US5198502A - Thermoplastic elastomer composition, method for molding the same and molded article of the same - Google Patents

Thermoplastic elastomer composition, method for molding the same and molded article of the same Download PDF

Info

Publication number
US5198502A
US5198502A US07/866,214 US86621492A US5198502A US 5198502 A US5198502 A US 5198502A US 86621492 A US86621492 A US 86621492A US 5198502 A US5198502 A US 5198502A
Authority
US
United States
Prior art keywords
thermoplastic elastomer
tetrafluoroethylene
molding
molded article
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/866,214
Inventor
Masayoshi Tatemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to US07/866,214 priority Critical patent/US5198502A/en
Application granted granted Critical
Publication of US5198502A publication Critical patent/US5198502A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/941Polymer mixture containing block copolymer is mixed or reacted with chemical treating agent

Definitions

  • the present invention relates to a thermoplastic elastomer composition, a method for molding the same and a molded article of the same. More particularly, the present invention relates to a moldable thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer.
  • Thermoplastic elastomers have been increasingly used as elastomers which can be molded in a similar way to general thermoplastic resins and require no vulcanization.
  • cross linkage by vulcanization are not through chemical bonds but by physical forces, they are insufficient in heat resistance such as brittleness and an excess residual strain under high pressure at high temperature.
  • thermoplastic elastomers namely reusability of scraps or defective molded articles is sacrificed, which makes these improvement insignificant.
  • thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which composition can be molded at a temperature lower than its melting or softening point by a novel process and post curing by heat.
  • Another object of the present invention is to provide a method for producing a molded article comprising treating the thermoplastic elastomer composition of the present invention under a high shearing stress at a temperature lower than a melting or softening point of the hard segment to mold an article and vulcanizing the molded article at a vulcanizing temperature under atmospheric pressure to cross-link the composition to produce the molded article having a substantially smooth surface, heat resistance in brittleness and a less residual strain under high pressure.
  • thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which composition is to be treated under a high shearing stress at a temperature lower than a melting or softening point of the hard segment to produce a molded article having a substantially smooth surface.
  • thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which method comprises treating said composition under a high shearing stress at a temperature lower than a melting or softening point of the hard segments to obtain a molded article having a smooth surface.
  • Figure shows the results of tensile strength-elongation test of the present invention and controls at 25° C. and 100° C.
  • shearing stress is intended to mean a force generated on a surface between the compound and a contacting area thereof in a molding die.
  • thermoplastic elastomer to be used according to the present invention may be any of the conventional ones.
  • thermoplastic elastomer are block or graft polymers of hydrocarbons or fluorocarbons.
  • hydrocarbon polymers include styrene/butadiene/styrene block polymer, polypropylene/poly(ethylene-propylene)/polypropylene block polymer and the like.
  • thermoplastic elastomer examples include typically an elastomer comprising:
  • At least one soft segment composed of a terpolymer of vinylidene fluoride/hexafluoropropylene/tetrafluoroethylene or a terpolymer of vinylidene fluoride/ chlorotrifluoroethylene/tetrafluoroethylene and
  • At least one hard segment composed of a copolymer of tetrafluoroethylene/ethylene or chlorotrifluoroethylene/ ethylene or polyvinylidene fluoride;
  • At least one soft segment composed of a copolymer of tetrafluoroethylene/propylene and
  • At least one hard segment composed of a copolymer of tetrafluoroethylene/ethylene
  • an elastomer comprising:
  • At least one soft segment composed of an amorphous rubbery copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether and
  • At least one hard segment composed of the same copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether provided that the content of perfluoroalkyl vinyl ether is less than that in the soft segment.
  • a fluorine-containing thermoplastic elastomer is preferably used and may be prepared by a process described in U.S. Pat. No. 4,158,678 the disclosure of which is hereby incorporated by reference.
  • a vulcanizing agent namely a cross linking agent or cross linking aid, is selected according to nature of the thermoplastic elastomer.
