US5467118A - Ink cartridge for a hard copy printing or plotting apparatus - Google Patents

Ink cartridge for a hard copy printing or plotting apparatus Download PDF

Info

Publication number
US5467118A
US5467118A US08/170,840 US17084093A US5467118A US 5467118 A US5467118 A US 5467118A US 17084093 A US17084093 A US 17084093A US 5467118 A US5467118 A US 5467118A
Authority
US
United States
Prior art keywords
ink
cartridge
reservoirs
reservoir
printhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/170,840
Inventor
Brian D. Gragg
James E. Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to US08/170,840 priority Critical patent/US5467118A/en
Assigned to HEWLETT-PACKARD COMPANY reassignment HEWLETT-PACKARD COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAGG, BRIAN D., CLARK, JAMES E.
Priority to JP33620394A priority patent/JP3346931B2/en
Application granted granted Critical
Publication of US5467118A publication Critical patent/US5467118A/en
Priority to US08/801,035 priority patent/US5969739A/en
Assigned to HEWLETT-PACKARD COMPANY reassignment HEWLETT-PACKARD COMPANY MERGER (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17543Cartridge presence detection or type identification
    • B41J2/1755Cartridge presence detection or type identification mechanically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/1752Mounting within the printer
    • B41J2/17523Ink connection

Definitions

  • the present invention relates generally to hard copy printing devices, such as computer printers and plotters, fax machines, and the like, more particularly, to ink-jet type ink cartridge devices, and, more specifically, to an improved ink-jet cartridge for a thermal ink-jet pen.
  • a scanning printhead having a nozzle plate in combination with heating elements.
  • Thermal excitation of ink is used to eject droplets through tiny nozzles, or "orifices," onto a print media.
  • the nozzle plate configuration is one of the design factors that controls droplet size, velocity and trajectory of the droplets.
  • the state-of-the-art has progressed to the state where ink-jet printers provide near-laser print quality by providing resolution up to 1200 dots per inch (“dpi").
  • thermal ink-jet technology Another important design factor in thermal ink-jet technology is the storage and delivery of ink from a reservoir to the nozzle plate of the printhead.
  • problems of fluid dynamics, ink containment, handling and leakage, ink mixing in multi-reservoir pens, printhead clogging due to ink supply contamination, air ingestion and entrapment, pen priming, printhead back pressure, and others are of major concern to those skilled in the art.
  • ink reservoirs have been used, including both disposable and refillable ink reservoir cartridges.
  • the reservoir is integrated with the pen and mounted on a moveable printer carriage for scanning across the print media.
  • a remote, or "off-board,” ink reservoir is provided from which ink is drawn to the printhead through a tubing system.
  • the latter is demonstrated, for example, in U.S. Pat. No. 4,422,084, (Saito) in FIGS. 2 and 3, labeled "Prior Art.” It has been found in general that the relatively long tubing used to convey ink from an off-board reservoir to a printhead does not lend itself well for different printing pressure ranges. Such complicated systems exacerbate the problems associated with delivery of ink from a reservoir to a printhead.
  • the present invention provides a fitment apparatus for supplying independent outflow of ink from each said reservoir to said printhead device, including at least two fixtures, unitary with a cartridge and extending into separate ink reservoir chambers, for piping ink from said reservoirs to a printhead device, and a structure for forming inner walls of said reservoirs, within said chamber, forming a substantially fluid-tight seal between each said structure and said fixtures respectively, such that ink in each said reservoir can flow out through only one said fixtures to said printhead device.
  • Another advantage of the present invention is to provide a structure that creates a low pressure drop across an ink filter in order to maintain a required ink flow rate.
  • FIGS. 1A and 1B depict the present invention in two views in which:
  • FIG. 1A is a perspective view of the assembled ink reservoir cartridge of the present invention from an angle showing a cartridge snout device having multiple ink discharge ports;
  • FIG. 1B is a perspective view of the assembled ink reservoir cartridge of the present invention as shown in FIG. 1A from a reverse angle.
  • FIG. 2 is a perspective view of an ink cartridge reservoir outer housing of the present invention as shown in FIG. 1.
  • FIGS. 3A and 3B depict components of the present invention as shown in FIG. 2 in which:
  • FIG. 3B is a perspectivie view cross-section of the inner frame as shown in FIG. 3A along line 3B.
  • FIGS. 4A and 4B depict components of the present invention as shown in FIGS. 2 and 3 in which:
  • FIG. 4A is a perspective view of the assembled outer reservoir housing and inner frame.
  • FIG. 4B is a perspective view of the assembled outer reservoir housing and inner frame as shown in FIG. 4A from a reverse angle.
  • FIGS. 5A and 5B depict a device of the present invention in two views in which:
  • FIG. 5B is a perspective view of the device as shown in FIG. 5A from a reverse angle.
  • an ink-jet pen cartridge 10 of the present invention is depicted in its fully assembled condition, that is, it is prepared for the mounting of a thermal ink-jet printhead assembly (not shown). In the fully assembled condition, the apparatus is sometimes referred to in the art as "the pen.”
  • an outer housing 12 has three members, a peripheral wall member 14 and two cover plates 16, 18, which when assembled form an enclosed central chamber 50.
  • the housing peripheral wall member 14 is formed, such as by injection molding, of a relatively rigid plastic, such as a glass-filled, modified polyphenylene oxide, polysulfone, or other appropriate plastic.
  • a relatively rigid plastic such as a glass-filled, modified polyphenylene oxide, polysulfone, or other appropriate plastic.
  • One appropriate plastic material is available in the market; for example, the Plastics Group of General Electric Company manufactures such a product under the trademark "NORYL.”
  • the cover plates 16, 18 do not need to provide a fluid type seal with the peripheral wall member 14, they are made from sheet metal. Sheet metal, being thinner than a plastic equivalent will provide additional ink reservoir space within the cartridge outer housing 12.
  • the cartridge 10 further includes an external snout device 20 which is mounted upon outer housing 12 in a manner such that the fitment provides a fluid-tight seal (or "weld"). Mounting external snout device 20 externally of the reservoir containment housing has been found to provide several advantages as set forth above.
  • the snout device 20 is mounted externally to the outer housing peripheral wall 14, those skilled in the art will recognize that the cartridge housing 12 itself (and its internal mechanisms disclosed hereinafter) is readily adaptable to other uses, such as in guided wire dot matrix printers and piezoelectric drive ink-jet printers.
  • the external snout 20 can be readily modified to accommodate not only various ink-jet printheads, but also printheads of other types.
  • an optional user handle 32 may also be provided as part of the outer housing 12.
  • a sealable reservoir-filling port 34 is provided for injecting ink into the reservoir device, for example, a foam block or an ink bag (not shown) within the cartridge housing 12.
  • the reservoir device for example, a foam block or an ink bag (not shown) within the cartridge housing 12.
  • the reservoir device for example, a foam block or an ink bag (not shown) within the cartridge housing 12.
  • FIG. 1B Another feature of the outer housing 12 that is dependent upon the printer apparatus to which the cartridge 10 is to be adapted is the printhead circuit mounting slot 36 shown with a preformed central tab member 38 as shown in FIG. 1B.
  • Such slots are known to reduce the effect of molding sink on the surface around the slot and to provide a proper electrical interconnect between the printhead and the printer electronics.
  • the outer housing peripheral wall 14 may be formed in the first shot of a two-shot injection molding process with all of the features to be described hereinafter being formed by the molding process.
  • the present embodiment is described for a cartridge adapted to be used in full color printing. Such an embodiment is used, for example, in color printer applications which generally use three colorants--such as yellow, magenta, and cyan colorants--to create a full range of print color combinations.
  • color printer applications which generally use three colorants--such as yellow, magenta, and cyan colorants--to create a full range of print color combinations.
  • Such cartridges are often used in tandem, located side-by-side in a printer carriage, with one cartridge containing three color inks and the other containing black ink.
  • Such systems provide both ordinary text font and full color plotting capabilities for the user. While a three reservoir compartment will be described herein, only slight modifications will be recognized as making the invention adaptable to other variations, for example, a one-compartment black ink cartridge, a two-compartment black and red ink cartridge, or a combined black ink and three color ink four-compartment cartridge.
  • the cover plates 16, 18 are made with protrusions (not shown) in order to mate appropriately with the tongue-and-groove sections 42, 44 of outer housing 12.
  • the mating design may be adapted to form a fluid-tight seal.
  • the ink reservoir is of a sealed bag type
  • the fit may not need to be fluid-tight, but if the reservoir is of a saturated-foam type, a fluid-tight seal may be appropriate and the cover plates 16, 18 may be formed of a plastic material accordingly.
  • a raised-step inner section 60 that runs completely around the inner surface of the peripheral wall 14 is located approximately centrally to the interior chamber 50.
  • this circumferential, raised-step, inner section 60 is designed for use with three collapsible membrane reservoir bags (not shown) such as is disclosed in co-pending application Ser. No. 08/170,951, (Gragg), referenced and incorporated above.
  • Each ink pipe 62, 64, 66 has a central bore 63, 65, 67, respectively, with the bore holes of each extending from the interior chamber 50, as an ink inlet port, through the peripheral wall 14 to become an ink outlet port.
  • the ink pipes 62, 64, 66 will be in fluid communication with the snout device 20.
  • each ink pipe stem is an indentation 70 or "notch."
  • a wedge section 72 of the raised-step inner section 60 protrudes inwardly from the raised-step inner section 60 into the chamber 50, separating the ink pipes 62, 64, 66.
  • the wedge section 72 has walls oriented perpendicularly to the raised step, located on the raised step section 60 slightly spaced from the ink pipes 62, 64, 66: two curved sidewalls 74, one each in close proximity to the two ink pipes 64, 66 and a flat wall 76 in close proximity to the third ink pipe 62.
  • Ink reservoir fill holes 80 extend through the structure.
  • a ridge 82 protrudes into the chamber 50 used for locating in the second-shot molded structure of FIG. 3.
  • the second-shot structure of the molded cartridge 12 is depicted without the first-shot peripheral wall 14 of FIG. 2.
  • the second-shot structure comprises an inner frame 90, to be molded upon the inner surface of first-shot raised-step inner section 60 within the central chamber 50 of outer housing 12. Positioning the inner frame 90 in this manner allows the maximization of room within the chamber 50 for providing a substantially equal volume of ink in each reservoir of which the inner frame will form interior walls.
  • the inner frame 90 is formed with protruding, sealable, fill-pipes 91 for insertion into the ink reservoir fill holes 80, one fill-pipe 91 per each fill hole leading from outside the peripheral wall 14 into each reservoir to be contained in the central chamber 50.
  • the inner frame 90 is used for the mounting of three collapsible membrane ink reservoir bags as mentioned above.
  • the inner frame 90 is generally formed of a softer plastic than the outer housing 12, being molded from a plastic material (for example, high-density polyethylene, polypropylene, nylon, or other appropriate material) to facilitate the attachment of the ink reservoir bags with a liquid tight seal when welded thereon without affecting the plastic of the housing peripheral wall 14 during the assembly process.
  • a plastic material for example, high-density polyethylene, polypropylene, nylon, or other appropriate material
  • an optional chamfer 191 and a reservoir mounting beads 193 rim the inner frame 90 on each side. It is intended that such beads soften and tack to the reservoir membrane.
  • a similar bead 96A, 96B rims the raised-step inner section 60.
  • the inner frame 90 abuts the inner surface of the raised-step inner section 60 and includes an outer wall 92, having an alignment groove 84 for accepting ridge 82 of the first-shot molded raised-step inner section 60 accordingly.
  • the cross-dimension--A--of the inner frame 90 is slightly greater than the parallel cross-dimension--B--of the raised-step inner section 60. In this manner, a slight protruding lip on the inner frame 90, overhanging the step, is formed to facilitate the attachment and liquid-tight seal of the ink reservoir bag membranes.
  • Inner wall 94, 94' of the inner frame 90 also bears an internal, circumferential raised ridge 96 that extends into the central chamber 50.
  • a cross-section as shown in FIG. 3B of the circumferential ridge 96 should be generally a T-shape.
  • An optional bead 96A, 96B rimming the edge of the T may also be provided to similarly facilitate reservoir bag membrane attachment.
  • each sleeve Depending from the outer wall 92 of the inner frame 90 are three hollow sleeves 93, 95, 97.
  • the shape and size of the bore of each sleeve is chosen to match in the complement the external circumference and shape and size of the corresponding pipe over which each sleeve is fitted (or, as in the preferred embodiment, molded).
  • the sleeves 93, 95, 97 are designed to conform complementarily with, but not touching, the wedge walls 74, 76.
  • each sleeve 93, 95, 97 will shrink onto the pipes during the post-molding cooling period. By doing so, each sleeve 93, 95, 97 will shrink away from the wedge section 72 and the adjacent inner surface of raised-step inner section 60 adjacent the pipes. It will be noted also that in an injection molding process, the plastic flow will fill the notches 70 at each base 68 of the pipes 62, 64, 66 to lock the two materials together. In the alternative, the pipes might be ribbed circumferentially to provide such a locking mechanism.
  • the seals formed around the ink pipes will be liquid tight.
  • the adjoining inner walls of the hollow sleeves and the outer walls of the ink pipes will be tight enough despite any residual gap between them to form a capillary interface between the ink inside the pen and the air outside that is strong enough to keep the ink in the pen.
  • the remaining concern would be to keep the capillaries created from connecting between reservoir chambers as there will be different color inks in each. That is, if a capillary from one pipe meets with a capillary from another, the inks would be able to flow between pipes, contaminating the reservoirs and the printhead.
  • FIGS. 4A and 4B The assembled (or fully molded) outer housing 14 and inner frame 90 is depicted in FIGS. 4A and 4B (again, without the cover plates 16, 18 and the external snout 20).
  • the two inner membranes (not shown) of the ink reservoir bags are sealed, such as by heat welding, to the T-shaped raised ridge 96, one on each side 96A, 96B, forming a first ink reservoir therebetween.
  • a third membrane is affixed to the bead 193 on the edge 98 of inner frame 90 which, as noted above forms a lip over raised step section 60 of the outer housing 14 within the chamber 50.
  • a fourth membrane is similarly affixed to the bead of the opposite edge 98' of the inner frame 90.
  • each reservoir thus has a fill hole 80 and each reservoir is in fluid communication with only one ink pipe to allow the outflow of ink from a respective reservoir to the snout device 20.
  • the seals between the inner frame sleeves 93, 95, 97 and the outer housing pipes 62, 64, 66 and of the reservoir bag membranes to the inner frame 90 substantially eliminate any leakage or mixing of the inks within the outer housing 12 or on the passage from a reservoir to the snout device 20.
  • the ink pipes 62, 64, 66 protruding into the chamber 50 are eliminated in the manner of the prior art where only ink outflow ports are provided in an ink cartridge wall where the printhead is normally attached.
  • Inner frame 90 is then formed with the sleeves extending through those outflow ports into communication with the printhead, that is, in the same manner as the ink-fill pipes 91 lead from each reservoir to the external face of outer housing peripheral wall 14. That is, the sleeves have now become ink pipes extending through the cartridge peripheral wall 14 at a printhead mounting external surface area of the wall 14.
  • peripheral wall 14 bends downwardly to form a relatively short peripheral wall section 102 that is substantially parallel to peripheral wall 14 section 104 and opposite peripheral wall section 106.
  • Peripheral wall 14 continues perpendicularly between the two opposing parallel wall sections 102, 106 to join them as a relatively short, substantially flat, snout mount surface 108.
  • a first recess area 110 is formed in mount surface 108 that encompasses the ink outlet side of all three of the ink pipe bores 63, 65, 67. Within the first recess area 110 are three deeper recesses 112, 114, 116, aligned respectively with only one each of the downstream bore ink outlet ports of the three ink pipes 62, 64, 66.
  • the external snout device 20 is shown in FIGS. 5A and 5B.
  • the snout device 20 is molded from a plastic, such as NORYL, that can be sealingly mounted (such as by ultrasonic welding, fusion bonding, gluing, or other well-known techniques that would not affect the structural integrity of the outer housing frame 12) onto the outer housing frame 12 in the first recess area 110 in order to separate the fluid paths through the snout device 20.
  • FIG. 5A shows the external face of the snout 202. It will be understood by a person skilled in the art that the features of the face 202 will conform to the TAB circuit orifice plate (not shown) to be mounted thereon.
  • Two external walls 204, 206 of the snout device 20 are generally flat surfaces abutting along the weld with wall sections 102, 106 of the housing 12.
  • Recesses 208, 210 are provided to fit the snout 20 to the cover plates 16, 18 (as shown in FIGS. 1A and 1B, respectively).
  • a recess 201 and three snout face apertures 203, 205, 207 are provided for feeding ink from the reservoirs within the cartridge inner chamber 50 to the printhead mechanism.
  • a substantially flat surface 220 of the snout is provided to abut the snout mount surface 108 of the outer housing 12 (as shown in FIG. 4B).
  • a protruding ridge 224, rising up from the flat surface 220, is of the same peripheral shape as the first recess 110 in mount surface 108 for mating the two parts with the ridge 224 entering the first recess 110.
  • a form-fit ink filter such as a fine mesh screen, is provided in each snout recess 212, 214, 216.
  • filters 230 are described in co-pending application Ser. No. 07/995,109, (Kaplinsky) referenced and incorporated above. Mounting the filter 230 at this point in the ink outflow channel provides certain advantages.
  • the primary purpose of the filter 230 is to prevent air bubbles (from the reservoir into the printhead or from the printhead up into the reservoir) from interrupting the operation of the pen and to prevent particulate contamination to the printhead from the ink reservoir.
  • filters 230 have generally been located somewhere Within the reservoir of a pen.
  • the filter 230 is usually in direct contact with the foam.
  • the filter 230 is now located downstream not only of the reservoir but also of all mechanical features (such as where ultrasonic weld points are formed or from elastomers, adhesives, or the like that may be used during pen assembly) that can contribute particulate contamination of the printhead.
  • all parts and weld or glue points of parts in the present embodiment are upstream of the filter 230 with respect to ink outflow to the printhead. Therefore, for example, virtually any and all contaminants, such as minute pieces of plastic introduced into a reservoir during the pen assembly procedures and the ink filling process, will be trapped by the downstream filter 230 in the external snout device 20.

