US5433610A - Educational device for children - Google Patents

Educational device for children Download PDF

Info

Publication number
US5433610A
US5433610A US08/260,804 US26080494A US5433610A US 5433610 A US5433610 A US 5433610A US 26080494 A US26080494 A US 26080494A US 5433610 A US5433610 A US 5433610A
Authority
US
United States
Prior art keywords
baby
photos
photo
child
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/260,804
Inventor
Joe Godfrey
Connie Godfrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/260,804 priority Critical patent/US5433610A/en
Application granted granted Critical
Publication of US5433610A publication Critical patent/US5433610A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/06Electrically-operated educational appliances with both visual and audible presentation of the material to be studied
    • G09B5/062Combinations of audio and printed presentations, e.g. magnetically striped cards, talking books, magnetic tapes with printed texts thereon

Definitions

  • This device relates to an educational device for children.
  • Recognition also means the ability to hear a voice or a sound and to distinguish the one from the other.
  • “Language acquisition” means to learn the meaning, sound and pronunciation of a particular word after hearing the word repeated time after time again, thus adding words or language to the child's vocabulary.
  • "Awareness of cause and effect” means for the child to realize that when an action is made the resulting reaction will happen and be the same time and time again.
  • "Association” means for the child to relate the name or word that goes with a person, animal or inanimate thing, to the actual physical thing that it is. A child, as young as three months of age, is capable of recognizing very familiar voices and faces.
  • a child can learn to recognize and distinguish one person's voice and/or face from another's by looking and listening; that the more spoken language a child hears, the sooner the child will begin to speak; that awareness of cause and effect begins to emerge in a child as young as nine months of age; and that it is important to verbally label people, animals or inanimate things in a child's environment to help the child associate the words, voices, names and sounds with the person, animal or inanimate thing to which it corresponds.
  • This invention contributes to the solutions of the discussed problems of the art by providing an educational device for children by means of which a child's recognition, language acquisition, awareness of cause and effect, and association can be accelerated.
  • the device houses multiple discrete photographs or photos, environmentally depicting people, animals and inanimate things (as, for example, the child's own bottle), recognizable to the child. Each photo is operatively connected to a discrete pre-recorded message. Upon pressing a photo, a discrete and corresponding pre-recorded message is played. The repeated use of the device accelerates the child's learning in relation to recognition, language acquisition, awareness of cause and effect, and association.
  • This invention solves the problem of accelerating a child's recognition because the child will learn to recognize people, animals or inanimate things by seeing the photos displayed in the device repeatedly. The child will also learn to recognize a particular voice or sound by hearing it when one of the corresponding photos is pressed.
  • the invention solves the problem of accelerating a child's language acquisition because the child learns new words by hearing them repeated over and over. When a message is recorded in the device, it can be played back over and over again by simply pressing the same photo. By hearing the message repeatedly, the child will be able to learn the words which are recorded in the device, thus adding words to the child's vocabulary.
  • the invention solves the problem of accelerating the child's awareness of cause and effect because the repeated pressing of the discrete photos by the child's parent, operatively resulting in the playbacks of the corresponding pre-recorded messages, will enable the child to develop an expanded awareness of cause and effect to the extent that the child will begin to understand that, if the child himself presses the same photo, the same corresponding pre-recorded voice message will be played. Hence, eventually the child will be induced to take it upon himself to begin pressing the photos and thereby accelerate his awareness of cause and effect.
  • the invention solves the problem of accelerating the child's association because, when a photo is pressed, its corresponding pre-recorded message will play.
  • the child will hear the words, voices and/or sounds and see the photo that was pressed, thus establishing a direct relationship of the photo to the pre-recorded message. After repeated use, the child will begin to associate the words, voices and/or sounds with the photo, thus accelerating the child's association.
  • the rate of acceleration of a child in learning recognition, language acquisition, awareness of cause and effect, and association greatly depends upon the amount of time the child is subjected to and uses the device, and the learning capabilities of the child.
  • the message-record feature of the device is unique in that the voices in the pre-recorded voice messages to be played will be the voices of people the child knows and such voices will become increasingly more familiar to the child after repeated use of the device.
  • the device further allows any or all of the original photos to be simply removed and replaced with new and different photos, as well as new discrete voice messages being correspondingly recorded to maintain direct teaching relationships with the new photos.
  • the synergistic effect from the accelerating and compounding interplay from the four factors of recognition, language acquisition, awareness of cause and effect, and association could easily accelerate the learning of a nine-months-old baby, to the degree that he starts pressing the photos by himself; and, in some cases, at the age of five to six months.
  • FIG. 1 is a top plan view of the device
  • FIG. 2 is a rear view of the device shown in FIG. 1;
  • FIG. 3 is a perspective view of the main body with its raised picture wells and picture retaining cover
  • FIGS. 4-9 depict sample photos
  • FIG. 10 is a cross-sectional view, taken in the direction of the arrows 10--10 in FIG. 1;
  • FIG. 11 is a diagram for the play/record components
  • FIG. 12 is a diagram for the buttons 33, 35, 37, 39, 41 and 43;
  • FIG. 13A and FIG. 13B is a diagram for the address 1 and latch keyboard buttons 33, 35, 37;
  • FIG. 14 is a diagram for the timing clock generator components
  • FIG. 15 is a diagram for the demultiplexer/decoder components
  • FIG. 16 is a diagram of the light emitting diode circuitry
  • FIG. 17A and FIG. 17B is a diagram of the record/play circuitry, together with its speaker and microphone;
  • FIG. 18A and FIG. 18B is a diagram of the circuitry to produce CE pulse and power down
  • FIG. 19A and FIG. 19B is a diagram for the address data 2 and latch keyboard buttons 39, 41, 43;
  • FIG. 20 is a diagram of the power supply components.
  • FIGS. 13A and B; 17A and B; 18A and B; 19A and B are referred to as FIGS. 13; 17; 18; and 19; respectively.
  • reference numeral 1 generally refers to the invention of the educational device for children.
  • a main body 3, of plastic material houses therein electrical/electronic components of the device 1 by suitable conventional means (not shown). Upstanding from the main body 3 are raised picture wells 5, 7, 9, 11, 13 and 15, shown more discernably in FIG. 3, and which receive therein by emplaced relationship thereon photos 17, 19, 21, 23, 25 and 27, respectively (see FIGS. 4-9).
  • photo 17 in its picture well 5 can be replaced by a different photo by simply raising the cover 29 sufficiently to gain manipulative access to the picture well 5 to remove photo 17 therefrom, and to emplace the different photo in the picture well 5 and simply close the cover 29.
  • Soft touch buttons 33, 35, 37, 39, 41 and 43 are mounted in the respective picture wells 5, 7, 9, 11, 13 and 15, as will be described.
  • the top portion of the main body 3 defines a handle 47 to enable the device 1 to be hand-carried.
  • Access slots 49, through the main body 3, provide sound-wave access to an interiorly housed microphone to be described.
  • Access slots 51 through the main body 3, provide sound-wave access from an interiorly housed speaker to be described.
  • a recess 53 within the main body 3 complementally receives therein by interference fit and thereby mounts a light-emitting-diode (LED) 55.
  • LED light-emitting-diode
  • a backing plate 57 of plastic material, complemental with the main body 3 is affixed to the main body 3 by perimeter screws 59.
  • a recess 61 formed in the backing plate 57, retains, by interference fit therewith, a record/play switch 63, which is purposefully located thereat to prevent a child from "playing" with the switch 63.
  • An access cover 65 conventionally mounted and removable, provides access to a power supply to be described.
  • the picture retaining cover 29 is shown in a half-open position to best show its functional attributes to enable a human operator to emplace photo 27 within raised picture well 15, following which the picture retaining cover 29 would then be closed to hold photo 27 in place.
  • retaining cover 29 has discrete openings, whose perimeters are defined by rims 67, 69, 71, 73, 75 and 77, in complemental relationship with respective picture wells 5, 7, 9, 11, 13 and 15.
  • the rims 67, 69, 71, 73, 75 and 77 are sufficiently less, dimensionally, than their respective picture wells 5, 7, 9, 11, 13 and 15, such that, upon the cover 29 being closed, the rims 67, 69, 71, 73, 75 and 77 physically retain the perimeters of the respective photos 17, 19, 21, 23, 25 and 27, emplaced within their respective picture wells 5, 7, 9, 11, 13 and 15.
  • FIGS. 4-9 depict sample photos that can be used by the human operator. Each photo has, corresponding therewith, its own discrete pre-recorded voice message playback.
  • FIG. 4 depicts photo 17 which is a picture of the child's daddy. The child's daddy places photo 17 within the raised picture well 5 and closes the picture retaining cover 29. Daddy places switch 63 into its record position, then presses photo 17 to close the circuit via soft touch button 33, thereby starting the recording process. Thereupon, daddy speaks into the microphone to record a message, such as: "Hey baby it's daddy, can you say daddy? You sure are a good baby!”, following which switch 63 is disposed in its play position and the device is ready to play.
