US5266203A - Method for treating process streams containing cyanide and heavy metals - Google Patents

Method for treating process streams containing cyanide and heavy metals Download PDF

Info

Publication number
US5266203A
US5266203A US07/828,314 US82831492A US5266203A US 5266203 A US5266203 A US 5266203A US 82831492 A US82831492 A US 82831492A US 5266203 A US5266203 A US 5266203A
Authority
US
United States
Prior art keywords
stream
cyanide
membrane filtration
filtration means
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/828,314
Inventor
Debasish Mukhopadhyay
Dan Bergamini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Water Technologies Holding Corp
US Filter Arrowhead Inc
Original Assignee
Arrowhead Industrial Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arrowhead Industrial Water Inc filed Critical Arrowhead Industrial Water Inc
Priority to US07/828,314 priority Critical patent/US5266203A/en
Assigned to ARROWHEAD INDUSTRIAL WATER, INC. reassignment ARROWHEAD INDUSTRIAL WATER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERGAMINI, DAN, MUKHOPADHYAY, DEBASISH
Application granted granted Critical
Publication of US5266203A publication Critical patent/US5266203A/en
Assigned to U.S. FILTER/ARROWHEAD, INC. reassignment U.S. FILTER/ARROWHEAD, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ARROWHEAD INDUSTRIAL WATER, INC.
Assigned to U.S. FILTER/ARROWHEAD, INC. reassignment U.S. FILTER/ARROWHEAD, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ARROWHEAD INDUSTRIAL WATER, INC.
Assigned to U.S. FILTER/IONPURE, INC. reassignment U.S. FILTER/IONPURE, INC. CORRECTIVE ASSIGNMENT TO CORRECT CONVEYING AND RECEIVING PARTIES IN ASSIGNMENT PREVIOUSLY RECORDED ON 6/17/96 ON REEL 8031, FRAME 0906 Assignors: U.S. FILTER/ARROWHEAD, INC.
Assigned to SIEMENS WATER TECHNOLOGIES CORP. reassignment SIEMENS WATER TECHNOLOGIES CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: U.S. FILTER/IONPURE INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Abstract

An apparatus and method for treating streams containing cyanide, heavy metal and precious metal values to recover those values where the method includes the following steps:
a) providing a membrane filtration means having an inlet, a product outlet and an discharge outlet,
b) contacting the waste stream to be treated with an effective amount of carbon dioxide to adjust the pH to about 8.0 to about 10.0,
c) further contacting the waste stream with an effective amount of a soluble metal compound to react with the cyanide in the waste stream to form membrane rejectable cyanide compounds, and
d) passing the treated stream through the membrane filtration means to thereby separate recoverable cyanide and precious metal values from the treated stream and produce an effluent stream for further processing or discharge to the environment.