  • the vulcanizing agents are those which can selectively cross link the hard segment rather than the soft segment.
  • the conventional vulcanizing agents for the fluorine-containing thermoplastic elastomer may be used.
  • Preferable vulcanizing agents are those disclosed in U.S. Pat. No. 4,243,770 the disclosure of which is hereby incorporated by reference. Among these agents organic peroxides and polyols are preferred.
  • thermoplastic elastomer and the vulcanizing agent may be compounded by a rubber mill or a kneader conventionally used in the art.
  • the compounding should be carried out at a temperature of at least by 50° C. lower than a vulcanizing temperature at which the cross linking reaction may be induced.
  • the amounts of the vulcanizing agent, or the cross linking agent and the optional cross linking aid are not critical and depend on the selected thermoplastic elastomer and desired properties of the cross linked article.
  • the desirable amount of vulcanizing agent in the present invention is in the same range as that generally employed in the conventional elastomer.
  • the amount of vulcanizing agent may be from 0.01 to 10 parts by weight, preferably from 0.5 to 4 parts by weight per 100 parts by weight of the thermoplastic elastomer.
  • thermoplastic elastomer composition of the present invention may contain conventional fillers such as carbon and while carbon or plasticizers in an amount of up to several ten parts by eight per 100 parts by weight of the thermoplastic elastomer with no problem.
  • thermoplastic elastomer composition of the present invention can be easily pre-molded by utilizing its unique molding property in any form such as granules, pellets and the like to make handling easy.
  • thermoplastic elastomer composition of the present invention is treated under high shearing stress preferably by extrusion molding processing. It can also be treated by other molding methods such as injection molding, transfer molding and calendering whereby the same shearing stressed molding conditions as in extrusion can be achieved.
  • the present invention is characterized in that the molding of the thermoplastic elastomer composition can be carried out at a temperature lower than the melting or softening point of the thermoplastic elastomer.
  • the desirable temperature is lower than a vulcanizing temperature.
  • the molding temperature is preferably lower by at least 30° C. than the vulcanizing temperature and in the range preferably from 60 to 130° C., more preferably from 90 to 120° C.
  • thermoplastic elastomer composition of the present invention no melt fracture is surprisingly observed even though the molding pressure is as extremely high as to be abnormal in the conventional molding method.
  • the molding pressure is expressed in terms of a shearing stress as described above, and expressed in the unit of kg/cm 2 which is determined by indication of a pressure sensor attached in a ram extruder.
  • the molding speed of the bar which comes out a die outlet is expressed in the unit of m/min. and is determined by a ratio of a sectional area of the die outlet to that of the cylinder and the speed of the ram through into the cylinder.
  • shearing stress is from 100 to 1000 kg/cm 2 , more preferably from 200 to 500 kg/cm 2 .
  • the shearing stress is measured by using a cylinder having a sectional area of 1 cm 2 , an die having an outlet diameter of 1 mm and a pressure sensor attached to a ram extruder.
  • the molding speed is determined by the speed of the ram. Therefore, the molding of the present invention can be extruded, for example, at 2 to 200 m/min. preferably from 5 to 200 m/min.
  • the molding speed of the bar coming out the die is, for example, 64 m/min. under about 250 kg/cm 2 and at 500 mm/min. of ram speed at 110° C. under the above conditions.
  • the molding pressure also depends on a molding machine, a shape of a die, a cross sectional area of the extruded article and the like, an operating pressure should be selected by taking these conditions into consideration.
  • the continuously extruded article under a suitable molding pressure may be a tube, a string with various sectional shapes, a fiber, a sheet, a film or a rod.
  • the molded article may be vulcanized directly or after being wound up.
  • the vulcanization can be completed in the order of seconds depending on a temperature, a thickness of the article, and a desired degree of vulcanization.
  • thermoplastic resin when the molded article of thermoplastic resin is vulcanized, care should be taken to prevent deformation such as foaming or shrinkage. However, in the present invention, such defects are not observed since the thermoplastic elastomer is treated at a temperature below its melting or softening point.