Abstract

An improved pen for a hard copy printing device. Reservoirs within the central chamber of an ink cartridge housing are sealingly coupled to individual ink channels connecting each reservoir individually and directly to an exterior surface of the cartridge housing. An ink filter, downstream of any ink contaminating features of the construction, is also provided.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to hard copy printing devices, such as computer printers and plotters, fax machines, and the like, more particularly, to ink-jet type ink cartridge devices, and, more specifically, to an improved ink-jet cartridge for a thermal ink-jet pen.
2. Description of the Related Art
The art of thermal ink-jet printing is relatively well-developed. The basics are disclosed, for example, in various articles in the Hewlett-Packard Journal, May 1985, August 1988, October 1988, August 1992, and December 1992 editions, incorporated herein by reference.
In the art, it is known to provide a scanning printhead having a nozzle plate in combination with heating elements. Thermal excitation of ink is used to eject droplets through tiny nozzles, or "orifices," onto a print media. The nozzle plate configuration is one of the design factors that controls droplet size, velocity and trajectory of the droplets. The state-of-the-art has progressed to the state where ink-jet printers provide near-laser print quality by providing resolution up to 1200 dots per inch ("dpi").
Another important design factor in thermal ink-jet technology is the storage and delivery of ink from a reservoir to the nozzle plate of the printhead. In general, problems of fluid dynamics, ink containment, handling and leakage, ink mixing in multi-reservoir pens, printhead clogging due to ink supply contamination, air ingestion and entrapment, pen priming, printhead back pressure, and others are of major concern to those skilled in the art.
Various types of ink reservoirs have been used, including both disposable and refillable ink reservoir cartridges. In one type, the reservoir is integrated with the pen and mounted on a moveable printer carriage for scanning across the print media. In another, a remote, or "off-board," ink reservoir is provided from which ink is drawn to the printhead through a tubing system. The latter is demonstrated, for example, in U.S. Pat. No. 4,422,084, (Saito) in FIGS. 2 and 3, labeled "Prior Art." It has been found in general that the relatively long tubing used to convey ink from an off-board reservoir to a printhead does not lend itself well for different printing pressure ranges. Such complicated systems exacerbate the problems associated with delivery of ink from a reservoir to a printhead.
Several designs and features of integrated pens are disclosed by the common assignee of the present application in the following co-pending applications, incorporated herein by reference:
NEGATIVE PRESSURE INK DELIVERY SYSTEM, Ser. No. 07/995,851, filed Dec. 23, 1992, (Kaplinsky, et al.); abandoned
COMPACT FLUID COUPLER FOR THERMAL INK JET PRINT CARTRIDGE AND RESERVOIR, Ser. No. 07/853,372, filed Mar. 18, 1992, (Salter);
INK PRESSURE REGULATOR FOR A THERMAL INK-JET PRINTER, Ser. No. 07/928,811, filed Aug. 12, 1992, (Khodapanah et al.);
TWO MATERIAL FRAME HAVING DISSIMILAR PROPERTIES FOR A THERMAL INK-JET CARTRIDGE, Ser. No. 07/994,807, filed Aug. 12, 1992, (Swanson et al.);
RIGID LOOP CASE STRUCTURE FOR THERMAL INK-JET PEN, Ser. No. 07/994,808, filed Dec. 22, 1992, (Swanson et al.);
THERMAL INK-JET PEN WITH A PLASTIC/METAL ATTACHMENT FOR THE COVER, Ser. No. 07/994,810, filed Aug. 12, 1992, (Timm et al.);
THIN PEN STRUCTURE FOR THERMAL INK-JET PRINTER, Ser. No. 07/994,809, filed Dec. 22, 1992, (Swanson et al.);
DOUBLE COMPARTMENT INK-JET CARTRIDGE WITH OPTIMUM SNOUT, Ser. No. 07/995,221, filed Dec. 22, 1992, (Swanson et al.);
LAMINATED FILM INK RESERVOIR, Ser. No. 07/995,868, filed Dec. 23, 1992, (Scheffelin);
TWO MATERIAL FRAME HAVING DISSIMILAR PROPERTIES FOR THERMAL INK-JET CARTRIDGE, Ser. No. 08/058,730, filed May 3, 1993, (Chundury);
SPRING BAG PRINTER INK CARTRIDGE WITH VOLUME INDICATOR, Ser. No. 07/717,735, filed Jun. 19, 1991, (Hunt et al.); U.S. Pat. No. 5,359,353, and
PRINTER INK CARTRIDGE, Ser. No. 08/170,951, (Gragg, et al.), filed concurrently herewith.
There is a need to provide an ink cartridge which reliably delivers a steady flow of liquid ink to the printhead but which is capable of withstanding the rigors of high-speed computer printing operations and the design problems associated with high-speed scanning of a pen across the print media.
SUMMARY OF THE INVENTION
In its broad aspect, the present invention provides a fitment apparatus for supplying independent outflow of ink from each said reservoir to said printhead device, including at least two fixtures, unitary with a cartridge and extending into separate ink reservoir chambers, for piping ink from said reservoirs to a printhead device, and a structure for forming inner walls of said reservoirs, within said chamber, forming a substantially fluid-tight seal between each said structure and said fixtures respectively, such that ink in each said reservoir can flow out through only one said fixtures to said printhead device.
It is an advantage of the present invention that it provides an improved, compact design for computer-driven printer, or plotter, pen ink cartridges.
It is an advantage of the present invention in that it substantially eliminates the problem of inadvertent mixing of different colorants in a multi-reservoir ink pen.
It is another advantage of the present invention that the construction disclosed causes less contamination of the printhead mechanism from the ink reservoir portion of the pen.
It is yet another advantage of the present invention that it provides a substantially leakproof interface between a multi-reservoir ink cartridge and its associated printhead.
It is a further advantage of the present invention that it is manufacturable by simple and inexpensive plastic injection molding techniques and sonic or heat-tack welding of plastic parts.
It is still another advantage of the present invention that it provides a design that is adaptable to both single and multiple ink reservoir chamber pens.
Yet another advantage of the present invention is that it provides a substantially leakproof fitment between an ink reservoir and a printhead.
It is still another advantage of the present invention to increase the internal ink volume of a pen cartridge.
Another advantage of the present invention is to provide a structure that creates a low pressure drop across an ink filter in order to maintain a required ink flow rate.
Other objects, features and advantages of the present invention will become apparent upon consideration of the following detailed description and the accompanying drawings, in which like reference designations represent like features throughout the FIGURES.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B depict the present invention in two views in which:
FIG. 1A is a perspective view of the assembled ink reservoir cartridge of the present invention from an angle showing a cartridge snout device having multiple ink discharge ports; and
FIG. 1B is a perspective view of the assembled ink reservoir cartridge of the present invention as shown in FIG. 1A from a reverse angle.
FIG. 2 is a perspective view of an ink cartridge reservoir outer housing of the present invention as shown in FIG. 1.
FIGS. 3A and 3B depict components of the present invention as shown in FIG. 2 in which:
FIG. 3A is a perspective view of an inner frame of the ink reservoir cartridge of present invention as shown in FIG. 1; and
FIG. 3B is a perspectivie view cross-section of the inner frame as shown in FIG. 3A along line 3B.
FIGS. 4A and 4B depict components of the present invention as shown in FIGS. 2 and 3 in which:
FIG. 4A is a perspective view of the assembled outer reservoir housing and inner frame; and
FIG. 4B is a perspective view of the assembled outer reservoir housing and inner frame as shown in FIG. 4A from a reverse angle.
FIGS. 5A and 5B depict a device of the present invention in two views in which:
FIG. 5A is a view of an external snout device of the present invention as shown in FIG. 1; and
FIG. 5B is a perspective view of the device as shown in FIG. 5A from a reverse angle.
The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.
DETAILED DESCRIPTION OF THE INVENTION
Reference is made now in detail to a specific embodiment of the present invention, which illustrates the best mode presently contemplated by the inventor(s) for practicing the invention. Alternative embodiments and applications of use within the field are also briefly described as applicable. Referring to FIGS. 1A and 1B, an ink-jet pen cartridge 10 of the present invention is depicted in its fully assembled condition, that is, it is prepared for the mounting of a thermal ink-jet printhead assembly (not shown). In the fully assembled condition, the apparatus is sometimes referred to in the art as "the pen."
In the preferred embodiment, an outer housing 12 has three members, a peripheral wall member 14 and two cover plates 16, 18, which when assembled form an enclosed central chamber 50. The housing peripheral wall member 14 is formed, such as by injection molding, of a relatively rigid plastic, such as a glass-filled, modified polyphenylene oxide, polysulfone, or other appropriate plastic. One appropriate plastic material is available in the market; for example, the Plastics Group of General Electric Company manufactures such a product under the trademark "NORYL." In an embodiment in which the cover plates 16, 18 do not need to provide a fluid type seal with the peripheral wall member 14, they are made from sheet metal. Sheet metal, being thinner than a plastic equivalent will provide additional ink reservoir space within the cartridge outer housing 12.
The cartridge 10 further includes an external snout device 20 which is mounted upon outer housing 12 in a manner such that the fitment provides a fluid-tight seal (or "weld"). Mounting external snout device 20 externally of the reservoir containment housing has been found to provide several advantages as set forth above.
It should be noted that because the snout device 20 is mounted externally to the outer housing peripheral wall 14, those skilled in the art will recognize that the cartridge housing 12 itself (and its internal mechanisms disclosed hereinafter) is readily adaptable to other uses, such as in guided wire dot matrix printers and piezoelectric drive ink-jet printers. In other words, the external snout 20 can be readily modified to accommodate not only various ink-jet printheads, but also printheads of other types.
In the field of ink-jet printing, characters and figures formed on the print media are formed of contiguous microscopic dots of ink that are shot across a very small gap between the scanning printhead and print media. Therefore, it is critical that the pen be accurately aligned on a carriage that will scan the printhead across the print media. The cartridge 10 is thus formed with predetermined alignment datum features 30 to register the cartridge 10 in a printer carriage mechanism (not shown). The positioning of such datum features 30 will depend upon the carriage mechanism designed to hold the cartridge 10. Datums can also be provided for alignment with an adjacent pen mounted in the same pen carriage mechanism.
In order to make the cartridge more easy to insert and remove from a carriage mechanism, an optional user handle 32 may also be provided as part of the outer housing 12.
As is known in the art, a sealable reservoir-filling port 34 is provided for injecting ink into the reservoir device, for example, a foam block or an ink bag (not shown) within the cartridge housing 12. In a color pen, there are generally three reservoir devices, such as those disclosed in the co-pending, continuation-in-part, patent application, Ser. No. 08/170951, by Gragg as referenced and incorporated above.
Another feature of the outer housing 12 that is dependent upon the printer apparatus to which the cartridge 10 is to be adapted is the printhead circuit mounting slot 36 shown with a preformed central tab member 38 as shown in FIG. 1B. Such slots are known to reduce the effect of molding sink on the surface around the slot and to provide a proper electrical interconnect between the printhead and the printer electronics.
Referring now to FIG. 2, outer housing peripheral wall 14 is shown in detail with the cover plates 16, 18 and the external snout device 20 removed. A relatively large central chamber 50 is formed by the peripheral wall 14.
As is known in the art, the outer housing peripheral wall 14 may be formed in the first shot of a two-shot injection molding process with all of the features to be described hereinafter being formed by the molding process. The present embodiment is described for a cartridge adapted to be used in full color printing. Such an embodiment is used, for example, in color printer applications which generally use three colorants--such as yellow, magenta, and cyan colorants--to create a full range of print color combinations. The specific features described and depicted are not intended to be a limitation on the scope of the invention. It will be recognized by a person of rudimentary skill in the art that these features are dependent upon the application. For example, such cartridges are often used in tandem, located side-by-side in a printer carriage, with one cartridge containing three color inks and the other containing black ink. Such systems provide both ordinary text font and full color plotting capabilities for the user. While a three reservoir compartment will be described herein, only slight modifications will be recognized as making the invention adaptable to other variations, for example, a one-compartment black ink cartridge, a two-compartment black and red ink cartridge, or a combined black ink and three color ink four-compartment cartridge.
Internally of the peripheral wall 14, having an outer edge 40 outer edges have stepped tongue-and- groove sections 42, 44. Several adaptations will be evident to those skilled in the art. In the present embodiment, the cover plates 16, 18 are made with protrusions (not shown) in order to mate appropriately with the tongue-and- groove sections 42, 44 of outer housing 12. Depending upon the type of ink reservoir to be encapsulated within the outer housing 12, the mating design may be adapted to form a fluid-tight seal. For example, if the ink reservoir is of a sealed bag type, the fit may not need to be fluid-tight, but if the reservoir is of a saturated-foam type, a fluid-tight seal may be appropriate and the cover plates 16, 18 may be formed of a plastic material accordingly.