Description

BACKGROUND OF THE INVENTION
This invention relates to a method for treating process streams to achieve the removal of cyanide, as well as simultaneous removal of heavy metals such as copper, zinc, arsenic, aluminum, lead, nickel, and the like, and precious metals, such as gold, silver, cobalt, platimum, and the like. More specifically, this invention relates to methods and apparatus for removing cyanide, heavy metals and precious metals without destroying the value inherent in those components, utilizing a membrane filtration system, while producing an effluent stream low in contaminants.
Leaching processes (milling or heap) are commonly used to extract gold and other precious metals from ore using various cyanide solutions. The solutions are passed through the ore to leach the precious metals through solubilization, thereby creating a "pregnant" solution, i.e., a solution rich in precious metals. The precious metals are then separated from the pregnant solution. After separation, a "barren" solution remains, but in fact, it is rich in cyanide and still contains low levels of precious metals. Barren solutions are typically reused in the leach process (based upon cyanide content) or treated to destroy and/or remove the cyanide and heavy metals.
Various techniques have been utilized to recover cyanide and heavy and precious metals. Usually, these methods accomplish only one of the objectives at a time to the exclusion of the other values present, for example, where cyanide is destroyed in the process of recovering the precious metals.
Techniques available for removing cyanide by destruction include addition of and reaction with oxidants such as sulfur dioxide, hydrogen peroxide, sodium hypochlorite and chlorine in various forms, as well as metal salts such as copper sulfate, ferrous and ferric salts, and the like, singly or in combination. See, for example, U.S. Pat. Nos. 5,015,396; 4,622,149; 4,851,129 and 4,312,760.
Known methods utilized to remove heavy metals from aqueous solution include precipitation as metal oxide, hydroxide, and oxyhydroxide, adsorpion with or without ion-exchange resins, and the like. Precious metals can be recovered by any number of well known techniques, including ion exchange, carbon adsorption, electrowinning, and zinc precipitation.
The discharge of industrial effluents containing cyanide alone or along with the heavy metal components, are also avoided by their placement in secure storage facilities such as lined ponds and lagoons. But even these present a constant hazard because of possible leaks and percolation into aquifers, spills during periods of heavy rains or snow melts, such as the spring, when the facilities can exceed their expected capacity with the potential of polluting fresh water supplies, and potential wildlife kills such as birds landing on and drinking cyanide laden water.
Consequently, there is a need for a safe, effective and inexpensive method of removing cyanides and cyanide heavy-metal components from aqueous effluents without destroying the values contained therein.
Reverse osmosis and nano filtration are techniques that has been employed to remove dissolved solids from municipal water supplies. For example U.S. Pat. No. 4,574,049 to G. A. Pittner teaches a chemically enhanced reverse osmosis water purification system. But, reverse osmosis has not been well received in the mining industry because the constituents in the process streams including the cyanide compounds tend to foul the membranes employed or may involve pH levels which are too high for the materials of construction used in the membranes or may leave high levels of cyanide or heavy metals in the discharge stream. One example of the use of reverse osmosis in mining is U.S. Pat. No. 4,462,713 to A. K. Zurcher et al, which is directed to a method for mining and reclaiming land. As part of the process, after the major minable products are removed, sodium carbonate is added to the filtrate to remove excess calcium before the filtrate is subjected to reverse osmosis, ion exchange, or electrodialysis to provide fresh water, but without trying to preserve, e.g., cyanide values.
SUMMARY OF THE INVENTION
The present invention is a method and apparatus whereby cyanide alone or in combination with heavy and/or precious metals present in aqueous streams can be removed by a reverse osmosis (RO), ultrafiltration (UF), nano filtration (NF), or the like membrane filtration system. For the purposes of this application, RO, UF, and NF will be collectively referred to as membrane filtration systems.
When the process of the present invention is employed, the effluent stream contains essentially no cyanide or heavy metals, and so could be a purified discharge stream. The product or recoverable stream contains essentially all the cyanide and heavy and/or precious metals present in the process or feed stream. The recoverable stream can be returned to the processing system, thereby reducing the need for addition of fresh cyanide and/or heavy metal components, and permitting recovery of the precious or heavy metals. The precise steps to be taken will depend upon the process stream being treated since this invention has applicability to a wide variety of process streams.
For the purposes of this invention, the term product stream is intended to mean and include the recoverable stream, the reject stream, the rich stream, or the concentrate stream, which includes the cyanide, heavy and precious metals separated from the feed stream in the membrane filtration means. The term discharge stream is intended to mean and include the lean stream, the permeate, the effluent stream, or the clean water stream, which is left after the cyanide and precious and heavy metal values have been extracted by the membrane filtration means.
In the method of the present invention, the feed stream (from a chemical process) containing cyanide, heavy metal and precious metal values is contacted with an effective amount of carbon dioxide to adjust the pH to a range of about 8.0 to about 10.0 and an effective amount of a soluble metal compound, such as highly soluble copper, nickel, iron, or zinc salts of chloride, sulphate, and the like, which will react with the cyanide in the feed stream and form membrane rejectable cyanide compounds before passing the treated stream to the membrane filtration means, where cyanide and heavy and precious metal values are separated, as a product stream, from the treated feed stream to produce a discharge stream which can be discharged to the environment, reused or recycled, such as for washing and/or detoxifying spent heaps, or subjected to further processing.
It is also contemplated that a combination of agents, such as combining the carbon dioxide and soluble metallic salt with citric or oxalic acids, scale inhibitors, and/or dispersants, can be added to the aqueous stream to make it an acceptable feed for the membrane filtration system. By this pre-conditioning process, calcium carbonate, metal hydroxides and/or oxides, metal-cyanogen complexes, or hydrocyanic acid polymers will not foul the membrane and render it inoperable.
The apparatus for treating a feed stream containing cyanide and heavy and precious metals to recover those values comprises a membrane filtration means for separating the cyanide, heavy metals, and precious metals from the process stream having a process or feed stream inlet, a product stream outlet, and discharge stream outlet, a means for contacting said feed stream with carbon dioxide to treat thereby the feed stream and adjust the pH of said feed stream to about 8.0 to 10.0 pH, a means for contacting the feed stream with a soluble metal compound to treat thereby the feed stream further and react the cyanide in said feed stream to form membrane rejectable cyanide compounds, and a pump for increasing the pressure of the treated feed stream to about 150 to 1500 psi so the membrane filtration means will function to achieve the necessary separation.
If the membrane filtration means eventually does foul and lose efficiency due to accumulation of foulants or precipitants on the membrane surface, the membrane can be cleaned or regenerated in situ without the use of undesirable chemicals. By using the discharge stream, combined with added carbon dioxide and/or acidic feed material, and passing the combination through the system the membrane foulants will be solubilized, as will any calcium carbonate, metal salts and complexes, silt material and hydrocyanic acid polymer, and those materials can be discharged via the product stream.
In another embodiment of the process and apparatus of the present invention, a second membrane filtration means can be employed in a double pass filtration system to further reduce the cyanide and heavy metals levels in the discharge stream. In the double pass system, alkaline and/or soluble metal salt material are employed before the second pass to enhance the removal of the cyanide and heavy metals.
DESCRIPTION OF THE DRAWINGS
FIG. 1 is a process flow diagram of the method of the present invention.
FIG. 2 is a schematic of an apparatus in accordance with one embodiment of the present invention.
FIG. 3 is a schematic of an apparatus in accordance with a second embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
As seen in the process flow diagram shown in FIG. 1, the process basically involves pretreating a process or feed stream containing cyanide, heavy and precious metal values with carbon dioxide (CO2) to adjust the pH to a range of about 8.0 to 10.0, next mixing the feed stream with a soluble metal compound to form membrane rejectable cyanide compounds, before passing the treated feed stream through a membrane filtration apparatus to thereby separate the treated feed stream into "rich" and "lean" streams. The "rich" or product steam is a recoverable stream containing all or substantially all the cyanide, heavy and precious metal values from the waste stream. The "lean" or discharge stream is the effluent or discharge stream from which the cyanide and heavy metal valves have been removed.