  • the vulcanization of the molded article of the present invention can be effected by only heating it at a temperature range of from 140 to 200° C., preferably from 150 to 180° C., preferably in an inert gas atmosphere, for example, a nitrogen gas to prevent the exposure of the article to the air, for a period of 0.01 to 30 minutes. This is because the vulcanization reaction is proceeded through an addition reaction directed to the saturated bonds via free radicals.
  • One of the processes which practically meet with those conditions includes a heating process in a fluorinated or silicone oil bath which avoids the contact with the air.
  • thermoplastic elastomer composition of the present invention is a novel method which resembles to cold working of metals or some resins rather than a known method which utilizes flowability of thermoplastic resins at a melting point.
  • thermoplastic elastomer is molded under cold working conditions in the absence of the vulcanizing agent, granulated elastomer will be produced and a continuous molded article can be hardly produced. Addition of a material which act as a plasticizer would not make it easy to mold the thermoplastic elastomer.
  • the molded article has less residual molding strain.
  • the molding article can be cross linked by simply heating it up to a temperature at which the vulcanizing agent functions.
  • composition which has not been vulcanized is mixed again with a raw material for molding. Then, the scraps and the defective moldings can be reused.
  • the molded article is hardly deformed during vulcanizing process.
  • the cross linked molded article shows no or little deformation such as shrinkage when heated to a temperature higher than the melting point of the thermoplastic elastomer composition.
  • the molded articles of the present invention do not cause blocking, the conventional melt processed articles tend to cause blocking.
  • the present invention greatly improves the moldability of thermoplastic elastomer without sacrificing reusability of the thermoplastic elastomer.
  • defects of the conventional molded articles such as brittleness at high temperature or blocking can be overcome.
  • VdF vinylidene fluoride
  • triallyisocyanurate (1.5 g) and then 2,5-dimethy-2,5-di(tert.-butyroxy)hexene-3 (1.8 g) were successively compounded to obtain a homogeneous milky white compound.
  • the obtained compound (20 g) was loaded in a cylinder having a sectional area of 1 cm 2 of Capirograph (manufactured by Toyo Seiki Co., Ltd.) and extruded at 110° C. through a die having an inner diameter of 1 mm and a length of 5 mm.
  • the extrusion was stabilized so that the molded bar had a substantially smooth surface and good shape and its diameter corresponded to the inner diameter of the die.
  • the extruded bar was dipped in an oil bath of perfluoropolyether (Demnam (trade mark) manufacture by Daikin Industries, Ltd.) kept at 180° C. for 10 minutes in a nitrogen atmosphere to vulcanize it.
  • the vulcanized bar shrank only by 2% in the longitudinal direction and was colorless and transparent.
  • control samples were prepared and tested in the same manner as above except that the control 1 did not contain a hard segment in the thermoplastic elastomer and the control 2 was not subjected to vulcanization after molding.
  • the article of the present invention had good strength at high temperature (100° C.) and better toughness at high temperature than the conventional vulcanized fluorine-containing elastomer as seen from Figure.
  • Example 2 In the same manner as in Example 1 but using a die with an circular slit having an inner diameter of 1 mm, an outer diameter of 2 mm and a length of 5 mm, a tube was produced. Since the center of the circular slit slightly deviated from the center of the die, the produced tube was a spiral one. After cross linking, the tube was not deformed. This means that the spiral tube was also conveniently produced.
  • VdF fluorine-containing thermoplastic elastomer
  • VdF/HFP/TFE about 50/30/20 by mole
  • the tensile strength at 25° C. was 210 kg/cm 2 at 800% elongation, while vulcanized Dai-el T-630 has original tensile strength of 40 kg/cm 2 at 450% elongation.
  • the bar was dipped in a silicone oil bath kept at 180° C. for one minute. Thereby, the cross linked bar shrank by about 10% in the longitudinal direction, but it had a substantially smooth surface and no foam therein.
  • the cross linked bar was subjected to tensile tests at a pulling rate of 100 mm/min to determine tensile strength to be 185 kg/cm 2 at 270% elongation.
  • a bar
  • the bar was vulcanized at 180° C. to obtain the cross linked bar as a was colorless and transparent material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer comprising at least one hard segment and at least one soft segment and a vulcanizing agent, which can be molded under high shearing stress at a temperature lower than a melting or softening point of the hard sements under shear force to give a molded article having a substantially smooth surface.