A raised-step inner section 60 that runs completely around the inner surface of the peripheral wall 14 is located approximately centrally to the interior chamber 50. In the present embodiment, this circumferential, raised-step, inner section 60 is designed for use with three collapsible membrane reservoir bags (not shown) such as is disclosed in co-pending application Ser. No. 08/170,951, (Gragg), referenced and incorporated above.
Three ink pipes 62, 64, 66, one for each reservoir, extending into the chamber 50 from the raised-step inner section 60 are provided. Each ink pipe 62, 64, 66 has a central bore 63, 65, 67, respectively, with the bore holes of each extending from the interior chamber 50, as an ink inlet port, through the peripheral wall 14 to become an ink outlet port. As explained in more detail below, the ink pipes 62, 64, 66 will be in fluid communication with the snout device 20. At the base 68 of each ink pipe stem is an indentation 70 or "notch." A wedge section 72 of the raised-step inner section 60 protrudes inwardly from the raised-step inner section 60 into the chamber 50, separating the ink pipes 62, 64, 66. The wedge section 72 has walls oriented perpendicularly to the raised step, located on the raised step section 60 slightly spaced from the ink pipes 62, 64, 66: two curved sidewalls 74, one each in close proximity to the two ink pipes 64, 66 and a flat wall 76 in close proximity to the third ink pipe 62.
Ink reservoir fill holes 80 extend through the structure. A ridge 82 protrudes into the chamber 50 used for locating in the second-shot molded structure of FIG. 3.
Referring now to FIG. 3A, the second-shot structure of the molded cartridge 12 is depicted without the first-shot peripheral wall 14 of FIG. 2. The second-shot structure comprises an inner frame 90, to be molded upon the inner surface of first-shot raised-step inner section 60 within the central chamber 50 of outer housing 12. Positioning the inner frame 90 in this manner allows the maximization of room within the chamber 50 for providing a substantially equal volume of ink in each reservoir of which the inner frame will form interior walls. The inner frame 90 is formed with protruding, sealable, fill-pipes 91 for insertion into the ink reservoir fill holes 80, one fill-pipe 91 per each fill hole leading from outside the peripheral wall 14 into each reservoir to be contained in the central chamber 50. The inner frame 90 is used for the mounting of three collapsible membrane ink reservoir bags as mentioned above.
The inner frame 90 is generally formed of a softer plastic than the outer housing 12, being molded from a plastic material (for example, high-density polyethylene, polypropylene, nylon, or other appropriate material) to facilitate the attachment of the ink reservoir bags with a liquid tight seal when welded thereon without affecting the plastic of the housing peripheral wall 14 during the assembly process.
Referring briefly to FIG. 3B, to further facilitate attachment of the reservoir bag membranes, in the preferred embodiment an optional chamfer 191 and a reservoir mounting beads 193 rim the inner frame 90 on each side. It is intended that such beads soften and tack to the reservoir membrane. A similar bead 96A, 96B rims the raised-step inner section 60.
The inner frame 90 abuts the inner surface of the raised-step inner section 60 and includes an outer wall 92, having an alignment groove 84 for accepting ridge 82 of the first-shot molded raised-step inner section 60 accordingly. The cross-dimension--A--of the inner frame 90 is slightly greater than the parallel cross-dimension--B--of the raised-step inner section 60. In this manner, a slight protruding lip on the inner frame 90, overhanging the step, is formed to facilitate the attachment and liquid-tight seal of the ink reservoir bag membranes.
Inner wall 94, 94' of the inner frame 90 also bears an internal, circumferential raised ridge 96 that extends into the central chamber 50. A cross-section as shown in FIG. 3B of the circumferential ridge 96 should be generally a T-shape. An optional bead 96A, 96B rimming the edge of the T may also be provided to similarly facilitate reservoir bag membrane attachment.
Depending from the outer wall 92 of the inner frame 90 are three hollow sleeves 93, 95, 97. The shape and size of the bore of each sleeve is chosen to match in the complement the external circumference and shape and size of the corresponding pipe over which each sleeve is fitted (or, as in the preferred embodiment, molded). Additionally, the sleeves 93, 95, 97 are designed to conform complementarily with, but not touching, the wedge walls 74, 76.
The formed sleeves 93, 95, 97 will shrink onto the pipes during the post-molding cooling period. By doing so, each sleeve 93, 95, 97 will shrink away from the wedge section 72 and the adjacent inner surface of raised-step inner section 60 adjacent the pipes. It will be noted also that in an injection molding process, the plastic flow will fill the notches 70 at each base 68 of the pipes 62, 64, 66 to lock the two materials together. In the alternative, the pipes might be ribbed circumferentially to provide such a locking mechanism.
Generally, it has been found that round pipes and sleeves of a constant thickness are preferable. These factors keep the hoop stress in the sleeves constant allowing for maximum and uniform clamping force between the pipes and sleeves. As ink flow in the assembled pen is greatly affected by capillary action, these features of the present invention may be critical to form liquid tight seals between the ink reservoirs.
As mentioned, in the best case, the seals formed around the ink pipes will be liquid tight. In the event that imperfections in the molding process do not form a perfect seal, the adjoining inner walls of the hollow sleeves and the outer walls of the ink pipes will be tight enough despite any residual gap between them to form a capillary interface between the ink inside the pen and the air outside that is strong enough to keep the ink in the pen. The remaining concern would be to keep the capillaries created from connecting between reservoir chambers as there will be different color inks in each. That is, if a capillary from one pipe meets with a capillary from another, the inks would be able to flow between pipes, contaminating the reservoirs and the printhead. It has been found that a shrink fit of the sleeves over the pipes solves this problem. During post-injection molding cooling, the plastic of the sleeves 93, 95, 97 shrinks away from the adjacent walls of the raised-step inner section 60 and the wedge walls 74, 76, it creates a larger gap than that which may be left between a sleeve and a pipe. As, in capillary flow action, smaller gaps have stronger capillary forces than larger gaps, since the pipe-to-sleeve gap is the smaller, ink will not flow out of it into the larger gap between the sleeve and the adjacent wall or wedge and contamination is prevented.
The assembled (or fully molded) outer housing 14 and inner frame 90 is depicted in FIGS. 4A and 4B (again, without the cover plates 16, 18 and the external snout 20). In a three reservoir pen, the two inner membranes (not shown) of the ink reservoir bags are sealed, such as by heat welding, to the T-shaped raised ridge 96, one on each side 96A, 96B, forming a first ink reservoir therebetween. A third membrane is affixed to the bead 193 on the edge 98 of inner frame 90 which, as noted above forms a lip over raised step section 60 of the outer housing 14 within the chamber 50. A fourth membrane is similarly affixed to the bead of the opposite edge 98' of the inner frame 90. In such fashion, three separate reservoirs are formed within the central chamber 50 of outer housing 12. In this construction, each reservoir thus has a fill hole 80 and each reservoir is in fluid communication with only one ink pipe to allow the outflow of ink from a respective reservoir to the snout device 20.
The seals between the inner frame sleeves 93, 95, 97 and the outer housing pipes 62, 64, 66 and of the reservoir bag membranes to the inner frame 90 substantially eliminate any leakage or mixing of the inks within the outer housing 12 or on the passage from a reservoir to the snout device 20.
In an alternative embodiment (not shown), the ink pipes 62, 64, 66 protruding into the chamber 50 are eliminated in the manner of the prior art where only ink outflow ports are provided in an ink cartridge wall where the printhead is normally attached. Inner frame 90 is then formed with the sleeves extending through those outflow ports into communication with the printhead, that is, in the same manner as the ink-fill pipes 91 lead from each reservoir to the external face of outer housing peripheral wall 14. That is, the sleeves have now become ink pipes extending through the cartridge peripheral wall 14 at a printhead mounting external surface area of the wall 14. In such an embodiment, it will be useful to flange the inner frame plastic material outwardly from the ink outflow port to form a gasket on the printhead side of the housing 12 in order to eliminate leakage, ink mixing, and the like problems.
Referring to FIG. 4B, focus is drawn to the snout device 20 mount portion 100 of the outer surface of the peripheral wall 14 of the outer housing 12. At the region of the peripheral wall 14 where the snout device 20 is to be mounted, peripheral wall 14 bends downwardly to form a relatively short peripheral wall section 102 that is substantially parallel to peripheral wall 14 section 104 and opposite peripheral wall section 106. Peripheral wall 14 continues perpendicularly between the two opposing parallel wall sections 102, 106 to join them as a relatively short, substantially flat, snout mount surface 108. A first recess area 110 is formed in mount surface 108 that encompasses the ink outlet side of all three of the ink pipe bores 63, 65, 67. Within the first recess area 110 are three deeper recesses 112, 114, 116, aligned respectively with only one each of the downstream bore ink outlet ports of the three ink pipes 62, 64, 66.
The external snout device 20 is shown in FIGS. 5A and 5B. In general, the snout device 20 is molded from a plastic, such as NORYL, that can be sealingly mounted (such as by ultrasonic welding, fusion bonding, gluing, or other well-known techniques that would not affect the structural integrity of the outer housing frame 12) onto the outer housing frame 12 in the first recess area 110 in order to separate the fluid paths through the snout device 20.
FIG. 5A shows the external face of the snout 202. It will be understood by a person skilled in the art that the features of the face 202 will conform to the TAB circuit orifice plate (not shown) to be mounted thereon. Two external walls 204, 206 of the snout device 20 are generally flat surfaces abutting along the weld with wall sections 102, 106 of the housing 12. Recesses 208, 210 are provided to fit the snout 20 to the cover plates 16, 18 (as shown in FIGS. 1A and 1B, respectively). In the present embodiment, a recess 201 and three snout face apertures 203, 205, 207 are provided for feeding ink from the reservoirs within the cartridge inner chamber 50 to the printhead mechanism.
Referring now to FIG. 5B, a substantially flat surface 220 of the snout is provided to abut the snout mount surface 108 of the outer housing 12 (as shown in FIG. 4B). A protruding ridge 224, rising up from the flat surface 220, is of the same peripheral shape as the first recess 110 in mount surface 108 for mating the two parts with the ridge 224 entering the first recess 110. Three snout recesses 212, 214, 216, each of which are aligned with and encompass the three deeper recesses 112, 114, 116, respectively, of the snout mount surface 108 within the first recess 110. Thus, when the snout device 20 is welded in place on the recess area surface 110 of the outer housing 12, three continuous ink outflow channels have been formed from the inner chamber 50 reservoir sections, through the ink pipe bores 63, 65, 67, into the three deeper recesses 112, 114, 116 of the first recess 110, directly into the three aligned snout device recesses 212, 214, 216 that then funnel ink to respective snout face apertures 203,205, 207.
In the preferred embodiment, a form-fit ink filter (230), such as a fine mesh screen, is provided in each snout recess 212, 214, 216. Such filters 230 are described in co-pending application Ser. No. 07/995,109, (Kaplinsky) referenced and incorporated above. Mounting the filter 230 at this point in the ink outflow channel provides certain advantages.
The primary purpose of the filter 230 is to prevent air bubbles (from the reservoir into the printhead or from the printhead up into the reservoir) from interrupting the operation of the pen and to prevent particulate contamination to the printhead from the ink reservoir. Such filters 230 have generally been located somewhere Within the reservoir of a pen. For example, in a foam-based reservoir, the filter 230 is usually in direct contact with the foam. However, as will be recognized in the present invention, the filter 230 is now located downstream not only of the reservoir but also of all mechanical features (such as where ultrasonic weld points are formed or from elastomers, adhesives, or the like that may be used during pen assembly) that can contribute particulate contamination of the printhead. In other words, all parts and weld or glue points of parts in the present embodiment are upstream of the filter 230 with respect to ink outflow to the printhead. Therefore, for example, virtually any and all contaminants, such as minute pieces of plastic introduced into a reservoir during the pen assembly procedures and the ink filling process, will be trapped by the downstream filter 230 in the external snout device 20.
The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. Similarly, any process steps described might be interchangeable with other steps in order to achieve the same result. The embodiment was chosen and described in order to best explain the principles of the invention and its best mode practical application to thereby enable others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (7)