The term membrane rejectable cyanide compounds is intended to include most cyanide compounds, except for hydrogen cyanide (HCN). Normally the membrane rejectable cyanide compounds will be complex salts of the cyanide (CN--) ion, including metal cyanogen complexes (M(CN)x) such as sodium cupricyanide, Na[Cu(CN)3 ].
The apparatus is shown schematically in the drawings in FIGS. 2 and 3 where the membrane separation system includes a high pressure pump 10, which may be controlled by an on/off or automatic switch (not shown) which is used to pump the feed stream supplied by line 12 from, e.g., a recovery system for a gold mine, to the membrane filtration system and to increase the pressure of the feed stream so the membrane filtration means will function to separate the cyanide, heavy metals, and precious metals from the feed stream. Although the invention will be described in terms of a process stream from a gold mine, it will be appreciated by those in the art that the process and apparatus illustrated herein can be used in other processes, such as metal plating and the like where there are cyanide and heavy or precious metal values which are recoverable. The feed stream flows through a check valve 14 which prevents the stream from returning or backing into the process (not shown). As the feed stream flows towards the membrane filtration means 20, which can be a reverse osmosis membrane, a nano filtration system or the like, it is contacted at point 22 with carbon dioxide fed from a source 24 which can be a liquid or gaseous CO2 supplied through check valve 26. The amount of carbon dioxide, which will be injected as a gas, will vary depending upon the conditions of the feed stream, but should be an effective amount to adjust the pH of the feed stream to about 8.0 to 10.0, with a pH of 8.5 to 9.5 being preferred. Appropriate gauges or measuring devices will be employed to measure critical values in monitoring the system, and these are indicated by A, B, C, D, E and F in FIG. 2, and, additionally, H, I, J, K, L, M and N in FIG. 3. Typical values being reported include liquid flow rate, pressure, temperature, pH and concentration of key values such as cyanide or heavy or precious metals. These data points can be provided on a continuous or periodic basis.
Feed stream 12 is further treated at point 30 by contacting it with a soluble metal compound supplied at 32 through check valve 34. An effective amount of soluble metal compound is reacted with the cyanide in the feed stream to form a membrane rejectable cyanide compound. The exact amount of soluble metal compound will depend upon the contents of the feed stream since, depending upon the process, it could contain sufficient soluble metal compound so that the cyanide values are in the form of membrane rejectable compounds. So the amount added could be zero, but it usually will be more than zero and be determined based upon feedback from the product and discharge streams, i.e., monitoring points D and E in FIGS. 2 and 3. For example, where high cyanide values are measured at point E in FIG. 2, the amount of soluble metal compound added would be increased to increase the formation of membrane rejectable cyanide compounds. The soluble metal compound is preferably a copper, iron, nickel or zinc sulfate or chloride or the like. Usually, the solid salt will be made into a 5 to 10% by weight solution and the solution will be injected into the feed stream.
There is nothing critical about the injecting and mixing of the carbon dioxide, soluble metal compound or the antiscalant or dispersant. Where the supply is under pressure it can be released via a valve. Where it is a liquid, it can be supplied by a pump. The injection and mixing can be simply a "tee" in the piping where the feed pipes are joined.
It may be appropriate to add at 36 other antiscalant and/or dispersant compositions from source 38 through check valve 40 depending on the composition of the materials in the feed stream 12 to facilitate the separation process and to minimize fouling of the membrane. Antiscalants operated by modifying the crystal structure of the foulants, such as for example calcium carbonate, which when precipitated are friable and soft and amendable to flusing and cleaning. Dispersants operate by keeping suspended solids, such as silt, in a dispersed condition and hindering settling characteristics. These can be various organic and organic-inorganic materials, including acrylates and phophonates. To ensure that finely suspended solids such as silt, filter aid, and the like to not block or foul the membrane, it is customary to pass the feed stream through a sieve filter, such as cartridge filter 42, to remove such particles (e.g., 1 to 10 microns) from feed stream 12.
High pressure pump 10 will raise the pressure of the feed stream up to about an appropriate pressure, which may range from 150 to 1500 psig and feed it into the membrane filtration means 20. The exact pressure will depend upon the membrane filtration means employed. Any conventional reverse osmosis membrane or nano filtration membrane can be employed for the purposes of this invention. Nano filtration typically operates at up to 150 pounds per square inch gauge (psig) feed pressure and is very effective for removal of dissolved materials that are of medium to high molecular weight. Nano filtration is not as effective at removing dissolved inorganic ions. Reverse osmosis is operable at up to 1500 psig pressure and is very effective for removal of all dissolved solids, both low and high molecular weight. Other membrane filtration means include ultrafiltration, electrodialysis, continuous deionization, and the like. The choice of the membrane filtration system will also be influenced by the presence of fine "silty" materials which are capable of clogging the active layer interface. The membrane filtration means 20 will separate the feed stream 12 into a product stream 44 which is rich in cyanide, heavy metals and precious metals and a discharge stream 46 which may be reused or discharged to the environment.
If cartridge filter 42 is unable to remove foulants and the membrane loses its efficiency due to accumulation of the foulants on the membrane surface, the membranes can be cleaned by utilizing a volume of the stored discharge stream 46 and flowing it back through the system via line 48 after opening valve 49, which in its closed position would force discharge stream 46 out of the system out line 43 when valve 45 is open. In the cleaning step, hydrochloric acid or citric acid sourced from source 50 is passed through check valve 52 to make up tank 51 from whence it can be added to stream 48, or carbon dioxide gas can be added directly at 53 from source 55 via check valve 57 to thereby lower the pH of discharge stream 46. Pump 54 will circulate cleaning solution from tank 51 via line 56 through the system where the mixture will solubilize any accumulation of foulants in the system or on the membrane surface and they can be discharged out discharge line 46 and out of the system via line 43 or in any other appropriate manner. During such cleaning, the original feed to the filtration system is not admitted.
The membrane filtration system of the present invention will typically fractionate the incoming feed stream into a "rich" fraction representing 25 to 35% of the original feed volume and containing substantially all of the cyanide and heavy and precious metals contained in the original process stream, and a "lean" fraction represents 65 to 75% of the original feed volume and containing very low levels of cyanides and heavy metals. The water treated by the method of the present invention can achieve levels which would meet ground water quality standards, and thus could be discharged. Of course, the precise contents will vary depending upon the feed stream being treated, so further processing of the discharge stream is possible. The "rich" fraction, i.e., the recoverable stream, can be recycled into the ore-processing circuit where the values of cyanide and metals, particularly copper, silver and gold, can be recovered.
Another embodiment of the present invention is shown in FIG. 3 where a second membrane filtration means 58 is placed in series with the membrane filtration means 20. The use of two membrane filtration means, referred to as a double-pass system, provides an enhanced purification of the discharge stream 46 coming from membrane filtration means 20. The effluent in line 46 is mixed with a soluble copper or zinc salt supplied at 60 via a check valve 62 for mixing with the effluent stream at 64. Further, sodium hydroxide sourced from source 66 is fed by a check valve 68 to mix with discharge stream at 70 and passage to second membrane filtration means 58. Membrane filtration means 58 will produce a second discharge stream 72 and a recycle product stream 74 which can be combined with process or feed stream 12 at point 76, via check valve 78. The addition of a soluble copper or zinc salt will complex any cyanide in discharge stream 46 making it membrane rejectable for recovery and circulation back to the system by line 74. The addition of sodium hydroxide will serve to convert undissociated cyanides into dissociated cyanide anions and/or metal-cyanogen complex which are rejected by the second membrane filtration system and pass out by line 74.
To illustrate the present invention, typical values for various parameters of a process representative of the present invention embodied in FIG. 2, which is referred to as a one-pass system, are presented in Table 1. Since the process is operated in a continuous manner, the measurements presented are typical, with a variance of no more than 20% being expected. The parameters are measured by appropriate measuring device located at the points shown in FIG. 2 indicated as A, B, C, D, E and F. The data measured at these points include a rate of flow (gallons per meter), pressure (pounds per square inch gauge), temperature (°F), pH, parts per million of dissolved solids, amount of gold (Au) in ounces per ton of liquid, copper (Cu), calcium (Ca), and cyanide (CN) in parts per million (i.e., milligrams per liter of solution). Some of these measurements are done on a continuous basis, while some of the measurements are made occasionally. The frequency is noted in the tables. The tables show that substantially all the cyanide, heavy metals and precious metals present in feed stream 12 and measured at point A are recovered in product stream 44, measured at point D, while very little cyanide and/or heavy or precious metals remain in effluent stream 46 which is measured at point E.
