US5248642A - Catalytic cracking catalysts and additives - Google Patents

Catalytic cracking catalysts and additives Download PDF

Info

Publication number
US5248642A
US5248642A US07/928,391 US92839192A US5248642A US 5248642 A US5248642 A US 5248642A US 92839192 A US92839192 A US 92839192A US 5248642 A US5248642 A US 5248642A
Authority
US
United States
Prior art keywords
composition
rare
slurry
earth
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/928,391
Inventor
Ranjit Kumar
Ronald E. Ritter
Howard J. Schaeffer, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co Conn
Original Assignee
WR Grace and Co Conn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co Conn filed Critical WR Grace and Co Conn
Priority to US07/928,391 priority Critical patent/US5248642A/en
Priority to DE1993600756 priority patent/DE69300756T2/en
Priority to ES93250114T priority patent/ES2079941T3/en
Priority to EP19930250114 priority patent/EP0568170B1/en
Priority to JP5120409A priority patent/JPH0823022B2/en
Priority to CA 2094889 priority patent/CA2094889C/en
Assigned to W.R. GRACE & CO.-CONN. reassignment W.R. GRACE & CO.-CONN. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RITTER, RONALD ERIC, SCHAEFFER, HOWARD JOHN, III, KUMAR, RANJIT
Priority to US08/078,332 priority patent/US5364516A/en
Priority to KR1019930015697A priority patent/KR100272870B1/en
Priority to AU44595/93A priority patent/AU669543B2/en
Application granted granted Critical
Publication of US5248642A publication Critical patent/US5248642A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles

Definitions

  • the present invention relates to catalytic cracking catalysts, and more particularly, to cracking catalyst/additive compositions which are capable of converting metals-containing hydrocarbon feedstocks into valuable products such as gasoline and diesel fuel.
  • zeolite-containing cracking catalysts When zeolite-containing cracking catalysts are used to process feedstocks which contain metals such as vanadium (V) and nickel (Ni), the metals are deposited on the catalyst in amounts that eventually cause loss of activity and the increased production of undesirable products such as hydrogen and coke.
  • metals such as vanadium (V) and nickel (Ni)
  • the prior art discloses various methods for improving the catalytic cracking activity and selectivity of catalytic cracking catalysts in the presence of V when a rare-earth component is added to the catalyst.
  • U.S. Pat. No. 3,930,987 describes zeolite containing cracking catalysts which are impregnated with a solution of rare-earth salts.
  • the soluble rare-earth salts which may be used to prepare the catalysts include rare earth chlorides, bromides, iodides, carbonates, bicarbonates, sulfates, sulfides, thiocyanates, peroxysulfates, acetates, benzoates, citrates, fluorides, nitrates, formates, propionates, butyrates, valerates, lactates, malanates, oxalates, palmitates, hydroxides, tartrates, and the like.
  • U.S. Pat. No. 4,515,683 discloses a method for passivating vanadium on catalytic cracking catalysts wherein lanthanum is nonionically precipitated on the catalyst prior to ordinary use.
  • lanthanum is precipitated by the addition of ammonium hydroxide or oxalic acid to a catalyst which has been previously impregnated with a rare-earth chloride solution.
  • U.S. Pat. No. 4,921,824 discloses an improved catalytic cracking catalyst which contains separate and discrete particles of lanthanum oxide.
  • the lanthanum oxide particles are added separate from and along with the catalyst during the cracking process.
  • the lanthanum oxide additive may include an inert matrix such as clay, silica and/or a metal oxide.
  • Great Britain 2 140 791 discloses the preparation of SOx gettering agents which comprise lanthanum oxide dispersed essentially as a monolayer on the surface of alumina.
  • the lanthanum oxide-alumina compositions may be admixed with or incorporated in FCC catalysts that comprise zeolite, clay and an alumina sol binder such as aluminum chlorhydroxide.
  • U.S. Pat. No. 4,843,052 and U.S. Pat. No. 4,940,531 disclose acid-reacted metakaolin catalysts.
  • the catalysts can be used for the catalytic cracking of hydrocarbon feedstocks that contain high levels of metals such as Ni and V.
  • U.S. Pat. No. 4,465,779 discloses modified cracking catalyst compositions which include a diluent that contains a magnesium compound. The compositions are used to process feedstocks having very high metals (Ni & V) content.
  • An additional object is to provide an improved method for the catalytic cracking of hydrocarbons wherein the catalysts of the present invention are reacted under catalytic conditions with hydrocarbon feedstocks that contain significant quantities of metals such as V and Ni.
  • our invention contemplates a particulate rare earth-containing catalyst/additive composition which comprises separate discrete particles of rare-earth, preferably lanthanum/neodynium (La/Nd), oxide and/or oxychloride, dispersed in an inorganic oxide matrix that includes an acid reacted metakaolin, and preferably, an alkaline metal oxide and/or a catalytically active zeolite/molecular sieve component.
  • rare-earth preferably lanthanum/neodynium (La/Nd)
  • oxide and/or oxychloride dispersed in an inorganic oxide matrix that includes an acid reacted metakaolin, and preferably, an alkaline metal oxide and/or a catalytically active zeolite/molecular sieve component.
  • the catalytic performance of zeolite-containing cracking catalysts in the presence of Ni and V may be improved by combining the catalyst with a particulate rare-earth-containing additive which is obtained by combining finely divided rare-earth oxalate with acid reacted metakaolin having the mole composition 0.8 to 1.0 Al 2 O 3 .2 SiO 2 and a surface area of above about 150 m 2 /g, and optionally, calcium and/or magnesium oxide, and/or a zeolite/molecular sieve component, and/or an aluminum hydroxychloride sol, and forming and calcining the mixture to obtain hard, dense attrition resistant particles comprising rare-earth oxide and/or oxychloride dispersed in a catalytically active acid-reacted metakaolin/alumina matrix.
  • a particulate rare-earth-containing additive which is obtained by combining finely divided rare-earth oxalate with acid reacted metakaolin having the mole composition 0.8 to 1.0
  • the lanthana-containing additive is prepared as follows:
  • compositions of our invention contain the following components (expressed as weight percent dry basis):
  • Alumina binder 0 to 10, preferably 2 to 5.
  • Zeolite/molecular sieve component 0 to 50, and preferably 0 to 10.
  • the catalyst/additive particles possess the following catalytic and physical properties:
  • the Davison Index (DI) is determined as follows:
  • a sample of catalyst is analyzed to determine the 0 to 20 micron size content.
  • the sample is then subjected to a 1 hour test in a Fluid Catalyst Attrition Apparatus using a hardened steel jet cup having a precision bored orifice. An air flow of 21 liters a minute is used.
  • the Davison Index is calculated as follows: ##EQU1##
  • the acid reacted metakaolin used in the practice of our invention is described in U.S. Pat. No. 4,843,052 (incorporated herein by reference) and is obtained by heating kaolin at a temperature of about 700° to 910° C. for at least one minute to obtain reactive metakaolin.
  • the reactive kaolin is then reacted with an acid, preferably hydrochloric, in amounts of up to about 1.5 moles of acid per mole of reactive metakaolin to obtain a reaction mixture that comprises acid-reacted metakaolin dispersed in an aqueous solution of acid leached alumina, i.e. aluminum chloride.
  • the acid reacted metal binder has the mole composition of about 0.8 to 1.0 Al 2 O 3 .2, a surface area of about 150 to 500 m 2 /g, and a total nitrogen pore volume of about 0.15 to 0.50 cc/g as determined by ASTM-4222 and 4691.
  • the acid reacted metakaolin reaction mixture is combined with metallic aluminum powder to obtain an aluminum hydroxychloride sol binder.
  • the acid reacted metakaolin may be recovered from the reaction mixture and used without an additional sol binder or may be combined with an aluminum hydrochloride sol such as Chlorhydrol, having the formulation Al 2+ ⁇ (OH) 3 ⁇ Y Cl 6 .
  • the catalyst/additive composition will contain up to 10 weight percent and preferably 2 to 5 weight percent CaO and/or MgO which may be conveniently added to the rare earth oxalate slurry to maintain a slurry pH of above about 2.5 and preferably 3.5 to 4.5.
  • the rare-earth oxalate used in the practice of my invention may contain essentially 100 percent lanthanum/neodynium oxalate or may comprise oxalates wherein lanthanum/neodynium is present in combination with up to about 60 weight percent of other rare-earths such as cerium.
  • the rare-earth oxalate may be conveniently prepared by reacting rare-earth hydrate (oxide, hydroxide, etc.) such as Molycorp Grade 5210 rare-earth hydrate having the rare-earth analysis expressed as weight percent oxide:
  • precipitated rare-earth oxalate having a particle size range of 2 to 100 microns.
  • the catalyst/additive may be combined with commercial zeolite-containing fluid cracking catalysts (FCC), such as Octacat, Super-D, DA and XP catalysts manufactured and sold by the Davison Chemical Division of W. R. Grace & Co.-Conn. as a separate or an integral component.
  • FCC fluid cracking catalysts
  • These catalysts typically comprise a zeolite/molecular sieve such as type X, Y, ultrastable Y (USY), rare earth exchanged Y (REY), Beta, and/or ZSM-5 dispersed in silica, alumina or silica-alumina clay matrix.
  • Preferred zeolites are disclosed in U.S. Pat. Nos.
  • the FCC catalyst may be prepared in accordance with the teachings of U.S. Pat. No. 3,957,689, CA 967,136, U.S. Pat. Nos. 4,499,197, 4,542,118 and 4,458,023.
  • zeolite/molecular sieves may be incorporated in the catalysts/additives of the present invention to enhance the cracking activity.
  • the catalysts/additives of the present invention are preferably combined with the conventional zeolite containing FCC catalysts in amounts ranging from 5 to 25 weight percent, and more preferably 5 to 15 weight percent.
  • the catalyst/additive may be combined with the FCC catalysts as a separate particulate component before or during use in a catalytic cracking process.
  • the catalysts/additives may be incorporated in conventional FCC catalyst particles during manufacture.
  • the FCC/additive compositions are used in FCC processes conducted at cracking reaction temperatures of 500° to 600° C. and regeneration temperatures of 600° to 850° C. using hydrocarbon feedstocks that may contain up to 100 ppm or more of V and Ni. It is found that the presence of the additive during the FCC process passivates the adverse effects of metals such as vanadium and decreases the formation of hydrogen and coke. It is anticipated that use of the present additive will permit the successful use of FCC regeneration catalysts that contain as much as 10,000 to 20,000 ppm V.
  • a 100 lb. sample of kaolin clay was calcined to 1680° F. and then reacted with 9.4 lbs of HCl (100% acid basis) and 280 lbs of H 2 O at 214° F. for a period of 8 hours. Subsequently, 4.6 lbs of aluminum metal powder (Alcoa grade 120) was added and the reaction continued at 214° F. for 6 hours.
  • Precipitated rare-earth oxalate was prepared by combining 117.4 lbs of deionized water with 18.5 lbs oxalic acid (C 2 O 4 H 2 .2H 2 O) and heating the mixture to 100° F. Then 20.1 lbs rare-earth hydrate (Molycorp 5210) was added and the mixture was agitated for 1 hour. The resulting precipitated rare-earth oxalate slurry had a pH of below 1.0.
  • Example 3 158 lbs of MgO treated rare-earth oxalate slurry of Example 3 was mixed with 207.1 lbs of the acid-reacted reacted metakaolin/binder slurry of Example 1, mixed thoroughly spray dried at a temperature of 300° F. (control), and calcined at a material temperature of 1000° F. for 1 hour.
  • Example 2 50,900 lbs of acid reacted metakaolin/aluminum sol binder slurry prepared as described in Example 1 (22.2 wt. % Solids) was added to 31,140 lbs of the oxalate/MgO slurry prepared above. The slurry was then spray dried at 350° F. and calcined at 1100°-1200° F. for about 1 hour.
  • Test samples were prepared which comprised 15 weight percent of the products of Examples 4 and 5, and 85 weight percent of a commercial zeolite-containing FCC catalyst (Orion 822 manufactured and sold by the Davison Chemical Division of W. R. Grace & Co.-Conn.). A base case (comparison) sample comprising 100% Orion 822 was also prepared.
  • a commercial zeolite-containing FCC catalyst (Orion 822 manufactured and sold by the Davison Chemical Division of W. R. Grace & Co.-Conn.).
  • a base case (comparison) sample comprising 100% Orion 822 was also prepared.
  • the samples were calcined 3 hours at 1250° F., impregnated with V-naphthenate to a level of 5,000 ppm V, calcined 1 hour at 1450° F. to remove carbon, then steam deactivated at 1450° F., 80% steam-in-air for 5 hours.
  • the steamed samples were evaluated for catalyst zeolite surface area retention and catalyst cracking activity and selectivity (MAT). The MAT tests were conducted at 980° F., 30 second contact time with a typical gas oil feedstock.
  • Samples of zeolite-containing catalysts A and B were prepared which contain the following components:
  • Catalysts A and B were made by spray drying an aqueous slurry of USY zeolite, aluminum hydroxychloride sol, acid reacted metakaolin (of the type prepared in Example 1) and kaolin (which contained about 27 weight percent solids).
  • Catalyst B included rare earth oxalates which possessed a La 2 O 3 /Nd 2 O 3 ratio of 6.86.
  • the spray dried catalysts were then calcined for 30 minutes at 370° C.
  • the catalysts were washed with aqueous (NH 4 ) 2 SO 4 solution to reduce the soda level to ⁇ 0.5 weight percent Na 2 O.
  • the catalysts were then oven dried at 120° C.

