llc Composition of scalable thyrointegrin antagonists with improved retention in tumors
US10961204B1 (en) 2020-04-29 2021-03-30 Nanopharmaceuticals Llc Composition of scalable thyrointegrin antagonists with improved blood brain barrier penetration and retention into brain tumors
WO2021222719A1 (en) 2020-04-30 2021-11-04 Sutro Biopharma, Inc. Methods of producing full-length antibodies using e.coli
WO2021231732A1 (en) 2020-05-15 2021-11-18 Bristol-Myers Squibb Company Antibodies to garp
WO2021239987A1 (en) 2020-05-29 2021-12-02 Numab Therapeutics AG Multispecific antibody
EP3915580A1 (en) 2020-05-29 2021-12-01 Numab Therapeutics AG Multispecific antibody
WO2022006147A1 (en) 2020-06-29 2022-01-06 Cell Medica Inc. Methods and compositions for the reduction of chimeric antigen receptor tonic signaling
WO2022013787A1 (en) 2020-07-16 2022-01-20 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
US11484604B2 (en) 2020-08-07 2022-11-01 Fortis Therapeutics, Inc. Immunoconjugates targeting CD46 and methods of use thereof
WO2022035793A1 (en) 2020-08-10 2022-02-17 Precision Biosciences, Inc. Antibodies and fragments specific for b-cell maturation antigen and uses thereof
WO2022072712A1 (en) 2020-09-30 2022-04-07 Vor Biopharma Inc. Chimeric antigen receptor expression systems
EP3988568A1 (en) 2020-10-21 2022-04-27 Numab Therapeutics AG Combination treatment
WO2022084440A2 (en) 2020-10-21 2022-04-28 Numab Therapeutics AG Combination treatment
WO2022097068A1 (en) 2020-11-05 2022-05-12 Dcprime B.V. Use of tumor-independent antigens in immunotherapies
WO2022097065A2 (en) 2020-11-06 2022-05-12 Novartis Ag ANTIBODY Fc VARIANTS
WO2022101358A1 (en) 2020-11-11 2022-05-19 BioNTech SE Monoclonal antibodies directed against programmed death-1 protein and their use in medicine
WO2022104090A1 (en) 2020-11-13 2022-05-19 Vor Biopharma Inc. Methods and compositions relating to genetically engineered cells expressing chimeric antigen receptors
WO2022130206A1 (en) 2020-12-16 2022-06-23 Pfizer Inc. TGFβr1 INHIBITOR COMBINATION THERAPIES
EP4019547A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Multispecific antibodies having specificity for il-4r and il-31
WO2022136675A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains that bind il-4r
WO2022136693A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
EP4019546A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Antibody variable domains that bind il-31
WO2022136669A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Multispecific antibodies having specificity for il-4r and il-31
WO2022136672A1 (en) 2020-12-23 2022-06-30 Numab Therapeutics AG Antibody variable domains that bind il-31
EP4019090A1 (en) 2020-12-23 2022-06-29 Numab Therapeutics AG Antibody variable domains that bind il-4r
WO2022167460A1 (en) 2021-02-02 2022-08-11 Numab Therapeutics AG Multispecific antibodies having specificity for ror1 and cd3
WO2022189620A1 (en) 2021-03-11 2022-09-15 Institut Curie Transmembrane neoantigenic peptides
WO2022189626A2 (en) 2021-03-11 2022-09-15 Mnemo Therapeutics Tumor neoantigenic peptides
WO2022189639A1 (en) 2021-03-11 2022-09-15 Mnemo Therapeutics Tumor neoantigenic peptides and uses thereof
WO2022213118A1 (en) 2021-03-31 2022-10-06 Entrada Therapeutics, Inc. Cyclic cell penetrating peptides
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022226353A1 (en) 2021-04-23 2022-10-27 Baylor College Of Medicine Car nkts expressing artificial micro rna-embedded shrna for downregulation of mhc class i & ii expression
WO2022235940A1 (en) 2021-05-06 2022-11-10 Dana-Farber Cancer Institute, Inc. Antibodies against alk and methods of use thereof
WO2022235832A1 (en) 2021-05-06 2022-11-10 Ludwig Institute For Cancer Research Ltd Compositions and methods for immunotherapy
WO2022238386A1 (en) 2021-05-10 2022-11-17 Institut Curie Methods for the treatment of cancer, inflammatory diseases and autoimmune diseases
WO2022240721A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating interferon regulatory factor-5 (irf-5) activity
WO2022241408A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Compositions and methods for modulating tissue distribution of intracellular therapeutics
WO2022240757A1 (en) 2021-05-10 2022-11-17 Entrada Therapeutics, Inc. Antigen-binding and antigen degradation constructs
WO2022248602A1 (en) 2021-05-25 2022-12-01 Institut Curie Myeloid cells overexpressing bcl2
WO2023288203A2 (en) 2021-07-12 2023-01-19 Ludwig Institute For Cancer Research Ltd T cell receptors specific for tumor-associated antigens and methods of use thereof
WO2023023055A1 (en) 2021-08-16 2023-02-23 Renagade Therapeutics Management Inc. Compositions and methods for optimizing tropism of delivery systems for rna
WO2023034288A1 (en) 2021-08-31 2023-03-09 Dana-Farber Cancer Institute, Inc. Compositions and methods for treatment of autoimmune disorders and cancer
WO2023044333A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Cyclic lipids and methods of use thereof
WO2023044343A1 (en) 2021-09-14 2023-03-23 Renagade Therapeutics Management Inc. Acyclic lipids and methods of use thereof
WO2023064872A1 (en) 2021-10-14 2023-04-20 Precision Biosciences, Inc. Combinations of anti-bcma car t cells and gamma secretase inhibitors
WO2023081471A1 (en) 2021-11-05 2023-05-11 Dana-Farber Cancer Institute, Inc. Human broadly crossreactive influenza monoclonal antibodies and methods of use thereof
EP4177266A1 (en) 2021-11-05 2023-05-10 Katholieke Universiteit Leuven Neutralizing anti-sars-cov-2 human antibodies
EP4183800A1 (en) 2021-11-19 2023-05-24 Medizinische Hochschule Hannover Novel sars-cov-2 neutralizing antibodies
WO2023089107A1 (en) 2021-11-19 2023-05-25 Medizinische Hochschule Hannover Novel sars-cov-2 neutralizing antibodies
WO2023097024A1 (en) 2021-11-24 2023-06-01 Dana-Farber Cancer Institute, Inc. Antibodies against ctla-4 and methods of use thereof
US11723888B2 (en) 2021-12-09 2023-08-15 Nanopharmaceuticals Llc Polymer conjugated thyrointegrin antagonists
WO2023114847A2 (en) 2021-12-14 2023-06-22 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating disease
WO2023114544A1 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Antibodies and uses thereof
WO2023114543A2 (en) 2021-12-17 2023-06-22 Dana-Farber Cancer Institute, Inc. Platform for antibody discovery
WO2023122752A1 (en) 2021-12-23 2023-06-29 Renagade Therapeutics Management Inc. Constrained lipids and methods of use thereof
WO2023150552A1 (en) 2022-02-04 2023-08-10 Dana-Farber Cancer Institute, Inc. Compositions and methods for treatment of neurological disorders
WO2023172694A1 (en) 2022-03-09 2023-09-14 Dana-Farber Cancer Institute, Inc. Genetically engineered b cells and methods of use thereof
US11952427B2 (en) 2022-03-15 2024-04-09 Bristol-Myers Squibb Company Anti-CD40 antibodies and uses thereof
WO2023196931A1 (en) 2022-04-07 2023-10-12 Renagade Therapeutics Management Inc. Cyclic lipids and lipid nanoparticles (lnp) for the delivery of nucleic acids or peptides for use in vaccinating against infectious agents
EP4273162A1 (en) 2022-05-06 2023-11-08 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2023214047A1 (en) 2022-05-06 2023-11-09 Numab Therapeutics AG Antibody variable domains and antibodies having decreased immunogenicity
WO2023217987A1 (en) 2022-05-12 2023-11-16 BioNTech SE Monoclonal antibodies directed against programmed death-1 protein and their use in medicine
WO2023223185A1 (en) 2022-05-16 2023-11-23 Mendus B.V. Use of leukemia-derived cells for enhancing natural killer (nk) cell therapy
WO2024039672A2 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against msln and methods of use thereof
WO2024039670A1 (en) 2022-08-15 2024-02-22 Dana-Farber Cancer Institute, Inc. Antibodies against cldn4 and methods of use thereof
WO2024038095A1 (en) 2022-08-16 2024-02-22 Iome Bio NOVEL ANTI-RGMb ANTIBODIES