              TABLE 1                                                     
______________________________________                                    
Typical Process Flow Diagram                                              
1-Pass System                                                             
             Location                                                     
Characteristics                                                           
               A      B      C    D    E    F                             
______________________________________                                    
Flow, g/m      75     75     75   25   50   60                            
Press, psig    40     40     40   200  10   100                           
Temp, °F.                                                          
               40     40     40   41   42   40                            
pH             10.5   9.0    9.0  9.5  8.6  5.0                           
Total Dissolved Solids,                                                   
               1,500  1,500  2,600                                        
                                  4,500                                   
                                       160  160                           
ppm                                                                       
Au, oz/ton of liquid                                                      
               0.002  0.002  0.002                                        
                                  0.006                                   
Cu, ppm        20     20     50   150  <2   <2                            
Ca, ppm        250    250    250  750  <5   <5                            
CN, ppm        200    200    200  550  20   20                            
Continuous/Occasionally                                                   
               Cont   Cont   Cont Cont Cont Occ                           
______________________________________                                    
Table II presents typical values at points A, B, C. D, and E and additionally at points H, I, J, K, L, M and N in a double or two-pass system, representative of a further embodiment of the present invention illustrated in FIG. 3. The measurements at point D show that substantially all the cyanide and precious metal values are recovered from the values measured in the feed stream at point A, while the discharge measured at point E shows a significant reduction in cyanide. Further, the use of a second membrane system produces a greater reduction of the cyanide content in the discharge stream as measured at point K.
                                  TABLE 2                                 
__________________________________________________________________________
Typical Process Flow Diagram 2-Pass System                                
            LOCATION                                                      
Characteristics                                                           
            A  B  C  M  N  D  E  H  I  J  K  L                            
__________________________________________________________________________
Flow, g/m   137                                                           
               137                                                        
                  162                                                     
                     162                                                  
                        162                                               
                           55 107                                         
                                 107                                      
                                    107                                   
                                       107                                
                                          82 120                          
Press, psig 40 40 40 35 600                                               
                           480                                            
                              230                                         
                                 230                                      
                                    230                                   
                                       100                                
                                          10 100                          
Temp, °F.                                                          
            40 40 41 41 41 42 43 43 45 46 47 40                           
pH          10.5                                                          
               9.0                                                        
                  9.1                                                     
                     9.1                                                  
                        9.1                                               
                           9.5                                            
                              8.6                                         
                                 8.6                                      
                                    10.0                                  
                                       10.4                               
                                          9.8                             
                                             5.0                          
Total Dissolved Solids,                                                   
            1,500                                                         
               1,500                                                      
                  1,400                                                   
                     1,400                                                
                        1,400                                             
                           4,600                                          
                              140                                         
                                 150                                      
                                    165                                   
                                       600                                
                                          10 10                           
ppm                                                                       
Au, oz/ton  0.002                                                         
               0.002                                                      
                  0.002                                                   
                     0.002                                                
                        0.002                                             
                           0.006                                          
                              0  0  0  0  0  0                            
Cu, ppm     20 20 25 25 25 75 <1 10 10 40 0  0                            
Ca, ppm     250                                                           
               250                                                        
                  250                                                     
                     250                                                  
                        250                                               
                           750                                            
                              5  5  5  20 0  0                            
CN, ppm     200                                                           
               200                                                        
                  180                                                     
                     180                                                  
                        180                                               
                           500                                            
                              20 20 20 80 1  1                            
Cont/Occ    Cont                                                          
               Cont                                                       
                  Cont                                                    
                     Cont                                                 
                        Cont                                              
                           Cont                                           
                              Cont                                        
                                 Cont                                     
                                    Cont                                  
                                       Cont                               
                                          Cont                            
                                             Occ                          
__________________________________________________________________________
As can be appreciated, the present invention provides a means for removing and recovering cyanide and heavy and precious metal values from process streams. The significant reduction of the cyanide content in the discharge stream means that it can be safely discharged when the levels meet permissible discharge levels or may require only minimal further treatment.
The foregoing embodiments of the present invention have been presented for purposes of illustration and description. These description and embodiments are not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above disclosure. The embodiments were chosen and described in order to best explain the principle of the invention and its practical applications to thereby enable others skilled in the art to best utilize the invention in its various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the invention be defined by the following claims.