Abstract

Catalytic cracking catalysts/additives which comprise rare-earth, preferably lanthanum, oxide and/or oxychloride dispersed in an acid reacted metakaolin matrix. The catalysts/additives may be combined with zeolite-containing cracking catalysts to enhance catalytic activity/selectivity in the presence of metals (Ni and V).

Description

This application is a continuation-in-part of U.S. Ser. No. 877,568, filed May 1, 1992, and now abandoned.
The present invention relates to catalytic cracking catalysts, and more particularly, to cracking catalyst/additive compositions which are capable of converting metals-containing hydrocarbon feedstocks into valuable products such as gasoline and diesel fuel.
When zeolite-containing cracking catalysts are used to process feedstocks which contain metals such as vanadium (V) and nickel (Ni), the metals are deposited on the catalyst in amounts that eventually cause loss of activity and the increased production of undesirable products such as hydrogen and coke.
The prior art discloses various methods for improving the catalytic cracking activity and selectivity of catalytic cracking catalysts in the presence of V when a rare-earth component is added to the catalyst.
U.S. Pat. No. 3,930,987 describes zeolite containing cracking catalysts which are impregnated with a solution of rare-earth salts. The soluble rare-earth salts which may be used to prepare the catalysts include rare earth chlorides, bromides, iodides, carbonates, bicarbonates, sulfates, sulfides, thiocyanates, peroxysulfates, acetates, benzoates, citrates, fluorides, nitrates, formates, propionates, butyrates, valerates, lactates, malanates, oxalates, palmitates, hydroxides, tartrates, and the like.
U.S. Pat. No. 4,515,683 discloses a method for passivating vanadium on catalytic cracking catalysts wherein lanthanum is nonionically precipitated on the catalyst prior to ordinary use. In a preferred embodiment lanthanum is precipitated by the addition of ammonium hydroxide or oxalic acid to a catalyst which has been previously impregnated with a rare-earth chloride solution.
U.S. Pat. No. 4,921,824 discloses an improved catalytic cracking catalyst which contains separate and discrete particles of lanthanum oxide. The lanthanum oxide particles are added separate from and along with the catalyst during the cracking process. The lanthanum oxide additive may include an inert matrix such as clay, silica and/or a metal oxide.
Great Britain 2 140 791 discloses the preparation of SOx gettering agents which comprise lanthanum oxide dispersed essentially as a monolayer on the surface of alumina. The lanthanum oxide-alumina compositions may be admixed with or incorporated in FCC catalysts that comprise zeolite, clay and an alumina sol binder such as aluminum chlorhydroxide.
U.S. Pat. No. 4,843,052 and U.S. Pat. No. 4,940,531 disclose acid-reacted metakaolin catalysts. The catalysts can be used for the catalytic cracking of hydrocarbon feedstocks that contain high levels of metals such as Ni and V.
U.S. Pat. No. 4,465,779 discloses modified cracking catalyst compositions which include a diluent that contains a magnesium compound. The compositions are used to process feedstocks having very high metals (Ni & V) content.
It is an object of the present invention to provide improved catalytic cracking catalyst and additive compositions that are highly effective for controlling the adverse effects of metals such as V and Ni.
It is a further object to provide zeolite containing catalytic cracking catalysts wherein significant improvement in catalyst performance is obtained by the addition of limited quantities of a novel rare-earth containing additive.
It is yet a further object to provide a method for preparing rare-earth containing cracking catalysts and additives in which the discrete particles of rare-earth compound, preferably lanthanum, are effectively and efficiently dispersed throughout the catalyst/additive particles.
An additional object is to provide an improved method for the catalytic cracking of hydrocarbons wherein the catalysts of the present invention are reacted under catalytic conditions with hydrocarbon feedstocks that contain significant quantities of metals such as V and Ni.
These and still further objects will become readily apparent to one skilled-in-the-art from the following detailed description and specific examples.
Broadly, our invention contemplates a particulate rare earth-containing catalyst/additive composition which comprises separate discrete particles of rare-earth, preferably lanthanum/neodynium (La/Nd), oxide and/or oxychloride, dispersed in an inorganic oxide matrix that includes an acid reacted metakaolin, and preferably, an alkaline metal oxide and/or a catalytically active zeolite/molecular sieve component.
More specifically, we have found that the catalytic performance of zeolite-containing cracking catalysts in the presence of Ni and V may be improved by combining the catalyst with a particulate rare-earth-containing additive which is obtained by combining finely divided rare-earth oxalate with acid reacted metakaolin having the mole composition 0.8 to 1.0 Al2 O3.2 SiO2 and a surface area of above about 150 m2 /g, and optionally, calcium and/or magnesium oxide, and/or a zeolite/molecular sieve component, and/or an aluminum hydroxychloride sol, and forming and calcining the mixture to obtain hard, dense attrition resistant particles comprising rare-earth oxide and/or oxychloride dispersed in a catalytically active acid-reacted metakaolin/alumina matrix.
In a preferred practice of my invention, the lanthana-containing additive is prepared as follows:
(1) Preparing an aqueous slurry which contains finely divided rare-earth oxalate and acid reacted metakaolin; and optionally calcium and/or magnesium oxide (CaO and/or MgO) and a zeolite/molecular sieve component and acid aluminum sol.
(2) Spray drying the aqueous slurry which has a solids content of about 25 to 35 weight percent at a temperature of about 300° to 350° F. to obtain particles having a size range of 10 to 150 microns in which rare-earth oxalate particles are dispersed throughout an acid reacted metakaolin/aluminum sol matrix; and
(3) Calcining the spray dried particles at a temperature of 1000° to 1200° F. for about 1 hour to convert the rare-earth oxalate to particles of rare-earth oxide and/or oxychloride, and to transform the spray dried particles into dense attrition resistant catalyst/additive particles.
Subsequent to calcination, the preferred compositions of our invention contain the following components (expressed as weight percent dry basis):
(1) Acid-reacted metakaolin 10 to 90, preferably 50 to 80.
(2) Rare-earth oxychloride/oxide 1 to 35, preferably 1 to 30.
(3) Alumina binder 0 to 10, preferably 2 to 5.
(4) Calcium/Magnesium oxide 0 to 10, preferably 2 to 5.
(5) Zeolite/molecular sieve component 0 to 50, and preferably 0 to 10.
The catalyst/additive particles possess the following catalytic and physical properties:
(1) a microactivity of 15 to 80 as determined by ASTM 3907;
(2) a Davison attrition Index of 1 to 15;
(3) a density of 0.6 to 1.0 g/cc;
(4) a surface area of 50 to 200 m2 /g.
The Davison Index (DI) is determined as follows:
A sample of catalyst is analyzed to determine the 0 to 20 micron size content. The sample is then subjected to a 1 hour test in a Fluid Catalyst Attrition Apparatus using a hardened steel jet cup having a precision bored orifice. An air flow of 21 liters a minute is used. The Davison Index is calculated as follows: ##EQU1##
The acid reacted metakaolin used in the practice of our invention is described in U.S. Pat. No. 4,843,052 (incorporated herein by reference) and is obtained by heating kaolin at a temperature of about 700° to 910° C. for at least one minute to obtain reactive metakaolin. The reactive kaolin is then reacted with an acid, preferably hydrochloric, in amounts of up to about 1.5 moles of acid per mole of reactive metakaolin to obtain a reaction mixture that comprises acid-reacted metakaolin dispersed in an aqueous solution of acid leached alumina, i.e. aluminum chloride.
The acid reacted metal binder has the mole composition of about 0.8 to 1.0 Al2 O3.2, a surface area of about 150 to 500 m2 /g, and a total nitrogen pore volume of about 0.15 to 0.50 cc/g as determined by ASTM-4222 and 4691.
In a preferred practice of the invention, the acid reacted metakaolin reaction mixture is combined with metallic aluminum powder to obtain an aluminum hydroxychloride sol binder. Alternatively, the acid reacted metakaolin may be recovered from the reaction mixture and used without an additional sol binder or may be combined with an aluminum hydrochloride sol such as Chlorhydrol, having the formulation Al2+μ (OH)3μY Cl6.
