US5262048A - Apparatus to recover petroleum from slicks and spills - Google Patents

Apparatus to recover petroleum from slicks and spills Download PDF

Info

Publication number
US5262048A
US5262048A US07/945,950 US94595092A US5262048A US 5262048 A US5262048 A US 5262048A US 94595092 A US94595092 A US 94595092A US 5262048 A US5262048 A US 5262048A
Authority
US
United States
Prior art keywords
petroleum
boom
particles
porous
spill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/945,950
Inventor
Edwin H. Zimmerman
Percy N. Glynn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US07/945,950 priority Critical patent/US5262048A/en
Priority to US08/130,837 priority patent/US5423991A/en
Application granted granted Critical
Publication of US5262048A publication Critical patent/US5262048A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/06Barriers therefor construed for applying processing agents or for collecting pollutants, e.g. absorbent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/041Devices for distributing materials, e.g. absorbed or magnetic particles over a surface of open water to remove the oil, with or without means for picking up the treated oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/922Oil spill cleanup, e.g. bacterial
    • Y10S210/924Oil spill cleanup, e.g. bacterial using physical agent, e.g. sponge, mop

Definitions

  • This invention pertains to apparatus and a method by which petroleum slicks or spills floating upon or contained in bodies of water may be recovered for further processing into commercial materials, such as gasoline, fuel oil, lubricating oils and many other related products.
  • the petroleum may be floating on sea water, for example, or coating the bed of a body of water or the shore of such body, and recovered therefrom.
  • Other materials and methods have been developed previously and over which the present invention represents a meritorious improvement.
  • the following patents are submitted as representative of the pertinent prior art in this field of operation:
  • This reaction product forms a solid foam which is ground to a suitable fineness to produce particles that have a strong affinity for attracting and physically attaching to petroleum somewhat in the nature of a magnetic bond for petroleum, commonly referred to as "oil”, and such bond is so strong that separation of the "oil” from the powder particles can be achieved only by very strong centrifugal forces such as produced by a centrifuge operating at speeds of, for example, between 10,000 and 20,000 r.p.m.
  • Another object of the invention which is related to the foregoing object, is to utilize said modified polyurethane powder particles in several manners.
  • One manner is to encase said powder in a large porous flexible tube or sheath of woven or mesh, preferably synthetic resin, of suitable strength and diameter, and an extensive predetermined length is formed into a boom which floats upon water, upon or in which a petroleum oil slick is disposed, for purposes of substantially surrounding or subtending an area of said slick and adsorbing and strongly attracting and separably bonding the petroleum of the slick to said powder particles for purposes of recovering the petroleum from the water.
  • a second manner of using said particles is to blow predetermined amounts of said powder particles, either in newly produced form or used form, from which petroleum has been removed, over an area of said slick, such as by powerful blowers and nozzles to distribute the powder over the slick and permit the powder to attract and attach or bond the petroleum to the particles of powder.
  • Still another object of the invention is to fill said aforementioned casing, which is tube-like and porous, with said powder by means of an auger of suitable size, and of which the spiral blades preferably are relatively thin, and operating said auger at suitable rotational speed, while reciprocating the same to a limited degree axially within a rigid filling tube, upon and along the exterior of which said porous casing is progressively formed, the operation of said auger progressively filling said casing to a desired degree as the casing is formed.
  • a related object is to form the boom casing from a strip of suitable width of porous thermoplastic material of predetermined length coiled into a roll and progressively feeding it to a forming unit having a heater to seal edges of said strip together to form a tubular casing and, as formed, feeding the casing to the discharge of the auger and filling the casing, as formed, with the powder particles.
  • a still further object of the invention is to provide a barge or other suitable marine vessel upon which one or more preferably large-capacity centrifuges are operable to receive the petroleum-adsorbed powder particles by suitable feeding means upon said vessel, such as an inclined conveyor, of preferably large capacity, which receives the adsorbed powder particles which the boom at least partially surrounds or subtends, as well as that which is encased within said boom and which is gradually fed to said conveyor by progressively opening said casing to expose the saturated powder therein.
  • suitable feeding means such as an inclined conveyor, of preferably large capacity, which receives the adsorbed powder particles which the boom at least partially surrounds or subtends, as well as that which is encased within said boom and which is gradually fed to said conveyor by progressively opening said casing to expose the saturated powder therein.
  • the separated petroleum then is delivered directly to a tank or otherwise, alongside the aforementioned vessel, for example, and the powder particles from which the petroleum has been separated by said centrifuges are ready for reuse by returning it, for example, to a re-formed boom casing made from the open casing that has just been emptied, thus minimizing cost.
  • the casing which has been opened may be rendered tubelike by heat-sealing overlying edges of the opened casing or by stitching the longitudinal edges with heavy Nylon thread, for example.
  • One other object of the invention is to capture any portion of an oil or petroleum slick that has become deposited upon a shore area or has sunk to the bed of the water upon which it floated previously, by means of agitating such deposits, for example, by the use of strong jets of water applied by hydraulic power against such deposits to agitate the same while spreading said aforementioned powder particles upon the aforementioned agitated deposits in or on the water to adsorb the petroleum thus agitated and then retrieving the adsorbed powder particles either by a boom encircling the same while agitated or otherwise and subsequently delivering the resulting material to a centrifuge.
  • Still another object of the invention is to move masses of distributed powder particles, disposed on the slick, which have adsorbed at least part of the slick by engaging the same with a floating section of the porous powder particle-containing boom, while opposite ends of said boom are pulled respectively with a barge by means of tugboats or the like attached to said ends of a boom, thereby forcing the floating powder particles and adsorbed petroleum toward a wide inclined ramp on one end of said barge and upon which a conveyor of transversely-spaced endless chains or the like are arranged with crossbars having transversely-spaced upstanding prongs fixedly attached thereto and operable to engage the moving mass of petroleum-saturated powder particles and force it up said ramp for delivery to centrifuges, while any water in the mass drains through perforations in the ramp.
  • One other object of the invention is to move said ends of the boom progressively toward means to open said boom by slitting it longitudinally as said boom reaches said ramp, progressively to expose the petroleum-saturated particles therein for discharge to said ramp, and further including means to connect the slit edges of said boom to re-establish it in flexible tubular form for reuse.
  • Still another important object of the invention is to include longitudinally in the porous boom, a cable of sufficient diameter and strength to sustain the load imposed upon it when said boom and the barge connected to it are being towed by tugboats or the like connected respectively to the ends of said boom when embracing an area of the spill or slick between the opposite side lengths of said boom.
  • FIG. 1 is a plan view of a system and mechanism by which petroleum can be recovered from a slick or spill thereof.
  • FIG. 2 is a side elevation of the system and mechanism shown in FIG. 1.
  • FIG. 3 is a section of the plan view of FIG. 1, shown on a larger scale than shown therein and in greater detail.
  • FIG. 4 is a fragmentary perspective view of details of FIG. 3 and illustrated on a still larger scale than in FIG. 3.
  • FIG. 5 is an end view of certain elements of FIGS. 2, 3, 6 and 7.
  • FIG. 6 is a side elevation of the elements of FIG. 5.
  • FIG. 7 is an enlarged view of part of FIG. 5.
  • FIG. 8 is a side elevation of FIG. 9 as seen from the right-hand side thereof.
  • FIG. 9 is a partly fragmentary end view of FIG. 8 as seen from the left-hand end thereof.
  • FIG. 10 is a partly exploded perspective view of the saw assembly of FIGS. 8 and 9.
  • FIG. 11 is a fragmentary perspective view of a section of porous boom casing and cable member of the invention.
  • FIG. 12 is a fragmentary perspective view of the ramp and conveyor to feed petroleum-saturated particles to a centrifuge.
  • FIG. 13 is a fragmentary perspective view of the unit which forms the boom casing and filling unit of the invention.
  • FIG. 14 is a fragmentary perspective view of the boomemptying unit for delivering petroleum-saturated particles to a centrifuge.
  • FIG. 15 is a fragmentary perspective view of delivery of petroleum-adsorbed particles to a centrifuge.
  • FIG. 16 is a fragmentary sectional view illustrating salvage of a petroleum layer from a bed or shore of a body of water.
  • FIG. 17 is a fragmentary perspective view of mechanism by which a large particle-delivery nozzle is oscillated.
  • FIG. 18 is a diagrammatic layout of the overall process by which petroleum is recovered from a spill thereof on a body of water.