Claims (15)

What we claim is:
1. A method for treating streams containing cyanide, heavy metal and precious metal values to recover said values comprising the steps of:
a) providing a membrane filtration means having a feed inlet, a product stream outlet and a discharge stream outlet,
b) contacting a stream containing cyanide, heavy metal and precius metal values with an effective amount of carbon dioxide to adjust the pH to about 8.5 to about 10.0,
c) further contacting said stream with an effective amount of a soluble metal compound to react with the cyanide in the waste stream to form membrane rejectable cyanide compounds and to form a treated stream, and
d) passing said treated stream to said feed inlet and through said membrane filtration means to thereby separate recoverable cyanide and precious metal values from said treated stream as a product stream and produce a discharge stream.
2. The method of claim 1 wherein the soluble metal compound is a soluble copper, iron, nickel, or zinc salt.
3. The method of claim 1 wherein said soluble metal compound is selected from the group consisting of copper sulfate, copper chloride, zinc sulfate, zinc chloride, nickel sulfate, nickel chloride, iron sulfate and iron chloride.
4. The method of claim 1 wherein the pH of said stream is adjusted to about 8.5 to 9.5 pH.
5. The method of claim 1 including the step of adding an antiscalant, dispersant, or combinations thereof to said stream before passing it through said membrane filtration means.
6. The method of claim 1 including the step of passing the effluent stream through a second membrane filtration means having an inlet, a product stream outlet, and a stream outlet, and recycling the product stream outlet back to the inlet of the first membrane filtration means.
7. The method of claim 1 wherein said membrane filtration means is selected from the group consisting of reverse osmosis means, ultrafiltration means, and nano filtration means, and combinations thereof.
8. The method of claim 1 wherein said membrane filtration means is a reverse osmosis filtration means.
9. The method of claim 1 further including the step of periodically cleaning said membrane filtration means by adding a composition to lower the pH of the discharge stream to about 5 to 7 pH stream and recycling the pH adjusted discharge stream back to and through the membrane filtration means to thereby solubilize and remove contaminants from the surface of the membrane filtration means.
10. An apparatus for treating streams containing cyanide, heavy metal and precious metal values to recover said values comprising:
a) a membrane filtration means for separating said cyanide, heavy metal and precious metal values from a feed stream having an inlet, a product outlet and an discharge outlet,
b) means for feeding a stream containing cyanide, heavy metals, and precious metals to said filtration means,
c) means for contacting said stream with carbon dioxide thereby to treat said stream and adjust the pH of said stream to about 8.5 to 10.0 pH,
d) means for contacting said stream with a soluble metal compound thereby to treat said stream further and convert the cyanide in said stream to form membrane rejectable cyanide compounds, and
e) pump means for increasing the pressure of the treated stream and feed said treated stream to said inlet of membrane filtration means and thereby separate said treated stream into a product stream containing cyanide, heavy metal and precious metal values and an effluent stream.
11. The apparatus of claim 10 wherein said pump means is capable of producing a discharge pressure of more than about 150 psi.
12. The apparatus of claim 10 wherein said membrane filtration means is selected from the group consisting of reverse osmosis means, ultrafiltration means, nano filtration means, and combinations thereof.
13. The apparatus of claim 10 further including a means for periodically cleaning the membrane of said membrane filtration means.
14. The apparatus of claim 10 further including a means for contacting said stream with antiscalants, dispersants, or combinations thereof.
15. The apparatus of claim 10 further including a second membrane filtration means for separating cyanide, heavy metal, and precious metal values from the discharge stream and recycling them back to the inlet of the first membrane filtration means for recovery thereof.
US07/828,314 1992-01-30 1992-01-30 Method for treating process streams containing cyanide and heavy metals Expired - Lifetime US5266203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/828,314 US5266203A (en) 1992-01-30 1992-01-30 Method for treating process streams containing cyanide and heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/828,314 US5266203A (en) 1992-01-30 1992-01-30 Method for treating process streams containing cyanide and heavy metals

Publications (1)

Publication Number Publication Date
US5266203A true US5266203A (en) 1993-11-30

Family

ID=25251443

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/828,314 Expired - Lifetime US5266203A (en) 1992-01-30 1992-01-30 Method for treating process streams containing cyanide and heavy metals

Country Status (1)

Country Link
US (1) US5266203A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476591A (en) * 1993-05-25 1995-12-19 Harrison Western Environmental Services, Inc. Liquid treatment system and method for operating the same
US5501798A (en) * 1994-04-06 1996-03-26 Zenon Environmental, Inc. Microfiltration enhanced reverse osmosis for water treatment
US5545805A (en) * 1995-06-07 1996-08-13 Chesner Engineering, Pc Enhanced stabilization of lead in solid residues using acid oxyanion and alkali-metal carbonate treatment
FR2737792A1 (en) * 1995-08-11 1997-02-14 Kodak Pathe METHOD AND DEVICE FOR SELECTIVE EXTRACTION OF HALOGENIC IONS FROM PHOTOGRAPHIC BATHS
WO1998056494A1 (en) * 1997-06-09 1998-12-17 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
WO1999033551A1 (en) * 1997-12-31 1999-07-08 Basx Systems, Llc Methods to remove metals from water
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
US5961833A (en) * 1997-06-09 1999-10-05 Hw Process Technologies, Inc. Method for separating and isolating gold from copper in a gold processing system
EP0946268A1 (en) * 1996-08-12 1999-10-06 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US6156186A (en) * 1997-10-30 2000-12-05 Hw Process Technologies, Inc. Method for removing contaminants from process streams in metal recovery processes
ES2156678A1 (en) * 1998-07-31 2001-07-01 Univ Catalunya Politecnica Hollow fibre contactors based gold recuperation technique consists of treatment of cyanide solutions by means of liquid membranes
EP1118683A1 (en) * 2000-01-20 2001-07-25 MEMBRAFLOW GMBH & CO. KG Filtersysteme Membrane filter process and apparatus for the purification and/or treatment of suspensions of precious metal compounds
WO2001062993A1 (en) * 2000-02-22 2001-08-30 Lakefield Oretest Pty Ltd Process and apparatus for recovery of cyanide and metals
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
US6372143B1 (en) 2000-09-26 2002-04-16 Hydrometrics, Inc. Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
US20020166823A1 (en) * 2001-05-05 2002-11-14 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US20030010720A1 (en) * 2001-06-28 2003-01-16 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
US6537456B2 (en) * 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US20030069462A1 (en) * 2000-03-07 2003-04-10 Gary Fisher Methods of destruction of cyanide in cyanide-containing waste
US20030159990A1 (en) * 2002-01-04 2003-08-28 Collins John H. Method of using water soluble polymers in a membrane biological reactor
US20030196955A1 (en) * 2002-04-17 2003-10-23 Hughes Kenneth D. Membrane based fluid treatment systems
US20030205526A1 (en) * 2002-05-02 2003-11-06 Vuong Diem Xuan Two stage nanofiltration seawater desalination system
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
US20060231491A1 (en) * 1996-08-12 2006-10-19 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US20060272198A1 (en) * 2005-06-01 2006-12-07 Seong-Hoon Yoon Method for improving flux in a membrane bioreactor
US7201841B2 (en) 2003-02-05 2007-04-10 Water Visions International, Inc. Composite materials for fluid treatment
WO2008067555A2 (en) * 2006-11-30 2008-06-05 Hw Advanced Technologies, Inc. Method for washing filtration membranes
US7383946B2 (en) 2004-03-26 2008-06-10 Hughes Kenneth D Materials for storing and releasing reactive gases
US7520993B1 (en) 2007-12-06 2009-04-21 Water & Power Technologies, Inc. Water treatment process for oilfield produced water
US20090272691A1 (en) * 2008-05-02 2009-11-05 Musale Deepak A Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
US20100193436A1 (en) * 2007-08-20 2010-08-05 Earth Renaissance Technologies, Llc Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
WO2011160179A1 (en) * 2010-06-23 2011-12-29 Etip Pty Ltd Method for the pretreatment and separation of metals from cyanide containing solutions
US20120267316A1 (en) * 2009-12-21 2012-10-25 Shiwen Zhang Apparatus and Method for Purifying and Sterilizing Water Using Nano Catalytic Microelectrolysis
CN103253800A (en) * 2013-05-17 2013-08-21 招金矿业股份有限公司金翅岭金矿 Method for treating gold production sewage
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8636919B1 (en) 2004-03-26 2014-01-28 Kenneth D. Hughes Reactive solutions
US9039899B2 (en) 2011-04-25 2015-05-26 Oasys Water, Inc. Osmotic separation systems and methods
US9138688B2 (en) 2011-09-22 2015-09-22 Chevron U.S.A. Inc. Apparatus and process for treatment of water
US9266065B2 (en) 2009-10-30 2016-02-23 Oasys Water, Inc. Osmotic separation systems and methods
US11103830B2 (en) 2015-09-02 2021-08-31 Electrophor, Inc. Method for purifying a liquid
US11439955B2 (en) 2015-09-02 2022-09-13 Electrophor, Inc. System for purifying a liquid