  • FIG. 5 depicts photo 19 which is a picture of the child's mommy. Mommy records a message such as: "Hey baby, I'm your mommy. Can you say mommy? I sure do love you.”
  • FIG. 6 depicts photo 21 which is a picture of the child's brother. The child's brother records a message such as: "I'm your brother Billy.
  • FIG. 7 depicts a picture of the family car. Daddy or mommy records a message such as: "This is our car. We use the car to drive around. Can you say, car?".
  • FIG. 8 depicts a picture of the child. Daddy or mommy records a message such as: "Look baby! It's a picture of you. Can you say, baby? I know you can.”.
  • FIG. 9 depicts a picture of the family dog. Daddy or mommy records a message such as: "This is our dog. The dog says woof, woof, woof. Can you say dog?".
  • the photos will be replaced with new photos commensurate with the child's progress, together with new discrete and corresponding messages being recorded, to further accelerate the child's learning.
  • the synergistic effect from the accelerating and compounding interplay from the child's recognition, language acquisition, awareness of cause and effect, and association will beneficially further accelerate the baby's learning to the degree that, at the age of five to nine months, the baby will start pressing the photos to hear the pre-recorded messages, with the result that the baby himself will be utilizing the device to teach himself.
  • FIG. 10 shows a circuit board 78, conventionally carried by the main body 3, for the various electrical/electronic components to be described; shows the edges of the rims 67, 69 and 71, closed around their respective picture wells 5, 7 and 9 to keep respective pictures 17, 19 and 21 in place.
  • the soft touch buttons 33, 35 and 37 are shown mounted in the centers of their respective raised picture wells 5, 7 and 9 of the main body 3.
  • a human operator disposes the record/play switch 63, shown in FIG. 11, to its record position. With the photos 17, 19, 21, 23, 25 and 27 emplaced within their respective raised picture wells 5, 7, 9, 11, 13 and 15, one of the photos 17, 19, 21, 23, 25 or 27 is pressed, thereby closing the circuit by contact with its respective soft touch button 33, 35, 37, 39, 41 or 43.
  • Button component 33 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 79 and grounded; button component 35 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 81 and grounded; button component 37 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 83 and grounded; button component 39 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 85 and grounded; button component 41 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 87 and grounded; and button component 43 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 89 and is grounded.
  • button components 33, 35 and 37 when the circuit is closed, the signal goes into a 7442 one-of-ten
  • FIG. 13 Components 93, 95, 97, 99, 103, 105, 107 and 109, to be de-described, are shown in FIG. 13. If button 33 (shown in FIG. 12) is pressed, the decoder 91 will select its corresponding latch, a 74367 hex 3-state buffer 93 (shown in FIG. 13). If button 35 is pressed, the decoder 91 will select a 74367 hex 3-state buffer 95. If button 37 is pressed, the decoder 91 will select a 74367 hex 3-state buffer 97. This causes the signal to go low.
  • the signal for button 33 then goes into a 7404 hex inverter 99; for button 35, into a 7404 hex inverter 101; and for button 37, into a 7404 hex inverter 103. This causes the signal to go high.
  • the high signal for button 33 goes into a 7408 quad 2-input AND gate 105; for button 35, into a 7408 quad 2-input AND gate 107; and for button 37, into a 7408 quad 2-input AND gate 109.
  • Components 111, 113, 115, 117 and 119, to be described, are shown in FIG. 14.
  • the signal passes through a 555 timer 111.
  • the 555 timer 111 is grounded through a 300 k-ohm/1/4-watt/5% tolerance resistor 113, a 200 k-ohm/1/4-watt/5% tolerance resistor 115, a 0.22-micro farad/100-volt mylar capacitor 117 and another 0.22-micro farad/100-volt mylar capacitor 119.
  • Components 121, 123, 125, 127, 129, 131,133, 135 and 137, to be described, are also shown in FIG. 13.
  • the signal for button 33 then goes into a 7473 dual J-K flip flop 121; for button 35, into a 7473 dual J-K flip flop 123; and for button 37, into a 7473 dual J-K flip flop 125.
  • the signal is then split into a high and a low. First, the low signal will cause a 7493 4-bit binary counter 127 and a 7493 4-bit binary counter 129 to output a low signal, producing the correct address for button 33.
  • the low signal goes into a 7493 4-bit binary counter 131 and a 7493 4-bit binary counter 133 to produce the correct address for button 35.
  • the low signal goes into a 7493 4-bit binary counter 135 and a 7493 4-bit binary counter 137 to produce the correct address for button 37.
  • Another low signal from the flip flop 121 for button 33; flip flop 123 for button 35; and flip flop 125 for button 37 passes through a 7400 quad 2-input NAND gate 139 (shown in FIG. 15) and into a 74155 dual 1-of-4 decoder 141 (shown in FIG. 15) which selects the 1000 A voice record/playback IC 143 (shown in FIG. 17) for buttons 33, 35 and 37.
  • Components 145 and 147 are shown in FIG. 16. As soon as a signal enters the IC 143, a signal passes through a 7404 hex inverter 145 to light the LED 55 which is grounded through a 1 k-ohm/1/4-watt/5% tolerance resistor 147. This will let the human operator know whether the device 1 is playing or recording.
  • Component 143, as described, and components 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171 and 173, to be described, are shown in FIG. 17. The human operator then speaks into the microphone 149, sending the signal through a 0.22-micro farad/100-volt mylar capacitor 151.
  • the signal is then stored into the IC 143.
  • the IC 143 is grounded through a 22-micro farad/50-volt electrolytic capacitor 153, a 0.1-micro farad/100-volt mylar capacitor 155, a 0.22-micro farad/100-volt mylar capacitor 157, a 4.7-micro farad/50-volt electrolytic capacitor 159, a 470 k-ohm/1/4-watt/5% tolerance resistor 161, a 2 k-ohm/1/4-watt/5% tolerance resistor 163 and a 22-micro farad/50-volt electrolytic capacitor 165.
  • the IC 143 is connected through a 10-ohm/1/4-watt/5% tolerance resistor 167 to the speaker 169.
  • the IC 143 has linked pins through a 1-micro farad/50-volt electrolytic capacitor 171.
  • the microphone 149 is also grounded through a 10 k-ohm/1/4-watt/5% tolerance resistor 173.
  • Components 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215 and 217, to be described, are shown in FIG. 18.
  • the high signal passes through a 7427 triple 3-input NOR gate 175 then through a 7410 triple 3-input NAND gate 177 and into a 7408 quad 2-input AND gate 179, passing the 555 timer 111 which starts the timing sequence.
  • the high signal goes into a 7493 4-bit binary counter 181 which is cascaded with another 7493 4-bit binary counter 183. These binary counters 181 and 183 produce the correct starting and stopping signals.
  • Each signal from the binary counters 181 and 183 pass through a series of 7404 hex inverters 185, 187, 189, 191, 193, 195 and 197, and into a 7430 8-input NAND gate start 199 and a 7430 8-input NAND gate stop 201.
  • the signal from the NAND gate start 199 goes through a 7404 hex inverter 203 and splits.
  • One signal goes to a 7493 4 -bit binary counter 205 and through a 7404 hex inverter 207 to clear the J-K flip flops 121, 123 and 125 (shown in FIG. 13).
  • buttons 39, 41 and 43 when the circuit is closed, the signal goes into the 7442 one-of-ten decoder 221 (shown in FIG. 12). If button 39 is pressed, the decoder 221 will select its corresponding latch, the hex 3-state buffer 223.
  • Component 223, as described, and components 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255 and 257, to be described, are shown in FIG. 19. If button 41 is pressed, the decoder 221 (shown in FIG. 12) will select the 74367 hex 3-state buffer 225. If button 43 is pressed, the decoder 221 will select the 74367 hex 3-state buffer 227, causing the signal to go low.
  • the signal then goes into a 7404 hex inverter 229; for button 41, into a 7404 hex inverter 231; and for button 43, into a 7404 hex inverter 233; thus causing the signal to go high.
  • the high signal for button 39 goes into 7408 quad 2-input AND gate 235; for button 41, into a 7408 quad 2-input AND gate 237; and for button 43, into a 7408 quad 2-input AND gate 239.
  • the signal then passes through the 555 timer 111 (shown in FIG. 14).
  • the signal for button 39 then goes into a 7473 dual J-K flip flop 241 (shown in FIG.
  • the low signal will cause a 7493 4-bit binary counter 247 and a 7493 4-bit binary counter 249 to output a low signal, producing the correct address for button 39.
  • the low signal goes into a 7493 4-bit binary counter 251 and a 7493 4-bit binary counter 253 to produce the correct address for button 41; and the low signal goes into a 7493 4-bit binary counter 255 and a 7493 4-bit binary counter 257 to produce the correct address for button 43.
  • a signal enters the IC 219 a signal passes through the 7404 hex inverter 145 to light the LED 55.
  • the signal is then stored into the IC 219.
  • the IC 219 is grounded through a 22-micro farad/50-volt eletrolytic capacitor 261, a 0.1-micro farad/100-volt mylar capacitor 263 and a 1-micro farad/50-volt electrolytic capacitor 265.
  • the IC 219 is tied into the IC 143 and uses the same connections to play through the speaker 169.
  • the high signal passes through a 7427 triple 3-input NOR gate 267 (shown in FIG. 18) following the same sequence as buttons 33, 35 and 37, starting with the 7410 triple 3-input NAND gate 177.
  • the electronic circuitry of the device 1 is powered by a 9 volt power supply 269.
  • the 9 volt power from the power supply 269 passes through a 7805 5 volt regulator 271 to regulate the voltage.
  • the human operator disposes the record/play switch 63 in its play position, causing the signal to reverse and go through the whole procedure again. The difference is the signal is returned high to the play input of the 1000 A voice record/playback IC's 143 and 219.
  • the output of memory on the corresponding IC chips 143 or 219 is played through the speaker 169.
  • (M) SN54/74LS04 for 99, 101, 103, 145, 185, 187, 189, 191, 193, 195, 197, 203, 207, 213, 229, 231,233;
  • (M) SN54/74LS08 for 105, 107, 109, 179, 209, 215, 235, 237, 239;
  • (N) LM555 for 111;