What is claimed is:
1. In a pen for a hard copy printing device, having an ink cartridge with an exterior surface, an inner surface, and an interior cartridge chamber containing at least two ink reservoirs, each of said reservoirs having a supply of ink therein, and a printhead device on said exterior surface, a fitment apparatus for supplying independent outflow of ink from each of said reservoirs to said printhead device, comprising:
at least two means, unitary with said cartridge and extending into said chamber, for piping ink from each of said reservoirs respectively to said printhead device;
a unitary means for forming inner walls of both of said reservoirs, having a means thereon for forming a substantially fluid-tight seal between said unitary means and each of said means for piping ink respectively, such that ink in each of said reservoirs can flow out through only one of said means for piping;
means for filtering said outflow of ink from said reservoirs; and
means, bonded to said cartridge in a substantially fluid-tight seal between said cartridge and said printhead device, for holding said means for filtering said outflow of ink,
wherein each of said means for piping ink is a tubular pipe device, extending inwardly from said inner surface of said cartridge into said chamber, having a bore extending from said exterior surface of said cartridge into said chamber, and
wherein said means for forming a substantially fluid-tight seal between said unitary means and each of said means for piping ink is a plurality of sleeving means, each adapted to fit over one each of each said tubular pipe devices, for coupling the supply of ink within one of each of said reservoirs to a respective tubular pipe bore and providing a substantially fluid-tight seal between each of said sleeving means and a respectively fitted tubular pipe device except through said bore.
2. The apparatus as set forth in claim 1, further comprising:
said cartridge and said frame are formed of injection molded plastics.
3. The apparatus as set forth in claim 2, further comprising:
the plastic used to mold said framing means has a degree of post-molding shrinkage such that each of said sleeving means is shrink fit to a respective tubular pipe device surrounded thereby.
4. An ink delivery system for an ink cartridge adapted for use with a printhead device., said cartridge having an interior surface, and exterior surface, and an interior chamber incorporating a plurality of ink reservoirs located within said chamber and one ink outflow port for each of said reservoirs, comprising:
channeling means, unitary with said cartridge, having a plurality of bores therethrough extending inwardly from each of said ink outflow ports to a separate ink inlet port within said chamber, respectively, for allowing ink stored within each of said reservoirs to be channeled separately from each of said reservoirs to said exterior surface of said cartridge via each of said outflow ports, respectively; and
a unitary means, within said chamber, for forming at least sidewalls of each of said reservoirs, having means for sealingly coupling each of said reservoirs to only one of each of said channeling means, respectively, such that said unitary means prevents mixing of inks between said reservoirs while allowing outflow of ink from a reservoir through one of said channeling means,
wherein said channeling means further comprises one, tubular cross-sectioned, ink pipe for each of said reservoirs, located proximate each other in an area of said interior surface of said cartridge adjacent an area of said exterior surface adapted for mounting printhead devices thereon in fluid communication with each of said outflow ports, and
wherein said unitary means further comprises a reservoir frame, fitting within said chamber and having a predetermined shape and size such that ink reservoir volumes may be maximized, and having apertures therethrough for each of said reservoirs aligned with said channeling means, and
a plurality of sleeves depending from said reservoir frame, each of said sleeves aligned with an aperture in said reservoir frame, located and adapted to receive one ink pipe each within each of said sleeves such that each of said apertures is further aligned with one of said inlet ports.
5. The system as set forth in claim 4, further comprising:
each of said sleeves is adapted to be shrinkable about said ink pipes.
6. The system as set forth in claim 4, further comprising:
cartridge snout means, having a substantially fluid-tight weld to said cartridge to encompass said outflow ports, for receiving ink from each of said outflow ports, and having an individual through channel for each of said outflow ports aligned therewith, for delivering ink to said printhead device; and
ink filtering means, within said cartridge snout means, downstream of said weld and upstream of said printhead, for maintaining ink flow to said printhead substantially free of contaminants or air bubbles.
7. An ink cartridge device for a ink-jet pen adapted for use with an ink jet printhead device and having a plurality of ink reservoirs within a containment chamber having one ink outflow port for each of said reservoirs, comprising:
a plastic cartridge housing;
flaming means, within said chamber, for forming ink reservoir walls, said flaming means having piping means, one for each of said ink outflow ports, extending individually through each of said ink outflow ports of said cartridge, for piping ink from each of said reservoirs to said printhead device, including a reservoir frame, constructed of a plastic having a lower melting point temperature than the cartridge housing plastic, within the interior of said cartridge housing; and
means for filtering ink downstream of said piping means from each of said reservoirs,
wherein said means for filtering ink further includes a snout device, mounted upon said cartridge housing and adapted to have said printhead device mounted upon an external surface of said snout device distal from said cartridge housing, said snout device having separate apertures therethrough in fluid communication with each of said piping means, respectively, and filter screens mounted within each of said separate apertures, whereby ink from each of said reservoirs is piped without mixing with ink from another reservoir through individual piping means into an individual snout device aperture and through an individual filter screen before reaching said printhead device.
US08/170,840 1992-03-18 1993-12-21 Ink cartridge for a hard copy printing or plotting apparatus Expired - Lifetime US5467118A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/170,840 US5467118A (en) 1993-12-21 1993-12-21 Ink cartridge for a hard copy printing or plotting apparatus
JP33620394A JP3346931B2 (en) 1993-12-21 1994-12-21 Printing device pen, ink supply device, and ink cartridge device
US08/801,035 US5969739A (en) 1992-03-18 1997-02-19 Ink-jet pen with rectangular ink pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/170,840 US5467118A (en) 1993-12-21 1993-12-21 Ink cartridge for a hard copy printing or plotting apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US33177794A Continuation-In-Part 1992-03-18 1994-10-31