  • the principal units and devices, as well as the system, of the invention primarily are intended to be mounted upon a marine vessel, such as a scow 10, which is intended to float upon the body of water from which the spill is to be recovered.
  • a marine vessel such as a scow 10
  • the scow 10 is propelled in a forward direction by a pair of suitable power means, such as tugboats 12.
  • the scow 10 is connected to the tugboats preferably by substantial lengths of booms 14 which each comprise a tubular configuration of predetermined length and, for example, of suitable diameter, such as between three and four feet.
  • a unit 16 which is illustrated as being mobile, but which may be stationary, if desired, comprises a housing containing a series of four impervious belts 18 which are mounted upon a suitable frame and are so disposed that the inner surfaces thereof define a rectangular space 20, the inlet end of which is shown particularly in FIGS. 5 and 7.
  • the frame 22 supports a motor 24 that has a drive pulley or gear 26 around which a belt or chain 28 extends and also extends around another pulley or gear 30 that is affixed to one end of a shaft 32 to drive, for example, the uppermost belt 18 and drive also, by a series of pairs of bevel gears 34, all of the belts 18.
  • the inner surfaces thereof, which define a rectangular space 20 move in a common direction from the inlet end, shown in FIGS. 5 and 7, to the opposite discharge end.
  • the system also includes at least a pair of tanks 36 and 38, which each have a conduit 40 extending from each tank into the inlet end of space 20. While the belts 18 are moving in feeding direction from the inlet end of said space, the fluid material discharging from tanks 36 and 38 becomes mixed within the space 20.
  • reaction and product comprises mixing from tank 36, two (2) quarts of a commercial type of polyurethane, sold under the tradename Isofoam Mo 16255A and one and one-half (11/2) quarts of another type of polyurethane, sold under the tradename Isofoam Mo 16255B. These are mixed with 126 grams of a polyquaternary amine and a catalyst from tank 38, which is sold under the tradename Chemlink 6260. These ingredients are mixed rapidly for twenty seconds and poured into a mold in which they rise for a period of 30 seconds. The mixture then is left to cure for at least 11/2 hours to form a solid product which then is disintegrated into powder particles.
  • the prime reactant is the Chemlink 6260.
  • This product may be formed in larger quantities on the same ratio as above.
  • the powder particles thus formed have been found to possess a strong affinity for petroleum that somewhat resembles a positive magnetic charge. Further, one gram of the powder particles has been observed to adsorb about 2 grams of water and at least 10 grams of petroleum. Also, no fish mortality has been observed relative to this powder per se, and very low mortality was observed in the mixed powder and petroleum relative to fish.
  • the desired solid may be formed at least in batch lots.
  • the edges of the belts 18, which define the rectangular space 20 preferably are close to each other in order to contain the supply from tanks 36 and 38 while the same is introduced into the space 20 wherein the two compositions react with each other and form a foam product, which, upon curing, forms a rectangular block 41, see FIG. 6 in phantom, which is cut into desired lengths to form a supply of blocks of solid porous resinous material.
  • These blocks are then disintegrated into powder form by the disintegrating unit 42, details of which are best shown in FIGS. 9 and 10 and to which attention is not directed.
  • the disintegrating unit 42 comprises a pair of belts 44, best shown in FIG. 9, which are suitably mounted upon a frame, not shown, and operate to feed block 41 toward the assembly of saws 46 which actually are mounted in gang form, as shown in exemplary manner in FIG. 11.
  • These saws can be between one foot and two feet in diameter, depending on the size of the blocks, and the same are preferably separated slightly from each other by means of a washer 48 of, for example, .030 inches in thickness, or larger, and the teeth of all the saws extend in the same direction.
  • the saws are mounted upon a suitable shaft 50 and the shafts of all of the same are supported in suitable anti-friction bearings, not shown, within frame 52.
  • the frame 52 supports a power unit 54, such as an electric motor of suitable output, which drives a sheave 56, and a pulley wheel which, by means of belts 58, drives corresponding pulleys 60 on the shafts 50.
  • a power unit 54 such as an electric motor of suitable output, which drives a sheave 56, and a pulley wheel which, by means of belts 58, drives corresponding pulleys 60 on the shafts 50.
  • the simultaneous operation of the saws 46 progressively disintegrates the block 41 into powder form, as shown in FIG. 9, which is discharged into housing 62 within which an auger 64 is rotatably supported and is driven by suitable power means, such as motor 67, see FIG. 9, that operates the auger to move the powder material in the direction of the arrow 66 to effect feed of the powder material to a boom-forming unit 68, shown in detail in FIG. 14, and described hereinafter.
  • suitable power means such as motor 67, see FIG. 9, that operates the auger to move the powder material in the direction of the arrow 66 to effect feed of the powder material to a boom-forming unit 68, shown in detail in FIG. 14, and described hereinafter.
  • auger 64 Associated with housing 62 and auger 64 is a blower unit 70 in which the propeller, not shown, is driven by a motor 72 in a direction to discharge the powder material from the outlet 74 to deliver the powder material to means to distribute the powder material upon the surface of a spill as described hereinafter.
  • the principal function of auger 64 is to fill a porous boom through the use of the unit 68, now to be described.
  • a coiled roll 76 of predetermined length of porous sheet plastic or synthetic resin material 78 preferably is thermoplastic in order that opposite edges thereof, when disposed in tubular configuration, as shown in FIG. 14, near the left-hand end thereof, may be connected by means of heat sufficient to stick said edges together.
  • the heating unit 80 accomplishes such connection at appropriate temperatures.
  • the unit 80 also may comprise a simple sewing machine unit adapted to connect the edges of the material 78 by means of stitching, comprising relatively heavy thread composed of strong synthetic resin, such as sold under the tradename "NYLON".
  • a tube 82 which is of porous synthetic thermoplastic resin which, when filled with petroleum adsorbing particles of synthetic resin, comprises the boom 14.
  • the powdered particles of adsorbing material formed from the block 41 by the saws 46 are discharged from the opening 84, shown in phantom, in the lower part of frame 52, where the particles are engaged by the auger 64 within the housing 62 and around which the tube 82, comprising the boom cover, is supported and slidably moves in the direction of the arrow 84.
  • an indefinite length of cable 86 is delivered from a coil supply thereof, not shown, and is directed to the interior of the tube 82, thus formed, as described, to withstand a tensile stress placed upon the tube 82 when the tube 82 is transformed into the floating boom 14, shown in FIG. 1, the same being filled with the powdered adsorptive and magnetically-attractive particles formed by the disintegrating unit 42.
  • an elongated tubular nozzle 88 of rigid construction of suitable material, preferably metal, has an upstanding portion 90, which is connected to and is supported by a base member 92, which is oscillatably-supported by the fragmentary section 94 of the deck of barge 10.
  • Base member 92 has a forked projection 96 integral therewith and extending radially, as shown in FIG. 18.
  • a preferably electric motor 98 also is supported by the deck 94 and has a rotating member 100 upon which an eccentric pin 102 is affixed and is engagable with the slot of the forked member 96, whereby, upon rotation of the member 100, oscillation of the projecting and preferably downwardly extending nozzle 88 is effected for purposes of distributing the powder material generated by the disintegrating unit 42, such oscillation being illustrated by dotted lines in FIG. 1.
  • blower unit 70 which is operated by motor 72, preferably reversible, for purposes of the blower 70 receiving powdered adsorptive particles of material from the housing 62 and discharging it through the outlet 74 which is interconnected to the lower inlet of the upstanding portion 90 of nozzle 88 by a simple conduit, not shown. Due to the oscillatable nature of the nozzle 88, it can readily be visualized from FIG. 1 that a substantial area of the body of water which is subtended by the booms 14 will receive a wide covering of the resinous particles generated by the unit 42 and blown from the forward end of the barge 10 unto a petroleum spill floating upon the aforementioned body of water.
  • further powder of such nature also may be distributed from overhead by aircraft means, such as exemplary helicopters 104.
  • aircraft means such as exemplary helicopters 104.
  • the tugboats 12 move the barge 10 forwardly to embrace an area of a petroleum spill encompassed at the sides at least by the booms 14, the spill, in effect, which is substantially stationary, will have the barge 10 moved toward it and thereby direct the floating spill toward the receiving ramp 106, details of which are best shown in FIGS. 3, 4 and 13.
  • an inclined frame 108 which, in actual use, is supported by the deck 110 of the barge or scow 10, such as by the use of upright members 112 connected at the lower ends thereof to the deck 110, and the upper ends being connected to the opposite sides of the frame 108.
  • the forward end of the frame extends beyond the forward end of the scow 10 and the forward end of said frame extends into the water 114, whereby the forward end of it will be beneath the spill floating upon the water 114.