Abstract

An educational device for children to accelerate learning from recognition, language acquisition, awareness of cause and effect, and association. The device houses discrete photos environmentally people, animals and/or inanimate objects, recognizable to the child, with each photo being operatively connected to a discrete pre-recorded message, such that, upon a photo being pressed, the discrete and corresponding pre-recorded message is played. The child's learning is accelerated by repetitive use of the device.

Description

BACKGROUND
1. Technical Field
This device relates to an educational device for children.
2. Background
The problems in the art to which this invention apetrains are the needs for accelerating a child's recognition, language acquisition, awareness of cause and effect, and association. A child, in the first few days of his life, is referred to as a "newborn"; up to one year, as a "baby"; 1-21/2 years, as a "toddler"; and 21/2-5 years, as a "pre-schooler". With the exception of the age definition for "newborn", "child" in this patent application includes all of the foregoing age definitions. In this patent application, "recognition" means the ability of the child to look at a photograph and visually remember the person, animal or inanimate thing in the photograph. Recognition also means the ability to hear a voice or a sound and to distinguish the one from the other. "Language acquisition" means to learn the meaning, sound and pronunciation of a particular word after hearing the word repeated time after time again, thus adding words or language to the child's vocabulary. "Awareness of cause and effect" means for the child to realize that when an action is made the resulting reaction will happen and be the same time and time again. "Association" means for the child to relate the name or word that goes with a person, animal or inanimate thing, to the actual physical thing that it is. A child, as young as three months of age, is capable of recognizing very familiar voices and faces. By four to six months, a child can learn to recognize and distinguish one person's voice and/or face from another's by looking and listening; that the more spoken language a child hears, the sooner the child will begin to speak; that awareness of cause and effect begins to emerge in a child as young as nine months of age; and that it is important to verbally label people, animals or inanimate things in a child's environment to help the child associate the words, voices, names and sounds with the person, animal or inanimate thing to which it corresponds.
SUMMARY OF THE INVENTION
This invention contributes to the solutions of the discussed problems of the art by providing an educational device for children by means of which a child's recognition, language acquisition, awareness of cause and effect, and association can be accelerated. The device houses multiple discrete photographs or photos, environmentally depicting people, animals and inanimate things (as, for example, the child's own bottle), recognizable to the child. Each photo is operatively connected to a discrete pre-recorded message. Upon pressing a photo, a discrete and corresponding pre-recorded message is played. The repeated use of the device accelerates the child's learning in relation to recognition, language acquisition, awareness of cause and effect, and association.
This invention solves the problem of accelerating a child's recognition because the child will learn to recognize people, animals or inanimate things by seeing the photos displayed in the device repeatedly. The child will also learn to recognize a particular voice or sound by hearing it when one of the corresponding photos is pressed. The invention solves the problem of accelerating a child's language acquisition because the child learns new words by hearing them repeated over and over. When a message is recorded in the device, it can be played back over and over again by simply pressing the same photo. By hearing the message repeatedly, the child will be able to learn the words which are recorded in the device, thus adding words to the child's vocabulary. The invention solves the problem of accelerating the child's awareness of cause and effect because the repeated pressing of the discrete photos by the child's parent, operatively resulting in the playbacks of the corresponding pre-recorded messages, will enable the child to develop an expanded awareness of cause and effect to the extent that the child will begin to understand that, if the child himself presses the same photo, the same corresponding pre-recorded voice message will be played. Hence, eventually the child will be induced to take it upon himself to begin pressing the photos and thereby accelerate his awareness of cause and effect. The invention solves the problem of accelerating the child's association because, when a photo is pressed, its corresponding pre-recorded message will play. The child will hear the words, voices and/or sounds and see the photo that was pressed, thus establishing a direct relationship of the photo to the pre-recorded message. After repeated use, the child will begin to associate the words, voices and/or sounds with the photo, thus accelerating the child's association. The rate of acceleration of a child in learning recognition, language acquisition, awareness of cause and effect, and association greatly depends upon the amount of time the child is subjected to and uses the device, and the learning capabilities of the child. The message-record feature of the device is unique in that the voices in the pre-recorded voice messages to be played will be the voices of people the child knows and such voices will become increasingly more familiar to the child after repeated use of the device. The device further allows any or all of the original photos to be simply removed and replaced with new and different photos, as well as new discrete voice messages being correspondingly recorded to maintain direct teaching relationships with the new photos.
The synergistic effect from the accelerating and compounding interplay from the four factors of recognition, language acquisition, awareness of cause and effect, and association could easily accelerate the learning of a nine-months-old baby, to the degree that he starts pressing the photos by himself; and, in some cases, at the age of five to six months.
BRIEF DESCRIPTION OF THE DRAWINGS
These objects and other objects of the invention should be discerned and appreciated from the DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT, taken in conjunction with the drawings, wherein like reference numerals refer to similar parts, elements and components throughout the several views, in which:
FIG. 1 is a top plan view of the device;
FIG. 2 is a rear view of the device shown in FIG. 1;
FIG. 3 is a perspective view of the main body with its raised picture wells and picture retaining cover;
FIGS. 4-9 depict sample photos;
FIG. 10 is a cross-sectional view, taken in the direction of the arrows 10--10 in FIG. 1;
FIG. 11 is a diagram for the play/record components;
FIG. 12 is a diagram for the buttons 33, 35, 37, 39, 41 and 43;
FIG. 13A and FIG. 13B is a diagram for the address 1 and latch keyboard buttons 33, 35, 37;
FIG. 14 is a diagram for the timing clock generator components;
FIG. 15 is a diagram for the demultiplexer/decoder components;
FIG. 16 is a diagram of the light emitting diode circuitry;
FIG. 17A and FIG. 17B is a diagram of the record/play circuitry, together with its speaker and microphone;
FIG. 18A and FIG. 18B is a diagram of the circuitry to produce CE pulse and power down;
FIG. 19A and FIG. 19B is a diagram for the address data 2 and latch keyboard buttons 39, 41, 43; and