In another preferred embodiment the catalyst/additive composition will contain up to 10 weight percent and preferably 2 to 5 weight percent CaO and/or MgO which may be conveniently added to the rare earth oxalate slurry to maintain a slurry pH of above about 2.5 and preferably 3.5 to 4.5.
The rare-earth oxalate used in the practice of my invention may contain essentially 100 percent lanthanum/neodynium oxalate or may comprise oxalates wherein lanthanum/neodynium is present in combination with up to about 60 weight percent of other rare-earths such as cerium. The rare-earth oxalate may be conveniently prepared by reacting rare-earth hydrate (oxide, hydroxide, etc.) such as Molycorp Grade 5210 rare-earth hydrate having the rare-earth analysis expressed as weight percent oxide:
______________________________________                                    
La.sub.2 O.sub.3   46                                                     
Ce.sub.2 O.sub.3   12                                                     
Pr.sub.6 O.sub.11   6                                                     
Nd.sub.2 O.sub.3   16                                                     
Other (Cl, H.sub.2 O, etc.)                                               
                   20                                                     
______________________________________                                    
with oxalic acid to obtain precipitated rare-earth oxalate having a particle size range of 2 to 100 microns.
The catalyst/additive may be combined with commercial zeolite-containing fluid cracking catalysts (FCC), such as Octacat, Super-D, DA and XP catalysts manufactured and sold by the Davison Chemical Division of W. R. Grace & Co.-Conn. as a separate or an integral component. These catalysts typically comprise a zeolite/molecular sieve such as type X, Y, ultrastable Y (USY), rare earth exchanged Y (REY), Beta, and/or ZSM-5 dispersed in silica, alumina or silica-alumina clay matrix. Preferred zeolites are disclosed in U.S. Pat. Nos. 3,402,996 (CREX and CREY), 3,293,192, 3,449,070 (USY), 3,595,611, 3,607,043, 3,957,623 (PCY) and 3,676,368 (REHY). The FCC catalyst may be prepared in accordance with the teachings of U.S. Pat. No. 3,957,689, CA 967,136, U.S. Pat. Nos. 4,499,197, 4,542,118 and 4,458,023.
It is also contemplated that the above-noted zeolite/molecular sieves may be incorporated in the catalysts/additives of the present invention to enhance the cracking activity.
The catalysts/additives of the present invention are preferably combined with the conventional zeolite containing FCC catalysts in amounts ranging from 5 to 25 weight percent, and more preferably 5 to 15 weight percent. The catalyst/additive may be combined with the FCC catalysts as a separate particulate component before or during use in a catalytic cracking process. Alternatively, the catalysts/additives may be incorporated in conventional FCC catalyst particles during manufacture.
The FCC/additive compositions are used in FCC processes conducted at cracking reaction temperatures of 500° to 600° C. and regeneration temperatures of 600° to 850° C. using hydrocarbon feedstocks that may contain up to 100 ppm or more of V and Ni. It is found that the presence of the additive during the FCC process passivates the adverse effects of metals such as vanadium and decreases the formation of hydrogen and coke. It is anticipated that use of the present additive will permit the successful use of FCC regeneration catalysts that contain as much as 10,000 to 20,000 ppm V.
Having described the basic aspects of my invention, the following examples are given to illustrate specific embodiments.
EXAMPLE 1 Preparation of Acid Reacted Metakaolin/Alumina Sol Binder
A 100 lb. sample of kaolin clay was calcined to 1680° F. and then reacted with 9.4 lbs of HCl (100% acid basis) and 280 lbs of H2 O at 214° F. for a period of 8 hours. Subsequently, 4.6 lbs of aluminum metal powder (Alcoa grade 120) was added and the reaction continued at 214° F. for 6 hours.
EXAMPLE 2 Preparation of Rare-Earth Oxalate
Precipitated rare-earth oxalate was prepared by combining 117.4 lbs of deionized water with 18.5 lbs oxalic acid (C2 O4 H2.2H2 O) and heating the mixture to 100° F. Then 20.1 lbs rare-earth hydrate (Molycorp 5210) was added and the mixture was agitated for 1 hour. The resulting precipitated rare-earth oxalate slurry had a pH of below 1.0.
EXAMPLE 3 Preparation of Rare-Earth Oxalate/MgO Slurry
100 lbs (dry basis) of a rare-earth oxalate slurry prepared by the method of Example 2 was combined with 5.8 lbs of MgO. The resulting mixture had a pH of 4.0.
EXAMPLE 4 Preparation of Catalyst/Additive
158 lbs of MgO treated rare-earth oxalate slurry of Example 3 was mixed with 207.1 lbs of the acid-reacted reacted metakaolin/binder slurry of Example 1, mixed thoroughly spray dried at a temperature of 300° F. (control), and calcined at a material temperature of 1000° F. for 1 hour.
EXAMPLE 5 Large Batch Preparation
Oxalic acid solution was prepared by adding 0.214 lbs C2 O4 H2.2H2 O per 1 lb H2 O (17.6%) and heating to 45° C. 9820 lbs of rare-earth hydrate, which contained 46 weight percent La2 O3, was then combined with 51460 lbs of the oxalic acid solution. The pH of the mixture was adjusted by adding 1000 lbs MgO to obtain a pH=4.0. The resulting slurry comprised:
______________________________________                                    
Rare-earth oxalate:                                                       
                   17360 lbs                                              
                            (27.9%)                                       
MgO:                1000 lbs                                              
                            (1.61%)                                       
Water:             43920 lbs                                              
                            (70.5%)                                       
Total:             62280 lbs                                              
______________________________________                                    
50,900 lbs of acid reacted metakaolin/aluminum sol binder slurry prepared as described in Example 1 (22.2 wt. % Solids) was added to 31,140 lbs of the oxalate/MgO slurry prepared above. The slurry was then spray dried at 350° F. and calcined at 1100°-1200° F. for about 1 hour.
EXAMPLE 6 Chemical/Physical Properties and Evaluation of Catalyst/Additive
Test samples were prepared which comprised 15 weight percent of the products of Examples 4 and 5, and 85 weight percent of a commercial zeolite-containing FCC catalyst (Orion 822 manufactured and sold by the Davison Chemical Division of W. R. Grace & Co.-Conn.). A base case (comparison) sample comprising 100% Orion 822 was also prepared.
The samples were calcined 3 hours at 1250° F., impregnated with V-naphthenate to a level of 5,000 ppm V, calcined 1 hour at 1450° F. to remove carbon, then steam deactivated at 1450° F., 80% steam-in-air for 5 hours. The steamed samples were evaluated for catalyst zeolite surface area retention and catalyst cracking activity and selectivity (MAT). The MAT tests were conducted at 980° F., 30 second contact time with a typical gas oil feedstock.
The test results using 100% Orion 822 catalyst as a control (base case) are summarized in Tables I and II. The results show that the compositions of Examples 4 and 5 produced higher retained zeolite surface areas after deactivation and substantially lower coke and Hz compared with the base case catalyst.
              TABLE I                                                     
______________________________________                                    
Chemical/Physical Properties                                              
                          Composition of                                  
Catalyst     Orion 822 (100%)                                             
                          Example 4 (100%)                                
______________________________________                                    
Chemical Analysis                                                         
RE.sub.2 O.sub.3 : W %                                                    
             1.43         26.7                                            
MgO: W %     --           2.7                                             
Al.sub.2 O.sub.3 : W %                                                    
             33.0         33.7                                            
Physical Analysis                                                         
SA: m.sup.2 /g                                                            
             286          153                                             
H.sub.2 O PV: cc/g                                                        
             0.41         0.46                                            
DI:          7            7                                               
ABD: g/cc    0.74         0.75                                            