Publications (1)

Publication Number Publication Date
US5467118A true US5467118A (en) 1995-11-14

Family

ID=22621477

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/170,840 Expired - Lifetime US5467118A (en) 1992-03-18 1993-12-21 Ink cartridge for a hard copy printing or plotting apparatus

Country Status (2)

Country Link
US (1) US5467118A (en)
JP (1) JP3346931B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659345A (en) * 1994-10-31 1997-08-19 Hewlett-Packard Company Ink-jet pen with one-piece pen body
US5767881A (en) * 1995-05-10 1998-06-16 Pelikan Produktions Ag Print head for an ink jet printer
EP0861732A2 (en) * 1997-02-14 1998-09-02 Canon Kabushiki Kaisha Ink-jet cartridge and method of storing print head
US5821966A (en) * 1996-06-17 1998-10-13 Xerox Corporation Ink jet cartridge with improved sealing between ink container and printhead
EP0903236A3 (en) * 1997-09-22 2000-08-23 Owens-Illinois Closure Inc., Liquid containment and dispensing device
USD430897S (en) * 1999-06-11 2000-09-12 Lexmark International, Inc. Ink cartridge for printer
US6158843A (en) * 1997-03-28 2000-12-12 Lexmark International, Inc. Ink jet printer nozzle plates with ink filtering projections
US6183064B1 (en) 1995-08-28 2001-02-06 Lexmark International, Inc. Method for singulating and attaching nozzle plates to printheads
WO2001049497A1 (en) * 2000-01-05 2001-07-12 Hewlett-Packard Company Techniques for providing ink-jet cartridges with a universal body structure
US6283584B1 (en) 2000-04-18 2001-09-04 Lexmark International, Inc. Ink jet flow distribution system for ink jet printer
US6362868B1 (en) * 1997-07-15 2002-03-26 Silverbrook Research Pty Ltd. Print media roll and ink replaceable cartridge
US6371605B1 (en) 2001-03-21 2002-04-16 Lexmark International, Inc. Ink jet printer ink cartridge manufacturing method
US6481837B1 (en) 2001-08-01 2002-11-19 Benjamin Alan Askren Ink delivery system
US6520631B1 (en) 1998-11-09 2003-02-18 Silverbrook Research Pty Ltd Cartridge for a sticker printing digital camera device
US20030063908A1 (en) * 1998-11-09 2003-04-03 Kia Silverbrook Image processor with integrated printing
US20040051753A1 (en) * 1997-07-12 2004-03-18 Silverbrook Research Pty Ltd Method of identifying printing cartridge characteristics with capacitive sensors
US20040075821A1 (en) * 1997-07-12 2004-04-22 Kia Silverbrook Method of capturing and processing sensed images
US20040095448A1 (en) * 2002-11-19 2004-05-20 Buchanan Jeffrey James Ink conduit plugs for an inkjet printhead and methods of laser welding same
US6788336B1 (en) 1997-07-15 2004-09-07 Silverbrook Research Pty Ltd Digital camera with integral color printer and modular replaceable print roll
US20040213482A1 (en) * 1997-07-12 2004-10-28 Kia Silverbrook Method of capturing and processing sensed images
US20040212652A1 (en) * 1997-07-12 2004-10-28 Kia Silverbrook Printing cartridge with pressure sensor array identification
US20040218934A1 (en) * 2001-08-06 2004-11-04 Kia Silverbrook Printing cartridge with barcode identification
US20040223031A1 (en) * 1997-07-15 2004-11-11 Kia Silverbrook Ink distribution assembly for an ink jet printhead
US20040233267A1 (en) * 1998-11-09 2004-11-25 Kia Silverbrook Image recordal and generation apparatus
US20040246503A1 (en) * 2001-08-06 2004-12-09 Kia Silverbrook Printing cartridge with radio frequency identification
US6830323B2 (en) * 2002-08-13 2004-12-14 Eastman Kodak Company Restricting flash spread when welding housing halves of cartridge together
US20050068371A1 (en) * 1997-07-15 2005-03-31 Kia Silverbrook Ink jet printhead incorporating a plurality of nozzle arrangement having backflow prevention mechanisms
US20050127181A1 (en) * 1997-07-12 2005-06-16 Kia Silverbrook Printing cartridge with two dimensional code indentification
US20050128266A1 (en) * 2003-12-16 2005-06-16 Xerox Corporation Ink loader drip plate and heater
US20050146583A1 (en) * 1997-07-12 2005-07-07 Kia Silverbrook Printing cartridge having IC device for interfacing with printing system
US20050157121A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with ink delivery member
US20050157108A1 (en) * 1997-07-15 2005-07-21 Kia Silverbrook Printhead assembly
US20050157126A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with a refill port
US20050162455A1 (en) * 2001-08-06 2005-07-28 Kia Silverbrook Printing cartridge with an integrated circuit device
US20050200667A1 (en) * 1998-11-09 2005-09-15 Silverbrook Research Pty Ltd Printing unit for an image recordal and generation apparatus
US20050200670A1 (en) * 2002-11-26 2005-09-15 Kazuhiro Hashii Ink cartridge and recording apparatus
US20060001717A1 (en) * 2003-11-25 2006-01-05 Brother Kogyo Kabushiki Kaisha Ink cartridge
US7237882B2 (en) 2001-04-03 2007-07-03 Seiko Epson Corporation Ink cartridge having retaining structure and recording apparatus for receiving the ink cartridge
US20070268348A1 (en) * 2006-05-19 2007-11-22 Xerox Corporation Heater and drip plate for ink loader melt assembly
US20080158302A1 (en) * 1997-07-15 2008-07-03 Silverbrook Research Pty Ltd Nozzle arrangement with a magnetic field generator
US20090066768A1 (en) * 2002-11-26 2009-03-12 Seiko Epson Corporation Ink cartridge and recording apparatus
US7524031B2 (en) 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Inkjet printhead nozzle incorporating movable roof structures
US20100033787A1 (en) * 2006-08-25 2010-02-11 Ricoh Company, Ltd. Optical scanner and image forming apparatus including same
US7961249B2 (en) 1997-07-15 2011-06-14 Silverbrook Research Pty Ltd Digital camera having interconnected image processing units
US8013905B2 (en) 1997-07-15 2011-09-06 Silverbrook Research Pty Ltd Method of processing images captured by digital camera to reduce distortion
US8079683B2 (en) 2004-01-21 2011-12-20 Silverbrook Research Pty Ltd Inkjet printer cradle with shaped recess for receiving a printer cartridge
US8096642B2 (en) 1997-08-11 2012-01-17 Silverbrook Research Pty Ltd Inkjet nozzle with paddle layer arranged between first and second wafers
US8102568B2 (en) 1997-07-15 2012-01-24 Silverbrook Research Pty Ltd System for creating garments using camera and encoded card
US8285137B2 (en) 1997-07-15 2012-10-09 Silverbrook Research Pty Ltd Digital camera system for simultaneous printing and magnetic recording
US8421869B2 (en) 1997-07-15 2013-04-16 Google Inc. Camera system for with velocity sensor and de-blurring processor
US8439497B2 (en) 2004-01-21 2013-05-14 Zamtec Ltd Image processing apparatus with nested printer and scanner
US8789939B2 (en) 1998-11-09 2014-07-29 Google Inc. Print media cartridge with ink supply manifold
US8866923B2 (en) 1999-05-25 2014-10-21 Google Inc. Modular camera and printer
US8896724B2 (en) 1997-07-15 2014-11-25 Google Inc. Camera system to facilitate a cascade of imaging effects
US8902333B2 (en) 1997-07-15 2014-12-02 Google Inc. Image processing method using sensed eye position
US8908075B2 (en) 1997-07-15 2014-12-09 Google Inc. Image capture and processing integrated circuit for a camera
US8936196B2 (en) 1997-07-15 2015-01-20 Google Inc. Camera unit incorporating program script scanner
USD744586S1 (en) * 2014-02-12 2015-12-01 Samsung Electronics Co., Ltd. Cartridge
US9586409B2 (en) * 2014-10-31 2017-03-07 Brother Kogyo Kabushiki Kaisha Liquid-consuming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409508B2 (en) * 2014-10-31 2018-10-24 ブラザー工業株式会社 Liquid consumption device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025271A (en) * 1986-07-01 1991-06-18 Hewlett-Packard Company Thin film resistor type thermal ink pen using a form storage ink supply
EP0561051B1 (en) * 1992-03-18 1996-04-24 Hewlett-Packard Company Compact leak-resistant seal for thermal ink jet print cartridge ink reservoir