FIG. 20 is a diagram of the power supply components. In the "DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT", FIGS. 13A and B; 17A and B; 18A and B; 19A and B are referred to as FIGS. 13; 17; 18; and 19; respectively.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In FIG. 1 of the drawings, reference numeral 1 generally refers to the invention of the educational device for children. A main body 3, of plastic material, houses therein electrical/electronic components of the device 1 by suitable conventional means (not shown). Upstanding from the main body 3 are raised picture wells 5, 7, 9, 11, 13 and 15, shown more discernably in FIG. 3, and which receive therein by emplaced relationship thereon photos 17, 19, 21, 23, 25 and 27, respectively (see FIGS. 4-9). A picture retaining cover 29, of plastic material, by means of lateral hinges 31 cooperating with the main body 3, function to allow the cover 29 to be opened, and closed upon the picture wells 5, 7, 9, 11, 13 and 15 to retain the respective photos 17, 19, 21, 23, 25 and 27, so emplaced. For example, photo 17 in its picture well 5 can be replaced by a different photo by simply raising the cover 29 sufficiently to gain manipulative access to the picture well 5 to remove photo 17 therefrom, and to emplace the different photo in the picture well 5 and simply close the cover 29. Soft touch buttons 33, 35, 37, 39, 41 and 43 are mounted in the respective picture wells 5, 7, 9, 11, 13 and 15, as will be described. Fixedly carried by the main body 3, by conventional means (not shown), are conventional strap holders 45 to enable the device 1 to be strapped to conventional side rails of a crib (not shown). The top portion of the main body 3 defines a handle 47 to enable the device 1 to be hand-carried. Access slots 49, through the main body 3, provide sound-wave access to an interiorly housed microphone to be described. Access slots 51, through the main body 3, provide sound-wave access from an interiorly housed speaker to be described. A recess 53 within the main body 3 complementally receives therein by interference fit and thereby mounts a light-emitting-diode (LED) 55.
In FIG. 2, a backing plate 57, of plastic material, complemental with the main body 3 is affixed to the main body 3 by perimeter screws 59. A recess 61, formed in the backing plate 57, retains, by interference fit therewith, a record/play switch 63, which is purposefully located thereat to prevent a child from "playing" with the switch 63. An access cover 65, conventionally mounted and removable, provides access to a power supply to be described.
In FIG. 3, the picture retaining cover 29 is shown in a half-open position to best show its functional attributes to enable a human operator to emplace photo 27 within raised picture well 15, following which the picture retaining cover 29 would then be closed to hold photo 27 in place. As shown, retaining cover 29 has discrete openings, whose perimeters are defined by rims 67, 69, 71, 73, 75 and 77, in complemental relationship with respective picture wells 5, 7, 9, 11, 13 and 15. The rims 67, 69, 71, 73, 75 and 77 are sufficiently less, dimensionally, than their respective picture wells 5, 7, 9, 11, 13 and 15, such that, upon the cover 29 being closed, the rims 67, 69, 71, 73, 75 and 77 physically retain the perimeters of the respective photos 17, 19, 21, 23, 25 and 27, emplaced within their respective picture wells 5, 7, 9, 11, 13 and 15.
FIGS. 4-9 depict sample photos that can be used by the human operator. Each photo has, corresponding therewith, its own discrete pre-recorded voice message playback. FIG. 4 depicts photo 17 which is a picture of the child's daddy. The child's daddy places photo 17 within the raised picture well 5 and closes the picture retaining cover 29. Daddy places switch 63 into its record position, then presses photo 17 to close the circuit via soft touch button 33, thereby starting the recording process. Thereupon, daddy speaks into the microphone to record a message, such as: "Hey baby it's daddy, can you say daddy? You sure are a good baby!", following which switch 63 is disposed in its play position and the device is ready to play. Thereupon, a daddy (and eventually the child) presses photo 17 with the child seeing the picture of daddy, seeing daddy in person and hearing daddy's pre-recorded voice message being played back. If a POLAROID photo is used, the word "daddy" can also be written on the bottom of the photo for the child to see. FIG. 5 depicts photo 19 which is a picture of the child's mommy. Mommy records a message such as: "Hey baby, I'm your mommy. Can you say mommy? I sure do love you.", FIG. 6 depicts photo 21 which is a picture of the child's brother. The child's brother records a message such as: "I'm your brother Billy. I can't wait until you learn to say my name, Billy.". FIG. 7 depicts a picture of the family car. Daddy or mommy records a message such as: "This is our car. We use the car to drive around. Can you say, car?". FIG. 8 depicts a picture of the child. Daddy or mommy records a message such as: "Look baby! It's a picture of you. Can you say, baby? I know you can.". FIG. 9 depicts a picture of the family dog. Daddy or mommy records a message such as: "This is our dog. The dog says woof, woof, woof. Can you say dog?". As the child progresses in his learning capability, the photos will be replaced with new photos commensurate with the child's progress, together with new discrete and corresponding messages being recorded, to further accelerate the child's learning. The synergistic effect from the accelerating and compounding interplay from the child's recognition, language acquisition, awareness of cause and effect, and association will beneficially further accelerate the baby's learning to the degree that, at the age of five to nine months, the baby will start pressing the photos to hear the pre-recorded messages, with the result that the baby himself will be utilizing the device to teach himself.
FIG. 10 shows a circuit board 78, conventionally carried by the main body 3, for the various electrical/electronic components to be described; shows the edges of the rims 67, 69 and 71, closed around their respective picture wells 5, 7 and 9 to keep respective pictures 17, 19 and 21 in place. The soft touch buttons 33, 35 and 37 are shown mounted in the centers of their respective raised picture wells 5, 7 and 9 of the main body 3.
For recording, a human operator disposes the record/play switch 63, shown in FIG. 11, to its record position. With the photos 17, 19, 21, 23, 25 and 27 emplaced within their respective raised picture wells 5, 7, 9, 11, 13 and 15, one of the photos 17, 19, 21, 23, 25 or 27 is pressed, thereby closing the circuit by contact with its respective soft touch button 33, 35, 37, 39, 41 or 43.
Components 33, 35, 37, 39, 41 and 43; and components 79, 81, 83, 85, 87 and 91, to be described, are shown in FIG. 12. Button component 33 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 79 and grounded; button component 35 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 81 and grounded; button component 37 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 83 and grounded; button component 39 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 85 and grounded; button component 41 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 87 and grounded; and button component 43 is connected to a 2.2 k-ohm/1/4-watt/5% tolerance resistor 89 and is grounded. For button components 33, 35 and 37, when the circuit is closed, the signal goes into a 7442 one-of-ten decoder 91.
Components 93, 95, 97, 99, 103, 105, 107 and 109, to be de-described, are shown in FIG. 13. If button 33 (shown in FIG. 12) is pressed, the decoder 91 will select its corresponding latch, a 74367 hex 3-state buffer 93 (shown in FIG. 13). If button 35 is pressed, the decoder 91 will select a 74367 hex 3-state buffer 95. If button 37 is pressed, the decoder 91 will select a 74367 hex 3-state buffer 97. This causes the signal to go low. The signal for button 33 then goes into a 7404 hex inverter 99; for button 35, into a 7404 hex inverter 101; and for button 37, into a 7404 hex inverter 103. This causes the signal to go high. The high signal for button 33 goes into a 7408 quad 2-input AND gate 105; for button 35, into a 7408 quad 2-input AND gate 107; and for button 37, into a 7408 quad 2-input AND gate 109.
Components 111, 113, 115, 117 and 119, to be described, are shown in FIG. 14. The signal passes through a 555 timer 111. The 555 timer 111 is grounded through a 300 k-ohm/1/4-watt/5% tolerance resistor 113, a 200 k-ohm/1/4-watt/5% tolerance resistor 115, a 0.22-micro farad/100-volt mylar capacitor 117 and another 0.22-micro farad/100-volt mylar capacitor 119.