______________________________________                                    
Catalytic Properties*                                                     
                          Blend of Orion 822                              
Catalyst     Orion 822 (100%)                                             
                          (85%) Ex. 4 (15%)                               
______________________________________                                    
Zeolite SA: m.sup.2 /g                                                    
             46           78                                              
MAT: 5 cat. to oil ratio, 30 WHSV, 980° F.                         
Conv. W %    48.0         61.5                                            
Coke: W %    5.1          5.0                                             
H.sub.2 : W %                                                             
             0.70         0.47                                            
Gasoline: W %                                                             
             33.3         42.0                                            
______________________________________                                    
 *Subsequent to impregnation with 5000 ppm V and deactivation with        
 1450° F., 80% steam/20% air for 5 hrs.                            
              TABLE II                                                    
______________________________________                                    
Chemical/Physical Properties                                              
                          Composition of                                  
Catalyst     Orion 822 (100%)                                             
                          Example 5                                       
______________________________________                                    
Chemical Analysis                                                         
RE.sub.2 O.sub.3 : W %                                                    
             1.43         26.2                                            
MgO: W %     --           3.1                                             
Al.sub.2 O.sub.3 : W %                                                    
             33.3         33.5                                            
Physical Analysis                                                         
SA: m.sup.2 /g                                                            
             286          57                                              
H.sub.2 O PV: cc/g                                                        
             0.41         0.26                                            
DI:          7            4                                               
ABD: g/cc    0.74         0.98                                            
______________________________________                                    
Catalytic Properties*                                                     
                          Blend of Orion 822                              
Catalyst     Orion 822 (100%)                                             
                          (85%) Ex. 5 (15%)                               
______________________________________                                    
Zeolite SA: m.sup.2 /g                                                    
             57           71/68                                           
MAT: 4 cat. to oil ratio, 30 WHSV, 980° F.                         
Conv. W %    50           57.0                                            
Coke: W %    5.1          4.2                                             
H.sub.2 : W %                                                             
             0.68         0.59                                            
Gasoline: W %                                                             
             24.5         39.5                                            
______________________________________                                    
 Subsequent to impregnation with 5000 ppm V and deactivation with         
 1450° F., 80% steam/20% air for 5 hrs.                            
EXAMPLE 7 Preparation of Zeolite-Containing Cracking Catalyst
Samples of zeolite-containing catalysts A and B were prepared which contain the following components:
______________________________________                                    
Catalyst A (Control)                                                      
                  Catalyst B (Invention)                                  
Wt.                   Wt.                                                 
%    Component        %      Component                                    
______________________________________                                    
25   USY Zeolite      25     USY Zeolite                                  
 7   Al.sub.2 O.sub.3 from                                                
                      7      Al.sub.2 O.sub.3 from                        
     Al.sub.2 (OH).sub.5 Cl(2.5H.sub.2 O)                                 
                             Al.sub.2 (OH).sub.5 Cl(2.5H.sub.2 O)         
38   Acid Reacted     38     Acid Reacted                                 
     Metakaolin/Alumina      Metakaolin/Alumina                           
     Sol Binder              Sol Binder                                   
30   Kaolin           28.9   Kaolin                                       
                      1.1    RE.sub.2 O.sub.3 from La/Nd                  
                             Oxalate                                      
______________________________________                                    
Catalysts A and B were made by spray drying an aqueous slurry of USY zeolite, aluminum hydroxychloride sol, acid reacted metakaolin (of the type prepared in Example 1) and kaolin (which contained about 27 weight percent solids). Catalyst B (Invention) included rare earth oxalates which possessed a La2 O3 /Nd2 O3 ratio of 6.86. The spray dried catalysts were then calcined for 30 minutes at 370° C. The catalysts were washed with aqueous (NH4)2 SO4 solution to reduce the soda level to <0.5 weight percent Na2 O. The catalysts were then oven dried at 120° C.
EXAMPLE 8 Chemical/Physical Properties & Evaluation of Zeolite-Containing Cracking Catalyst
The chemical/physical/catalytic properties of Catalysts A and B of Example 7 were determined and are summarised below:
______________________________________                                    
               A (Control)                                                
                        B (Invention                                      
______________________________________                                    
Chemical/Physical Properties:                                             
La.sub.2 O.sub.3 wt. %                                                    
                 0.01       0.96                                          
RE.sub.2 O.sub.3 wt. %                                                    
                 0.03       1.11                                          
Na.sub.2 O wt. % 0.27       0.30                                          
Al.sub.2 O.sub.3 wt. %                                                    
                 42.9       41.9                                          
Cl wt. %         0.06       0.09                                          
TV @ 1750° F. wt. %                                                
                 13.9       13.7                                          
ABD, g/cc        0.73       0.70                                          
DI               5          7                                             
Unit cell size, Å                                                     
                 24.58      24.59                                         
Zeolite SA, m.sup.2 /g                                                    
                 152        157                                           
Catalytic Properties*                                                     
1700 ppm Ni + 3300 ppm V                                                  
MA wt. %         52         59                                            
H.sub.2 wt. %    0.87       0.77                                          
Coke wt. %       6.4        9.2                                           
2500 ppm Ni + 5000 ppm V                                                  
MA wt. %         45         55                                            
H.sub.2 wt. %    0.86       1.15                                          
Coke wt. %       6.1        9.7                                           
______________________________________                                    
 *Subsequent to impregnation with Ni + V and deactivation with 1400.degree
 F., 100% steam, 5 psig for 6 hours.                                      