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025271A (en) * 1986-07-01 1991-06-18 Hewlett-Packard Company Thin film resistor type thermal ink pen using a form storage ink supply
EP0561051B1 (en) * 1992-03-18 1996-04-24 Hewlett-Packard Company Compact leak-resistant seal for thermal ink jet print cartridge ink reservoir

Cited By (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042225A (en) * 1994-10-31 2000-03-28 Hewlett-Packard Company Ink-jet pen with one-piece pen body
US5659345A (en) * 1994-10-31 1997-08-19 Hewlett-Packard Company Ink-jet pen with one-piece pen body
US5767881A (en) * 1995-05-10 1998-06-16 Pelikan Produktions Ag Print head for an ink jet printer
US6323456B1 (en) 1995-08-28 2001-11-27 Lexmark International, Inc. Method of forming an ink jet printhead structure
US6183064B1 (en) 1995-08-28 2001-02-06 Lexmark International, Inc. Method for singulating and attaching nozzle plates to printheads
US5821966A (en) * 1996-06-17 1998-10-13 Xerox Corporation Ink jet cartridge with improved sealing between ink container and printhead
EP0861732A2 (en) * 1997-02-14 1998-09-02 Canon Kabushiki Kaisha Ink-jet cartridge and method of storing print head
EP0861732A3 (en) * 1997-02-14 1999-12-01 Canon Kabushiki Kaisha Ink-jet cartridge and method of storing print head
US6409325B1 (en) 1997-02-14 2002-06-25 Canon Kabushiki Kaisha Ink-jet cartridge and method of storing print head
US6158843A (en) * 1997-03-28 2000-12-12 Lexmark International, Inc. Ink jet printer nozzle plates with ink filtering projections
US8947592B2 (en) 1997-07-12 2015-02-03 Google Inc. Handheld imaging device with image processor provided with multiple parallel processing units
US20080022874A1 (en) * 1997-07-12 2008-01-31 Silverbrook Research Pty Ltd Print Roll With Ink Reservoir And Print Media Roll Sections
US7957009B2 (en) 1997-07-12 2011-06-07 Silverbrook Research Pty Ltd Image sensing and printing device
US20050127181A1 (en) * 1997-07-12 2005-06-16 Kia Silverbrook Printing cartridge with two dimensional code indentification
US7808610B2 (en) 1997-07-12 2010-10-05 Silverbrook Research Pty Ltd Image sensing and printing device
US7747154B2 (en) 1997-07-12 2010-06-29 Silverbrook Research Pty Ltd Method of capturing and processing sensed images
US9338312B2 (en) 1997-07-12 2016-05-10 Google Inc. Portable handheld device with multi-core image processor
US7690765B2 (en) 1997-07-12 2010-04-06 Silverbrook Research Pty Ltd Central processor for a camera with printing capabilities
US7665834B2 (en) 1997-07-12 2010-02-23 Silverbrook Research Pty Ltd Print roll with ink reservoir and print media roll sections
US7492490B2 (en) 1997-07-12 2009-02-17 Silverbrook Research Pty Ltd Image processing apparatus for applying effects to a stored image
US9544451B2 (en) 1997-07-12 2017-01-10 Google Inc. Multi-core image processor for portable device
US20080165253A9 (en) * 1997-07-12 2008-07-10 Kia Silverbrook Image sensing and printing device
US20040051753A1 (en) * 1997-07-12 2004-03-18 Silverbrook Research Pty Ltd Method of identifying printing cartridge characteristics with capacitive sensors
US20040061734A1 (en) * 1997-07-12 2004-04-01 Silverbrook Research Pty Ltd Printing device for use with a printing cartridge having capacitive sensor identification
US20040075821A1 (en) * 1997-07-12 2004-04-22 Kia Silverbrook Method of capturing and processing sensed images
US8902340B2 (en) 1997-07-12 2014-12-02 Google Inc. Multi-core image processor for portable device
US7312845B2 (en) 1997-07-12 2007-12-25 Silverbrook Research Pty Ltd Method of capturing and processing sensed images
US20040196513A1 (en) * 1997-07-12 2004-10-07 Kia Silverbrook Image processing apparatus for applying effects to a stored image
US20040213482A1 (en) * 1997-07-12 2004-10-28 Kia Silverbrook Method of capturing and processing sensed images
US20070040856A1 (en) * 1997-07-12 2007-02-22 Silverbrook Research Pty Ltd Print roll unit with ink storage core
US20040212652A1 (en) * 1997-07-12 2004-10-28 Kia Silverbrook Printing cartridge with pressure sensor array identification
US20060256944A1 (en) * 1997-07-12 2006-11-16 Silverbrook Research Pty Ltd Card reader with a translucent cover
US20040218049A1 (en) * 1997-07-12 2004-11-04 Kia Silverbrook Image sensing and printing device
US20060146101A1 (en) * 1997-07-12 2006-07-06 Silverbrook Research Pty Ltd Ink reservoir
US20040218048A1 (en) * 1997-07-12 2004-11-04 Kia Silverbrook Image processing apparatus for applying effects to a stored image
US20060077248A1 (en) * 1997-07-12 2006-04-13 Silverbrook Research Pty Ltd Printing cartridge incorporating print media and an internal feed mechanism
US20060012652A1 (en) * 1997-07-12 2006-01-19 Silverbrook Research Pty Ltd Printing cartridge with a print roll incorporating an ink supply
US20060007261A1 (en) * 1997-07-12 2006-01-12 Silverbrook Research Pty Ltd Method of reading a two-dimensional code carrying image processing instructions
US20050275815A1 (en) * 1997-07-12 2005-12-15 Silverbrook Research Pty Ltd Combined media-and ink-supply cartridge
US20050162456A1 (en) * 1997-07-12 2005-07-28 Kia Silverbrook Printer with capacitive printer cartridge data reader
US20050151777A1 (en) * 1997-07-12 2005-07-14 Kia Silverbrook Integrated circuit with tamper detection circuit
US20050146583A1 (en) * 1997-07-12 2005-07-07 Kia Silverbrook Printing cartridge having IC device for interfacing with printing system
US20080252747A1 (en) * 1997-07-15 2008-10-16 Silverbrook Research Pty Ltd Vliw image processor
US7773125B2 (en) 1997-07-15 2010-08-10 Silverbrook Research Pty Ltd VLIW image processor
US9584681B2 (en) 1997-07-15 2017-02-28 Google Inc. Handheld imaging device incorporating multi-core image processor
US9560221B2 (en) 1997-07-15 2017-01-31 Google Inc. Handheld imaging device with VLIW image processor
US8902357B2 (en) 1997-07-15 2014-12-02 Google Inc. Quad-core image processor
US8902333B2 (en) 1997-07-15 2014-12-02 Google Inc. Image processing method using sensed eye position
US20050157108A1 (en) * 1997-07-15 2005-07-21 Kia Silverbrook Printhead assembly
US9432529B2 (en) 1997-07-15 2016-08-30 Google Inc. Portable handheld device with multi-core microcoded image processor
US20050068371A1 (en) * 1997-07-15 2005-03-31 Kia Silverbrook Ink jet printhead incorporating a plurality of nozzle arrangement having backflow prevention mechanisms
US8896724B2 (en) 1997-07-15 2014-11-25 Google Inc. Camera system to facilitate a cascade of imaging effects
US8896720B2 (en) 1997-07-15 2014-11-25 Google Inc. Hand held image capture device with multi-core processor for facial detection
US20050200653A1 (en) * 1997-07-15 2005-09-15 Kia Silverbrook Ink distribution assembly for page width ink jet printhead
US9237244B2 (en) 1997-07-15 2016-01-12 Google Inc. Handheld digital camera device with orientation sensing and decoding capabilities
US6953235B2 (en) 1997-07-15 2005-10-11 Silverbrook Research Pty Ltd Printing cartridge with a data-carrying integrated circuit device
US6954254B2 (en) 1997-07-15 2005-10-11 Silverbrook Research Pty Ltd Printing cartridge with ink and print media supplies
US9219832B2 (en) 1997-07-15 2015-12-22 Google Inc. Portable handheld device with multi-core image processor
US9197767B2 (en) 1997-07-15 2015-11-24 Google Inc. Digital camera having image processor and printer
US9191529B2 (en) 1997-07-15 2015-11-17 Google Inc Quad-core camera processor
US6986562B2 (en) 1997-07-15 2006-01-17 Silverbrook Research Pty Ltd Printing cartridge with capacitive sensors for identification of characteristics
US8866926B2 (en) 1997-07-15 2014-10-21 Google Inc. Multi-core processor for hand-held, image capture device
US8836809B2 (en) 1997-07-15 2014-09-16 Google Inc. Quad-core image processor for facial detection
US20040223031A1 (en) * 1997-07-15 2004-11-11 Kia Silverbrook Ink distribution assembly for an ink jet printhead
US7044589B2 (en) 1997-07-15 2006-05-16 Silverbrook Res Pty Ltd Printing cartridge with barcode identification
US7052103B2 (en) 1997-07-15 2006-05-30 Silverbrook Research Pty Ltd Printing device for use with a printing cartridge having capacitive sensor identification
US7055927B2 (en) 1997-07-15 2006-06-06 Silverbrook Research Pty Ltd Method of identifying printing cartridge characteristics with capacitive sensors
US9191530B2 (en) 1997-07-15 2015-11-17 Google Inc. Portable hand-held device having quad core image processor
US9185246B2 (en) 1997-07-15 2015-11-10 Google Inc. Camera system comprising color display and processor for decoding data blocks in printed coding pattern
US8823823B2 (en) 1997-07-15 2014-09-02 Google Inc. Portable imaging device with multi-core processor and orientation sensor
US7084951B2 (en) 1997-07-15 2006-08-01 Silverbrook Research Pty Ltd Combined media- and ink-supply cartridge
US7128397B2 (en) 1997-07-15 2006-10-31 Silverbrook Research Pty Ltd Ink distribution assembly for page width ink jet printhead
US7128386B2 (en) 1997-07-15 2006-10-31 Silverbrook Res Pty Ltd Printer with capacitive printer cartridge data reader
US8902324B2 (en) 1997-07-15 2014-12-02 Google Inc. Quad-core image processor for device with image display
US9185247B2 (en) 1997-07-15 2015-11-10 Google Inc. Central processor with multiple programmable processor units
US7140726B2 (en) 1997-07-15 2006-11-28 Silverbrook Research Pty Ltd Printing cartridge incorporating print media and an internal feed mechanism
US8908051B2 (en) 1997-07-15 2014-12-09 Google Inc. Handheld imaging device with system-on-chip microcontroller incorporating on shared wafer image processor and image sensor
US8908075B2 (en) 1997-07-15 2014-12-09 Google Inc. Image capture and processing integrated circuit for a camera
US7163273B2 (en) 1997-07-15 2007-01-16 Silverbrook Research Pty Ltd Printing cartridge with two dimensional code identification
US9179020B2 (en) 1997-07-15 2015-11-03 Google Inc. Handheld imaging device with integrated chip incorporating on shared wafer image processor and central processor
US8421869B2 (en) 1997-07-15 2013-04-16 Google Inc. Camera system for with velocity sensor and de-blurring processor
US7193482B2 (en) 1997-07-15 2007-03-20 Silverbrook Research Pty Ltd. Integrated circuit with tamper detection circuit
US9168761B2 (en) 1997-07-15 2015-10-27 Google Inc. Disposable digital camera with printing assembly
US9148530B2 (en) 1997-07-15 2015-09-29 Google Inc. Handheld imaging device with multi-core image processor integrating common bus interface and dedicated image sensor interface
US8285137B2 (en) 1997-07-15 2012-10-09 Silverbrook Research Pty Ltd Digital camera system for simultaneous printing and magnetic recording
US9143635B2 (en) 1997-07-15 2015-09-22 Google Inc. Camera with linked parallel processor cores
US9143636B2 (en) 1997-07-15 2015-09-22 Google Inc. Portable device with dual image sensors and quad-core processor
US9137397B2 (en) 1997-07-15 2015-09-15 Google Inc. Image sensing and printing device
US8274665B2 (en) 1997-07-15 2012-09-25 Silverbrook Research Pty Ltd Image sensing and printing device
US7240992B2 (en) 1997-07-15 2007-07-10 Silverbrook Research Pty Ltd Ink jet printhead incorporating a plurality of nozzle arrangement having backflow prevention mechanisms
US9137398B2 (en) 1997-07-15 2015-09-15 Google Inc. Multi-core processor for portable device with dual image sensors
US8102568B2 (en) 1997-07-15 2012-01-24 Silverbrook Research Pty Ltd System for creating garments using camera and encoded card
US7275800B2 (en) 1997-07-15 2007-10-02 Silverbrook Research Pty Ltd Printing cartridge having IC device for interfacing with printing system
US20070229601A1 (en) * 1997-07-15 2007-10-04 Silverbrook Research Pty Ltd Nozzle arrangement with inlet covering cantilevered actuator
US7278723B2 (en) 1997-07-15 2007-10-09 Silverbrook Research Pty Ltd Printing cartridge with a print roll incorporating an ink supply
US7281786B2 (en) 1997-07-15 2007-10-16 Silverbrook Research Pty Ltd Printing cartridge with two-dimensional encoding formations
US7284843B2 (en) 1997-07-15 2007-10-23 Silverbrook Research Pty Ltd Ink distribution assembly for an ink jet printhead
US8098285B2 (en) 1997-07-15 2012-01-17 Silverbrook Research Pty Ltd Processor for image capture and printing
US9131083B2 (en) 1997-07-15 2015-09-08 Google Inc. Portable imaging device with multi-core processor
US6788336B1 (en) 1997-07-15 2004-09-07 Silverbrook Research Pty Ltd Digital camera with integral color printer and modular replaceable print roll
US7311257B2 (en) 1997-07-15 2007-12-25 Silverbrook Research Pty Ltd Card reader with a translucent cover
US9124737B2 (en) 1997-07-15 2015-09-01 Google Inc. Portable device with image sensor and quad-core processor for multi-point focus image capture
US7325897B2 (en) 1997-07-15 2008-02-05 Silverbrook Research Pty Ltd Printing cartridge with pressure sensor array identification
US9124736B2 (en) 1997-07-15 2015-09-01 Google Inc. Portable hand-held device for displaying oriented images
US20080030555A1 (en) * 1997-07-15 2008-02-07 Silverbrook Research Pty Ltd Carrier for an ink distribution assembly of an ink jet printhead
US20080062232A1 (en) * 1997-07-15 2008-03-13 Silverbrook Research Pty Ltd Print Media Cartridge For A Camera
US20080085107A1 (en) * 1997-07-15 2008-04-10 Silverbrook Research Pty Ltd Print Roll Cartridge With An Ink Supply Core For A Camera System
US7364271B2 (en) 1997-07-15 2008-04-29 Silverbrook Research Pty Ltd Nozzle arrangement with inlet covering cantilevered actuator
US9060128B2 (en) 1997-07-15 2015-06-16 Google Inc. Portable hand-held device for manipulating images
US8908069B2 (en) 1997-07-15 2014-12-09 Google Inc. Handheld imaging device with quad-core image processor integrating image sensor interface