Description

This application is a continuation of application Ser. No. 529,569, filed on May 29, 1990, now abandoned, the entire contents of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION
1.Field of the Invention
The present invention relates to a thermoplastic elastomer composition, a method for molding the same and a molded article of the same. More particularly, the present invention relates to a moldable thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer.
2. Description of the Related Art
Thermoplastic elastomers have been increasingly used as elastomers which can be molded in a similar way to general thermoplastic resins and require no vulcanization. However, since cross linkage by vulcanization are not through chemical bonds but by physical forces, they are insufficient in heat resistance such as brittleness and an excess residual strain under high pressure at high temperature.
It might be possible to improve such drawbacks by designing such polymers so as to be vulcanizable during molding processes. However, one of inherent characteristics of the thermoplastic elastomers, namely reusability of scraps or defective molded articles is sacrificed, which makes these improvement insignificant.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which composition can be molded at a temperature lower than its melting or softening point by a novel process and post curing by heat.
Another object of the present invention is to provide a method for producing a molded article comprising treating the thermoplastic elastomer composition of the present invention under a high shearing stress at a temperature lower than a melting or softening point of the hard segment to mold an article and vulcanizing the molded article at a vulcanizing temperature under atmospheric pressure to cross-link the composition to produce the molded article having a substantially smooth surface, heat resistance in brittleness and a less residual strain under high pressure.
According to a first aspect of the present invention, there is provided a thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which composition is to be treated under a high shearing stress at a temperature lower than a melting or softening point of the hard segment to produce a molded article having a substantially smooth surface.
According to a second aspect of the present invention, there is provided a method for molding a thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which method comprises treating said composition under a high shearing stress at a temperature lower than a melting or softening point of the hard segments to obtain a molded article having a smooth surface.
BRIEF DESCRIPTION OF THE DRAWING
Figure shows the results of tensile strength-elongation test of the present invention and controls at 25° C. and 100° C.
DETAILED DESCRIPTION OF THE INVENTION
In the specification and claims, the term "shearing stress" is intended to mean a force generated on a surface between the compound and a contacting area thereof in a molding die.
The thermoplastic elastomer to be used according to the present invention may be any of the conventional ones. Examples of the thermoplastic elastomer are block or graft polymers of hydrocarbons or fluorocarbons. Typical examples of the hydrocarbon polymers include styrene/butadiene/styrene block polymer, polypropylene/poly(ethylene-propylene)/polypropylene block polymer and the like.
Examples of the fluorine-containing thermoplastic elastomer include typically an elastomer comprising:
at least one soft segment composed of a terpolymer of vinylidene fluoride/hexafluoropropylene/tetrafluoroethylene or a terpolymer of vinylidene fluoride/ chlorotrifluoroethylene/tetrafluoroethylene and
at least one hard segment composed of a copolymer of tetrafluoroethylene/ethylene or chlorotrifluoroethylene/ ethylene or polyvinylidene fluoride;
an elastomer comprising;
at least one soft segment composed of a copolymer of tetrafluoroethylene/propylene and
at least one hard segment composed of a copolymer of tetrafluoroethylene/ethylene; and
an elastomer comprising:
at least one soft segment composed of an amorphous rubbery copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether and
at least one hard segment composed of the same copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether provided that the content of perfluoroalkyl vinyl ether is less than that in the soft segment.
In the present invention, a fluorine-containing thermoplastic elastomer is preferably used and may be prepared by a process described in U.S. Pat. No. 4,158,678 the disclosure of which is hereby incorporated by reference.
A vulcanizing agent, namely a cross linking agent or cross linking aid, is selected according to nature of the thermoplastic elastomer. Preferably, the vulcanizing agents are those which can selectively cross link the hard segment rather than the soft segment. The conventional vulcanizing agents for the fluorine-containing thermoplastic elastomer may be used. Preferable vulcanizing agents are those disclosed in U.S. Pat. No. 4,243,770 the disclosure of which is hereby incorporated by reference. Among these agents organic peroxides and polyols are preferred.
The thermoplastic elastomer and the vulcanizing agent may be compounded by a rubber mill or a kneader conventionally used in the art. The compounding should be carried out at a temperature of at least by 50° C. lower than a vulcanizing temperature at which the cross linking reaction may be induced.
The amounts of the vulcanizing agent, or the cross linking agent and the optional cross linking aid are not critical and depend on the selected thermoplastic elastomer and desired properties of the cross linked article. The desirable amount of vulcanizing agent in the present invention is in the same range as that generally employed in the conventional elastomer. Usually, the amount of vulcanizing agent may be from 0.01 to 10 parts by weight, preferably from 0.5 to 4 parts by weight per 100 parts by weight of the thermoplastic elastomer.