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014787A (en) * 1974-01-02 1977-03-29 Systems Engineering & Manufacturing Corporation Wastewater treatment
US4040834A (en) * 1975-02-18 1977-08-09 Fuji Photo Film Co., Ltd. Regeneration of photographic processing solutions
US4312760A (en) * 1980-02-19 1982-01-26 Neville Roy G Method for the removal of free and complex cyanides from water
US4357254A (en) * 1981-01-12 1982-11-02 Chemical Sciences, Inc. Cleaning composition
US4394356A (en) * 1980-09-25 1983-07-19 Peuser Michael F Recuperation of cyanides from rinsing solutions of cyanidric processes for eletrodeposition of metals
US4462713A (en) * 1982-06-01 1984-07-31 Zurcher Allen K Method for mining and reclaiming land
US4574049A (en) * 1984-06-04 1986-03-04 Arrowhead Industrial Water, Inc. Reverse osmosis system
US4622149A (en) * 1984-05-23 1986-11-11 Inco Limited Effluent treatment
US4775480A (en) * 1983-10-18 1988-10-04 Gnb Incorporated Membrane processes for treatment of and recovery of components from kraft black liquors
US4851129A (en) * 1988-04-19 1989-07-25 Degussa Aktiengesellschaft Process for the detoxification of effluents from ore processing operations with hydrogen peroxide, using a magnetic pre-separation stage
US4880511A (en) * 1986-05-16 1989-11-14 Electroplating Engineers Of Japan, Limited Process and apparatus for recovery of precious metal compound
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US5015396A (en) * 1990-09-11 1991-05-14 The Boc Group, Inc. Removal of cyanide from aqueous streams
US5017291A (en) * 1990-10-24 1991-05-21 Semler Industries, Inc. Process for recycling and reconstituting flexographic inks
US5087372A (en) * 1989-03-24 1992-02-11 Asahi Kasei Kogyo Kabushiki Kaisha Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
US5106508A (en) * 1990-09-26 1992-04-21 Klaus Schwitzgebel Integrated process for cyanide and heavy metal removal from plating process waste streams
US5112489A (en) * 1990-07-04 1992-05-12 Bucher-Guyer Ag Maschinenfabrik Process and unit for clarification of liquids

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014787A (en) * 1974-01-02 1977-03-29 Systems Engineering & Manufacturing Corporation Wastewater treatment
US4040834A (en) * 1975-02-18 1977-08-09 Fuji Photo Film Co., Ltd. Regeneration of photographic processing solutions
US4312760A (en) * 1980-02-19 1982-01-26 Neville Roy G Method for the removal of free and complex cyanides from water
US4394356A (en) * 1980-09-25 1983-07-19 Peuser Michael F Recuperation of cyanides from rinsing solutions of cyanidric processes for eletrodeposition of metals
US4357254A (en) * 1981-01-12 1982-11-02 Chemical Sciences, Inc. Cleaning composition
US4462713A (en) * 1982-06-01 1984-07-31 Zurcher Allen K Method for mining and reclaiming land
US4775480A (en) * 1983-10-18 1988-10-04 Gnb Incorporated Membrane processes for treatment of and recovery of components from kraft black liquors
US4622149A (en) * 1984-05-23 1986-11-11 Inco Limited Effluent treatment
US4574049A (en) * 1984-06-04 1986-03-04 Arrowhead Industrial Water, Inc. Reverse osmosis system
US4574049B1 (en) * 1984-06-04 1999-02-02 Ionpure Filter Us Inc Reverse osmosis system
US4880511A (en) * 1986-05-16 1989-11-14 Electroplating Engineers Of Japan, Limited Process and apparatus for recovery of precious metal compound
US4851129A (en) * 1988-04-19 1989-07-25 Degussa Aktiengesellschaft Process for the detoxification of effluents from ore processing operations with hydrogen peroxide, using a magnetic pre-separation stage
US5087372A (en) * 1989-03-24 1992-02-11 Asahi Kasei Kogyo Kabushiki Kaisha Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
US4988444A (en) * 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US5112489A (en) * 1990-07-04 1992-05-12 Bucher-Guyer Ag Maschinenfabrik Process and unit for clarification of liquids
US5015396A (en) * 1990-09-11 1991-05-14 The Boc Group, Inc. Removal of cyanide from aqueous streams
US5106508A (en) * 1990-09-26 1992-04-21 Klaus Schwitzgebel Integrated process for cyanide and heavy metal removal from plating process waste streams
US5017291A (en) * 1990-10-24 1991-05-21 Semler Industries, Inc. Process for recycling and reconstituting flexographic inks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mike Irish, "Heap Leaching and the 100 Year Flood", Feb. 1987, 14 pages, hand-out at Society of Mining Engineers Conference.
Mike Irish, Heap Leaching and the 100 Year Flood , Feb. 1987, 14 pages, hand out at Society of Mining Engineers Conference. *