Components 121, 123, 125, 127, 129, 131,133, 135 and 137, to be described, are also shown in FIG. 13. The signal for button 33 then goes into a 7473 dual J-K flip flop 121; for button 35, into a 7473 dual J-K flip flop 123; and for button 37, into a 7473 dual J-K flip flop 125. The signal is then split into a high and a low. First, the low signal will cause a 7493 4-bit binary counter 127 and a 7493 4-bit binary counter 129 to output a low signal, producing the correct address for button 33. The low signal goes into a 7493 4-bit binary counter 131 and a 7493 4-bit binary counter 133 to produce the correct address for button 35. The low signal goes into a 7493 4-bit binary counter 135 and a 7493 4-bit binary counter 137 to produce the correct address for button 37. Another low signal from the flip flop 121 for button 33; flip flop 123 for button 35; and flip flop 125 for button 37 passes through a 7400 quad 2-input NAND gate 139 (shown in FIG. 15) and into a 74155 dual 1-of-4 decoder 141 (shown in FIG. 15) which selects the 1000 A voice record/playback IC 143 (shown in FIG. 17) for buttons 33, 35 and 37.
Components 145 and 147, to be described, are shown in FIG. 16. As soon as a signal enters the IC 143, a signal passes through a 7404 hex inverter 145 to light the LED 55 which is grounded through a 1 k-ohm/1/4-watt/5% tolerance resistor 147. This will let the human operator know whether the device 1 is playing or recording. Component 143, as described, and components 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171 and 173, to be described, are shown in FIG. 17. The human operator then speaks into the microphone 149, sending the signal through a 0.22-micro farad/100-volt mylar capacitor 151. The signal is then stored into the IC 143. The IC 143 is grounded through a 22-micro farad/50-volt electrolytic capacitor 153, a 0.1-micro farad/100-volt mylar capacitor 155, a 0.22-micro farad/100-volt mylar capacitor 157, a 4.7-micro farad/50-volt electrolytic capacitor 159, a 470 k-ohm/1/4-watt/5% tolerance resistor 161, a 2 k-ohm/1/4-watt/5% tolerance resistor 163 and a 22-micro farad/50-volt electrolytic capacitor 165. The IC 143 is connected through a 10-ohm/1/4-watt/5% tolerance resistor 167 to the speaker 169. The IC 143 has linked pins through a 1-micro farad/50-volt electrolytic capacitor 171. The microphone 149 is also grounded through a 10 k-ohm/1/4-watt/5% tolerance resistor 173.
Components 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215 and 217, to be described, are shown in FIG. 18. The high signal passes through a 7427 triple 3-input NOR gate 175 then through a 7410 triple 3-input NAND gate 177 and into a 7408 quad 2-input AND gate 179, passing the 555 timer 111 which starts the timing sequence. The high signal goes into a 7493 4-bit binary counter 181 which is cascaded with another 7493 4-bit binary counter 183. These binary counters 181 and 183 produce the correct starting and stopping signals. Each signal from the binary counters 181 and 183 pass through a series of 7404 hex inverters 185, 187, 189, 191, 193, 195 and 197, and into a 7430 8-input NAND gate start 199 and a 7430 8-input NAND gate stop 201. The signal from the NAND gate start 199 goes through a 7404 hex inverter 203 and splits. One signal goes to a 7493 4 -bit binary counter 205 and through a 7404 hex inverter 207 to clear the J-K flip flops 121, 123 and 125 (shown in FIG. 13). The other side goes into a 7408 quad 2-input AND gate 209 then through a 7402 quad 2-input NOR gate 211. The signal from the NAND gate stop 201 goes to a 7404 hex inverter 213 and into a 7408 quad 2-input AND gate 215. Both the signals from the NAND gate start 199 and the NAND gate stop 201 go into a 7473 dual J-K flip flop 217 and is returned to the correct 1000 A voice record/playback IC 143 for buttons 33, 35 and 37 or IC 219 (shown in FIG. 17) for buttons 39, 41 and 43. For buttons 39, 41 and 43, when the circuit is closed, the signal goes into the 7442 one-of-ten decoder 221 (shown in FIG. 12). If button 39 is pressed, the decoder 221 will select its corresponding latch, the hex 3-state buffer 223.
Component 223, as described, and components 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255 and 257, to be described, are shown in FIG. 19. If button 41 is pressed, the decoder 221 (shown in FIG. 12) will select the 74367 hex 3-state buffer 225. If button 43 is pressed, the decoder 221 will select the 74367 hex 3-state buffer 227, causing the signal to go low. The signal then goes into a 7404 hex inverter 229; for button 41, into a 7404 hex inverter 231; and for button 43, into a 7404 hex inverter 233; thus causing the signal to go high. The high signal for button 39 goes into 7408 quad 2-input AND gate 235; for button 41, into a 7408 quad 2-input AND gate 237; and for button 43, into a 7408 quad 2-input AND gate 239. The signal then passes through the 555 timer 111 (shown in FIG. 14). The signal for button 39 then goes into a 7473 dual J-K flip flop 241 (shown in FIG. 19); for button 41, into a 7473 dual J-K flip flop 243; and for button 43, into a 7473 dual J-K flip flop 245. The signal is then split into high and low signals. First, the low signal will cause a 7493 4-bit binary counter 247 and a 7493 4-bit binary counter 249 to output a low signal, producing the correct address for button 39. The low signal goes into a 7493 4-bit binary counter 251 and a 7493 4-bit binary counter 253 to produce the correct address for button 41; and the low signal goes into a 7493 4-bit binary counter 255 and a 7493 4-bit binary counter 257 to produce the correct address for button 43. Another low signal from the flip flop 241 for button 39; flip flop 243 for button 41; and flip flop 245 for button 43, passes through a 7400 quad 2-input NAND gate 259 (shown in FIG. 15) and into the 74155 dual 1-of-4 decoder 141 which selects the 1000 A voice record/playback IC 219 (shown in FIG. 17) for buttons 39, 41 and 43. As soon as a signal enters the IC 219, a signal passes through the 7404 hex inverter 145 to light the LED 55. The human operator speaks into the microphone 149, sending the signal through the 0.22-micro farad/100-volt mylar capacitor 151. The signal is then stored into the IC 219. The IC 219 is grounded through a 22-micro farad/50-volt eletrolytic capacitor 261, a 0.1-micro farad/100-volt mylar capacitor 263 and a 1-micro farad/50-volt electrolytic capacitor 265. The IC 219 is tied into the IC 143 and uses the same connections to play through the speaker 169. The high signal passes through a 7427 triple 3-input NOR gate 267 (shown in FIG. 18) following the same sequence as buttons 33, 35 and 37, starting with the 7410 triple 3-input NAND gate 177.
As shown in FIG. 20, the electronic circuitry of the device 1 is powered by a 9 volt power supply 269. The 9 volt power from the power supply 269 passes through a 7805 5 volt regulator 271 to regulate the voltage.
To playback a pre-recorded message, the human operator disposes the record/play switch 63 in its play position, causing the signal to reverse and go through the whole procedure again. The difference is the signal is returned high to the play input of the 1000 A voice record/playback IC's 143 and 219. When the corresponding button, which was recorded, is pressed again to play the message, the output of memory on the corresponding IC chips 143 or 219 is played through the speaker 169.
ELECTRICAL/ELECTRONIC PARTS SOURCES
(A)=ARCHER/RADIO SHACK
(M)=MOTOROLA
(N)=NATIONAL SEMICONDUCTOR
(A) 275-1547 for parts described by reference numerals 33, 35, 37, 39, 41, 43; (A) 276-044 for 55; (A) 275-625A for 63;
(A) 271-1325 for 79, 81, 83, 85, 87, 89; (M) SN54/74LS42 for 91, 221; (M)SN54/74LS367A for 93, 95, 97, 223, 225, 227;
(M) SN54/74LS04 for 99, 101, 103, 145, 185, 187, 189, 191, 193, 195, 197, 203, 207, 213, 229, 231,233; (M) SN54/74LS08 for 105, 107, 109, 179, 209, 215, 235, 237, 239; (N) LM555 for 111;
(A) 271-045 (3) for 113; (A) 271-045 (2) for 115; (A) 272-1070 for 117, 119, 151,157; (M)SN54/74LS73A for 121, 123, 217, 241, 243, 245; (M) SN54/74LS93 for 127, 129, 131,133, 135, 137, 181, 183, 205, 247, 249, 252, 253, 255, 257: (M) SN54/74LS00 for 139, 259; (M) SN54/74LS155 for 141; (A) 276-1325 for 143, 219;
(A) 271-1321 for 147; (A) 270-092B for 149; (A) 272-1026 for 153, 165, 261; (A) 272-1069 for 155, 263; (A) 272-1024 for 159;
(A) 271-053 for 161; (A) 271-023 (2) for 163; (A) 271-1301 for 167; (A) 40-248 for 169; (A) 272-996 for 171,265; (A) 271-1335 for 173; (M) SN54/74LS27 for 175, 267; (M) SN54/74LS10 for 177;
(M) SN54/74LS30 for 199, 201; (M) SN54/LS02 for 211; (A) 23-665 for 269; and (A) 276-1660 for 271.