  • Additional connecting means comprising suitable beams 116 preferably are connected to opposite sides of the scow 10 and the forward ends project beyond the scow 10 and are connected by any suitable means such as bolts 118, to the sides of the frame 108, it being understood that such beams respectively are connected to opposite sides of the frame 108, as well as the opposite sides of the scow 10.
  • the inclined frame 108 is relatively wide compared to the width of the scow 10, whereby it is capable of engaging and advancing an appreciable area of accumulated and saturated particles of the material which is distributed upon the spill referred to above and illustrated in FIG. 1.
  • the frame 108 preferably supports a plurality of endless flexible conveyors 120 respectively each comprising at opposite sides thereof, endless flexible chains 122.
  • the frame 108 includes an upper perforated sheet 123.
  • the perforations are relatively small, as of the order of not over an eighth inch in diameter, or less.
  • the adjacent endless conveyors 120 are each composed of the flexible chains 122 at opposite edges thereof and extending between each pair of chains are a series of relatively shallow channels 124, the opposite ends of which are connected to the chains.
  • each channel Connected to and extending upward from each channel is a row of spaced pins or prongs 126.
  • the pins or prongs 126 are readily adapted to engage a layer of saturated particles of the aforementioned powder which have adsorbed the petroleum from the surrounded area of slick and movement of the scow 10 by the tugboats 12 causes movement of the saturated particles toward the ramp 106 which, by extending at its forward end below the floating material, will engage said layer from beneath by means of the pins or prongs 126, will advance the mass of the material up the ramp and discharge it at the upper end thereof into a receiving trough 128.
  • the endless conveyors 120 at opposite ends thereof are supported upon rotating members 130 and the uppermost members are driven by a belt or chain 132, which extends around a gear or pulley of an electric motor 134 on deck 110.
  • the spiral thereof is such that it will feed the broken chunks and pieces of saturated particles 136 toward one of the centrifuge units 142 as can be visualized from FIG. 3, while the other centrifuge remains in standby.
  • the centrifuge has a discharge 144 for petroleum, while the powder material from which the petroleum has been separated is discharged from the centrifuge into a suitable receptacle 146, which, for example, is shown in phantom in FIG.
  • the endless conveyors 120 of the several sets thereof may be of the order of six feet wide, whereby if there are three such conveyors in side-by-side relationship, the overall width of the receiving ramp 106 may be of the order of approximately eighteen feet.
  • Such a ramp will accommodate a substantial amount of material to be serviced by the centrifuge to which it is directed. Due to the motor 140 preferably being of reversible nature, if one of the centrifuges becomes unservicable for any reason, the other one readily can be placed in operation to move the saturated material to the opposite end of the auger for delivery to the centrifuge 142.
  • the illustrated two sections of the boom 14 which also has been referred to as tube 82 hereinabove, and which contains the aforementioned particles of resinous material that will absorb the petroleum slick as the boom encounters it, or vice versa
  • practical operation of the system would somewhat dictate that a particle-filled perforated or porous tube 82 which comprises the booms 14, can remain floating for a substantial period of time, such as a number of weeks or even possibly several months while the scow 10 is moved forward by the tugboats 14 and progressively subtend areas of the floating slick continuously, which is progressively delivered to the receiving ramp 106 and from there progressively is delivered to one or the other of the centrifuges 142.
  • the boom-emptying unit 150 illustrated in perspective in FIG. 14.
  • the boom-emptying unit 150 receives one end of the filled and saturated boom 14, moves it over a support, such as a roller 152, while the tube or casing 82 thereof passes beneath a slitter unit 154, which incises the tube 82 longitudinally at the top of it.
  • a support such as a roller 152
  • the mass of saturated material 136 tends to spread the opposite edges of the slit tube 82 away from each other, whereby the material 136 is free to pass down the guide chute 156 into the centrifuge 142 from which the separated petroleum exits through discharge 144 and the adsorbing particles from which the petroleum has been extracted, discharge, for example, from the lower end of centrifuge unit 142, as clearly shown in FIGS. 14 and 15.
  • the slit tube 82 may be coiled upon a reel or drum 158, while the cable 86 is coiled upon spool 160.
  • the upper edge of the guide chute 156 may comprise a scraper edge 162 to relatively adequately clean the saturated material 136 from the now sheet-like tube 82 prior to it being coiled upon the drum 158.
  • the roll of the tube material 82 is in condition to be directed to the boom-forming unit 68 and be restored to tubular configuration for further use.
  • one of the centrifuges may serve as a standby and, as illustrated in FIG. 15, one of such centrifuges is shown in position to receive saturated particle material 136 from the receiving trough 128 as delivered to one of the opposite ends thereof as shown in FIG. 3 by auger 138.
  • a reversible motor not shown, is connected to the shaft of the auger 138 conveniently and may be operated selectively to deliver the saturated material 136 to either of the two centrifuges 142, as desired.
  • the shaft 176 of auger 64 also extends through an appropriate auxiliary housing 178 that is affixed to one end of motor 67 for support thereby.
  • the purpose of providing reciprocation of the auger by shaft 176 is to permit it to function somewhat as a piston incident to loading the porous tube 82 with the adsorptive particles of powder and to prevent jamming of powder within the tube which, when filled, comprises the boom 14.
  • the housing 178 supports a small gear 180 that is affixed to the shaft of motor 67.
  • Gear 180 meshes with larger diameter gear 182 that has a key, not shown, which reciprocates in the spline 184 in shaft 176 indicent to the shaft 176 and the auger being reciprocated by a double-acting hydraulic cylinder 186.
  • conduits 188 and 190 connected thereto and extend to a suitable conventional supply of hydraulic fluid and control mechanism, neither of which are shown in FIG. 9 since they are of standard type.
  • a longitudinal support 192 which is ridigly affixed at one end to and extends horizontally from the housing 62.
  • the outer end of support 192 has a pivot pin that pivotally supports the lower end of rocker arm 196.
  • rocker arm 196 is pivotally connected to the outer end of piston rod 198, which projects from one end of cylinder 186 and the opposite end of said cylinder preferably is pivotally connected to housing 62 by pivot pin 194.
  • the upper end of rocker arm 196 supports a thrust bearing 200, which also is provided with limited movement transverse to the axis of shaft 176 and thereby accommodates the pivotal movement of the rocker arm 196 relative to the fixed axis of shaft 176.
  • the present invention provides various units all separable in conjunction with each other effectively to recover petroleum from a spill thereof floating upon a body of water or disposed upon the bed of said body or the adjacent shore.
  • the system and apparatus comprising the present invention essentially is a relatively complete arrangement for recovering petroleum spills either floating upon a body of water or disposed upon the bed thereof or a shore of the body.
  • the system primarily comprises a unit 16 by which a porous block of synthetic resin is formed into powder particles that are adapted to adsorb petroleum as it engages it, not only by the phenomenon of adsorption but also by a strong inherent affinity for the particles to strongly bond to the petroleum to such a degree that high-powered centrifugal force is required to recover the petroleum from the particles.
  • Blocks or units of the resin material are disintegrated by the unit 42 into particles of a size in the range of between one-sixteenth and one-eighth of an inch, for example, and the quantity of said material is enclosed within a tube 82 of synthetic resin, preferably of thermoplastic nature and edges of a sheet of said material are adapted to be connected to form such tube either by heat or stitching, for example.
  • the shredded powder material when introduced into the tube by the boom-forming unit 68, produces an indefinite length of boom 14, said booms also contain for pulling strength, a cable 86 having a diameter of the order of approximately three-fourths to one inch and formed, for example, from metal strands or synthetic resin such as sold under the tradename "NYLON".
  • Attached to the forward end of the barge or scow is an inclined ramp which reaches beneath the level of the spill and extends above it and is provided with conveyor means highly adequate to engage and propel masses of adsorbed petroleum in synthetic resin powder material for delivery to a centrifuge unit which operates to separate the petroleum from the powder material and thereby recover the petroleum, while the powder material may be reused for further adsorption, such as spraying the same upon additional areas of the spill or encased within the porous tubing which comprises a boom and is capable of adsorbing areas of a spill when contacting the same and, ultimately, petroleumsaturated powder within the boom may be recovered by slitting the tube or casing of the boom, discharging the contents to a centrifuge, and then the porous material, which usually is rolled when emptied of the saturated particle material, then may be reformed into a tube and, when refilled with unsaturated or new particle material, may be reused to serve as a boom.
  • the present system of reclaiming petroleum from spills is efficient and effective when operating the centrifuge between 10,000 and 20,000 r.p.m.