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476591A (en) * 1993-05-25 1995-12-19 Harrison Western Environmental Services, Inc. Liquid treatment system and method for operating the same
US5501798A (en) * 1994-04-06 1996-03-26 Zenon Environmental, Inc. Microfiltration enhanced reverse osmosis for water treatment
US5545805A (en) * 1995-06-07 1996-08-13 Chesner Engineering, Pc Enhanced stabilization of lead in solid residues using acid oxyanion and alkali-metal carbonate treatment
FR2737792A1 (en) * 1995-08-11 1997-02-14 Kodak Pathe METHOD AND DEVICE FOR SELECTIVE EXTRACTION OF HALOGENIC IONS FROM PHOTOGRAPHIC BATHS
EP0762200A1 (en) * 1995-08-11 1997-03-12 Kodak-Pathe Method and device for the selective extraction of halide ions from photographic baths
US5679503A (en) * 1995-08-11 1997-10-21 Eastman Kodak Company Method and device for the selective extraction of halide ions from photographic baths
US8641905B2 (en) * 1996-08-12 2014-02-04 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US8617398B2 (en) 1996-08-12 2013-12-31 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US9073763B2 (en) 1996-08-12 2015-07-07 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
US6537456B2 (en) * 1996-08-12 2003-03-25 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
EP0946268A1 (en) * 1996-08-12 1999-10-06 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US9428412B2 (en) 1996-08-12 2016-08-30 Debasish Mukhopadhyay Method for high efficiency reverse osmosis operation
EP0946268A4 (en) * 1996-08-12 2000-11-22 Debasish Mukhopadhyay Method and apparatus for high efficiency reverse osmosis operation
US8758720B2 (en) 1996-08-12 2014-06-24 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US20060231491A1 (en) * 1996-08-12 2006-10-19 Debasish Mukhopadhyay High purity water produced by reverse osmosis
US6348154B1 (en) * 1997-01-03 2002-02-19 David R. Stewart Methods to remove metals from water
US5925255A (en) * 1997-03-01 1999-07-20 Mukhopadhyay; Debasish Method and apparatus for high efficiency reverse osmosis operation
WO1998056494A1 (en) * 1997-06-09 1998-12-17 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
US6355175B1 (en) 1997-06-09 2002-03-12 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
AU748320B2 (en) * 1997-06-09 2002-05-30 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
GB2341602A (en) * 1997-06-09 2000-03-22 Hw Process Technologies Inc Method for separating and isolating precious metals from non precious metals dissolved in solutions
US5961833A (en) * 1997-06-09 1999-10-05 Hw Process Technologies, Inc. Method for separating and isolating gold from copper in a gold processing system
US6156186A (en) * 1997-10-30 2000-12-05 Hw Process Technologies, Inc. Method for removing contaminants from process streams in metal recovery processes
WO1999033551A1 (en) * 1997-12-31 1999-07-08 Basx Systems, Llc Methods to remove metals from water
ES2156678A1 (en) * 1998-07-31 2001-07-01 Univ Catalunya Politecnica Hollow fibre contactors based gold recuperation technique consists of treatment of cyanide solutions by means of liquid membranes
EP1118683A1 (en) * 2000-01-20 2001-07-25 MEMBRAFLOW GMBH & CO. KG Filtersysteme Membrane filter process and apparatus for the purification and/or treatment of suspensions of precious metal compounds
US6635180B2 (en) 2000-01-20 2003-10-21 Membraflow Gmbh & Co. Kg Filtersysteme Process and apparatus for the purification and/or treatment of suspensions
US20030089619A1 (en) * 2000-02-22 2003-05-15 Sunil Jayasekera Process and apparatus for recovery of cyanide and metals
WO2001062993A1 (en) * 2000-02-22 2001-08-30 Lakefield Oretest Pty Ltd Process and apparatus for recovery of cyanide and metals
US6596916B1 (en) 2000-03-07 2003-07-22 Waste Management, Inc. Methods of destruction of cyanide in cyanide-containing waste
US20030069462A1 (en) * 2000-03-07 2003-04-10 Gary Fisher Methods of destruction of cyanide in cyanide-containing waste
US6774277B2 (en) 2000-03-07 2004-08-10 Waste Management, Inc. Methods of destruction of cyanide in cyanide-containing waste
US6325983B1 (en) 2000-04-19 2001-12-04 Seh America, Inc. Nox scrubbing system and method
US6306197B1 (en) 2000-04-19 2001-10-23 Seh America, Inc. Isopropyl alcohol scrubbing system
US6372143B1 (en) 2000-09-26 2002-04-16 Hydrometrics, Inc. Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
US20020166823A1 (en) * 2001-05-05 2002-11-14 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US20080179242A1 (en) * 2001-05-05 2008-07-31 Debasish Mukhopadhyay Method for treatment of feedwaters by membrane separation under acidic conditions
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
US6787041B2 (en) * 2001-06-28 2004-09-07 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
US20030010720A1 (en) * 2001-06-28 2003-01-16 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
US6926832B2 (en) 2002-01-04 2005-08-09 Nalco Company Method of using water soluble polymers in a membrane biological reactor
US20030159990A1 (en) * 2002-01-04 2003-08-28 Collins John H. Method of using water soluble polymers in a membrane biological reactor
US6723245B1 (en) 2002-01-04 2004-04-20 Nalco Company Method of using water soluble cationic polymers in membrane biological reactors
US20030196955A1 (en) * 2002-04-17 2003-10-23 Hughes Kenneth D. Membrane based fluid treatment systems
US7186344B2 (en) * 2002-04-17 2007-03-06 Water Visions International, Inc. Membrane based fluid treatment systems
WO2003092870A1 (en) * 2002-05-02 2003-11-13 City Of Long Beach Two stage nanofiltration seawater desalination system
US20030205526A1 (en) * 2002-05-02 2003-11-06 Vuong Diem Xuan Two stage nanofiltration seawater desalination system
US7144511B2 (en) 2002-05-02 2006-12-05 City Of Long Beach Two stage nanofiltration seawater desalination system
US7201841B2 (en) 2003-02-05 2007-04-10 Water Visions International, Inc. Composite materials for fluid treatment
US7383946B2 (en) 2004-03-26 2008-06-10 Hughes Kenneth D Materials for storing and releasing reactive gases
US8636919B1 (en) 2004-03-26 2014-01-28 Kenneth D. Hughes Reactive solutions
US20060272198A1 (en) * 2005-06-01 2006-12-07 Seong-Hoon Yoon Method for improving flux in a membrane bioreactor
US8017014B2 (en) 2005-06-01 2011-09-13 Nalco Company Method for improving flux in a membrane bioreactor
WO2008067555A2 (en) * 2006-11-30 2008-06-05 Hw Advanced Technologies, Inc. Method for washing filtration membranes
WO2008067555A3 (en) * 2006-11-30 2009-05-28 Hw Advanced Technologies Inc Method for washing filtration membranes
US8101083B2 (en) * 2007-08-20 2012-01-24 Earth Renaissance Technologies, Llc Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
US20100193436A1 (en) * 2007-08-20 2010-08-05 Earth Renaissance Technologies, Llc Pre-treatment reverse osmosis water recovery method for brine retentate metals removal
US7520993B1 (en) 2007-12-06 2009-04-21 Water & Power Technologies, Inc. Water treatment process for oilfield produced water
US20090173692A1 (en) * 2007-12-06 2009-07-09 Water & Power Technologies, Inc. Water treatment process for oilfield produced water
US20090272691A1 (en) * 2008-05-02 2009-11-05 Musale Deepak A Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
US8889008B2 (en) 2008-05-02 2014-11-18 Nalco Company Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
US9266065B2 (en) 2009-10-30 2016-02-23 Oasys Water, Inc. Osmotic separation systems and methods
US10315163B2 (en) 2009-10-30 2019-06-11 Oasys Water LLC Osmotic separation systems and methods
US20120267316A1 (en) * 2009-12-21 2012-10-25 Shiwen Zhang Apparatus and Method for Purifying and Sterilizing Water Using Nano Catalytic Microelectrolysis
US9169145B2 (en) * 2009-12-21 2015-10-27 Boying Xiamen Science And Technology Co., Ltd. Apparatus and method for purifying and sterilizing water using nano catalytic microelectrolysis
WO2011160179A1 (en) * 2010-06-23 2011-12-29 Etip Pty Ltd Method for the pretreatment and separation of metals from cyanide containing solutions
US10280097B2 (en) 2011-04-25 2019-05-07 Oasys Water LLC Osmotic separation systems and methods
US9039899B2 (en) 2011-04-25 2015-05-26 Oasys Water, Inc. Osmotic separation systems and methods
US9180411B2 (en) 2011-09-22 2015-11-10 Chevron U.S.A. Inc. Apparatus and process for treatment of water
US9138688B2 (en) 2011-09-22 2015-09-22 Chevron U.S.A. Inc. Apparatus and process for treatment of water
CN103253800A (en) * 2013-05-17 2013-08-21 招金矿业股份有限公司金翅岭金矿 Method for treating gold production sewage
US11103830B2 (en) 2015-09-02 2021-08-31 Electrophor, Inc. Method for purifying a liquid
US11439955B2 (en) 2015-09-02 2022-09-13 Electrophor, Inc. System for purifying a liquid