The thermoplastic elastomer composition of the present invention may contain conventional fillers such as carbon and while carbon or plasticizers in an amount of up to several ten parts by eight per 100 parts by weight of the thermoplastic elastomer with no problem.
The thermoplastic elastomer composition of the present invention can be easily pre-molded by utilizing its unique molding property in any form such as granules, pellets and the like to make handling easy.
The thermoplastic elastomer composition of the present invention is treated under high shearing stress preferably by extrusion molding processing. It can also be treated by other molding methods such as injection molding, transfer molding and calendering whereby the same shearing stressed molding conditions as in extrusion can be achieved.
The present invention is characterized in that the molding of the thermoplastic elastomer composition can be carried out at a temperature lower than the melting or softening point of the thermoplastic elastomer. The desirable temperature is lower than a vulcanizing temperature. The molding temperature is preferably lower by at least 30° C. than the vulcanizing temperature and in the range preferably from 60 to 130° C., more preferably from 90 to 120° C.
In the molding of the thermoplastic elastomer composition of the present invention, no melt fracture is surprisingly observed even though the molding pressure is as extremely high as to be abnormal in the conventional molding method.
The molding pressure is expressed in terms of a shearing stress as described above, and expressed in the unit of kg/cm2 which is determined by indication of a pressure sensor attached in a ram extruder.
Further, the molding speed of the bar which comes out a die outlet is expressed in the unit of m/min. and is determined by a ratio of a sectional area of the die outlet to that of the cylinder and the speed of the ram through into the cylinder.
Preferably shearing stress is from 100 to 1000 kg/cm2, more preferably from 200 to 500 kg/cm2.
The shearing stress is measured by using a cylinder having a sectional area of 1 cm2, an die having an outlet diameter of 1 mm and a pressure sensor attached to a ram extruder.
Also, the molding speed is determined by the speed of the ram. Therefore, the molding of the present invention can be extruded, for example, at 2 to 200 m/min. preferably from 5 to 200 m/min. The molding speed of the bar coming out the die is, for example, 64 m/min. under about 250 kg/cm2 and at 500 mm/min. of ram speed at 110° C. under the above conditions.
When the composition of the present invention is molded under lower extrusion pressure than the above shearing stress range, the molded article generates melt fracture and voids, which is in contrast to the prior art melt extrusion process of the conventional materials. Employment of the extrusion pressure higher than the above upper limit results in deformation such as melt fracture.
In general, since the molding pressure also depends on a molding machine, a shape of a die, a cross sectional area of the extruded article and the like, an operating pressure should be selected by taking these conditions into consideration.
The continuously extruded article under a suitable molding pressure may be a tube, a string with various sectional shapes, a fiber, a sheet, a film or a rod.
The molded article may be vulcanized directly or after being wound up. When a high speed vulcanizing system is used, the vulcanization can be completed in the order of seconds depending on a temperature, a thickness of the article, and a desired degree of vulcanization.
In general, when the molded article of thermoplastic resin is vulcanized, care should be taken to prevent deformation such as foaming or shrinkage. However, in the present invention, such defects are not observed since the thermoplastic elastomer is treated at a temperature below its melting or softening point.
The vulcanization of the molded article of the present invention can be effected by only heating it at a temperature range of from 140 to 200° C., preferably from 150 to 180° C., preferably in an inert gas atmosphere, for example, a nitrogen gas to prevent the exposure of the article to the air, for a period of 0.01 to 30 minutes. This is because the vulcanization reaction is proceeded through an addition reaction directed to the saturated bonds via free radicals.
One of the processes which practically meet with those conditions includes a heating process in a fluorinated or silicone oil bath which avoids the contact with the air.
The molding method of thermoplastic elastomer composition of the present invention is a novel method which resembles to cold working of metals or some resins rather than a known method which utilizes flowability of thermoplastic resins at a melting point. When the thermoplastic elastomer is molded under cold working conditions in the absence of the vulcanizing agent, granulated elastomer will be produced and a continuous molded article can be hardly produced. Addition of a material which act as a plasticizer would not make it easy to mold the thermoplastic elastomer.
The molding of thermoplastic elastomer composition of the present invention has following characteristics:
1. It can be carried out at a much higher rate than conventional melt extrusion of thermoplastic resins.
2. It does not show die swell which occurs in the conventional melt processing.
3. The molded article has less residual molding strain.
4. After molding, the molding article can be cross linked by simply heating it up to a temperature at which the vulcanizing agent functions.