Abstract

This invention comprises an apparatus and a method of using it to recover petroleum from a spill or the like floating, for example, on a body of water. Powder particles which have a strong affinity for combining physically with petroleum are adapted either to be sprayed upon the spill to adsorb it or surround the floating particles with a boom for movement to apparatus including a centrifuge operated at high speeds to separate the petroleum from the particles and thereby recover the same. The preferred apparatus also includes a porous boom containing such particles and surrounding a slick with said boom which floats on the body of water on which the spill is disposed and, with the aid of tugboats or the like, the boom adsorbs petroleum and the tugboats move the boom to discharge mechanism. The apparatus also includes devices operable to remove adsorbed particles from the boom and recover the petroleum from the particles by centrifugal action as stated above.

Description

This application is a continuation-in-part of Ser. No. 727,056, filed Jul 8, 1991, and which application is now abandoned.
BACKGROUND OF THE INVENTION
This invention pertains to apparatus and a method by which petroleum slicks or spills floating upon or contained in bodies of water may be recovered for further processing into commercial materials, such as gasoline, fuel oil, lubricating oils and many other related products. The petroleum may be floating on sea water, for example, or coating the bed of a body of water or the shore of such body, and recovered therefrom. Other materials and methods have been developed previously and over which the present invention represents a meritorious improvement. The following patents are submitted as representative of the pertinent prior art in this field of operation:
______________________________________                                    
U.S. Pat. No.                                                             
           3,657,125 - Strickman                                          
                           April 18, 1972                                 
           3,739,913 - Bogosian                                           
                           June 19, 1973                                  
           3,763,621 - Klein et al                                        
                           Oct. 9, 1973                                   
           3,886,067 - Miranda                                            
                           May 27, 1975                                   
           3,888,766 - De Young                                           
                           June 10, 1975                                  
           3,976,570 - McCray                                             
                           Aug. 24, 1976                                  
           4,096,700 - Muramatsu                                          
                           June 27, 1978                                  
           4,120,788 - Ellis                                              
                           Oct. 17, 1978                                  
           4,188,155 - Langermann                                         
                           Feb. 12, 1980                                  
           4,234,420 - Turbeville                                         
                           Nov. 18, 1980                                  
           4,366,067 - Golding et al                                      
                           Dec. 28, 1982                                  
           4,389,357 - Chu et al                                          
                           June 21, 1983                                  
           4,567,820 - Munsell                                            
                           Feb. 4, 1986                                   
           4,645,376 - Simpson                                            
                           Feb. 24, 1987                                  
           5,009,790 - Bustamante                                         
                           April 23, 1991                                 
______________________________________                                    
SUMMARY OF THE INVENTION
It is the principal object of the present invention to utilize a powder-like resin version of certain polyurethanes, one of which contains a catalyst, and these are reacted with a commercial polyquaternary amine product, sold under the tradename "Chemlink 6360". This reaction product forms a solid foam which is ground to a suitable fineness to produce particles that have a strong affinity for attracting and physically attaching to petroleum somewhat in the nature of a magnetic bond for petroleum, commonly referred to as "oil", and such bond is so strong that separation of the "oil" from the powder particles can be achieved only by very strong centrifugal forces such as produced by a centrifuge operating at speeds of, for example, between 10,000 and 20,000 r.p.m.
It is the overall object of the present invention to utilize the above-described modified polyurethane which, in accordance with the present invention, is formed into a blocklike member of certain useful lengths and cross-sections which are operated upon by disintegrating means, such as rotary saws, to produce small irregular shapes of resin powder particles having a capacity to adsorb and strongly attract and bond to petroleum, or "oil", up to as much as sixteen times its own weight, depending upon the viscosity of the petroleum.
Another object of the invention, which is related to the foregoing object, is to utilize said modified polyurethane powder particles in several manners. One manner is to encase said powder in a large porous flexible tube or sheath of woven or mesh, preferably synthetic resin, of suitable strength and diameter, and an extensive predetermined length is formed into a boom which floats upon water, upon or in which a petroleum oil slick is disposed, for purposes of substantially surrounding or subtending an area of said slick and adsorbing and strongly attracting and separably bonding the petroleum of the slick to said powder particles for purposes of recovering the petroleum from the water.
A second manner of using said particles is to blow predetermined amounts of said powder particles, either in newly produced form or used form, from which petroleum has been removed, over an area of said slick, such as by powerful blowers and nozzles to distribute the powder over the slick and permit the powder to attract and attach or bond the petroleum to the particles of powder.
Still another object of the invention is to fill said aforementioned casing, which is tube-like and porous, with said powder by means of an auger of suitable size, and of which the spiral blades preferably are relatively thin, and operating said auger at suitable rotational speed, while reciprocating the same to a limited degree axially within a rigid filling tube, upon and along the exterior of which said porous casing is progressively formed, the operation of said auger progressively filling said casing to a desired degree as the casing is formed.
Relative to the foregoing object, a related object is to form the boom casing from a strip of suitable width of porous thermoplastic material of predetermined length coiled into a roll and progressively feeding it to a forming unit having a heater to seal edges of said strip together to form a tubular casing and, as formed, feeding the casing to the discharge of the auger and filling the casing, as formed, with the powder particles.
A still further object of the invention is to provide a barge or other suitable marine vessel upon which one or more preferably large-capacity centrifuges are operable to receive the petroleum-adsorbed powder particles by suitable feeding means upon said vessel, such as an inclined conveyor, of preferably large capacity, which receives the adsorbed powder particles which the boom at least partially surrounds or subtends, as well as that which is encased within said boom and which is gradually fed to said conveyor by progressively opening said casing to expose the saturated powder therein. Progressively moving the ends of said casing of the boom forwardly into the spill, such as by tugboats, and also progressively move the floating barge and the surrounded or subtended saturated powder particles toward said conveyor, whereby substantially all of the petroleumadsorbed powder particles are fed progressively to said centrifuges for separation of the petroleum or "oil" from said powder particles.
The separated petroleum then is delivered directly to a tank or otherwise, alongside the aforementioned vessel, for example, and the powder particles from which the petroleum has been separated by said centrifuges are ready for reuse by returning it, for example, to a re-formed boom casing made from the open casing that has just been emptied, thus minimizing cost. The casing which has been opened may be rendered tubelike by heat-sealing overlying edges of the opened casing or by stitching the longitudinal edges with heavy Nylon thread, for example.
One other object of the invention is to capture any portion of an oil or petroleum slick that has become deposited upon a shore area or has sunk to the bed of the water upon which it floated previously, by means of agitating such deposits, for example, by the use of strong jets of water applied by hydraulic power against such deposits to agitate the same while spreading said aforementioned powder particles upon the aforementioned agitated deposits in or on the water to adsorb the petroleum thus agitated and then retrieving the adsorbed powder particles either by a boom encircling the same while agitated or otherwise and subsequently delivering the resulting material to a centrifuge.
Still another object of the invention is to move masses of distributed powder particles, disposed on the slick, which have adsorbed at least part of the slick by engaging the same with a floating section of the porous powder particle-containing boom, while opposite ends of said boom are pulled respectively with a barge by means of tugboats or the like attached to said ends of a boom, thereby forcing the floating powder particles and adsorbed petroleum toward a wide inclined ramp on one end of said barge and upon which a conveyor of transversely-spaced endless chains or the like are arranged with crossbars having transversely-spaced upstanding prongs fixedly attached thereto and operable to engage the moving mass of petroleum-saturated powder particles and force it up said ramp for delivery to centrifuges, while any water in the mass drains through perforations in the ramp.
One other object of the invention, related to the foregoing object, is to move said ends of the boom progressively toward means to open said boom by slitting it longitudinally as said boom reaches said ramp, progressively to expose the petroleum-saturated particles therein for discharge to said ramp, and further including means to connect the slit edges of said boom to re-establish it in flexible tubular form for reuse.
Still another important object of the invention is to include longitudinally in the porous boom, a cable of sufficient diameter and strength to sustain the load imposed upon it when said boom and the barge connected to it are being towed by tugboats or the like connected respectively to the ends of said boom when embracing an area of the spill or slick between the opposite side lengths of said boom.
Details of the foregoing objects, as well as other objects thereof, are set forth below or illustrated in the attached drawings comprising a part thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view of a system and mechanism by which petroleum can be recovered from a slick or spill thereof.
FIG. 2 is a side elevation of the system and mechanism shown in FIG. 1.
FIG. 3 is a section of the plan view of FIG. 1, shown on a larger scale than shown therein and in greater detail.
FIG. 4 is a fragmentary perspective view of details of FIG. 3 and illustrated on a still larger scale than in FIG. 3.
FIG. 5 is an end view of certain elements of FIGS. 2, 3, 6 and 7.
FIG. 6 is a side elevation of the elements of FIG. 5.
FIG. 7 is an enlarged view of part of FIG. 5.
FIG. 8 is a side elevation of FIG. 9 as seen from the right-hand side thereof.
FIG. 9 is a partly fragmentary end view of FIG. 8 as seen from the left-hand end thereof.
FIG. 10 is a partly exploded perspective view of the saw assembly of FIGS. 8 and 9.
FIG. 11 is a fragmentary perspective view of a section of porous boom casing and cable member of the invention.
FIG. 12 is a fragmentary perspective view of the ramp and conveyor to feed petroleum-saturated particles to a centrifuge.
FIG. 13 is a fragmentary perspective view of the unit which forms the boom casing and filling unit of the invention.
FIG. 14 is a fragmentary perspective view of the boomemptying unit for delivering petroleum-saturated particles to a centrifuge.