Similar Documents

Publication Publication Date Title
US5266203A (en) Method for treating process streams containing cyanide and heavy metals
US5254257A (en) Reclaiming of spent brine
US5182023A (en) Process for removing arsenic from water
Kartinen Jr et al. An overview of arsenic removal processes
US6054050A (en) Process for removing organic and inorganic contaminants from refinery wastewater streams employing ultrafiltration and reverse osmosis
US5476591A (en) Liquid treatment system and method for operating the same
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US5266210A (en) Process for removing heavy metals from water
CA2077460C (en) Waste water treatment process using improved recycle of high density sludge
US4267159A (en) Cyanide recovery
Patterson et al. Physical-chemical methods of heavy metals removal
US6372143B1 (en) Purification of produced water from coal seam natural gas wells using ion exchange and reverse osmosis
EP1094884B1 (en) Spent brine reclamation
KR100347864B1 (en) System of treated for industrial wastewater
US6790352B1 (en) Process for treating acid mine water with moderate to high sulfate content
JP3646900B2 (en) Apparatus and method for treating boron-containing water
Peters et al. Separation of heavy metals: removal from industrial wastewaters and contaminated soil
US4250030A (en) Process for the removal of cyanides from effluent
US4851129A (en) Process for the detoxification of effluents from ore processing operations with hydrogen peroxide, using a magnetic pre-separation stage
Awadalla et al. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents
RU2404140C2 (en) Method of treating recycled water from tailing ponds of gold-mining factories
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JP3012553B2 (en) Method and apparatus for removing heavy metals from contaminated water
Akretche Metals Removal from Industrial Effluents

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARROWHEAD INDUSTRIAL WATER, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUKHOPADHYAY, DEBASISH;BERGAMINI, DAN;REEL/FRAME:006689/0935

Effective date: 19920130

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: U.S. FILTER/ARROWHEAD, INC., ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:ARROWHEAD INDUSTRIAL WATER, INC.;REEL/FRAME:007764/0713

Effective date: 19950504

AS Assignment

Owner name: U.S. FILTER/ARROWHEAD, INC., ILLINOIS

Free format text: MERGER;ASSIGNOR:ARROWHEAD INDUSTRIAL WATER, INC.;REEL/FRAME:008031/0906

Effective date: 19950504

AS Assignment

Owner name: U.S. FILTER/IONPURE, INC., MASSACHUSETTS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT CONVEYING AND RECEIVING PARTIES IN ASSIGNMENT PREVIOUSLY RECORDED ON 6/17/96 ON REEL 8031, FRAME 0906;ASSIGNOR:U.S. FILTER/ARROWHEAD, INC.;REEL/FRAME:008133/0856

Effective date: 19950504

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: SIEMENS WATER TECHNOLOGIES CORP., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:U.S. FILTER/IONPURE INC.;REEL/FRAME:018442/0049

Effective date: 20060601