Claims (3)

We claim:
1. An educational device for a five to nine months old baby including in combination:
a housing having a horizontal top portion;
first means mounted in the housing for storing and reproducing a plurality of separate and distinct, single-subject, pre-recorded audio messages each recorded by an immediate family member of the baby;
a plurality of separate and distinct actual photos, recognizable to the baby in and from the baby's own immediate-family environment, each photo being a single subject separately and distinctly corresponding to the respective pre-recorded messages;
a plurality of soft-touch buttons and switch-actuator members, the soft-touch buttons being horizontally disposed and mounted on the horizontal top portions of the housing, each soft-touch button being operatively associated with a corresponding switch-actuator member, a prerecorded audio message and a single-subject photo, each switch-actuator member being capable of actuation by slight pressure being applied to its corresponding soft-touch button;
power supply means;
each photo being disposed upon the housing's top portion in superposed relationship with respect to its own corresponding and associated soft-touch button;
a plurality of switch means each controlled by a different one of the switch-actuator members and electrically interconnecting the first means and the power supply means to cause the first means to reproduce a selected one of the pre-recorded audio messages corresponding to a selected switch-actuator member by slight pressure, applied to its corresponding superposed photo and transmitted thereby through its corresponding soft-touch button and to its corresponding switch-actuator member;
wherein the separate and distinct, single-subject actual photos can be changed to new and different separate and distinct, single-subject actual photos, recognizable to the baby in and from the baby's own immediate-family environment, and wherein said first means inclusively allow the separate and distinct, single-subject, prerecorded audio messages, each of which was recorded by an immediate family member of the baby, to be changed to new and different, separate and distinct, single-subject, recorded audio messages that correspond to the respective new and different photos;
the device allowing immediate family mambers of the baby by repetitive pressing of the photos with reproductions of their respective corresponding prerecorded audio messages to accelerate the baby's learning from the baby's recognition, language acquisition, awareness of cause and effect, and association, and affording a providing a synergistic effect thereby from the accelerating and compounding interplay from the baby's recognition, language acquistion, awareness of cause and effect, and association, for further beneficially accelerating the baby's own learning to the degree that the baby himself will induce himself and teach himself to press the photos to thereby accelerate his own learning.
2. The combination in accordance with claim 1, wherein the housing's top portion has raised picture wells each receiving a photo for emplaced relationship thereon.
3. The combination in accordance with claim 2, wherein the housing's top portion has a picture retaining cover, wherein the housing's top portion and its picture retaining cover have cooperating means for opening the retaining cover for emplacement of the photos upon the raised picture wells and for closing the retaining cover to retain the photos thusly emplaced upon the picture wells.
US08/260,804 1994-06-16 1994-06-16 Educational device for children Expired - Fee Related US5433610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/260,804 US5433610A (en) 1994-06-16 1994-06-16 Educational device for children