FIG. 15 is a fragmentary perspective view of delivery of petroleum-adsorbed particles to a centrifuge.
FIG. 16 is a fragmentary sectional view illustrating salvage of a petroleum layer from a bed or shore of a body of water.
FIG. 17 is a fragmentary perspective view of mechanism by which a large particle-delivery nozzle is oscillated.
FIG. 18 is a diagrammatic layout of the overall process by which petroleum is recovered from a spill thereof on a body of water.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
The system and apparatus comprising the present invention which are adapted to recover petroleum spills, either while floating upon a body of water or disposed on a shore or bed of a body of water, are illustrated on the above-described figures of the drawings and description of the details thereof is as follows:
The principal units and devices, as well as the system, of the invention primarily are intended to be mounted upon a marine vessel, such as a scow 10, which is intended to float upon the body of water from which the spill is to be recovered. To effect operation of the system and apparatus, and referring to FIG. 1, it will be seen that the scow 10 is propelled in a forward direction by a pair of suitable power means, such as tugboats 12. The scow 10 is connected to the tugboats preferably by substantial lengths of booms 14 which each comprise a tubular configuration of predetermined length and, for example, of suitable diameter, such as between three and four feet. There is available on the market certain types of mesh sheeting formed of synthetic, preferably thermoplastic resins, and in which sheeting the substantially uniform size of perforations are of the order of 1/16 to 1/8 inch in diameter. These perforations are for the purpose of permitting ingress of petroleum, as well as draining of water while particles of reacted polyurethane material adsorb the petroleum from a spill and attach the same strongly thereto by means not only of adsorption but also by an unusually strong bonding force, which is the distinctive characteristic of the particles referred to above and described in detail hereinafter.
FORMATION OF ADSORPTIVE PARTICLES
Referring particularly to FIGS. 5-7, a unit 16, which is illustrated as being mobile, but which may be stationary, if desired, comprises a housing containing a series of four impervious belts 18 which are mounted upon a suitable frame and are so disposed that the inner surfaces thereof define a rectangular space 20, the inlet end of which is shown particularly in FIGS. 5 and 7. The frame 22 supports a motor 24 that has a drive pulley or gear 26 around which a belt or chain 28 extends and also extends around another pulley or gear 30 that is affixed to one end of a shaft 32 to drive, for example, the uppermost belt 18 and drive also, by a series of pairs of bevel gears 34, all of the belts 18. The inner surfaces thereof, which define a rectangular space 20, move in a common direction from the inlet end, shown in FIGS. 5 and 7, to the opposite discharge end.
Referring to FIGS. 5 and 6, the system also includes at least a pair of tanks 36 and 38, which each have a conduit 40 extending from each tank into the inlet end of space 20. While the belts 18 are moving in feeding direction from the inlet end of said space, the fluid material discharging from tanks 36 and 38 becomes mixed within the space 20.
For a specific example, on a small scale of the reaction and product, it comprises mixing from tank 36, two (2) quarts of a commercial type of polyurethane, sold under the tradename Isofoam Mo 16255A and one and one-half (11/2) quarts of another type of polyurethane, sold under the tradename Isofoam Mo 16255B. These are mixed with 126 grams of a polyquaternary amine and a catalyst from tank 38, which is sold under the tradename Chemlink 6260. These ingredients are mixed rapidly for twenty seconds and poured into a mold in which they rise for a period of 30 seconds. The mixture then is left to cure for at least 11/2 hours to form a solid product which then is disintegrated into powder particles. The prime reactant is the Chemlink 6260. This product may be formed in larger quantities on the same ratio as above. The powder particles thus formed have been found to possess a strong affinity for petroleum that somewhat resembles a positive magnetic charge. Further, one gram of the powder particles has been observed to adsorb about 2 grams of water and at least 10 grams of petroleum. Also, no fish mortality has been observed relative to this powder per se, and very low mortality was observed in the mixed powder and petroleum relative to fish.
The foregoing ingredients are of a somewhat syrupy consistency and by providing suitable sealing strips for the mixture relative to the belts 18 shown in FIGS. 5-8, the desired solid may be formed at least in batch lots. It will be understood that the edges of the belts 18, which define the rectangular space 20, preferably are close to each other in order to contain the supply from tanks 36 and 38 while the same is introduced into the space 20 wherein the two compositions react with each other and form a foam product, which, upon curing, forms a rectangular block 41, see FIG. 6 in phantom, which is cut into desired lengths to form a supply of blocks of solid porous resinous material. These blocks are then disintegrated into powder form by the disintegrating unit 42, details of which are best shown in FIGS. 9 and 10 and to which attention is not directed.
FOAM BLOCK DISINTEGRATING UNIT
The disintegrating unit 42 comprises a pair of belts 44, best shown in FIG. 9, which are suitably mounted upon a frame, not shown, and operate to feed block 41 toward the assembly of saws 46 which actually are mounted in gang form, as shown in exemplary manner in FIG. 11. These saws can be between one foot and two feet in diameter, depending on the size of the blocks, and the same are preferably separated slightly from each other by means of a washer 48 of, for example, .030 inches in thickness, or larger, and the teeth of all the saws extend in the same direction. The saws are mounted upon a suitable shaft 50 and the shafts of all of the same are supported in suitable anti-friction bearings, not shown, within frame 52.
The frame 52 supports a power unit 54, such as an electric motor of suitable output, which drives a sheave 56, and a pulley wheel which, by means of belts 58, drives corresponding pulleys 60 on the shafts 50.
The simultaneous operation of the saws 46 progressively disintegrates the block 41 into powder form, as shown in FIG. 9, which is discharged into housing 62 within which an auger 64 is rotatably supported and is driven by suitable power means, such as motor 67, see FIG. 9, that operates the auger to move the powder material in the direction of the arrow 66 to effect feed of the powder material to a boom-forming unit 68, shown in detail in FIG. 14, and described hereinafter.
Associated with housing 62 and auger 64 is a blower unit 70 in which the propeller, not shown, is driven by a motor 72 in a direction to discharge the powder material from the outlet 74 to deliver the powder material to means to distribute the powder material upon the surface of a spill as described hereinafter. The principal function of auger 64 is to fill a porous boom through the use of the unit 68, now to be described.
A coiled roll 76 of predetermined length of porous sheet plastic or synthetic resin material 78 preferably is thermoplastic in order that opposite edges thereof, when disposed in tubular configuration, as shown in FIG. 14, near the left-hand end thereof, may be connected by means of heat sufficient to stick said edges together. The heating unit 80 accomplishes such connection at appropriate temperatures. As an alternative, the unit 80 also may comprise a simple sewing machine unit adapted to connect the edges of the material 78 by means of stitching, comprising relatively heavy thread composed of strong synthetic resin, such as sold under the tradename "NYLON". As shown in FIG. 14, as the edges of the sheet 78 are connected to form a tube 82, which is of porous synthetic thermoplastic resin which, when filled with petroleum adsorbing particles of synthetic resin, comprises the boom 14. The powdered particles of adsorbing material formed from the block 41 by the saws 46, are discharged from the opening 84, shown in phantom, in the lower part of frame 52, where the particles are engaged by the auger 64 within the housing 62 and around which the tube 82, comprising the boom cover, is supported and slidably moves in the direction of the arrow 84. Incident to forming the boom tube 82, an indefinite length of cable 86 is delivered from a coil supply thereof, not shown, and is directed to the interior of the tube 82, thus formed, as described, to withstand a tensile stress placed upon the tube 82 when the tube 82 is transformed into the floating boom 14, shown in FIG. 1, the same being filled with the powdered adsorptive and magnetically-attractive particles formed by the disintegrating unit 42.
POWDER DISTRIBUTING SYSTEM
Referring to FIGS. 1 and 18, it will be seen that an elongated tubular nozzle 88 of rigid construction of suitable material, preferably metal, has an upstanding portion 90, which is connected to and is supported by a base member 92, which is oscillatably-supported by the fragmentary section 94 of the deck of barge 10. Base member 92 has a forked projection 96 integral therewith and extending radially, as shown in FIG. 18. A preferably electric motor 98 also is supported by the deck 94 and has a rotating member 100 upon which an eccentric pin 102 is affixed and is engagable with the slot of the forked member 96, whereby, upon rotation of the member 100, oscillation of the projecting and preferably downwardly extending nozzle 88 is effected for purposes of distributing the powder material generated by the disintegrating unit 42, such oscillation being illustrated by dotted lines in FIG. 1.
Referring particularly to FIGS. 9 and 10, reference is made to the blower unit 70, which is operated by motor 72, preferably reversible, for purposes of the blower 70 receiving powdered adsorptive particles of material from the housing 62 and discharging it through the outlet 74 which is interconnected to the lower inlet of the upstanding portion 90 of nozzle 88 by a simple conduit, not shown. Due to the oscillatable nature of the nozzle 88, it can readily be visualized from FIG. 1 that a substantial area of the body of water which is subtended by the booms 14 will receive a wide covering of the resinous particles generated by the unit 42 and blown from the forward end of the barge 10 unto a petroleum spill floating upon the aforementioned body of water. In addition, further powder of such nature also may be distributed from overhead by aircraft means, such as exemplary helicopters 104. Thus, as the tugboats 12 move the barge 10 forwardly to embrace an area of a petroleum spill encompassed at the sides at least by the booms 14, the spill, in effect, which is substantially stationary, will have the barge 10 moved toward it and thereby direct the floating spill toward the receiving ramp 106, details of which are best shown in FIGS. 3, 4 and 13.
RAMP AND MATERIAL DELIVERY UNIT
As shown particularly in the aforementioned FIGS. 3, 4 and 13, there is supported by the forward end of the barge or scow 10, an inclined frame 108 which, in actual use, is supported by the deck 110 of the barge or scow 10, such as by the use of upright members 112 connected at the lower ends thereof to the deck 110, and the upper ends being connected to the opposite sides of the frame 108. The forward end of the frame extends beyond the forward end of the scow 10 and the forward end of said frame extends into the water 114, whereby the forward end of it will be beneath the spill floating upon the water 114. Additional connecting means comprising suitable beams 116 preferably are connected to opposite sides of the scow 10 and the forward ends project beyond the scow 10 and are connected by any suitable means such as bolts 118, to the sides of the frame 108, it being understood that such beams respectively are connected to opposite sides of the frame 108, as well as the opposite sides of the scow 10.
Referring particularly to FIG. 3, it will be seen that the inclined frame 108 is relatively wide compared to the width of the scow 10, whereby it is capable of engaging and advancing an appreciable area of accumulated and saturated particles of the material which is distributed upon the spill referred to above and illustrated in FIG. 1. The frame 108 preferably supports a plurality of endless flexible conveyors 120 respectively each comprising at opposite sides thereof, endless flexible chains 122. As shown in FIG. 13, the frame 108 includes an upper perforated sheet 123. The perforations are relatively small, as of the order of not over an eighth inch in diameter, or less. The adjacent endless conveyors 120 are each composed of the flexible chains 122 at opposite edges thereof and extending between each pair of chains are a series of relatively shallow channels 124, the opposite ends of which are connected to the chains.