US20080158302A1 (en) * 1997-07-15 2008-07-03 Silverbrook Research Pty Ltd Nozzle arrangement with a magnetic field generator
US8061828B2 (en) 1997-07-15 2011-11-22 Silverbrook Research Pty Ltd Print media cartridge for a camera
US9055221B2 (en) 1997-07-15 2015-06-09 Google Inc. Portable hand-held device for deblurring sensed images
US8913151B2 (en) 1997-07-15 2014-12-16 Google Inc. Digital camera with quad core processor
US8953061B2 (en) 1997-07-15 2015-02-10 Google Inc. Image capture device with linked multi-core processor and orientation sensor
US7452048B2 (en) 1997-07-15 2008-11-18 Silverbrook Research Pty Ltd Method of reading a two-dimensional code carrying image processing instructions
US7465030B2 (en) 1997-07-15 2008-12-16 Silverbrook Research Pty Ltd Nozzle arrangement with a magnetic field generator
US8016400B2 (en) 1997-07-15 2011-09-13 Silverbrook Research Pty Ltd Ink reservoir
US20090066756A1 (en) * 1997-07-15 2009-03-12 Silverbrook Research Pty Ltd Printhead Having Nozzle Arrangements With Magnetic Paddle Actuators
US8953060B2 (en) 1997-07-15 2015-02-10 Google Inc. Hand held image capture device with multi-core processor and wireless interface to input device
US7505068B2 (en) 1997-07-15 2009-03-17 Silverbrook Research Pty Ltd Image processing apparatus for applying effects to a stored image
US7517071B2 (en) 1997-07-15 2009-04-14 Silverbrook Research Pty Ltd Print roll unit with ink storage core
US7524031B2 (en) 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Inkjet printhead nozzle incorporating movable roof structures
US7524047B2 (en) 1997-07-15 2009-04-28 Silverbrook Research Pty Ltd Print roll cartridge with an ink supply core for a camera system
US7543924B2 (en) 1997-07-15 2009-06-09 Silverbrook Research Pty Ltd Printhead assembly
US20090185014A1 (en) * 1997-07-15 2009-07-23 Silverbrook Research Pty Ltd Printing cartridge for a printer
US8953178B2 (en) 1997-07-15 2015-02-10 Google Inc. Camera system with color display and processor for reed-solomon decoding
US8947679B2 (en) 1997-07-15 2015-02-03 Google Inc. Portable handheld device with multi-core microcoded image processor
US20090213175A1 (en) * 1997-07-15 2009-08-27 Silverbrook Research Pty Ltd Printhead Assembly Having Printhead Recessed In Channel Body
US7581826B2 (en) 1997-07-15 2009-09-01 Silverbrook Research Pty Ltd Ink reservoir
US20090262149A1 (en) * 1997-07-15 2009-10-22 Silverbrook Research Pty Ltd Print Media Cartridge For A Camera
US7621607B2 (en) 1997-07-15 2009-11-24 Silverbrook Research Pty Ltd Print media cartridge for a camera
US8013905B2 (en) 1997-07-15 2011-09-06 Silverbrook Research Pty Ltd Method of processing images captured by digital camera to reduce distortion
US8913182B2 (en) 1997-07-15 2014-12-16 Google Inc. Portable hand-held device having networked quad core processor
US8936196B2 (en) 1997-07-15 2015-01-20 Google Inc. Camera unit incorporating program script scanner
US8937727B2 (en) 1997-07-15 2015-01-20 Google Inc. Portable handheld device with multi-core image processor
US8934053B2 (en) 1997-07-15 2015-01-13 Google Inc. Hand-held quad core processing apparatus
US8934027B2 (en) 1997-07-15 2015-01-13 Google Inc. Portable device with image sensors and multi-core processor
US7969477B2 (en) 1997-07-15 2011-06-28 Silverbrook Research Pty Ltd Camera sensing device for capturing and manipulating images
US8928897B2 (en) 1997-07-15 2015-01-06 Google Inc. Portable handheld device with multi-core image processor
US7965425B2 (en) 1997-07-15 2011-06-21 Silverbrook Research Pty Ltd Image processing apparatus having card reader for applying effects stored on a card to a stored image
US8922791B2 (en) 1997-07-15 2014-12-30 Google Inc. Camera system with color display and processor for Reed-Solomon decoding
US7961249B2 (en) 1997-07-15 2011-06-14 Silverbrook Research Pty Ltd Digital camera having interconnected image processing units
US7789501B2 (en) 1997-07-15 2010-09-07 Silverbrook Research Pty Ltd Printing cartridge for a printer
US6362868B1 (en) * 1997-07-15 2002-03-26 Silverbrook Research Pty Ltd. Print media roll and ink replaceable cartridge
US8922670B2 (en) 1997-07-15 2014-12-30 Google Inc. Portable hand-held device having stereoscopic image camera
US7878627B2 (en) 1997-07-15 2011-02-01 Silverbrook Research Pty Ltd Printhead assembly having printhead recessed in channel body
US7914133B2 (en) 1997-07-15 2011-03-29 Silverbrook Research Pty Ltd Carrier for an ink distribution assembly of an ink jet printhead
US7922293B2 (en) 1997-07-15 2011-04-12 Silverbrook Research Pty Ltd Printhead having nozzle arrangements with magnetic paddle actuators
US8913137B2 (en) 1997-07-15 2014-12-16 Google Inc. Handheld imaging device with multi-core image processor integrating image sensor interface
US8096642B2 (en) 1997-08-11 2012-01-17 Silverbrook Research Pty Ltd Inkjet nozzle with paddle layer arranged between first and second wafers
EP0903236A3 (en) * 1997-09-22 2000-08-23 Owens-Illinois Closure Inc., Liquid containment and dispensing device
US20070103537A1 (en) * 1998-11-09 2007-05-10 Silverbrook Research Pty Ltd PCMCIA Printing device
US7014307B2 (en) 1998-11-09 2006-03-21 Silverbrook Research Pty Ltd Printing unit for an image recordal and generation apparatus
US20070058969A9 (en) * 1998-11-09 2007-03-15 Kia Silverbrook Image processor with integrated printing
US7154580B2 (en) 1998-11-09 2006-12-26 Silverbrook Research Pty Ltd Image recordal and generation apparatus
US20030063908A1 (en) * 1998-11-09 2003-04-03 Kia Silverbrook Image processor with integrated printing
US6637873B2 (en) 1998-11-09 2003-10-28 Silverbrook Research Pty Ltd. Cartridge for a sticker printing digital camera device
US20050200667A1 (en) * 1998-11-09 2005-09-15 Silverbrook Research Pty Ltd Printing unit for an image recordal and generation apparatus
US20040233267A1 (en) * 1998-11-09 2004-11-25 Kia Silverbrook Image recordal and generation apparatus
US7289727B2 (en) 1998-11-09 2007-10-30 Silverbrook Research Pty Ltd Image processor with integrated printing
US7695082B2 (en) 1998-11-09 2010-04-13 Silverbrook Research Pty Ltd PCMCIA printing device
US7271829B2 (en) 1998-11-09 2007-09-18 Silverbrook Research Pty Ltd Inkjet printer for digital camera
US6906778B2 (en) 1998-11-09 2005-06-14 Silverbrook Research Pty Ltd Image recordal and generation apparatus
US20050078160A1 (en) * 1998-11-09 2005-04-14 Kia Silverbrook PCMCIA printer
US6520631B1 (en) 1998-11-09 2003-02-18 Silverbrook Research Pty Ltd Cartridge for a sticker printing digital camera device
US20060158490A1 (en) * 1998-11-09 2006-07-20 Silverbrook Research Pty Ltd Inkjet printer for digital camera
US7147294B2 (en) 1998-11-09 2006-12-12 Silverbrook Research Pty Ltd PCMCIA printer
US20060250475A9 (en) * 1998-11-09 2006-11-09 Kia Silverbrook Image recordal and generation apparatus
US8789939B2 (en) 1998-11-09 2014-07-29 Google Inc. Print media cartridge with ink supply manifold
US8866923B2 (en) 1999-05-25 2014-10-21 Google Inc. Modular camera and printer
USD430897S (en) * 1999-06-11 2000-09-12 Lexmark International, Inc. Ink cartridge for printer
WO2001049497A1 (en) * 2000-01-05 2001-07-12 Hewlett-Packard Company Techniques for providing ink-jet cartridges with a universal body structure
CZ299204B6 (en) * 2000-01-05 2008-05-14 Hewlett-Packard Company Process for producing inkjet printer cartridge and inkjet printer cartridge per se
AU768505B2 (en) * 2000-01-05 2003-12-11 Hewlett-Packard Company Techniques for providing ink-jet cartridges with a universal body structure
US6290348B1 (en) 2000-01-05 2001-09-18 Hewlett-Packard Company Techniques for providing ink-jet cartridges with a universal body structure
US6283584B1 (en) 2000-04-18 2001-09-04 Lexmark International, Inc. Ink jet flow distribution system for ink jet printer
US6371605B1 (en) 2001-03-21 2002-04-16 Lexmark International, Inc. Ink jet printer ink cartridge manufacturing method
US7237882B2 (en) 2001-04-03 2007-07-03 Seiko Epson Corporation Ink cartridge having retaining structure and recording apparatus for receiving the ink cartridge
US7325915B2 (en) 2001-04-03 2008-02-05 Seiko Epson Corporation Ink cartridge having retaining structure
US6481837B1 (en) 2001-08-01 2002-11-19 Benjamin Alan Askren Ink delivery system
US20040213613A1 (en) * 2001-08-06 2004-10-28 Kia Silverbrook Image sensing apparatus including a microcontroller
US7722172B2 (en) 2001-08-06 2010-05-25 Silverbrook Research Pty Ltd Printing cartridge with radio frequency identification
US8020979B2 (en) 2001-08-06 2011-09-20 Silverbrook Research Pty Ltd Cartridge with optically readalble print media and ink information
US20040246503A1 (en) * 2001-08-06 2004-12-09 Kia Silverbrook Printing cartridge with radio frequency identification
US20040218934A1 (en) * 2001-08-06 2004-11-04 Kia Silverbrook Printing cartridge with barcode identification
US20090213150A1 (en) * 2001-08-06 2009-08-27 Silverbrook Research Pty Ltd Cartridge With Optically Readalble Print Media And Ink Information
US7575313B2 (en) 2001-08-06 2009-08-18 Silverbrook Research Pty Ltd Printing cartridge bearing indicia
US7443434B2 (en) 2001-08-06 2008-10-28 Silverbrook Research Pty Ltd Image sensing apparatus including a microcontroller
US20050162455A1 (en) * 2001-08-06 2005-07-28 Kia Silverbrook Printing cartridge with an integrated circuit device
US7234801B2 (en) 2001-08-06 2007-06-26 Silverbrook Research Pty Ltd Printing cartridge with barcode identification
US20050094166A1 (en) * 2001-08-06 2005-05-05 Kia Silverbrook Image printing apparatus including a microcontroller
US6830323B2 (en) * 2002-08-13 2004-12-14 Eastman Kodak Company Restricting flash spread when welding housing halves of cartridge together
US20040095448A1 (en) * 2002-11-19 2004-05-20 Buchanan Jeffrey James Ink conduit plugs for an inkjet printhead and methods of laser welding same
US6811250B2 (en) 2002-11-19 2004-11-02 Lexmark International, Inc. Ink conduit plugs for an inkjet printhead and methods of laser welding same
US7244018B2 (en) 2002-11-26 2007-07-17 Seiko Epson Corporation Ink cartridge having retaining structure and memory
US20070103522A1 (en) * 2002-11-26 2007-05-10 Kazuhiro Hashii Ink cartridge and recording apparatus
US20060152564A1 (en) * 2002-11-26 2006-07-13 Kazuhiro Hashii Ink cartridge and recording apparatus
US20090066768A1 (en) * 2002-11-26 2009-03-12 Seiko Epson Corporation Ink cartridge and recording apparatus
US20070103515A1 (en) * 2002-11-26 2007-05-10 Kazuhiro Hashii Ink cartridge and recording apparatus
US7669993B2 (en) 2002-11-26 2010-03-02 Seiko Epson Corporation Ink cartridge and recording apparatus
US7686441B2 (en) 2002-11-26 2010-03-30 Seiko Epson Corporation Ink cartridge and recording apparatus
US20050200670A1 (en) * 2002-11-26 2005-09-15 Kazuhiro Hashii Ink cartridge and recording apparatus
US7237883B2 (en) 2002-11-26 2007-07-03 Seiko Epson Corporation Ink cartridge having positioning structure and recording apparatus for receiving the ink cartridge
US20060001717A1 (en) * 2003-11-25 2006-01-05 Brother Kogyo Kabushiki Kaisha Ink cartridge
US7997700B2 (en) * 2003-11-25 2011-08-16 Brother Kogyo Kabushiki Kaisha Ink cartridge with intersections having different curvatures
US7210774B2 (en) * 2003-12-16 2007-05-01 Xerox Corporation Ink loader drip plate and heater
US20050128266A1 (en) * 2003-12-16 2005-06-16 Xerox Corporation Ink loader drip plate and heater
US7367647B2 (en) * 2004-01-21 2008-05-06 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with ink delivery member
US20100177135A1 (en) * 2004-01-21 2010-07-15 Silverbrook Research Pty Ltd Inkjet printer assembly with driven mechanisms and transmission assembly for driving driven mechanisms
US20080186346A1 (en) * 2004-01-21 2008-08-07 Silverbrook Research Pty Ltd Inkjet Printer Assembly With A Controller For Detecting A Performance Characteristic Of A Printer Cartridge
US20050157126A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with a refill port
US7954920B2 (en) 2004-01-21 2011-06-07 Silverbrook Research Pty Ltd Inkjet printer assembly with driven mechanisms and transmission assembly for driving driven mechanisms
US20050157121A1 (en) * 2004-01-21 2005-07-21 Silverbrook Research Pty Ltd Pagewidth inkjet printer cartridge with ink delivery member
US7690747B2 (en) 2004-01-21 2010-04-06 Silverbrook Research Pty Ltd Inkjet printer assembly with a controller for detecting a performance characteristic of a printer cartridge
US8439497B2 (en) 2004-01-21 2013-05-14 Zamtec Ltd Image processing apparatus with nested printer and scanner
US8079683B2 (en) 2004-01-21 2011-12-20 Silverbrook Research Pty Ltd Inkjet printer cradle with shaped recess for receiving a printer cartridge
US7828424B2 (en) 2006-05-19 2010-11-09 Xerox Corporation Heater and drip plate for ink loader melt assembly
US20070268348A1 (en) * 2006-05-19 2007-11-22 Xerox Corporation Heater and drip plate for ink loader melt assembly
US20100033787A1 (en) * 2006-08-25 2010-02-11 Ricoh Company, Ltd. Optical scanner and image forming apparatus including same
US8780159B2 (en) 2008-08-20 2014-07-15 Ricoh Company, Ltd. Optical scanner and image forming apparatus including same
US8471883B2 (en) * 2008-08-20 2013-06-25 Ricoh Company, Ltd. Optical scanner and image forming apparatus including same
USD744586S1 (en) * 2014-02-12 2015-12-01 Samsung Electronics Co., Ltd. Cartridge
US9586409B2 (en) * 2014-10-31 2017-03-07 Brother Kogyo Kabushiki Kaisha Liquid-consuming apparatus
US9757951B2 (en) 2014-10-31 2017-09-12 Brother Kogyo Kabushiki Kaisha Liquid-consuming apparatus
US10220632B2 (en) 2014-10-31 2019-03-05 Brother Kogyo Kabushiki Kaisha Liquid-consuming apparatus
US10894424B2 (en) 2014-10-31 2021-01-19 Brother Kogyo Kabushiki Kaisha Liquid-consuming apparatus