Claims (18)

I claim:
1. A composition comprising discrete particles of a rare-earth compound selected from the group consisting of a rare-earth oxide, oxychloride and mixtures thereof dispersed in an acid reacted metakaolin matrix.
2. The composition of claim 1 which contains up to about 10 weight percent alumina binder.
3. The composition of claim 1 wherein the acid reacted metakaolin has the mole composition 0.8 to 1.0 Al2 O3.2 SiO2 and a surface area of above 150 m2 /g.
4. The composition of claim 1 wherein the rare-earth component comprises at least about 40 weight percent lanthanum/neodynium expressed as La2 O3 /Nd2 O3.
5. The composition of claim 1 which contains up to 10 weight percent alkaline earth metal oxide.
6. The composition of claim 1 which contains up to 50 weight percent zeolite/molecular sieve.
7. The composition of claim 1 having a particle size of 10 to 150 microns.
8. A catalytic cracking catalyst composition comprising a zeolite-containing cracking catalyst admixed with the composition of claim 1.
9. A method for preparing a particulate rare-earth-containing catalyst/additive composition which comprises:
(a) preparing a slurry of rare-earth oxalate and acid reacted metakaolin;
(b) spray drying the mixture; and
(c) calcining the spray dried mixture at a temperature of 425° to 870° C.
10. The method of claim 9 wherein the slurry contains up to 10 weight percent alumina sol.
11. The method of claim 10 wherein the slurry is spray dried to obtain particles in the size range of about 10 to 150 microns, and an attrition index of 0 to 30 DI.
12. The method of claim 10 wherein the alumina sol is obtained by reacting acid reacted metakaolin slurry with aluminum metal powder.
13. The method of claim 10 wherein the alumina sol has the formula
Al2+μ (OH)3μ Cl6 wherein μ=about 4 to 12.
14. The composition of claim 5 wherein the alkaline earth metal oxide is magnesium oxide.
15. The method of claim 9 wherein the slurry includes an alkaline earth metal oxide.
16. The method of claim 15 wherein the alkaline earth metal oxide is magnesium oxide.
17. The method of claim 16 wherein the magnesium oxide is combined with a slurry of the rare-earth oxalate before mixing with a slurry of the acid reacted meta-kaolin.
18. The method of claim 9 wherein a zeolite/molecular sieve is included in said slurry.
US07/928,391 1992-04-27 1992-08-12 Catalytic cracking catalysts and additives Expired - Lifetime US5248642A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US07/928,391 US5248642A (en) 1992-05-01 1992-08-12 Catalytic cracking catalysts and additives
ES93250114T ES2079941T3 (en) 1992-04-27 1993-04-20 CATALYTIC CRAYING CATALYSTS AND ADDITIVES.
EP19930250114 EP0568170B1 (en) 1992-04-27 1993-04-20 Catalytic cracking catalysts and additives
DE1993600756 DE69300756T2 (en) 1992-04-27 1993-04-20 Cracking catalysts and additives.
JP5120409A JPH0823022B2 (en) 1992-04-27 1993-04-26 Catalytic cracking catalysts and additives
CA 2094889 CA2094889C (en) 1992-04-27 1993-04-26 Catalytic cracking catalysts and additives
US08/078,332 US5364516A (en) 1992-05-01 1993-06-21 Catalytic cracking catalysts and additives
KR1019930015697A KR100272870B1 (en) 1992-05-01 1993-08-11 Catalytic cracking catalysts and additives
AU44595/93A AU669543B2 (en) 1992-08-12 1993-08-12 Catalytic cracking catalysts and additives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87756892A 1992-05-01 1992-05-01
US07/928,391 US5248642A (en) 1992-05-01 1992-08-12 Catalytic cracking catalysts and additives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US87756892A Continuation-In-Part 1992-04-27 1992-05-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/078,332 Division US5364516A (en) 1992-05-01 1993-06-21 Catalytic cracking catalysts and additives