Connected to and extending upward from each channel is a row of spaced pins or prongs 126. The pins or prongs 126 are readily adapted to engage a layer of saturated particles of the aforementioned powder which have adsorbed the petroleum from the surrounded area of slick and movement of the scow 10 by the tugboats 12 causes movement of the saturated particles toward the ramp 106 which, by extending at its forward end below the floating material, will engage said layer from beneath by means of the pins or prongs 126, will advance the mass of the material up the ramp and discharge it at the upper end thereof into a receiving trough 128. As clearly shown in FIG. 4, the endless conveyors 120 at opposite ends thereof, are supported upon rotating members 130 and the uppermost members are driven by a belt or chain 132, which extends around a gear or pulley of an electric motor 134 on deck 110.
As the mass of saturated material 136 is advanced up the incline of frame 108 and reaches the top, it automatically breaks off in gobs or chunks into the trough 128 and the material then is engaged by an auger 138 which, as shown in exemplary manner in FIG. 13, is rotated by a preferably reversible electric motor 140. Mounted respectively adjacent opposite ends of the receiving trough 128 and auger 138, are relatively high-capacity centrifuge units 142, which are driven in conventional manner by appropriate power means, such as an electric motor mounted therein and not shown in the drawings.
When the auger 138 is driven in one direction, the spiral thereof is such that it will feed the broken chunks and pieces of saturated particles 136 toward one of the centrifuge units 142 as can be visualized from FIG. 3, while the other centrifuge remains in standby. If desired, as can be seen from FIG. 4, the centrifuge has a discharge 144 for petroleum, while the powder material from which the petroleum has been separated is discharged from the centrifuge into a suitable receptacle 146, which, for example, is shown in phantom in FIG. 4 and can be located in the hold of the scow 10, while the recovered petroleum exits from discharge member 144 into the second receptacle 148, which, for convenience, can either be in the hold of the scow 10 or in a tanker or otherwise disposed adjacent the scow.
By way of example, but without restriction thereto, the endless conveyors 120 of the several sets thereof may be of the order of six feet wide, whereby if there are three such conveyors in side-by-side relationship, the overall width of the receiving ramp 106 may be of the order of approximately eighteen feet. Such a ramp will accommodate a substantial amount of material to be serviced by the centrifuge to which it is directed. Due to the motor 140 preferably being of reversible nature, if one of the centrifuges becomes unservicable for any reason, the other one readily can be placed in operation to move the saturated material to the opposite end of the auger for delivery to the centrifuge 142.
As a means of practical operation of the petroleum recovery system comprising the present invention, the illustrated two sections of the boom 14 which also has been referred to as tube 82 hereinabove, and which contains the aforementioned particles of resinous material that will absorb the petroleum slick as the boom encounters it, or vice versa, practical operation of the system would somewhat dictate that a particle-filled perforated or porous tube 82 which comprises the booms 14, can remain floating for a substantial period of time, such as a number of weeks or even possibly several months while the scow 10 is moved forward by the tugboats 14 and progressively subtend areas of the floating slick continuously, which is progressively delivered to the receiving ramp 106 and from there progressively is delivered to one or the other of the centrifuges 142. After a certain period of operation, such as described herein, it becomes desirable to remove the saturated particles from the tube 82 of the booms 14 and this is accomplished by the boom-emptying unit 150, illustrated in perspective in FIG. 14.
BOOM-EMPTYING UNIT
As shown in FIG. 14, the boom-emptying unit 150 receives one end of the filled and saturated boom 14, moves it over a support, such as a roller 152, while the tube or casing 82 thereof passes beneath a slitter unit 154, which incises the tube 82 longitudinally at the top of it. As it passes over roller 152, the mass of saturated material 136 tends to spread the opposite edges of the slit tube 82 away from each other, whereby the material 136 is free to pass down the guide chute 156 into the centrifuge 142 from which the separated petroleum exits through discharge 144 and the adsorbing particles from which the petroleum has been extracted, discharge, for example, from the lower end of centrifuge unit 142, as clearly shown in FIGS. 14 and 15. It will be seen also from FIG. 14 that the slit tube 82 may be coiled upon a reel or drum 158, while the cable 86 is coiled upon spool 160. For example, the upper edge of the guide chute 156 may comprise a scraper edge 162 to relatively adequately clean the saturated material 136 from the now sheet-like tube 82 prior to it being coiled upon the drum 158. When in this condition, the roll of the tube material 82 is in condition to be directed to the boom-forming unit 68 and be restored to tubular configuration for further use.
Hereinabove, reference has been made to the fact that one of the centrifuges may serve as a standby and, as illustrated in FIG. 15, one of such centrifuges is shown in position to receive saturated particle material 136 from the receiving trough 128 as delivered to one of the opposite ends thereof as shown in FIG. 3 by auger 138. It, thus, will be seen from FIG. 3 that a reversible motor, not shown, is connected to the shaft of the auger 138 conveniently and may be operated selectively to deliver the saturated material 136 to either of the two centrifuges 142, as desired.
Depending upon the action of the water upon which a petroleum slick is disposed, it is highly possible for action of waves of the water upon the slick to dispose the same on an adjacent shore or, if the slick has been on the water a sufficient amount of time, it may sink to the bed of the body of water. Such material has value and recovery of the same is desirable. Hence, in accordance with the present invention, as illustrated in exemplary manner in FIG. 16, wherein the bed 164 of a body of water is shown, the slick 166 is lying thereon. Such disposed slick may be agitated, such as by a jet 168 of water discharged from a nozzle 170, for example, as shown in FIG. 16, and thereby tend to break up the accumulated slick 166 into particles 172 of various sizes. By blowing or distributing particles of the above-mentioned powder 174, such powder will unite with the particles 172 of the slick and become saturated thereby and render the particles floatable upon the water and thus, can be recovered, such as by a section of the boom 14 encircling the same and delivering it to the above-described apparatus, as appropriate.
In addition to the auger 64 being operable by motor 67, which is reversible and is supported by one end of the housing for auger 64, the shaft 176 of auger 64 also extends through an appropriate auxiliary housing 178 that is affixed to one end of motor 67 for support thereby. The purpose of providing reciprocation of the auger by shaft 176 is to permit it to function somewhat as a piston incident to loading the porous tube 82 with the adsorptive particles of powder and to prevent jamming of powder within the tube which, when filled, comprises the boom 14. The housing 178 supports a small gear 180 that is affixed to the shaft of motor 67. Gear 180 meshes with larger diameter gear 182 that has a key, not shown, which reciprocates in the spline 184 in shaft 176 indicent to the shaft 176 and the auger being reciprocated by a double-acting hydraulic cylinder 186.
The opposite ends of the cylinder 186 have conduits 188 and 190 connected thereto and extend to a suitable conventional supply of hydraulic fluid and control mechanism, neither of which are shown in FIG. 9 since they are of standard type. Also shown in FIG. 9 is a longitudinal support 192 which is ridigly affixed at one end to and extends horizontally from the housing 62. The outer end of support 192 has a pivot pin that pivotally supports the lower end of rocker arm 196.
Intermediately of the arm 196, it is pivotally connected to the outer end of piston rod 198, which projects from one end of cylinder 186 and the opposite end of said cylinder preferably is pivotally connected to housing 62 by pivot pin 194. The upper end of rocker arm 196 supports a thrust bearing 200, which also is provided with limited movement transverse to the axis of shaft 176 and thereby accommodates the pivotal movement of the rocker arm 196 relative to the fixed axis of shaft 176. Though not specifically illustrated in the drawings, it will be understood that appropriate supports for the mechanism other than that illustrated and described above, are intended to be utilized in accordance with sound engineering principles.
From the foregoing, it will be seen that the present invention provides various units all separable in conjunction with each other effectively to recover petroleum from a spill thereof floating upon a body of water or disposed upon the bed of said body or the adjacent shore.
It will also be seen from the foregoing that the system and apparatus comprising the present invention essentially is a relatively complete arrangement for recovering petroleum spills either floating upon a body of water or disposed upon the bed thereof or a shore of the body. The system primarily comprises a unit 16 by which a porous block of synthetic resin is formed into powder particles that are adapted to adsorb petroleum as it engages it, not only by the phenomenon of adsorption but also by a strong inherent affinity for the particles to strongly bond to the petroleum to such a degree that high-powered centrifugal force is required to recover the petroleum from the particles. Blocks or units of the resin material are disintegrated by the unit 42 into particles of a size in the range of between one-sixteenth and one-eighth of an inch, for example, and the quantity of said material is enclosed within a tube 82 of synthetic resin, preferably of thermoplastic nature and edges of a sheet of said material are adapted to be connected to form such tube either by heat or stitching, for example. The shredded powder material, when introduced into the tube by the boom-forming unit 68, produces an indefinite length of boom 14, said booms also contain for pulling strength, a cable 86 having a diameter of the order of approximately three-fourths to one inch and formed, for example, from metal strands or synthetic resin such as sold under the tradename "NYLON". Inclusion of such cable within the boom provides tensile strength adequate to permit the boom to serve as towing means between a floating scow or barge upon which various units of the invention are mounted for operation, such boom extending between the barge and exemplary tugboats by which a pair of such booms respectively can be pulled into a floating mass of petroleum spill for recovery thereof.
Attached to the forward end of the barge or scow is an inclined ramp which reaches beneath the level of the spill and extends above it and is provided with conveyor means highly adequate to engage and propel masses of adsorbed petroleum in synthetic resin powder material for delivery to a centrifuge unit which operates to separate the petroleum from the powder material and thereby recover the petroleum, while the powder material may be reused for further adsorption, such as spraying the same upon additional areas of the spill or encased within the porous tubing which comprises a boom and is capable of adsorbing areas of a spill when contacting the same and, ultimately, petroleumsaturated powder within the boom may be recovered by slitting the tube or casing of the boom, discharging the contents to a centrifuge, and then the porous material, which usually is rolled when emptied of the saturated particle material, then may be reformed into a tube and, when refilled with unsaturated or new particle material, may be reused to serve as a boom.
Due to the fact that the inherent attracting force of the specifically described particles for petroleum is such that only very strong centrifuging force is required to separate the saturated particles into petroleum and powder, the present system of reclaiming petroleum from spills is efficient and effective when operating the centrifuge between 10,000 and 20,000 r.p.m.
The foregoing description illustrates preferred embodiments of the invention. However, concepts employed may, based upon such description, be employed in other embodiments without departing from the scope of the invention. Accordingly, the following claims are intended to protect the invention broadly, as well as in the specific forms shown herein.