Also Published As

Publication number Publication date
JPH07205445A (en) 1995-08-08
JP3346931B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US5467118A (en) Ink cartridge for a hard copy printing or plotting apparatus
KR100240540B1 (en) Syringe for filling print cartridge and establishing correct back pressure
US5757406A (en) Negative pressure ink delivery system
US6783220B2 (en) Ink jet recording apparatus using recording unit with ink cartridge having ink inducing element
US10183495B2 (en) Liquid supply device, printing apparatus and liquid ejection system
KR100254763B1 (en) Ink refill techniques for an inkjet print cartridge which leave correct back pressure
JP4210057B2 (en) Inkjet print cartridge and method of manufacturing the same
JP2001063090A (en) Ink tank, valve unit used in the ink tank, manufacture of the ink tank, ink-jet head cartridge with the ink tank and ink-jet recording apparatus
US6402308B1 (en) Liquid supply system and liquid supply vessel used for the same
KR100235281B1 (en) Inkjet print cartridge having two ink inlet ports for initial filling and recharging
KR20120025417A (en) Tank unit and liquid ejecting system having tank unit
JP2001063097A (en) Liquid feed system and liquid feed container used in the system
JP2001001544A (en) Liquid supply method, liquid supply container, negative pressure generating member storing container, and liquid storing container
JP2005225164A (en) Method of manufacturing liquid container and liquid container
US5574490A (en) Ink jet hard copy apparatus ink cartridge
JP2011230513A (en) Attachment system
US20020130935A1 (en) Filter carrier for protecting a filter from being blocked by air bubles in an inkjet printhead
CN103600586A (en) Liquid supply system and liquid ejection apparatus
KR100235283B1 (en) Inkjet print cartridge having a first inlet port for initial filling and a second inlet port for ink replenishment without removing the print cartridge from the printer
CN116423986A (en) Liquid ejecting apparatus and liquid container
EP0875385B1 (en) An ink delivery that utilizes a separate insertable filter carrier
JP2005306030A (en) Attachment, attachment system, and liquid supplying device
JPH0820114A (en) Ink jet recording apparatus
JP2005059322A (en) Liquid storage body
JP3106046B2 (en) Ink cartridge, inkjet recording unit, and recording apparatus using the recording unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD COMPANY, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRAGG, BRIAN D.;CLARK, JAMES E.;REEL/FRAME:007094/0879;SIGNING DATES FROM 19931215 TO 19940729

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: HEWLETT-PACKARD COMPANY, COLORADO

Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:011523/0469

Effective date: 19980520

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:026945/0699

Effective date: 20030131