Publications (1)

Publication Number Publication Date
US5248642A true US5248642A (en) 1993-09-28

Family

ID=46202073

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/928,391 Expired - Lifetime US5248642A (en) 1992-04-27 1992-08-12 Catalytic cracking catalysts and additives

Country Status (2)

Country Link
US (1) US5248642A (en)
KR (1) KR100272870B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009889A1 (en) * 1994-09-29 1996-04-04 W.R. Grace & Co.-Conn. Rare earth binder-containing additives and catalysts
CN1064072C (en) * 1996-12-24 2001-04-04 中国石化兰州炼油化工总厂 Catalyst containing modified kaoling for cracking hydrocarbons
US20030075481A1 (en) * 1998-12-28 2003-04-24 Chester Arthur W. Gasoline sulfur reduction in fluid catalytic cracking
US6846403B2 (en) * 1998-12-28 2005-01-25 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US20050189260A1 (en) * 1998-12-28 2005-09-01 Chester Arthur W. Gasoline sulfur reduction in fluid catalytic cracking
US20050209093A1 (en) * 2002-12-03 2005-09-22 Chester Arthur W Gasoline sulfur reduction in fluid catalytic cracking
US6974787B2 (en) 1998-08-31 2005-12-13 Exxonmobil Corporation Gasoline sulfur reduction in fluid catalytic cracking
WO2006102852A1 (en) * 2005-03-31 2006-10-05 China Petroleum & Chemical Corporation A cracking catalyst and its preparation
WO2008080517A1 (en) * 2007-01-03 2008-07-10 Saudi Basic Industries Corporation Zeolite-kaolin catalyst composition
CN100496713C (en) * 2003-05-30 2009-06-10 中国石油化工股份有限公司 Preparing method for catalytic cracking metal passivation adjuvant
US8658024B2 (en) 2004-12-28 2014-02-25 China Petroleum & Chemical Corporation Catalyst and a method for cracking hydrocarbons
WO2021004502A1 (en) * 2019-07-09 2021-01-14 中国石油化工股份有限公司 Y-type molecular sieve containing rare earth element, preparation method therefor, and catalytic cracking catalyst containing the molecular sieve
WO2021004503A1 (en) * 2019-07-09 2021-01-14 中国石油化工股份有限公司 Y-type molecular sieve containing rare earth and preparation method therefor, and catalytic cracking catalyst containing molecular sieve
US20220023836A1 (en) * 2018-12-21 2022-01-27 Jgc Catalysts And Chemicals Ltd. Metal trapping, method for manufacturing metal trapping, and fluid catalytic cracking catalyst
CN116212940A (en) * 2023-03-06 2023-06-06 青岛惠城环保科技集团股份有限公司 Preparation method of catalytic cracking catalyst with excellent coke and dry gas selectivity

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930987A (en) * 1973-04-12 1976-01-06 Mobil Oil Corporation Catalyst and method of preparing same
US4187199A (en) * 1977-02-25 1980-02-05 Chevron Research Company Hydrocarbon conversion catalyst
EP0074581A1 (en) * 1981-09-10 1983-03-23 Wolfgang Prof. Dr.-Ing. Backé Device for regulating a hub or an angular displacement independently of the load and proportionally to an input signal
US4443553A (en) * 1982-09-20 1984-04-17 Harshaw/Filtrol Partnership Production of fluid catalytic cracking catalysts
US4465779A (en) * 1982-05-06 1984-08-14 Gulf Research & Development Company Modified cracking catalyst composition
GB2140791A (en) * 1981-03-13 1984-12-05 Grace W R & Co Sulfur oxide gettering agent composition
US4515683A (en) * 1983-09-15 1985-05-07 Ashland Oil, Inc. Passivation of vanadium accumulated on catalytic solid fluidizable particles
US4843052A (en) * 1982-05-21 1989-06-27 W. R. Grace & Co.-Conn. Acid-reacted metakaolin catalyst and catalyst support compositions
US4921824A (en) * 1988-06-30 1990-05-01 Mobil Oil Corp. Metal passivating catalyst composition for cracking hydrocarbons
US4940531A (en) * 1982-04-12 1990-07-10 W. R. Grace & Co.-Conn. Catalytic cracking process employing an acid-reacted metakaolin catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930987A (en) * 1973-04-12 1976-01-06 Mobil Oil Corporation Catalyst and method of preparing same
US4187199A (en) * 1977-02-25 1980-02-05 Chevron Research Company Hydrocarbon conversion catalyst
GB2140791A (en) * 1981-03-13 1984-12-05 Grace W R & Co Sulfur oxide gettering agent composition
EP0074581A1 (en) * 1981-09-10 1983-03-23 Wolfgang Prof. Dr.-Ing. Backé Device for regulating a hub or an angular displacement independently of the load and proportionally to an input signal
US4940531A (en) * 1982-04-12 1990-07-10 W. R. Grace & Co.-Conn. Catalytic cracking process employing an acid-reacted metakaolin catalyst
US4465779A (en) * 1982-05-06 1984-08-14 Gulf Research & Development Company Modified cracking catalyst composition
US4843052A (en) * 1982-05-21 1989-06-27 W. R. Grace & Co.-Conn. Acid-reacted metakaolin catalyst and catalyst support compositions
US4443553A (en) * 1982-09-20 1984-04-17 Harshaw/Filtrol Partnership Production of fluid catalytic cracking catalysts
US4515683A (en) * 1983-09-15 1985-05-07 Ashland Oil, Inc. Passivation of vanadium accumulated on catalytic solid fluidizable particles
US4921824A (en) * 1988-06-30 1990-05-01 Mobil Oil Corp. Metal passivating catalyst composition for cracking hydrocarbons