Claims (7)

We claim:
1. Mechanism for recovering petroleum from a slick or spill thereof on a body of water and comprising a porous boom containing powder particles of a nature adapted to adsorb and bond petroleum thereto and said mechanism including in combination,
a. a processing barge floatable on a body of water,
b. a conveyor mounted adjacent one end of said barge and extending angularly upward form below the level of said body of water to a level above the same on said barge,
c. said conveyor comprising a series of endless chains spaced transversely apart and movable over a perforated surface,
d. transversely-extending parallel members spaced longitudinally on said chains and affixed thereto,
e. prong-like members connected to and spaced along said parallel members and extending upwardly therefrom with respect to the upper course of said conveyor,
f. means operable to remove from said porous boom said particles with adsorbed petroleum therein,
g. a centrifuge mounted upon said barge substantially in line with the uppermost end of said conveyor,
h. means operable to move said chains longitudinally along said conveyor and direct the powder particles and the petroleum adsorbed therein to said centrifuge for separation of the petroleum from said powder particles, and
i. an auger rotatable in a trough positioned adjacent the upper end of said conveyor and operable to feed said powder particles to said centrifuge for separation of said petroleum therefrom.
2. The mechanism according to claim 1 in which said boom comprises a porous sleeve composed of synthetic thermoplastic porous resin sheet material through which petroleum passes from said slick or spill for adsorption by and bonding to said powder particles and said mechanism further including means operable to slit said boom to release said petroleum-adsorbed particles therefrom and said mechanism still further including heating means operable to heat-connect the opposite slit edges of said porous sheet and render said resulting sleeve tube-like for containment of powder particles which are substantially free of petroleum for adsorption of petroleum and bonding it to said particles.
3. Mechanism operable to recover petroleum from a spill or slick thereof upon a body of water and comprising in combination,
a. a tubular porous boom formed of predetermined length from porous thermoplastic resin and operable to be filled with powder particles capable of adsorbing and being bonded to petroleum when said boom is disposed upon and subtends an area of a slick or spill,
b. said boom having a cable extending longitudinally and substantially coextensive in length therewith,
c. means connecting one end of said cable to a tugboat and the opposite end being connected to secure means on a barge to be towed by said tugboat,
d. the end of the boom adjacent said opposite end of said cable being aligned with slitting means operable to slit the sheath of said boom longitudinally to permit the contents of saturated particles to be discharged from said boom for separation of the petroleum from said particles,
e. means to direct the slit boom to means to reconnect the slit edges thereof and reform the same into a sleeve for further filling with particles, and
f. power means operable to cause a power drum to coil said cable as discharged from said slit boom incident to discharging the petroleum-saturated particles from said slit boom.
4. Mechanism operable to salvage petroleum form a slick or spill thereof on a body of water and comprising in combination,
a. a tubular porous boom of predetermined length capable of floating on water and containing powder particles capable of adsorbing and bonding petroleum thereto, and said boom being adapted to at least partially subtend or surround an area of said slick or spill, and adsorb petroleum therefrom,
b. a barge adapted to receive at least one end of said porous boom when it has adsorbed a desired amount of petroleum and provided with slitting means operable to longitudinally open said boom to free the petroleum-adsorbed particles for discharge to
c. a centrifuge operable at speeds suitable to receive said petroleum-adsorbed particles and separate the adsorbed petroleum therefrom, said
d. means operable to direct the slit boom to means to re-connect the slit edges thereof to restore said slit boom to a porous tubular formation adapted to receive a supply of said powder particles for return of the same for re-use to said slick or spill of petroleum and again adsorb the same for a successive operation of the foregoing petroleum recovery mechanism.
5. The mechanism according to claim 4 in which said centrifuge is operable at speeds between 10,000 and 20,000 r.p.m., which range of speed is sufficient to break the bonds of said petroleum to said powder particles.
6. The mechanism according to claim 4 in which said powder particles are irregular in shape and in the range of between 1/16" and 1/8" in overall size and capable of adsorbing and being bonded to petroleum in the range of between 6 and 10 times the weight of said particles, depending upon the viscosity of the petroleum.
7. The mechanism according to claim 4 further including hydraulic means operable to form a jet of water sufficiently strong to be applied against settled bodies of petroleum disposed on the shore or bed of a body of water and operable to break up said settled bodies to render the same capable of adsorption by said powder particles applied thereto for movement by a boom or otherwise to a centrifuge for salvaging petroleum therefrom.
US07/945,950 1991-07-08 1992-09-17 Apparatus to recover petroleum from slicks and spills Expired - Fee Related US5262048A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/945,950 US5262048A (en) 1991-07-08 1992-09-17 Apparatus to recover petroleum from slicks and spills
US08/130,837 US5423991A (en) 1991-07-08 1993-10-04 Method to recover petroleum from slicks and spills

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72705691A 1991-07-08 1991-07-08
US07/945,950 US5262048A (en) 1991-07-08 1992-09-17 Apparatus to recover petroleum from slicks and spills

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US72705691A Continuation-In-Part 1991-07-08 1991-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/130,837 Division US5423991A (en) 1991-07-08 1993-10-04 Method to recover petroleum from slicks and spills

Publications (1)

Publication Number Publication Date
US5262048A true US5262048A (en) 1993-11-16

Family

ID=27111440

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/945,950 Expired - Fee Related US5262048A (en) 1991-07-08 1992-09-17 Apparatus to recover petroleum from slicks and spills
US08/130,837 Expired - Fee Related US5423991A (en) 1991-07-08 1993-10-04 Method to recover petroleum from slicks and spills

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/130,837 Expired - Fee Related US5423991A (en) 1991-07-08 1993-10-04 Method to recover petroleum from slicks and spills

Country Status (1)

Country Link
US (2) US5262048A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569331A (en) * 1995-01-06 1996-10-29 Barber, Iii; John Method and apparatus for recycling oil-soaked boom and pads
US20060049108A1 (en) * 2004-01-15 2006-03-09 Environmental Applied Research Technology House Ea Reusable sorbing coalescing agent
US20090074607A1 (en) * 2007-09-18 2009-03-19 Barrick Gold Corporation Process for recovering gold and silver from refractory ores
US20120055856A1 (en) * 2010-06-25 2012-03-08 Massachusetts Institute Of Technology Aqua-robotic pollutant removing systems and devices, and methods of removing pollutants from bodies of water
US8262768B2 (en) 2007-09-17 2012-09-11 Barrick Gold Corporation Method to improve recovery of gold from double refractory gold ores
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
US20150367297A1 (en) * 2014-06-20 2015-12-24 James Timothy Tews Floating manure agitator with multidirectional agitator nozzles
US20220363353A1 (en) * 2021-03-29 2022-11-17 Robert Marshall Campbell Equipment, systems and vessels, for the effective cleanup and recovery of a broad range of floating contaminants
RU2803995C1 (en) * 2022-06-27 2023-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Unit for collecting sorbent from water surface