5. The composition which has not been vulcanized is mixed again with a raw material for molding. Then, the scraps and the defective moldings can be reused.
6. The molded article is hardly deformed during vulcanizing process. In addition, the cross linked molded article shows no or little deformation such as shrinkage when heated to a temperature higher than the melting point of the thermoplastic elastomer composition.
7. The molded articles of the present invention do not cause blocking, the conventional melt processed articles tend to cause blocking.
Thus, the present invention greatly improves the moldability of thermoplastic elastomer without sacrificing reusability of the thermoplastic elastomer. In addition, defects of the conventional molded articles such as brittleness at high temperature or blocking can be overcome.
PREFERRED EMBODIMENTS OF THE INVENTION
The present invention will be illustrated by following Examples, in which "parts" are by weight unless otherwise indicated, and the abbreviations have the following significances:
TFE: tetrafluoroethylene
E: ethylene
HFP: hexafluoropropylene
VdF: vinylidene fluoride.
EXAMPLE 1
A fluorine-containing thermoplastic elastomer (Dai-el (trade mark) Thermoplastic T-530 manufactured by Daikin Industries, Ltd., a fluorine-containing polymer comprising fluorine-containing hard segments (monomer composition: TFE/E/HFP =49/43/8 by mole) and fluorine-containing soft segments (monomer composition: VdF/HFP/TFE =50/30/20 in mole and the weight ratio of the hard segment to the soft segment =15:85) (50 g) was kneaded on a 4 inch rubber mill at 90° C. to be wound around a roll in a sheet form. Thereafter, triallyisocyanurate (1.5 g) and then 2,5-dimethy-2,5-di(tert.-butyroxy)hexene-3 (1.8 g) were successively compounded to obtain a homogeneous milky white compound. The obtained compound (20 g) was loaded in a cylinder having a sectional area of 1 cm2 of Capirograph (manufactured by Toyo Seiki Co., Ltd.) and extruded at 110° C. through a die having an inner diameter of 1 mm and a length of 5 mm.
A ram extrusion speed of less than 10 mm/min. led to a variable shape of the extruded bar having a roughened surface and voids and fluctuated diameter. At a ram extrusion speed of 500 mm/min., the extrusion was stabilized so that the molded bar had a substantially smooth surface and good shape and its diameter corresponded to the inner diameter of the die.
The extruded bar was dipped in an oil bath of perfluoropolyether (Demnam (trade mark) manufacture by Daikin Industries, Ltd.) kept at 180° C. for 10 minutes in a nitrogen atmosphere to vulcanize it. The vulcanized bar shrank only by 2% in the longitudinal direction and was colorless and transparent. Also, control samples were prepared and tested in the same manner as above except that the control 1 did not contain a hard segment in the thermoplastic elastomer and the control 2 was not subjected to vulcanization after molding.
The results in the strength-elongation test are compared in Figure.
The article of the present invention had good strength at high temperature (100° C.) and better toughness at high temperature than the conventional vulcanized fluorine-containing elastomer as seen from Figure.
EXAMPLE 2
In the same manner as in Example 1 but using a die with an circular slit having an inner diameter of 1 mm, an outer diameter of 2 mm and a length of 5 mm, a tube was produced. Since the center of the circular slit slightly deviated from the center of the die, the produced tube was a spiral one. After cross linking, the tube was not deformed. This means that the spiral tube was also conveniently produced.
EXAMPLE 3
In the same manner as in Example 1 but using a fluorine-containing thermoplastic elastomer (Dai-el (trade mark) Thermoplastic T-630 manufactured by Daikin Industries, Ltd., a fluorine-containing polymer comprising fluorinecontaining hard segments (monomer composition: VdF) and fluorine-containing soft segments (monomer composition: VdF/HFP/TFE =about 50/30/20 by mole) a bar was produced.
The bar shrank by about 10 % during vulcanization at 180° C. The tensile strength at 25° C. was 210 kg/cm2 at 800% elongation, while vulcanized Dai-el T-630 has original tensile strength of 40 kg/cm2 at 450% elongation.
EXAMPLE 4
In the same manner as in Example 1, Dai-el Thermoplastic T-630 (100 parts), magnesium oxide (5 parts), calcium hydroxide (3 parts), bisphenol-AF (2 parts), 8-benzyl-1,8-diaza-bicylco[5.4.0]-7-undecenium chloride (DBUB) (0.35 part) and MT-thermal carbon (10 parts) were kneaded and formed in a sheet. The sheet was cut to prepare pellets. In the same manner as in Example 1, the pellets were extruded with Capirograph at 95° C. At a ram extrusion speed higher than 20 mm/min., a bar having a stable shape was produced.
The bar was dipped in a silicone oil bath kept at 180° C. for one minute. Thereby, the cross linked bar shrank by about 10% in the longitudinal direction, but it had a substantially smooth surface and no foam therein.
The cross linked bar was subjected to tensile tests at a pulling rate of 100 mm/min to determine tensile strength to be 185 kg/cm2 at 270% elongation.
EXAMPLE 5
In the same manner as in Example 1 but using Daiel Thermoplastic T-230X (manufactured by Daikin Industries, Ltd., a fluorine-containing thermoplastic elastomer (monomer composition of the soft segment: VdF/HFP =78/22 by mole; monomer composition of the hard segment: TFE/E/HFP =49/43/8), which is similar to Dai-el T-530 except that, because the soft segments consist of a polymer having a glass transition temperature of -19° C., the polymer has better low temperature properties), a bar was produced. The produced bar had the same good quality as that in Example 1.
The bar was vulcanized at 180° C. to obtain the cross linked bar as a was colorless and transparent material.