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009889A1 (en) * 1994-09-29 1996-04-04 W.R. Grace & Co.-Conn. Rare earth binder-containing additives and catalysts
CN1064072C (en) * 1996-12-24 2001-04-04 中国石化兰州炼油化工总厂 Catalyst containing modified kaoling for cracking hydrocarbons
US6974787B2 (en) 1998-08-31 2005-12-13 Exxonmobil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US20030075481A1 (en) * 1998-12-28 2003-04-24 Chester Arthur W. Gasoline sulfur reduction in fluid catalytic cracking
US20030089639A1 (en) * 1998-12-28 2003-05-15 Chester Arthur W. Gasoline sulfur reduction in fluid catalytic cracking
US6846403B2 (en) * 1998-12-28 2005-01-25 Mobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US6923903B2 (en) 1998-12-28 2005-08-02 Exxonmobil Oil Corporation Gasoline sulfur reduction in fluid catalytic cracking
US20050189260A1 (en) * 1998-12-28 2005-09-01 Chester Arthur W. Gasoline sulfur reduction in fluid catalytic cracking
US7803267B2 (en) 1998-12-28 2010-09-28 W. R. Grace & Co.-Conn. Gasoline sulfur reduction in fluid catalytic cracking
US7507686B2 (en) 2002-12-03 2009-03-24 W. R. Grace & Co. - Conn. Gasoline sulfur reduction in fluid catalytic cracking
US20050209093A1 (en) * 2002-12-03 2005-09-22 Chester Arthur W Gasoline sulfur reduction in fluid catalytic cracking
CN100496713C (en) * 2003-05-30 2009-06-10 中国石油化工股份有限公司 Preparing method for catalytic cracking metal passivation adjuvant
US8658024B2 (en) 2004-12-28 2014-02-25 China Petroleum & Chemical Corporation Catalyst and a method for cracking hydrocarbons
US20080261802A1 (en) * 2005-03-31 2008-10-23 China Petroleum & Chemical Corporation Cracking Catalyst and a Preparation Process for the Same
WO2006102852A1 (en) * 2005-03-31 2006-10-05 China Petroleum & Chemical Corporation A cracking catalyst and its preparation
US7776775B2 (en) 2005-03-31 2010-08-17 China Petroleum & Chemical Corporation Cracking catalyst and a preparation process for the same
CN101568382B (en) * 2007-01-03 2011-06-29 沙特基础工业公司 Zeolite-kaolin catalyst composition
EA015026B1 (en) * 2007-01-03 2011-04-29 Сауди Бейсик Индастриз Корпорейшн Zeolite-kaolin catalyst composition
US20100029999A1 (en) * 2007-01-03 2010-02-04 Balu Shivaji Uphade Zeolite-binder catalyst composition
US8252710B2 (en) 2007-01-03 2012-08-28 Saudi Basic Industries Corporation Zeolite-binder catalyst composition
WO2008080517A1 (en) * 2007-01-03 2008-07-10 Saudi Basic Industries Corporation Zeolite-kaolin catalyst composition
US20220023836A1 (en) * 2018-12-21 2022-01-27 Jgc Catalysts And Chemicals Ltd. Metal trapping, method for manufacturing metal trapping, and fluid catalytic cracking catalyst
WO2021004502A1 (en) * 2019-07-09 2021-01-14 中国石油化工股份有限公司 Y-type molecular sieve containing rare earth element, preparation method therefor, and catalytic cracking catalyst containing the molecular sieve
WO2021004503A1 (en) * 2019-07-09 2021-01-14 中国石油化工股份有限公司 Y-type molecular sieve containing rare earth and preparation method therefor, and catalytic cracking catalyst containing molecular sieve
CN116212940A (en) * 2023-03-06 2023-06-06 青岛惠城环保科技集团股份有限公司 Preparation method of catalytic cracking catalyst with excellent coke and dry gas selectivity

Also Published As

Publication number Publication date
KR940003608A (en) 1994-03-12
KR100272870B1 (en) 2000-11-15

Similar Documents

Publication Publication Date Title
US5304299A (en) Catalytic cracking catalysts and additives
US4458023A (en) Catalyst manufacture
EP0837118B1 (en) Catalytic cracking catalyst and process
US5525210A (en) Sulfur reduction in FCC gasoline
AU2005282537B2 (en) Additives for metal contaminant removal
US5248642A (en) Catalytic cracking catalysts and additives
US5168086A (en) Catalytic cracking catalysis
JPH06134297A (en) Metal passivated/sox control composition for fcc
US5364516A (en) Catalytic cracking catalysts and additives
CA1135242A (en) Hydrocarbon cracking catalyst and process utilizing the same
GB2079737A (en) Zeolite-containing catalyst preparation
CA1171054A (en) Hydrocarbon conversion catalysts and processes utilizing the same
US6605207B2 (en) Bayerite alumina clad zeolite and cracking catalysts containing same
EP0568170B1 (en) Catalytic cracking catalysts and additives
US4847225A (en) Catalysts and catalyst supports
US20050205466A1 (en) Zn-containing FCC catalyst and use thereof for the reduction of sulfur in gasoline
CA1131193A (en) Octane improvement cracking catalyst
GB2109696A (en) Method for preparing a zeolite- containing fluid cracking catalyst
US20110017640A1 (en) Rare earth carbonate compositions for metals tolerance in cracking catalysts
JP3782137B2 (en) Hydrocarbon catalytic cracking catalyst composition and catalytic cracking method using the same
AU602163B2 (en) Catalytic cracking of metal contaminated feedstock
AU669543B2 (en) Catalytic cracking catalysts and additives
AU2011202519B2 (en) Additives for metal contaminant removal
US4894143A (en) Catalytic cracking process employing an aluminum silicon spinel-mullite-gamma alumia containing catalyst
JP3586544B2 (en) Catalyst composition for catalytic cracking of hydrocarbons

Legal Events

Date Code Title Description
AS Assignment

Owner name: W.R. GRACE & CO.-CONN., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, RANJIT;RITTER, RONALD ERIC;SCHAEFFER, HOWARD JOHN, III;REEL/FRAME:006543/0091;SIGNING DATES FROM 19920914 TO 19920925

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12