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/260,804 US5433610A (en) 1994-06-16 1994-06-16 Educational device for children

Publications (1)

Publication Number Publication Date
US5433610A true US5433610A (en) 1995-07-18

Family

ID=22990692

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/260,804 Expired - Fee Related US5433610A (en) 1994-06-16 1994-06-16 Educational device for children

Country Status (1)

Country Link
US (1) US5433610A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767068A2 (en) * 1995-10-06 1997-04-09 Binney & Smith Inc. Sound generating stamping device
USD384698S (en) * 1996-06-12 1997-10-07 Scientific Toys Ltd. Toy teaching device
US5679049A (en) * 1995-02-02 1997-10-21 Robert W. Jeffway, Jr. Toy telephone recording and playback
USD387383S (en) * 1996-06-12 1997-12-09 Scientific Toys Ltd. Toy teaching device
US5829985A (en) * 1996-07-01 1998-11-03 I Create International, Inc. Interactive children's game
US5845160A (en) * 1997-05-08 1998-12-01 Eastman Kodak Company Method for transferring a recording from a sound index print and player-transfer apparatus
US5851119A (en) * 1995-01-17 1998-12-22 Stephen A. Schwartz And Design Lab, Llc Interactive story book and methods for operating the same
US5878292A (en) * 1996-08-29 1999-03-02 Eastman Kodak Company Image-audio print, method of making and player for using
US5915261A (en) * 1994-08-11 1999-06-22 Scientific Toys Ltd. Toy electronic information storage medium
US5984758A (en) * 1998-07-30 1999-11-16 Kiddesigns, Inc. Simulated computer
US6029042A (en) * 1999-03-29 2000-02-22 Yaron-Moallim; Leah Educational audio playback device including hidden graphical images located below pivoting button elements
US6030225A (en) * 1999-02-04 2000-02-29 Chan; Ying Kit Raised character display structure
US6056550A (en) * 1997-11-19 2000-05-02 Richardson; Rosalyn Gail Educational interactive device
US6072980A (en) * 1998-02-26 2000-06-06 Eastman Kodak Company Using a multiple image, image-audio print to select and play corresponding audio segments in a photo album
US6079985A (en) * 1997-10-23 2000-06-27 Hasbro, Inc. Programmable sound and music making device
WO2000045357A1 (en) * 1999-01-29 2000-08-03 Mattel, Inc. Toy telephone having phone number teaching system
US6101367A (en) * 1999-09-20 2000-08-08 Luciano; Philip P. Combination question-answer book and answer display
US6146146A (en) * 1998-05-15 2000-11-14 Koby-Olson; Karen S. Learning device for children
US6190175B1 (en) * 1999-08-06 2001-02-20 James H. Pridgen Vocabulary teaching device
US6190174B1 (en) * 1999-06-03 2001-02-20 Kader Industrial Company Limited Electronic story board
US6322369B1 (en) 1999-10-20 2001-11-27 Yetta L. Patterson Christian learning tool
US6416326B1 (en) 1997-03-27 2002-07-09 Samsung Electronics Co., Ltd. Method for turning pages of a multi-purpose learning system
FR2840098A1 (en) * 2002-05-23 2003-11-28 Jean Christophe Limbour Sound/image display games unit having presentation unit with visual entity window having rear electrical press contact and luminous circuits control unit attached allowing relationship different image display
US6661407B2 (en) 2001-03-19 2003-12-09 John R. Severson Communication system with interchangeable overlays
US20040152998A1 (en) * 2002-05-23 2004-08-05 Tympany User interface for automated diagnostic hearing test
US20050278170A1 (en) * 2004-06-13 2005-12-15 Hong-Tien Lin Vocabulary learning device capable of recognizing words based on magnetic force distribution
US20060020470A1 (en) * 2004-07-20 2006-01-26 Glen Dobbs Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of picture exchange communication to autonomously communicate using verbal language
US20070046774A1 (en) * 2005-08-06 2007-03-01 Luis Silva Method and apparatus for education and entertainment
US20070084332A1 (en) * 2005-10-19 2007-04-19 Blaszczyk Abbey C Crib toy
US20070259318A1 (en) * 2006-05-02 2007-11-08 Harrison Elizabeth V System for interacting with developmentally challenged individuals
US20100262426A1 (en) * 2004-07-20 2010-10-14 Proxtalker.Com, Llc Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of anonym moveable picture communication to autonomously communicate using verbal language
US20110223578A1 (en) * 2010-02-16 2011-09-15 Cooper Patricia K Flexible flash card system for children, adults, and special needs individuals
US20120203277A1 (en) * 2011-02-07 2012-08-09 Forestieri Amy R Photograph Teething Device and Methods Thereof
US9105196B2 (en) 2004-07-20 2015-08-11 Proxtalker.Com, Llc Method and system for autonomous teaching of braille
US9579560B2 (en) 2015-04-16 2017-02-28 Karen D. Renner Interactive customizable audio-visual toy
US9672668B2 (en) 2012-09-28 2017-06-06 Mattel, Inc. Keyed memory device to record input user signals and output recorded user signals

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358278A (en) * 1980-02-25 1982-11-09 Goldfarb Adolph E Learning and matching apparatus and method
US4403966A (en) * 1981-04-20 1983-09-13 Yang Rong Juh Children conductive intelligence autosuggestion machine
US4465465A (en) * 1983-08-29 1984-08-14 Bailey Nelson Communication device for handicapped persons
US4804328A (en) * 1986-06-26 1989-02-14 Barrabee Kent P Interactive audio-visual teaching method and device
US4980919A (en) * 1987-02-17 1990-12-25 Tsai Yu Ching Message card type of language practising set for children
US4997374A (en) * 1989-05-19 1991-03-05 Simone John A Teaching device
US5145447A (en) * 1991-02-07 1992-09-08 Goldfarb Adolph E Multiple choice verbal sound toy
US5209665A (en) * 1989-10-12 1993-05-11 Sight & Sound Incorporated Interactive audio visual work
JPH05115613A (en) * 1991-10-24 1993-05-14 P-Puru Kk Instructive toy or game machine
US5254007A (en) * 1993-01-29 1993-10-19 Eagan Chris S Baby entertainment and learning apparatus for highchairs
US5277588A (en) * 1993-05-25 1994-01-11 Lin Wen Tsung Audio educational game
EP0578486A2 (en) * 1992-07-08 1994-01-12 Harold D. Pierce Audio Storybook