Claims (12)

What is claimed is:
1. A method for molding a thermoplastic elastomer composition comprising a thermoplastic elastomeric block or graft polymer of hydrocarbons or fluorocarbons composed of at least one hard segment and at least one soft segment and a vulcanizing agent, which method comprises treating sad composition under a high shearing stress of from 100 to 1000 kg/cm2 at a temperature lower than a melting or softening point of the hard segments to obtain a molded article having a smooth surface.
2. The method according to claim 1, which further comprises vulcanizing the molded article.
3. The method according to claim 1, wherein the thermoplastic elastomer is a fluorine-containing or a hydrocarbon elastomeric block polymer.
4. The method according to claim 1, wherein the thermoplastic elastomer is selected from a styrene/butadiene/styrene block polymer or a polypropylene/poly(ethylene-propylene)/polypropylene block polymer.
5. The method according to claim 1, wherein the hard segment is selected from a copolymer of tetrafluoroethylene/ethylene, a copolymer of chlorotrifluoroethylene/ethylene, or polyvinylidene fluoride.
6. The method according to claim 1, wherein the soft segment is selected from a terpolymer of vinylidene fluoride/hexafluoropropylene/tetrafluoroethylene, a terpolymer of vinylidenefluoride/chlorotrifluoroethyleen/tetrafluoroethylene or copolymer of tetrafluoroethylene/propylene.
7. The method according to claim 1, wherein the soft segment is an amorphous rubbery copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether.
8. The method according to claim 7, wherein the hard segment is a copolymer of tetrafluoroethylene/perfluoroalkyl vinyl ether, in which the content of said ether is less than the content of the ether contained in the soft segment.
9. The method according to claim 1, wherein the amount of said vulcanizing agent is from 0.01 to 10 parts by weight per 100 parts by weight of the thermoplastic elastomeric block or graft polymer.
10. The method according to claim 1, wherein the amount of said vulcanizing agent is from 0.5 to 4 parts by weight per 100 parts by weight of the thermoplastic elastomeric block or graft polymer.
11. The method according to claim 1, wherein said vulcanizing agent is an organic peroxide.
12. The method according to claim 1, which further comprises vulcanizing said molded article at a temperature of 140° to 200° C.
US07/866,214 1989-05-29 1992-04-09 Thermoplastic elastomer composition, method for molding the same and molded article of the same Expired - Lifetime US5198502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/866,214 US5198502A (en) 1989-05-29 1992-04-09 Thermoplastic elastomer composition, method for molding the same and molded article of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-136383 1989-05-29
JP13638389 1989-05-29
US52956990A 1990-05-29 1990-05-29
US07/866,214 US5198502A (en) 1989-05-29 1992-04-09 Thermoplastic elastomer composition, method for molding the same and molded article of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US52956990A Continuation 1989-05-29 1990-05-29

Publications (1)

Publication Number Publication Date
US5198502A true US5198502A (en) 1993-03-30

Family

ID=27317263

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/866,214 Expired - Lifetime US5198502A (en) 1989-05-29 1992-04-09 Thermoplastic elastomer composition, method for molding the same and molded article of the same

Country Status (1)

Country Link
US (1) US5198502A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962587A (en) * 1997-10-23 1999-10-05 General Electric Company High modulus thermoplastic resin composition
US20060257654A1 (en) * 2005-04-20 2006-11-16 Hirokazu Matsui Modified polyvinylidenefluoride resin monofilament and method for manufacturing thereof
US20070281166A1 (en) * 2006-06-02 2007-12-06 Takao Nishio Fluoropolymer molding method and molded article
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929934A (en) * 1973-11-19 1975-12-30 Du Pont Novel fluoroelastomers in powder form
FR2293448A1 (en) * 1974-12-05 1976-07-02 Bayer Ag Polysegment copolymer prepn - by treating di-block copolymers of styrene and conjugated dienes with radical-forming crosslinking agents (BE040676)
US4094949A (en) * 1975-06-09 1978-06-13 Shin-Etsu Chemical Co. Ltd. Method for preparing shaped articles of a fluorinated elastomer
US4472557A (en) * 1983-05-19 1984-09-18 Central Glass Company, Limited Elastic fluorohydrocarbon resin and method of producing same
US4487882A (en) * 1982-09-28 1984-12-11 Daikin Kogyo Co., Ltd. Fluoroelastomer composition
US4530970A (en) * 1983-04-01 1985-07-23 Asahi Glass Company Ltd. Fluoroelastomer composition and lining material made thereof
US4603175A (en) * 1983-07-27 1986-07-29 Daikin Industries, Inc. Thermoplastic fluoroelastomer composition
JPS61211358A (en) * 1985-03-18 1986-09-19 Idemitsu Petrochem Co Ltd Production of aromatic vinyl composition
US4722973A (en) * 1985-04-10 1988-02-02 Nippon Oil Co., Ltd. Thermoplastic elastomer composition
US4935467A (en) * 1987-06-04 1990-06-19 Raychem Corporation Polymeric blends
US5028663A (en) * 1988-04-28 1991-07-02 Chung Chan I Solid state processing of polymer blends
US5057345A (en) * 1989-08-17 1991-10-15 Raychem Corporation Fluoroopolymer blends