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053052A (en) * 1995-11-16 2000-04-25 Timberco, Inc. Panel performance test system
US5844011A (en) * 1997-04-09 1998-12-01 Gaudin; Raymond J. Composition and method for selectively absorbing liquid hydrocarbon from a floor or other hard surface
WO2001083891A1 (en) * 2000-05-02 2001-11-08 American Marine, Inc. Contaminant slick dispersal apparatus and methods
CH703269A1 (en) * 2010-06-11 2011-12-15 Vittorio Perregrini Water-treatment method involves the purification of hydrocarbon pollutants by addition of a powder derived from tires for forming a thickened material for subsequent collection
US20120009017A1 (en) * 2010-07-07 2012-01-12 Advanced Innovative Marketing, Inc. Oil spill reclamation system
CN103774630B (en) * 2014-01-23 2015-10-07 中国科学院电工研究所 The thin oil film in a kind of magnetic fluid sea reclaims separator
WO2017045021A1 (en) * 2015-09-16 2017-03-23 Phillip Island Nature Park Board Of Management Inc. Device and method for removing of unwanted material
US20210087763A1 (en) * 2015-09-16 2021-03-25 Phillip Island Nature Park Board Of Management Inc. Device and method for removing of unwanted material
EP3994101A4 (en) * 2019-07-04 2023-09-20 Blue Whale Ocean Filtration LLC Systems and methods for removal of contaminants from a liquid

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657125A (en) * 1970-07-15 1972-04-18 Strickman Ind Inc Collection of oils
US3739913A (en) * 1970-07-16 1973-06-19 Johns Manville Device for fencing and absorbing contaminating oil spills on water
US3763621A (en) * 1971-07-26 1973-10-09 L Klein Sealing apparatus and method for refuse compactor
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
US3888766A (en) * 1973-03-09 1975-06-10 Uniroyal Inc Oil sorption material
US3976570A (en) * 1973-10-05 1976-08-24 Mccray Arthur W Method and apparatus for removing contaminants from the surface of a body of water
US4096700A (en) * 1975-11-12 1978-06-27 Bridgestone Tire Co., Ltd. Oil boom for damming and collecting a floating oil slick
US4120788A (en) * 1977-05-23 1978-10-17 Ellis Robert D Oil slick removal and recovery system
US4188155A (en) * 1978-08-08 1980-02-12 Hillel P Containment boom
US4234420A (en) * 1979-05-03 1980-11-18 Turbeville Joseph E Method and apparatus for pollutant spill control
US4366067A (en) * 1980-10-20 1982-12-28 Golding Gordon R Method and apparatus for removal and recovery of oil
US4389357A (en) * 1981-06-26 1983-06-21 Ashland Oil, Inc. Method for preparing thermosetting resins
US4567820A (en) * 1984-02-13 1986-02-04 Munsell Frank E Silo bag packing machine
US4645376A (en) * 1985-12-09 1987-02-24 Shell Western E&P Inc. Fireproof boom
US5009790A (en) * 1990-08-20 1991-04-23 Damcosur S.A. De C.V. Method for absorbing liquids using dealginate kelp

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367384A (en) * 1942-09-22 1945-01-16 Shell Dev Method of removing oil from water
US3681237A (en) * 1971-03-26 1972-08-01 Membrionics Corp Oil spillage control process

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886067A (en) * 1970-02-03 1975-05-27 Salvatore W Miranda Process for controlling oil slicks
US3657125A (en) * 1970-07-15 1972-04-18 Strickman Ind Inc Collection of oils
US3739913A (en) * 1970-07-16 1973-06-19 Johns Manville Device for fencing and absorbing contaminating oil spills on water
US3763621A (en) * 1971-07-26 1973-10-09 L Klein Sealing apparatus and method for refuse compactor
US3888766A (en) * 1973-03-09 1975-06-10 Uniroyal Inc Oil sorption material
US3976570A (en) * 1973-10-05 1976-08-24 Mccray Arthur W Method and apparatus for removing contaminants from the surface of a body of water
US4096700A (en) * 1975-11-12 1978-06-27 Bridgestone Tire Co., Ltd. Oil boom for damming and collecting a floating oil slick
US4120788A (en) * 1977-05-23 1978-10-17 Ellis Robert D Oil slick removal and recovery system
US4188155A (en) * 1978-08-08 1980-02-12 Hillel P Containment boom
US4234420A (en) * 1979-05-03 1980-11-18 Turbeville Joseph E Method and apparatus for pollutant spill control
US4366067A (en) * 1980-10-20 1982-12-28 Golding Gordon R Method and apparatus for removal and recovery of oil
US4389357A (en) * 1981-06-26 1983-06-21 Ashland Oil, Inc. Method for preparing thermosetting resins
US4567820A (en) * 1984-02-13 1986-02-04 Munsell Frank E Silo bag packing machine
US4645376A (en) * 1985-12-09 1987-02-24 Shell Western E&P Inc. Fireproof boom
US5009790A (en) * 1990-08-20 1991-04-23 Damcosur S.A. De C.V. Method for absorbing liquids using dealginate kelp

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569331A (en) * 1995-01-06 1996-10-29 Barber, Iii; John Method and apparatus for recycling oil-soaked boom and pads
US7727628B2 (en) 2004-01-15 2010-06-01 Torr Canada, Inc. Reusable sorbing coalescing agent
US20060049108A1 (en) * 2004-01-15 2006-03-09 Environmental Applied Research Technology House Ea Reusable sorbing coalescing agent
US8262768B2 (en) 2007-09-17 2012-09-11 Barrick Gold Corporation Method to improve recovery of gold from double refractory gold ores
US7922788B2 (en) 2007-09-18 2011-04-12 Barrick Gold Corporation Process for recovering gold and silver from refractory ores
US20090074607A1 (en) * 2007-09-18 2009-03-19 Barrick Gold Corporation Process for recovering gold and silver from refractory ores
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
US20120055856A1 (en) * 2010-06-25 2012-03-08 Massachusetts Institute Of Technology Aqua-robotic pollutant removing systems and devices, and methods of removing pollutants from bodies of water
US20140158591A1 (en) * 2010-06-25 2014-06-12 Massachusetts Institute Of Technology Aqua-robotic pollutant removing systems and devices, and methods of removing pollutants from bodies of water
US9670636B2 (en) * 2010-06-25 2017-06-06 Massachusetts Institute Of Technology Aqua-robotic pollutant removing systems and devices, and methods of removing pollutants from bodies of water
US20150367297A1 (en) * 2014-06-20 2015-12-24 James Timothy Tews Floating manure agitator with multidirectional agitator nozzles
US10118138B2 (en) * 2014-06-20 2018-11-06 James Timothy Tews Floating manure agitator with multidirectional agitator nozzles
US20220363353A1 (en) * 2021-03-29 2022-11-17 Robert Marshall Campbell Equipment, systems and vessels, for the effective cleanup and recovery of a broad range of floating contaminants
RU2803995C1 (en) * 2022-06-27 2023-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Unit for collecting sorbent from water surface

Also Published As

Publication number Publication date
US5423991A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US5262048A (en) Apparatus to recover petroleum from slicks and spills
CA1192498A (en) Method to clean up oil spills or similar substances and a device to practise this method
CA1182446A (en) Vertical and horizontal auger circulating sets operating portable feed grinder mixers
CN1251782C (en) Systems for ameliorating aqueous hydrocarbon spills
US4139470A (en) System for separating, removing and recovering contaminant materials from a body of water
US5863440A (en) Methods for ameliorating oil spills in marine and inland waters
US4044921A (en) Sand bag filling apparatus
US5403478A (en) Oil-based fluid absorbent article
US20090057217A1 (en) Apparatus for contaminant recovery
EP2288755A1 (en) Contaminant recovery device for contaminants on watersurface
US20100303591A1 (en) Means for emptying packages
EP1133908B1 (en) Spreading machines for spreading animal bedding material
US5271691A (en) Oil absorption apparatus using kenaf fiber and core portions
US3626675A (en) Weed pump
US4226711A (en) Oil spill recovery method and apparatus
KR102042784B1 (en) Coastal waste solid fueling equippment using IoT
KR102067636B1 (en) Coastal waste solid fueling equippment with a forming machine
EP0748275B1 (en) An apparatus for separating solid matter from a liquid
WO1992014002A1 (en) Pollution control
GB2442443A (en) A contaminant recovery device
GB2141673A (en) Coal slurry transport ship
CN214811424U (en) Linkage type municipal garbage treatment device
US10508045B2 (en) Process and composition for converting liquid hydrocarbons and fatty substances to solid form, devices for implementing this process and manufacturing this composition, and the use thereof for environmental remediation
Dorrler Use of Sorbents for Oil Spill Cleanup
SU1371645A1 (en) Spreader of materials

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20011116