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358278A (en) * 1980-02-25 1982-11-09 Goldfarb Adolph E Learning and matching apparatus and method
US4403966A (en) * 1981-04-20 1983-09-13 Yang Rong Juh Children conductive intelligence autosuggestion machine
US4465465A (en) * 1983-08-29 1984-08-14 Bailey Nelson Communication device for handicapped persons
US4804328A (en) * 1986-06-26 1989-02-14 Barrabee Kent P Interactive audio-visual teaching method and device
US4980919A (en) * 1987-02-17 1990-12-25 Tsai Yu Ching Message card type of language practising set for children
US4997374A (en) * 1989-05-19 1991-03-05 Simone John A Teaching device
US5209665A (en) * 1989-10-12 1993-05-11 Sight & Sound Incorporated Interactive audio visual work
US5145447A (en) * 1991-02-07 1992-09-08 Goldfarb Adolph E Multiple choice verbal sound toy
JPH05115613A (en) * 1991-10-24 1993-05-14 P-Puru Kk Instructive toy or game machine
EP0578486A2 (en) * 1992-07-08 1994-01-12 Harold D. Pierce Audio Storybook
US5254007A (en) * 1993-01-29 1993-10-19 Eagan Chris S Baby entertainment and learning apparatus for highchairs
US5277588A (en) * 1993-05-25 1994-01-11 Lin Wen Tsung Audio educational game

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915261A (en) * 1994-08-11 1999-06-22 Scientific Toys Ltd. Toy electronic information storage medium
US5851119A (en) * 1995-01-17 1998-12-22 Stephen A. Schwartz And Design Lab, Llc Interactive story book and methods for operating the same
US5679049A (en) * 1995-02-02 1997-10-21 Robert W. Jeffway, Jr. Toy telephone recording and playback
EP0767068A2 (en) * 1995-10-06 1997-04-09 Binney & Smith Inc. Sound generating stamping device
EP0767068A3 (en) * 1995-10-06 1997-05-02 Binney & Smith Inc. Sound generating stamping device
USD384698S (en) * 1996-06-12 1997-10-07 Scientific Toys Ltd. Toy teaching device
USD387383S (en) * 1996-06-12 1997-12-09 Scientific Toys Ltd. Toy teaching device
US5829985A (en) * 1996-07-01 1998-11-03 I Create International, Inc. Interactive children's game
US5878292A (en) * 1996-08-29 1999-03-02 Eastman Kodak Company Image-audio print, method of making and player for using
US6416326B1 (en) 1997-03-27 2002-07-09 Samsung Electronics Co., Ltd. Method for turning pages of a multi-purpose learning system
US5845160A (en) * 1997-05-08 1998-12-01 Eastman Kodak Company Method for transferring a recording from a sound index print and player-transfer apparatus
US6079985A (en) * 1997-10-23 2000-06-27 Hasbro, Inc. Programmable sound and music making device
US6056550A (en) * 1997-11-19 2000-05-02 Richardson; Rosalyn Gail Educational interactive device
US6072980A (en) * 1998-02-26 2000-06-06 Eastman Kodak Company Using a multiple image, image-audio print to select and play corresponding audio segments in a photo album
US6146146A (en) * 1998-05-15 2000-11-14 Koby-Olson; Karen S. Learning device for children
US5984758A (en) * 1998-07-30 1999-11-16 Kiddesigns, Inc. Simulated computer
WO2000045357A1 (en) * 1999-01-29 2000-08-03 Mattel, Inc. Toy telephone having phone number teaching system
US6030225A (en) * 1999-02-04 2000-02-29 Chan; Ying Kit Raised character display structure
US6029042A (en) * 1999-03-29 2000-02-22 Yaron-Moallim; Leah Educational audio playback device including hidden graphical images located below pivoting button elements
US6190174B1 (en) * 1999-06-03 2001-02-20 Kader Industrial Company Limited Electronic story board
US6190175B1 (en) * 1999-08-06 2001-02-20 James H. Pridgen Vocabulary teaching device
US6101367A (en) * 1999-09-20 2000-08-08 Luciano; Philip P. Combination question-answer book and answer display
US6322369B1 (en) 1999-10-20 2001-11-27 Yetta L. Patterson Christian learning tool
US6661407B2 (en) 2001-03-19 2003-12-09 John R. Severson Communication system with interchangeable overlays
US7288072B2 (en) * 2002-05-23 2007-10-30 Tympany, Inc. User interface for automated diagnostic hearing test
FR2840098A1 (en) * 2002-05-23 2003-11-28 Jean Christophe Limbour Sound/image display games unit having presentation unit with visual entity window having rear electrical press contact and luminous circuits control unit attached allowing relationship different image display
US20040152998A1 (en) * 2002-05-23 2004-08-05 Tympany User interface for automated diagnostic hearing test
US20050278170A1 (en) * 2004-06-13 2005-12-15 Hong-Tien Lin Vocabulary learning device capable of recognizing words based on magnetic force distribution
US20100262426A1 (en) * 2004-07-20 2010-10-14 Proxtalker.Com, Llc Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of anonym moveable picture communication to autonomously communicate using verbal language
US20060020470A1 (en) * 2004-07-20 2006-01-26 Glen Dobbs Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of picture exchange communication to autonomously communicate using verbal language
US9111463B2 (en) 2004-07-20 2015-08-18 Proxtalker.Com, Llc Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of anonym moveable picture communication to autonomously communicate using verbal language
US9105196B2 (en) 2004-07-20 2015-08-11 Proxtalker.Com, Llc Method and system for autonomous teaching of braille
US8172638B2 (en) 2005-08-06 2012-05-08 Parental Media LLC Method and apparatus for education and entertainment
US20070046774A1 (en) * 2005-08-06 2007-03-01 Luis Silva Method and apparatus for education and entertainment
US20070084332A1 (en) * 2005-10-19 2007-04-19 Blaszczyk Abbey C Crib toy
US20070259318A1 (en) * 2006-05-02 2007-11-08 Harrison Elizabeth V System for interacting with developmentally challenged individuals
US20110223578A1 (en) * 2010-02-16 2011-09-15 Cooper Patricia K Flexible flash card system for children, adults, and special needs individuals
US20120203277A1 (en) * 2011-02-07 2012-08-09 Forestieri Amy R Photograph Teething Device and Methods Thereof
US9672668B2 (en) 2012-09-28 2017-06-06 Mattel, Inc. Keyed memory device to record input user signals and output recorded user signals
US9579560B2 (en) 2015-04-16 2017-02-28 Karen D. Renner Interactive customizable audio-visual toy

Similar Documents

Publication Publication Date Title
US5433610A (en) Educational device for children
US6516181B1 (en) Interactive picture book with voice recording features and method of use
US7366664B2 (en) Interactive book
US6405167B1 (en) Interactive book
US5188533A (en) Speech synthesizing indicia for interactive learning
US5795213A (en) Reading toy
US5045327A (en) Digital recording and playback module system
US6179682B1 (en) Teaching toy telephone
US4980919A (en) Message card type of language practising set for children
US5266034A (en) Multi-channel sound-recording and playback device
US6029042A (en) Educational audio playback device including hidden graphical images located below pivoting button elements
US20050049850A1 (en) Programmable timed action apparatus using audio and visual signals to interface with a human in completing a task oriented schedule
US3230644A (en) Electronic braille instructor
US9111463B2 (en) Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of anonym moveable picture communication to autonomously communicate using verbal language
US3373508A (en) Teaching apparatus
JP2011209471A (en) Method and device for training speech of aphasic person
US20060020470A1 (en) Interactive speech synthesizer for enabling people who cannot talk but who are familiar with use of picture exchange communication to autonomously communicate using verbal language
WO1988010489A1 (en) Digital recording and playback module system
US6190175B1 (en) Vocabulary teaching device
KR200278331Y1 (en) IC omitted
Lundsteen 14 Learning to Listen and Learning to Read.
JPS6358793U (en)
GB2272097A (en) Improvements relating to teaching aids for the deaf.
JP3059304U (en) album
AU639646B2 (en) Digital recording and playback module system

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20030718