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929934A (en) * 1973-11-19 1975-12-30 Du Pont Novel fluoroelastomers in powder form
FR2293448A1 (en) * 1974-12-05 1976-07-02 Bayer Ag Polysegment copolymer prepn - by treating di-block copolymers of styrene and conjugated dienes with radical-forming crosslinking agents (BE040676)
US4094949A (en) * 1975-06-09 1978-06-13 Shin-Etsu Chemical Co. Ltd. Method for preparing shaped articles of a fluorinated elastomer
US4487882A (en) * 1982-09-28 1984-12-11 Daikin Kogyo Co., Ltd. Fluoroelastomer composition
US4530970A (en) * 1983-04-01 1985-07-23 Asahi Glass Company Ltd. Fluoroelastomer composition and lining material made thereof
US4472557A (en) * 1983-05-19 1984-09-18 Central Glass Company, Limited Elastic fluorohydrocarbon resin and method of producing same
US4603175A (en) * 1983-07-27 1986-07-29 Daikin Industries, Inc. Thermoplastic fluoroelastomer composition
JPS61211358A (en) * 1985-03-18 1986-09-19 Idemitsu Petrochem Co Ltd Production of aromatic vinyl composition
US4722973A (en) * 1985-04-10 1988-02-02 Nippon Oil Co., Ltd. Thermoplastic elastomer composition
US4935467A (en) * 1987-06-04 1990-06-19 Raychem Corporation Polymeric blends
US5028663A (en) * 1988-04-28 1991-07-02 Chung Chan I Solid state processing of polymer blends
US5057345A (en) * 1989-08-17 1991-10-15 Raychem Corporation Fluoroopolymer blends

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962587A (en) * 1997-10-23 1999-10-05 General Electric Company High modulus thermoplastic resin composition
US20090324875A1 (en) * 2003-11-14 2009-12-31 Heikkila Kurt E Enhanced property metal polymer composite
US20060257654A1 (en) * 2005-04-20 2006-11-16 Hirokazu Matsui Modified polyvinylidenefluoride resin monofilament and method for manufacturing thereof
US7597957B2 (en) * 2005-04-20 2009-10-06 Kureha Corporation Modified polyvinylidenefluoride resin monofilament and method for manufacturing thereof
US20070281166A1 (en) * 2006-06-02 2007-12-06 Takao Nishio Fluoropolymer molding method and molded article
WO2007143126A2 (en) * 2006-06-02 2007-12-13 Dupont-Mitsui Fluorochemicals Company, Ltd. Fluoropolymer molding method and molded article
WO2007143126A3 (en) * 2006-06-02 2008-04-17 Mitsui Du Pont Fluorchemical Fluoropolymer molding method and molded article
US8158260B2 (en) 2006-06-02 2012-04-17 Dupont Mitsui Fluorochemicals Co Ltd Molding method and molded article of fluoropolymer with multilayered particulate structure
US8231974B2 (en) 2006-06-02 2012-07-31 Dupont Mitsui Fluorochemicals Co Ltd Fluoropolymer molding method and molded article

Similar Documents

Publication Publication Date Title
US4094949A (en) Method for preparing shaped articles of a fluorinated elastomer
US7608216B2 (en) Methods for preparing articles from processable and dimensionally stable elastomer compositions
JP2515155B2 (en) Thermoplastic elastomer composition
CA1206674A (en) Process for preparing elastoplastic compositions
US4613533A (en) Thermoplastic elastomeric compositions based on compatible blends of an ethylene copolymer and vinyl or vinylidene halide polymer
US4769416A (en) Elastoplastic compositions
US5198502A (en) Thermoplastic elastomer composition, method for molding the same and molded article of the same
EP0404239B1 (en) Thermoplastic elastomer composition, method for molding the same and molded article of the same
US3519703A (en) Fluoroelastomer compositions with improved low temperature properties
EP0101833A2 (en) Thermoplastic elastomeric compositions based on compatible blends of an ethylene copolymer and vinyl or vinylidene halide polymer
US7514480B2 (en) Low level radiation treatment for improving polymer properties
US3546326A (en) Concurrent extrusion and cross-linking of polymers
JP3577578B2 (en) Composite of fluororubber-based thermoplastic elastomer and molded article thereof
JP2000511124A (en) Extrusion foam molding of fluoropolymer
US3891725A (en) Vulcanizable chlorinated elastomer composition
WO2016060114A1 (en) Water-vapor-permselective tube
JPH0797458A (en) Vulcanizing method for fluororubber composition
JPH10182896A (en) Blow-moldable dynamically vulcanized alloy
JPH0797457A (en) Fluororubber composition and its molding method
JP2000343583A (en) Manufacture of crosslinked polyethylene pipe
JP3979926B2 (en) Method for producing fluororubber tube
JP3979925B2 (en) Fluoro rubber tube and manufacturing method thereof
JPH09157447A (en) Rubber compound, molded rubber article, ring-shaped water-stopping material and production of ring-shaped water-stopping material
JP2000212365A (en) Fluorine-containing copolymer composition
KR20040056723A (en) Fabrication method of artificial leather using ethylene-vinyl acetate copolymer

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12