Similar Documents

Publication Publication Date Title
US5091513A (en) Biosynthetic antibody binding sites
US5476786A (en) Biosynthetic antibody binding sites
US5132405A (en) Biosynthetic antibody binding sites
US5258498A (en) Polypeptide linkers for production of biosynthetic proteins
EP0894135B1 (en) Multivalent and multispecific antigen-binding protein
AU627183B2 (en) Method for producing recombinant dna proteins
US5877305A (en) DNA encoding biosynthetic binding protein for cancer marker
EP0640130B1 (en) Chimeric multivalent protein analogues and methods of use thereof
RU2112037C1 (en) Hybrid monoclonal antibody interacting with human t-helper cell cd4-antigen and a method of its preparing
AU653167B2 (en) Specific binding agents
EP0967277A2 (en) Production of chimeric mouse-human antibodies with specificity to human tumor antigens
WO1993021319A1 (en) HUMANIZED C-erbB-2 SPECIFIC ANTIBODIES
AU2002368077A2 (en) Super humanized antibodies
EP2504359A2 (en) Monospecific polypeptide reagents
US5965405A (en) Method for producing Fv fragments in eukaryotic cells
EP0429242B1 (en) Specific binding agents
CA1341615C (en) Targeted multifunctional proteins
US20050196400A1 (en) Production of chimeric mouse-human antibodies with specificity to human tumor antigens

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY