Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS5510628 A
Tipo de publicaciónConcesión
Número de solicitudUS 08/206,147
Fecha de publicación23 Abr 1996
Fecha de presentación7 Mar 1994
Fecha de prioridad6 Mar 1987
TarifaCaducada
También publicado comoUS5079600, US5324591
Número de publicación08206147, 206147, US 5510628 A, US 5510628A, US-A-5510628, US5510628 A, US5510628A
InventoresJacque H. Georger, Jr., David A. Stenger, Thomas L. Fare
Cesionario originalGeo-Centers, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Deep ultraviolet photolithographically defined ultra-thin films for selective cell adhesion and outgrowth and method of manufacturing the same and devices containing the same
US 5510628 A
Resumen
Patterned surfaces for the selective adhesion and outgrowth of cells are useful in cell culture devices, prosthetic implants, and cell-based microsensors. Such surfaces may be prepared by a deep ultraviolet photolithographic technique.
Imágenes(7)
Previous page
Next page
Reclamaciones(23)
What is claimed as new and desired to be secured by letters patent of United States is:
1. A method for preparing a patterned surface for the selective adhesion and outgrowth of cells, comprising:
(i) coating a substrate with a first compound to obtain an ultra-thin film which is reactive to radiation and has an exposed surface of at least one cell adhesion promoter or cell adhesion inhibitor; and
(ii) irradiating said ultra-thin film in a pattern to obtain an irradiated film with a surface region in which at least a fraction of said promoter or inhibitor has been removed,
wherein said cell adhesion promoter contains a group selected from the group consisting of --NHCH2 CH2 NHCH2 CH2 NH2, --NHCH2 CH2 NH2, 11-aminoundecyl, 3-aminopropyl, 3-(-amino-propoxy)-3,3-dimethyl-1-propenyl, 6-(aminohexyl)propyl, N-(2-aminoethyl)-3-aminopropyl, --(CH2)3 --NH--(CH2)2 --NH--(CH2 .paren close-st.3, Gly-Arg-Gly-Asp-Tyr-, and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, and wherein said cell adhesion inhibitor contains a fluorinated alkyl group.
2. The method of claim 1, further comprising:
(iii) treating the irradiated film with a second compound to bind to said surface region in which at least a fraction of said promoter or inhibitor has been removed.
3. The method of claim 1, wherein said ultra-thin film is coated on a substrate selected from the group consisting of silica, silicon, germanium, gallium, arsenide, epoxy resin, polystyrene, polysulfone, aluminum, platinum, alumina, silicone, fluoropolymers, polyesters, acrylic copolymers, polyglactin, and polylactates.
4. The method of claim 1, wherein said cell adhesion promoter contains a --NHCH2 CH2 NHCH2 CH2 NH2 group or a --NHCH2 CH2 NH2 group.
5. The method of claim 1, wherein said first compound is (a) a cell adhesion promoter compound selected from the group consisting of N-(2-aminoethyl-3-aminopropyl) trimethoxysilane, 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-(1-aminopropoxy)-3,3-dimethyl-1-propenyltrimethoxysilane, 6-(aminohexylaminopropyl)trimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, bis 3-(trimethoxysilyl)propyl!ethylenediamine, trimethoxysilylpropyldiethylenetriamine, (aminoethylaminomethyl)phenethyltrimethoxysilane, isopropyltri-(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(amino)phenyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethylzirconate, and neopentyl(diallyl)oxytri(m-amino)phenylzirconate; or
(b) a cell adhesion inhibitor compound selected from the group consisting of tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-methyldichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-triethoxysilane, (3,3,3-trifluoropropyl)trichlorosilane, (3,3,3-trifluoropropyl)methyldichlorosilane, (3,3,3-trifluoropropyl)-dimethylchlorosilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane, (heptafluoroisopropoxy) propylmethyldichlorosilane, and (3-pentafluorophenylpropyl) dimethylchlorosilane.
6. A cell-based microsensor, comprising:
(i) at least one transducer; and
(ii) a substrate having a patterned surface for the selective adhesion and outgrowth of cells;
wherein said patterned surface contains at least one region having an exposed surface of at least one cell adhesion promoter, such that said region is spatially related to said transducer so that a cell adhering to said region may be stimulated or detected by said transducer;
wherein said patterned surface is prepared by a method comprising:
(i) coating a substrate with a first compound to obtain an ultra-thin film which is reactive to radiation and has an exposed surface of at least one cell adhesion promoter or cell adhesion inhibitor; and
(ii) irradiating said ultra-thin film in a pattern to obtain an irradiated film with a surface region in which at least a fraction of said promoter or inhibitor has been removed,
wherein said cell adhesion promoter contains a group selected from the group consisting of --NHCH2 CH2 NHCH2 CH2 NH2, --NHCH2 CH2 NH2, 11-aminoundecyl, 3-aminopropyl, 3-(-aminopropoxy)-3,3-dimethyl-1-propenyl, 6-(aminohexyl)propyl, N-(2-aminoethyl)-3-aminopropyl, --(CH2)3 -NH-(CH2)2 -NH-(CH2 .paren close-st.3, Gly-Arg-Gly-Asp-Tyr-, and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, and wherein said cell adhesion inhibitor contains a fluorinated alkyl group.
7. The microsensor of claim 6, wherein said method further comprises:
(iii) treating the irradiated film with a second compound to bind to said surface region in which at least a fraction of said promoter or inhibitor has been removed.
8. The microsensor of claim 6, wherein said ultra-thin film is coated on a substrate selected from the group consisting of silica, silicon, germanium, gallium, arsenide, epoxy resin, polystyrene, polysulfone, aluminum, platinum, alumina, silicone, fluoropolymers, polyesters, acrylic copolymers, polyglactin, and polylactates.
9. The microsensor of claim 6, wherein said cell adhesion promoter contains a --NHCH2 CH2 NHCH2 CH2 NH2 group or a --NHCH2 CH2 NH2 group.
10. The microsensor of claim 6, wherein said first compound is (a) a cell adhesion promoter compound selected from the group consisting of N-(2-aminoethyl-3-aminopropyl) trimethoxysilane, 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-(1-aminopropoxy)-3,3-dimethyl-1-propenyltrimethoxysilane, 6-(aminohexylaminopropyl)trimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, bis 3-(trimethoxysilyl)propyl!ethylenediamine, trimethoxysilylpropyldiethylenetriamine, (aminoethylaminomethyl)phenethyltrimethoxysilane, isopropyltri-(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(amino)phenyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethylzirconate, and neopentyl(diallyl)oxytri(m-amino)phenylzirconate; or
(b) a cell adhesion inhibitor compound selected from the group consisting of tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-methyldichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-triethoxysilane, (3,3,3-trifluoropropyl)trichlorosilane, (3,3,3-trifluoropropyl)methyldichlorosilane, (3,3,3-trifluoropropyl)-dimethylchlorosilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane, (heptafluoroisopropoxy) propylmethyldichlorosilane, and (3-pentafluorophenylpropyl) dimethylchlorosilane.
11. An implant, comprising at least one patterned surface for the selective adhesion and outgrowth of cells, wherein said patterned surface is prepared by a method, comprising:
(i) coating a substrate with a first compound to obtain an ultra-thin film which is reactive to radiation and has an exposed surface of at least one cell adhesion promoter or cell adhesion inhibitor; and
(ii) irradiating said ultra-thin film in a pattern to obtain an irradiated film with a surface region in which at least a fraction of said promoter or inhibitor has been removed,
wherein said cell adhesion promoter contains a group selected from the group consisting of --NHCH2 CH2 NHCH2 CH2 NH2, --NHCH2 CH2 NH2, 11-aminoundecyl, 3-aminopropyl, 3-(-aminopropoxy)-3,3-dimethyl-1-propenyl, 6-(aminohexyl)propyl, N-(2-aminoethyl)-3-aminopropyl, --(CH2)3--NH--(CH2)2 --NH--(CH2 .paren close-st.3, Gly-Arg-Gly-Asp-Tyr-, and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, and wherein said cell adhesion inhibitor contains a fluorinated alkyl group.
12. The implant of claim 11, further comprising:
(iii) treating the irradiated film with a second compound to bind to said surface region in which at least a fraction of said promoter or inhibitor has been removed.
13. The implant of claim 11, wherein said ultra-thin film is coated on a substrate selected from the group consisting of silica, silicon, germanium, gallium, arsenide, epoxy resin, polystyrene, polysulfone, aluminum, platinum, alumina, silicone, fluoropolymers, polyesters, acrylic copolymers, polyglactin, and polylactates.
14. The implant of claim 11, wherein said cell adhesion promoter contains a --NHCH2 CH2 NHCH2 CH2 NH2 group or a --NHCH2 CH2 NH2 group.
15. The implant of claim 11, wherein said first compound is (a) cell adhesion promoter compound selected from the group consisting of N-(2-aminoethyl-3-aminopropyl) trimethoxysilane, 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-(1-aminopropoxy)-3,3-dimethyl-1-propenyltrimethoxysilane, 6-(aminohexylaminopropyl)trimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, bis 3-(trimethoxysilyl)propyl!ethylenediamine, trimethoxysilylpropyldiethylenetriamine, (aminoethylaminomethyl)phenethyltrimethoxysilane, isopropyltri-(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(amino)phenyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethylzirconate, and neopentyl(diallyl)oxytri(m-amino)phenylzirconate; or
(b) a cell adhesion inhibitor compound selected from the group consisting of tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane, tridecafluoro-1,2,2,2-tetrahydrooctyl)-1-methyldichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-triethoxysilane, (3,3,3-trifluoropropyl)trichlorosilane, (3,3,3-trifluoropropyl)methyldichlorosilane, (3,3,3-trifluoropropyl)-dimethylchlorosilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane, (heptafluoroisopropoxy) propylmethyldichlorosilane, and (3-pentafluorophenylpropyl) dimethylchlorosilane.
16. The implant of claim 11, which is in the form of a tube, wherein the inner surface of said tube is said patterned surface.
17. The implant of claim 11, which is in the form of a rolled sheet, wherein at least one side of said sheet is said patterned surface.
18. The implant of claim 11, which is in the form of a transducer.
19. A method for culturing cells, comprising plating cells on a patterned surface for the selective adhesion and outgrowth of cells, wherein said patterned surface is prepared by a process comprising:
(i) coating a substrate with a first compound to obtain an ultra-thin film which is reactive to radiation and has an exposed surface of at least one cell adhesion promoter or cell adhesion inhibitor; and
(ii) irradiating said ultra-thin film in a pattern to obtain an irradiated film with a surface region in which at least a fraction of said promoter or inhibitor has been removed,
wherein said cell adhesion promoter contains a group selected from the group consisting of --NHCH2 CH2 NHCH2 CH2 NH2, --NHCH2 CH2 NH2, 11-aminoundecyl, 3-aminopropyl, 3-(-aminopropoxy)-3,3-dimethyl-1-propenyl, 6-(aminohexyl)propyl, N-(2-aminoethyl)-3-aminopropyl, --(CH2)3 --NH--(CH2)2 --NH--(CH2 .paren close-st.3, Gly-Arg-Gly-Asp-Tyr-, and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, and wherein said cell adhesion inhibitor contains a fluorinated alkyl group.
20. The method of claim 19 wherein said process for preparing said patterned surface further comprises:
(iii) treating the irradiated film with a second compound to bind to said surface region in which at least a fraction of said promoter or inhibitor has been removed.
21. The method of claim 19, wherein said ultra-thin film is coated on a substrate selected from the group consisting of silica, silicon, germanium, gallium, arsenide, epoxy resin, polystyrene, polysulfone, aluminum, platinum, alumina, silicone, fluoropolymers, polyesters, acrylic copolymers, polyglactin, and polylactates.
22. The method of claim 19, wherein said cell adhesion promoter contains a --NHCH2 CH2 NHCH2 CH2 NH2 group or a --NHCH2 CH2 NH2 group.
23. The method of claim 19, wherein said first compound is (a) a cell adhesion promoter compound selected from the group consisting of N-(2-aminoethyl-3-aminopropyl) trimethoxysilane, 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-(1-aminopropoxy)-3,3-dimethyl-1-propenyltrimethoxysilane, 6-(aminohexylaminopropyl)trimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, bis 3-(trimethoxysilyl)propyl!ethylenediamine, trimethoxysilylpropyldiethylenetriamine, (aminoethylaminomethyl)phenethyltrimethoxysilane, isopropyltri-(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethyltitanate, neopentyl(diallyl)oxytri(amino)phenyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino)ethylzirconate, and neopentyl(diallyl)oxytri(m-amino)phenylzirconate; or
(b) a cell adhesion inhibitor compound selected from the group consisting of tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-methyldichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-triethoxysilane, (3,3,3-trifluoropropyl)trichlorosilane, (3,3,3-trifluoropropyl)methyldichlorosilane, (3,3,3-trifluoropropyl)-dimethylchlorosilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)trimethoxysilane, (heptafluoroisopropoxy) propylmethyldichlorosilane, and (3-pentafluorophenylpropyl) dimethylchlorosilane.
Descripción
U.S. GOVERNMENT RIGHTS IN THE INVENTION

This invention was made jointly by two employees of the Naval Research Laboratory, Washington, D.C. and one employee of Geo-Centers, Inc. The one Geo-Centers employee, at the time the invention was made, was in the performance of work under Naval Research Laboratory contract N00014-86-C-2540. The United States of America has certain rights in the invention arising out of that contract, including a nonexclusive, nontransferable, irrevocable, paid-up license to practice the invention or have it practiced for or on behalf of the United States throughout the world. The United States of America may also have rights in the invention derived from the two employees of the Naval Research Laboratory who are joint inventors of this invention.

This is a division of application Ser. No. 07/598,194, filed on Oct. 16, 1990, now Pat. No. 5,329,591, which is a Continuation-In-Part of application Ser. No. 07/182,123, now U.S. Pat. No. 5,079,600, filed on Apr. 14, 1988, which is a Continuation-In-Part of application Ser. No. 07/022,439, filed on Mar. 6, 1987, and now Pat. No. 5,077,085.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to patterned ultra-thin films (UTF) for the selective adhesion and outgrowth of cells and a method for producing such films. The present invention also relates to devices which contain such ultra-thin films, such as body implants or prosthetics, cell culture apparatus, and cell based sensors.

2. Discussion of the Background

It is well known that the morphological and functional development of adherent types of biological cells is critically dependent on, among other factors, the physical and geometrical properties of the underlying substrate. The effects of the substrate adhesivity, in particular, on these developmental processes have been vigorously investigated during recent years. However, substrates which are either unmodified, or completely remodified with only a single type of substrate coating have been used almost exclusively.

In many situations, the ability to influence and/or monitor a variety of intra- and intercellular processes using substrate geometry requires that the adhesive properties of that substrate be defined with a spatial resolution of cellular or subcellular dimensions (10 μm to less than 1 μm). For example, substrate patterns designed to spatially direct the adhesion and outgrowth of cells on the surfaces of sensor devices, prosthetic implants, and tissue repair templates are desired.

Several methods have been devised which might conceivably be used for the fabrication of substrate patterns used in the above-mentioned applications. The earliest reported methods rely on definition of a selectively adhesive substrate pattern by mechanically removing cell-repulsive phospholipid films or evaporated gold from cell-adhesive glass substrates (Ivanova et al, Nature, Vol. 242, p. 200 (1973)); and Cooper et al, Exp. Cell Res., Vol. 103, p. 435, (1976)) or by masked evaporation of cell-adhesive silicon monoxide onto polystyrene surfaces (Albrecht-Buehler, J. Cell Biol., Vol. 80, p. 53 (1980)). However, these methods suffer from drawbacks due to the instability of phospholipid films, the difficulty associated with the physical removal of thin coatings, and the limited number of materials which may be deposited by evaporation. More importantly, these methods are limited by their reliance on the native adhesive properties of unmodified regions of the substrates.

Other methods have been introduced to create substrate patterns which are based on molecular recognition between the cell surface and bulk protein films on the substrate. Hammarback et al. have shown that the outgrowth of dissociated chick embryo dorsal root ganglion neurons occurs on substrates which are defined using patterned UV irradiation to selectively denature cell-adhesive laminin films (Hammarback et al, Jour. Neurosci. Res., Vol. 13, p. 213 (1985)). An alternative method is to adhere neurons to laminin which has been selectively adhered to regions of albumin films which have become crosslinked by patterned UV exposure (Hammarback et al, Devel. Biol., Vol. 117, p. 655 (1986)). Although the development of most neurites is noticeably affected by the substrate patterns, a significant percentage (10-20%) of the plated cells initially adhere to and at least partially develop on the UV-denatured laminin regions.

Recently, pure UTFs of cell adhesion peptides (Arg-Gly-Asp and Try-Ile-Gly-Ser-Arg) have been formed by covalent linkage to silane-modified glass surfaces (Massia et al, Anal. Biochem., vol. 187, p. 292 (1990)), providing a much better defined system for cell adhesion. In this case, the adhesion is affected by known chemical functionalities which are present on the surface as a monolayer.

Silane films are anchored to the silicon substrate by chemical and physical adsorption, which may involve siloxane (Si-O-Si) bridges or van der Waals forces. Any substrate having a terminal ionizable hydroxyl group at the surface can provide an anchorage for the silane film. This procedure of using self-assembling films involves covalent bond formation between the monolayer and the substrate whereby the film adheres to the substrate more strongly than physisorbed Langmuir-Blodgett films.

The potential for producing high resolution patterns of silane-coupled UTFs has been demonstrated by Kleinfield et al., Jour. Neurosci., vol. 8, p. 4098 (1988). In this method, a conventional photoresist is photolithographically patterned and used to mask silicon and quartz substrate regions. The cell adhesivity of the exposed substrate is reduced by formation of a patterned UTF of covalently attached n-tetradecane. Removal of the photoresist and subsequent recoating of the previously masked regions with EDA produces high resolution (10 μm line-space pairings) regions having completely different cell adhesivities.

Photoresist-defined UTFs have been used to very effectively to define both the initial adhesion and outgrowth of a heterogeneous mixture of cells (various types of glial cells and neurons) from the fetal rat cerebellum (Klienfeld et al, Jour. Neurosci., Vol. 8, p. 4098, (1988)). The photoresist-based UTF patterning process is important because it demonstrates that the entire substrate surface may be modified in the same molecular plane with high resolution, alternating UTF films having a desired two-dimensional architecture. However, the technique has significant drawbacks, the most notable of which is the number of steps required for fabrication due to the adhesion, polymerization, development, and stripping of the photoresist (18 steps are reported in Klienfeld et al, Jour. Neurosci., Vol. 8, p. 4098 (1988)).

Another method has been developed recently for the formation of orthogonal UTFs, (Laibinis et al, Science, Vol. 245, p. 845 (1989)). In this method, high resolution monolayer patterns are formed by the selective adsorption of alkanethiols on gold and alkane carboxylic acids on alumina. Selective cell adhesion has not been demonstrated on substrates prepared by this method. However, a large number of chemical functionalities should be compatible with this method, making it a possible fabrication technique for high resolution cell adhesive patterning. A significant limitation of the technique is that only hydrophobic UTF films may be formed on alumina (Laibinis et al, Science, Vol. 245, p. 845 (1989)).

U.S. Pat. No. 4,832,759 describes the use of "surface discontinuities" to at least partially define cell adhesion in zones having a width of between 0.2 and 20 μm. U.S. Pat. Nos. 4,591,570 and 4,011,308 describe the use of patterns or arrays of antibody-coated spots for specific immunoabsorption of cells to optically-sensitive surfaces. U.S. Pat. No. 4,562,157 describes the photo-induced activation of adhered chemical species so that chemical functionalities and proteins may be covalently attached to "BIOCHEMFET" devices. However, this work does not address the problem of nonspecific absorption of proteins.

At least one biosensor has been developed which optically measures the metabolic activity of immobilized cells (Parce et al, Science, Vol. 246, p. 243 (1989)). However, groups of cells, not individual cells, are "immobilized" by gravitational sedimentation into micromachined silicon wells.

U.S. patent applications Ser. Nos. 07/022,439 filed Mar. 6, 1987 and 07/182,123 filed Apr. 14, 1988 disclose a method for preparing high resolution patterns of metals on solid substrates, by irradiation of an adherent thin film with deep ultraviolet (DUV) irradiation. However, there is no suggestion of patterned substrates for the selective adhesion and outgrowth of cells.

Thus, there remains a need for patterned ultra-thin films for the selective adhesion and outgrowth of cells which are free of the above-mentioned drawbacks. There also remains a need for a method producing such films and devices, such as body implants, cell culture apparatus, cell sensors, and neural prostheses, which utilize such ultra-thin films.

SUMMARY OF THE INVENTION

Accordingly, it is one object of the present invention to provide novel patterned ultra-thin films for the selective adhesion and outgrowth of cells.

It is another object of the present invention to provide a method for the production of patterned ultra-thin films for the selective adhesion and outgrowth of cells.

It is another object of the present invention to provide novel cell culture apparatus which contains a patterned ultra-thin film for the selective adhesion and outgrowth of cells.

It is another object of the present invention to provide a method for culturing cells such that the cells adhere and grow on a surface in a pattern which substantially corresponds to a predetermined pattern on the surface.

It is another object to provide body implants which contain a patterned ultra-thin film for the selective adhesion and outgrowth of cells.

It is another object of the present invention to provide a cell-based microsensor which contains a patterned ultra-thin film for the selective adhesion and outgrowth of cells.

These and other objects, which will become apparent in the following detailed description have been achieved by the inventors' discovery that culturing cells on a surface, having a patterned ultra-thin film in which at least a portion has an exposed surface of at least one cell adhesion promoter and at least another portion of the film has an exposed surface of a cell adhesion inhibitor, results in a pattern of cell adhesion and outgrowth which substantially corresponds to the pattern of the cell adhesion promoter and inhibitor of the ultra-thin film.

The inventors have also discovered that such ultra-thin films are useful as surfaces for body implants, cell culture devices, and cell-based microsensors. In addition, the inventors have discovered that such patterned ultra-thin films may be produced by a process comprising:

(i) coating a substrate with a compound to obtain an ultra-thin film which is reactive to radiation and having an exposed surface of at least one cell adhesion promoter or inhibitor; and

(ii) irradiating the ultra-thin film in a pattern to obtain an irradiated film with a surface region in which at least a fraction of said promoter or inhibitor has been removed.

In another embodiment, the process may further comprise treating the irradiated film with a second compound to bind to the surface region in which at least a fraction of the promoter or inhibitor has been removed.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIGS. 1a-c illustrate schematically the procedure for the preparation of a patterned EDA/13F surface: (a) The metallized surface of a fused silica photolithographic mask was tightly positioned against an EDA-coated glass microscope slide; (b) A 15 J/cm2 DUV exposure resulted in photochemical modification of the EDA in the unshielded regions to produce a pattern of oxidized surface molecules, which are collectively represented as free hydroxyl groups on the glass surface; (c) Immediately following DUV exposure, the glass slide was immersed in a 1% mixture of 13F in toluene to selectively remodify the previously-exposed regions, producing orthogonal EDA/13F UTFs;

FIG. 2 illustrates the change in the contact angle of EDA-coated glass following exposure to increased amounts of DUV energy and subsequent remodification with 13F. Individual 1 cm2 areas of EDA UTFs on glass microscope slides were exposed to 193 nm DUV from a pulsed argon fluoride excimer laser (10 Hz at 10-20 mJ/cm2 per pulse), then exposed to a 1% solution of 13F in toluene. The water contact angle (as measured using the sessile drop method) of the remodified areas increased continuously from that corresponding to a pure EDA UTF (28°-32°) to that of pure 13F UTF (92°-94°) as the exposure was increased from 0 to 15 J/cm2 ;

FIG. 3a illustrates a bright field micrograph of the metallized mask used to create the alternating EDA and 13F patterns. Dark regions correspond to the metal used to protect the underlying SAF-coated glass substrate. Light areas represent the DUV-transparent fused silica substrate of the mask and correspond to regions which are exposed and subsequently remodified with 13F. The interface between two line width/line spacing regions is shown. Larger dark lines are 40 μm wide, spaced at 40 μm. Smaller dark lines are 12 μm, spaced at 12 μm;

FIG. 3b shows SK-N-SH cells which have been selectively absorbed onto 40 μm wide lines of EDA. EDA-coated regions appeared lighter in phase contrast micrographs due to the absence of defect centers which were formed in the surrounding DUV-exposed glass substrate. Nearly 100% of the plated cells have selectively adsorbed to the EDA lines.

FIG. 3c illustrates SK-N-SH cells which have adhered to EDA on an orthogonal EDA/13F UTF. The geometry of the EDA/13F pattern corresponds to a portion of the mask like that shown in FIG. 3a;

FIG. 4 illustrates SK-N-SH morphological development on 12 μm-wide EDA lines at 24 hours after plating. The direction of neurite outgrowth was determined by the geometry of the EDA component of the pattern; and

FIG. 5 illustrates a tubular implant for the regeneration of neurons according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Several terms are used in this application which have meaning as described below. "Ultra thin film" refers to films or layers which are at least one molecule thick. Often, the films used are thinner than about one quarter of the wavelength of light used to expose the substrate, and may be as thin as a monomolecular layer.

"Radiation reactive material" as used herein is a material reactive to radiation that can absorb radiation used to expose it and which undergoes a modification as a result of absorption of the radiation. Preferably, the radiation reactive material will absorb light with a wavelength of less than 400 nanometers. Most preferably the radiation reactive material will have an absorption maximum at the wavelength used to expose the material. Radiation reactive materials include organic, inorganic and polymeric materials. Polymeric materials include polyethers, polyurethanes, polysulfones, polystyrene, polyamides, polymethacrylates, polybutadienes, polyethylene terephthalate, paraffin, polyisoprene and blends and copolymers of such materials. Other materials include chlorosilanes, methoxysilanes, ethoxysilanes, silazanes, titanates, zirconates, and the like.

"Irradiation" can be any electromagnetic wave which causes a change in the reactivity of the surface to be treated. In conventional photolithography with thick (ca. 1 micron) photoresists, the overall resolution of the process is directly proportional to the wavelength of light which causes the change in the reactivity of the layer or film. Therefore, it is preferred to use irradiation which would be shorter than 500 nm in order to achieve a theoretical resolution of less than 0.5 microns and even more preferred to use irradiation shorter than 250 nm in order to achieve a theoretical resolution of less than 0.25 microns in the claimed process. Because this process can also utilize ultra-thin films that are considerably thinner than the wavelength of the patterning radiation, it is possible to use near-field optics to achieve potential feature resolution on the order of tens of nanometers. A discussion of near-field optics can be found in the manuscript by U. Durig, et al., IBM J. Res. Develop., Vol. 30, pg. 478 (1926) entitled "Near-Field Optical Scanning Microscopy with Tunnel-Distance Regulation". Resolution refers to the space between deposited lines such as metal lines or line width deposited. Irradiation in patterns can be accomplished by any of the known conventional techniques such as direct write electron or laser beam, projection step and repeat, proximity printing, contact printing.

A "patterned ultra-thin film" is meant to refer to a structure built up on the surface of a substrate which conforms to a preselected pattern. The pattern is that pattern created by patterned irradiation. The molecular assembly can be a single layer of one material or multiple layers of the same or different materials. These materials include inorganic, organic materials, as for example semiconductive, metallic or combinations of these materials.

For example, irradiation reactive material such as a particular chlorosilane or methoxysilane can be exposed and then a second silane can be built up selectively in the most reactive areas. If the first reactive material is an amino silane and a silane with a fluorinated group is the second reactive material, in this case the silane with the fluorinated group will be bound to the exposed areas and therefore, the amino silane will be bound only in the unexposed areas. Assemblies can be built up further by introducing a second molecule which will bind to the most reactive of the spatially different areas of reactivity and a third layer may be built up in the same manner which can then have a fourth layer built onto it.

The present patterns contain spatially different areas of reactivity. "Spatially different areas of reactivity" are composed of high resolution patterns of different chemical moieties created when a radiation reactive material at its surface layer, is exposed in a pattern with the proper irradiation wavelength. The spatially different areas of reactivity can be side by side in a single plane or in three dimensions and organic, inorganic, polymeric, metallic or semiconductive materials can be involved which are at least one atom thick. The organic materials can include aliphatic unsaturated and aromatic hydrocarbons, methacrylates, amines, halocarbons, esters, ethers, polymers and others. The inorganic materials can include silicon oxides, titanium oxides, zirconium oxides, aluminum oxides, platinum oxide, copper oxide and the like as well as mixtures thereof.

For the purposes of the present invention, the terms "promoter" and "cell adhesion promoter" refer not only to the functional group which is exposed on the surface of the ultra-thin film and promotes the adhesion of cells, but also to the compound which is used to form the ultra-thin film having the exposed surface of a cell adhesion promoter. However, it is to be understood that when the term "promoter" is used in connection with removal by irradiation, at least the functional group which is exposed on the surface and promotes cell adhesion is being removed. The terms "inhibitor" and "cell adhesion inhibitor" are to be analogously interpreted.

Thus, in one embodiment, the present invention relates in general to the production of patterned films on solid substrates with use of one or more patterned irradiation steps. More particularly, in one embodiment, the invention pertains to UTFs that provide desired surface characteristics on substrates to which the films are strongly adherent. Yet even more particularly, the invention concerns procedures whereby areas of widely varying reactivity can be created with sub-micron lateral resolution on the substrate surface. The invention enables the selective deposition of biological cells and control of their outgrowth and development on semiconductor, dielectric, polymeric, or conductive surfaces as a direct consequence of differential adhesive properties.

According to the invention, the process of producing patterned molecular assemblies on a substrate is carried out by providing a substrate having at least one layer of radiation-reactive material having substantially equal reactivity over a surface. The surface of the radiation-reactive material is exposed to patterned radiation to create first and second areas of different reactivity. One additional layer of material may be built directly next to one of said first layer to create a patterned substrate with desired areas of different reactivity.

The invention can comprise a process for producing differential cell-adhesive UTFs on solids by causing a layer or film on the surface of the substrate to be altered in its adhesivity. Adherent cells grow and develop only in those regions having a sufficient adhesivity. Preferably, the substrate is of the kind having a polar functional group at its surface and the monomolecular films are self-assembling films which are deposited on the surface of the substrate and can be a monomer or polymer. Yet more preferably, the surface of the self-assembling films are of the type which either promote cell adhesion or inhibit cell adhesion and are capable of renewed reactivity upon exposure to deep ultraviolet light, so that a subsequent self-assembling film can be deposited selectively in the same or similar plane as the first self-assembled film, creating high-resolution patterns of cell adhesion promoters and cell adhesion inhibitors. It is a feature of this invention that high-resolution patterns of biological cells which can be spaced apart distances of 10 μm or less can be made on a variety of technologically relevant substrates including semiconductors, metals, biocompatible polymers, and ceramics.

In a preferable embodiment, cells from established lines or dissociated tissues are plated on patterned substrates in a suitable culture medium. Biological cells only adhere to and develop on those regions of the film that have sufficient adhesivity to bind the cells. After a period of time (20 minutes to 2 hours), non-adherent cells are rinsed from the substrate with culture media. When selectively adhered cells are cultured on said substrate in vitro, they develop only in defined substrate regions.

Preferably, the spatial dimensions of the defined substrate adhesivity are designed to effect the initial adhesion, outgrowth, and interaction of, for example, explanted mammalian neurons. In a very preferable embodiment, the substrate pattern is designed to position individual or groups of cells on or near transducer elements which selectively activate and/or measure physiological events within the cells in an addressable manner. This embodiment of the invention is particularly relevant to the selective adhesion of cells to microelectrodes, photodiode arrays, and fluorescence or chemiluminescence detectors. In this embodiment the present invention contributes to the fabrication of new classes of biosensors capable of detecting families of neurotoxins and neurotransmitters, or assessing the efficacy of experimental drugs.

In another very preferable embodiment, the substrate is a biomedically relevant material such as a metal or polymer which is suitable for use in implant devices. The substrate pattern is designed to allow certain cells to selectively adhere and develop on the device in order to influence the subsequent development of tissue on or inside of the device. The device may, for example, be an artificial tube which contains a microadhesive repair template for the outgrowth of damaged neurons, or which interfaces neurons to a prosthetic device interface. In another example, the device might be a surgical implant material used as an artificial ligament or bone material. The selective patterning of osteoblast cells on such materials may be used to improve biocompatibility and improve fixation of the material in native bone.

In a first embodiment, the present method for preparing the present ultra-thin films for the selective adhesion and outgrowth of cells involves coating a substrate to form an ultra-thin film with an exposed surface of a cell adhesion promoter, which on irradiation is converted to a region devoid of the promoter,, and then irradiating through a mask to form an area which does not promote cell adhesion, in a pattern corresponding to the transparent part of the mask. Thus, coating glass with a molecule, such as N-(2-aminoethyl-3-aminopropyl)trimethoxysilane (EDA), to form an ultra-thin film with an exposed surface of a cell adhesion promoter, such as --NHCH2 CH2 NH2, and then irradiating with light of a suitable intensity and wavelength, through a mask, yields a surface with regions of cell adhesion promoter and regions devoid of promoter in a pattern, in which the pattern of the regions devoid of promoter corresponds to the transparent portion of the mask. Patterned surfaces produced by such a process are suitable for the selective adhesion and outgrowth of cells as shown by the results provided in Example 6 (vide infra).

A preferred embodiment of the present process is shown in FIGS. 1a-c. FIG. 1a illustrates the irradiation through a mask of a substrate which has been coated with a cell adhesion promoter to form an ultra-thin film which has an exposed surface of --NHCH2 CH2 NH2 groups. After irradiation, a region which is devoid of cell adhesion promoter is formed as shown in FIG. 1b. The process may then be continued by treating the surface of 1b with a reagent to bind to the exposed region with a cell adhesion inhibitor as shown in FIG. 1c. Of course, it is to be understood that the present process does not require that the cell adhesion promoter be coated first. Thus, the process depicted in FIGS. 1a-c may be varied to include a process in which the substrate is first coated with a radiation-reactive cell adhesion inhibitor, then the coated surface is irradiated to form a reactive region, and the surface is treated with a second compound to remodify the reactive region with a cell adhesion promoter.

Thus, by converting the exposed region to either a second cell adhesion promoter or inhibitor, it is possible to improve the selectivity of adhesion of the cells to the promoter region. For the purposes of the present application, the selectivity of cell adhesion for a particular pair of cell adhesion promoter and inhibitor is defined as the percentage of cells adhering to the promoter region out of the total number of cells plated on a surface containing equal areas of the promoter and inhibitor and on which the individual regions of promoter and inhibitor have areas larger than the diameter of the cells being plated.

A surface exhibits selective adhesion if the surface exhibits an adhesion selectivity of at least 75%, preferably at least 90%, more preferably at least 98%.

In another embodiment, either or both of the cell adhesion promoter or inhibitor surfaces may comprise two or more different cell adhesion promoters or inhibitors. Regions containing two or more cell adhesions promoters may be prepared by simply coating with a mixture of compounds containing cell adhesion promoter or inhibitor functional groups. However, because of the lack of stoichiometric control owing to different rates of reactivity, it is preferred that regions containing two or more promoters or inhibitors be prepared by a process in which the substrate is first coated with a first promoter and the surface is then, either with or without a mask, irradiated with light of suitable wavelength and sufficient intensity to only partially bring about the reaction of the exposed region. In this way, it is possible to remove only a portion of either the promoter or inhibitor as demonstrated in Example 1. After the irradiation step, the surface may be treated with another compound to convert the new reactive sites to a second promoter or inhibitor. Thus, by controlling the exposure of the surface to the irradiation, it is possible to remove the desired amount of the first promoter or inhibitor in the exposed region and thus precisely control the relative amounts of the first and second promoters or inhibitors in the exposed region. Of course, this procedure may be carried out iteratively to prepare regions which contain more than two different promoters or inhibitors.

Thus, it is possible to prepare patterned surfaces for the selective adhesion and outgrowth of cells of any desired pattern which is attainable by photolithography. It is to be understood that the present surfaces are not limited to those which contain regions of only one type of promoter and one type of inhibitor. Thus, the present surface may possess three or more different types of exposed surfaces. For example, it is possible to prepare a surface which contains a region A having an exposed surface of a first promoter, region B having an exposed surface of a second promoter, and region C having an exposed surface of a third promoter, etc.

The present invention also relates to cell culture apparatus which contain at least one patterned surface for the selective adhesion and outgrowth of cells. As mentioned above, biological cells normally develop randomly on the surface on which they are plated and the ability to construct precise two-dimensional arrangements of cells in vitro is desired. Thus, substrates having defined geometric patterns of adhesion may be used to predispose plated cells to develop into a desired structure or functional arrangement. Examples of such devices include petri dishes, and culture flasks. Further, such devices may be used, for example, to define the dimensions of capillary-like structures obtained by the culture of endothelia cells (Robinson et al, in vitro Cell. Dev. Biol., vol. 26, p. 169 (1990)). In such a device, a surface would be coated with at least one region of cell adhesion promoter with a width which corresponds to the desired outer circumference of the microvessel. Alternatively, the present apparatus may be used to define the geometry and specificity of neuronal or neuromuscular synapse formation. For this purpose it may be desirable that the patterned surface contain a "T"-shaped region of the promoter such that the neuron may make a right-angle contact with the muscle cell. Selective adhesion of the muscle cell and neuron to the different areas of the promoter region may be accomplished by physical masking (with, e.g., a cover slip) of one region while plating with the first cell and then removing the mask while plating with the second type of cell.

The present apparatus may also be used to define the geometry of the formation of calcified tissue from patterns of precursor (stem or osteoblast) cells, the directional orientation of the cell body axis for controlled application of vectorial (electrical and magnetic) fields, and the influence of various types of cell adhesion promoter geometries on the morphological development of a single cell. In regard to the definition of the geometry of the formation of calcified tissue, it may be desirable to arrange the pattern of cell adhesion promoter regions such that the stem or osteoblast cells form a sheet rather than clumps. In regard to defining the influence of the geometry of the cell adhesion promoter on the morphological development of a cell, it may be desirable to arrange the cell adhesion promoter regions in the geometry of a diamond, a triangle, a circle, or a rectangle. Of course, the cell promoter regions may be arranged in geometries which represent combinations of one or more of the above-mentioned types and which may be connected by narrow regions of cell adhesion promoter. The present apparatus may be any of the following provided that at least one patterned surface according to the present invention is present: a microscope slide, a cover slip, an electron microscopy sample holder, a petri dish, a culture flask, or a culture tube.

In another embodiment, the present invention relates to cell-based biosensors. The ability to precisely position cells on a substrate may be used to permit the physical addressability of individual cells in a defined, two-dimensional architecture. It has been previously shown that the electrical activity of cultured cardiac (Thomas et al, Exptl. Cell Res., vol. 74, pp. 61-66 (1974) and Israel et al, Am. J. Physiol., vol. 247, pp. H669-H674 (1974)) and neural (Pine, Jour. Neurosci. Meth., vol. 2, pp. 19-31 (1980) and Gross et al, Jour. Neurosci. Meth., vol. 5, pp. 13-22 (1982)) cells may be stimulated and monitored using substrate-mounted microelectrodes. Stimulation of these cell types results in a transient depolarization of the resting membrane potential causing an ion flux which may be detected as a change in the local potential profile around the cells. However, in the above-described apparatus, cells are randomly plated onto microelectrode arrays. As a result, the signal obtained decreases as a function of distance from the microelectrode. Hence, low level responses, in neural cells (i.e., not resulting in action potentials), are not detected. Recently, a method for measuring the electrical responses (Regehr et al, Jour. Neurosci. Meth., vol. 30, pp. 91106 (1989)) in which a relatively large (40-200 μm diameter soma) neuron is manually positioned over substrate-mounted microelectrodes has been reported. An adhesive substrate coating is used to promote a high impedance seal between the cell membrane and the electrode, thus forming a "loose patch". The value of the technique depends on the formation of the high impedance seal between the cell membrane and the measuring electrode (in the substrate) to prevent short circuiting to the reference electrode (in the medium), and to allow the capacitive charging of the membrane to be induced or accurately detected with the measuring electrode. However, as noted above, the microsensors of the prior art require that the neurons be manually positioned over the substrate-mounted microelectrodes.

In the microsensors of the present invention, the cells are positioned in the desired areas by coating the appropriate areas with a cell adhesion promoter. Thus, the present microsensors contain a substrate which is coated with at least one region of a cell adhesion promoter which is located sufficiently close to a physical transducer that the transducer may either receive signals from or stimulate the cell adhering to the promoter region. Examples of suitable transducers include but are not limited to microelectrodes, field effect transistors, photodiodes, piezoelectric materials, liquid crystals, conductive polymers, fiber optic devices, and spectroscopic apertures. As noted above, such transducers may be used to either stimulate or receive signals from the cell. In one embodiment, the present microsensors have at least one cell adhesion promoter region with a surface area which permits the adhesion of only a single cell and this region is located on or near the transducer. Preferably, the cell adhesion promoter region is directly attached to the transducer. Of course, the present microsensors may contain more than one transducer. In this case, it is preferred that each transducer be individually addressable.

In a second embodiment, the present microsensors contain a cell adhesion promoter having sufficient area and a distinct pattern to permit the adhesion of a plurality of cells in a defined architecture. In this embodiment, the adhered architecture of cells within the cell adhesion promoter region may be either stimulated or detected with one or more transducers. Of course, in such an embodiment, each transducer may independently of the others act as either a stimulator or a detector. In this manner, for example, it is possible to construct a device in which a network of neurons may be stimulated at one end by a transducer while a second transducer is used to detect the resulting signal, if any, at a second end. Thus, the present microsensors may be used to assay the effect of stimuli drugs and insults on intercellular communication (in this case synaptic communication) may be determined.

It is to be understood that the present microsensors may also be used in conjunction with fluorescent or chemiluminescent probes and assays. In this case, it is preferred that at least one of the transducers be suitable for detecting such luminescence.

The present microsensors thus permit the pharmacological screening of a large number of cells without the difficulties encountered with the conventional techniques, such as the use of a patch clamp.

In another embodiment, the present microsensors may be used to detect levels of bioactive materials in a sample or environment. Although the present microsensors may be used in conjunction with any suitable cells, when the microsensor takes the form of a neurotoxin biosensor, it is preferred that the biosensor be used in conjunction with an easily cultured neuronal cell line such as that described in Ronnett et al, Science, vol. 248, p. 603 (1990).

In another embodiment, the present invention relates to prosthetic implants which contain at least one patterned surface for the selective adhesion and outgrowth of cells. As demonstrated in the examples, the directional outgrowth of human neuroblastoma cells may be directed by the use of high resolution adhesive patterns. Thus, the present implants may take the form of a device for the directed growth of neurons. In one embodiment, such a device may take the form of a tubular implant for axon regeneration in severed nerves. Conventional tubular implants are hollow tubes which may optionally be filled with a matrix but do not possess a patterned surface for the selective adhesion of cells (Fields et al, Progress in Neurobiology, vol. 33, pp. 87-134 (1989). In such devices, the process of axon regeneration proceeds via a multi-step process which first involves the bridging of the gap between the proximal (relative to the spinal cord) and the distal ends of the severed nerve by a narrow fibrin-rich matrix. Eventually, fibroblasts and Schwann cells envelope the matrix strand. The latter of the cell types is essential for the adhesion and extension of the regenerating axons from the proximal to the distal end of the tube. Many axon tips eventually transverse the tube and reinnervate target muscles via the remaining Schwann cell network in the distal end of the nerve. However, much of the effectiveness and specificity of innervation is lost, due to the amount of time required for the reappearance of Schwann cell pads in the tubes (ca. 10 days) and crossover of axon tips from one cross-sectional region of the proximal stump to non-corresponding Schwann cell pathways which remain in the distal stump.

In the present tubular implants for axon regeneration, the cross-sectional correspondence is improved by providing a pattern on at least one surface of the tubular implant for the selective adhesion and growth of Schwann cells. In this embodiment, the Schwann cells may be pre-adhered to linear cell adhesion promoter regions from the proximal to distal end and thus provide a pathway for the regeneration of the neurons. In a preferred embodiment, the present tubular implant takes the form of a cigar-like object in which a sheet of a material on which spacers of a specified height and placed at a specified distance and running the length of the sheet is rolled in a width-wise direction to form a cylinder which when viewed from one of the ends reveals a spiral. In this embodiment, a strip of cell adhesion promoter is formed between each spacer and runs parallel to the spacers.

A process for producing such a cigar-like tubular implant is shown in FIGS. 5a and b. Thus, by rolling a sheet of a biocompatible material 1 in which parallel and alternating spacers 2 and patterned strips of cell adhesion promoters and, optionally, adhesion inhibitor regions 3 are previously formed into a cigar-like tube, results in a device in which there are numerous well defined channels for the adhesion of the Schwann cells and the subsequent regeneration of the neurons.

Transducers, such as silicon chips with vias, have also been utilized to facilitate the regeneration of severed nerves and the connection of nerves with external stimulating and detecting devices. Thus, the present implant may also take the form of a silicon chip with a via or transducer interface which contains an exposed surface of cell adhesion promoter in the via or in the area leading to the via or transducer.

In addition, the present invention relates to templates for the directed growth of a new organ, called an organoid or a neo-organ. Conventionally such templates are prepared by coating a biocompatible material, e.g., teflon which is in a suitable form such as a tube. Currently the growth of cells on the template is stimulated by coating the tube with a material such as gelatin which is then matted into a sponge-like shape and then coating with various growth factors. In the present templates, the need to coat the template with growth factors is obviated by the use of cell adhesion promoters rather than growth factors. In addition, the present invention permits the template to be coated with a desired pattern of cell adhesion promoters so that the pattern-wise growth of cells in the neo-organ may be achieved. Thus, the present templates may be coated with a pattern of cell adhesion promoters to promote the adhesion of a particular pattern of, e.g., epithelial or endothelial cells.

The present invention permits, in a very simple manner, the patterning of UTFs in combination with DUV exposure to define the two dimensional cell-adhesivity of a solid substrate through direct patterning of a layer of oriented surface molecules. Because of the simplicity and generality of the process, and the controlled spatial resolution of cell adhesivity available, this fabrication method is of potential use in any application where the non-random positioning of cell populations is necessary or desired. The disclosed process is significantly simpler to perform than other existing techniques, due to a reduction in the number of processing steps required to fabricate a substrate with high resolution patterns of selective cell adhesivity. Only 8 processing steps are required, compared to 18 or more if conventional lithographic methods are used.

The generality of this process toward the type of substrates that either intrinsically possess, or are treated to have, polar functional groups at the surface has been demonstrated in U.S. patent application Ser. No. 07/182,123, filed Apr. 14, 1988 and U.S. patent application Ser. No. 07/022,439, filed Mar. 6, 1987, which are incorporated herein by reference. The substrate types include, but are not limited to: silica (quartz and glass), silicon (doped and undoped), other semiconductors (e.g., germanium, gallium arsenide), organic polymers such as epoxy resins, polystyrenes or polysulfones, metals such as aluminum and platinum, and metal oxides such as alumina, and native or modified biomedically-relevant polymers such as silicones, rubber, fluoropolymers, polyesters, acrylic copolymers, polyglactin and polyacetates.

Limitations to resolution in conventional optical lithography arise from the use of relatively thick films (1.0-1.5 μm thick) which suffer from defocussing of the image in the film, the occurrence of standing waves in the film, Rayleigh scattering from film inhomogeneities, and a reduced control of the spatial extent of photoreactions. The present process minimizes these problems through the use of ultra-thin films, which are significantly thinner than a quarter of the wavelength (less than 50 nm) of the light used to expose them. The above mentioned problems are also minimized by using radiation of the shortest possible wavelength to which the resist is sensitive. Most of the currently used high resolution photosensitive materials absorb near UV (i.e., 320 to 400 nm) light. Few known photoresists are useful in the DUV (200 to 320 nm) or the vacuum-UV (below 200 nm) regions. The process disclosed here uses, but is not limited to 193 nm light, and is therefore capable of higher resolution than conventional photoresists. Many light sources for UV irradiation are available, including mercury lamps, xenon lamps, deuterium lamps, surface plasma discharge sources, Nd-YAG lasers, excimer lasers, and optical harmonics generated from the sources.

There are numerous classes of substances whose molecules, under appropriate conditions, self-assemble to form thin films. In general, those self-assembling molecules characteristically include a polar end, a non-polar opposite end with a reactive moiety at or near the terminus, and an intermediate region typically composed of saturated or unsaturated hydrocarbon chain or may not have an intermediate region. The spacer can be monomeric or polymeric.

The class of polar end groups (which interact with the polar surface of the substrate) include silanes of the Rn SiXm type where

R is an organic functional group;

n is a number between 1, 2 or 3;

m=4-n; and

X is a halogen, alkoxy or amino group.

The class of polar end groups further includes carboxylic acids, acid chlorides, anhydrides, sulfonyl groups, phosphoryl groups hydroxyl and amino acid groups.

The class of non-polar end groups include olefins, acetylenes, diacetylenes, acrylates, aromatic hydrocarbons, methacrylates, methyl, perfluorinated hydrocarbons, primary amines, long chain hydrocarbons and esters.

While specific films have been exemplified using specific silanes that either promote or inhibit cell adhesion, many other types of films can be applied to surfaces to control their cell adhesivity. Alternative examples of commercially available aminosilanes that may be used to promote cell adhesion are: trimethoxysilane N-(2-aminoethyl-3-aminopropyl)trimethoxysilane (EDA), 11-aminoundecyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, 3-(1-aminopropoxy)-3,3-dimethyl-1-propenyltrimethoxysilane, 6-(aminohexylaminopropyl)trimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, bis 3-(trimethoxysilyl)propyl!ethylenediamine, trimethoxysilylpropyldiethylenetriamine, and (aminoethylaminomethyl)phenethyltrimethoxysilane (DAP).

Alternative examples of commercially available fluorosilanes that might be used to inhibit cell adhesion are: tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane (UTF-13F), tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-methyldichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-triethoxysilane, (3,3,3-trifluoropropyl)-trichlorosilane, (3,3,3-trifluoropropyl)methyldichlorosilane, (3,3,3-trifluoropropyl)-dimethylchlorosilane, (3,3,3-trifluoropropyl)methyldimethoxysilane, (3,3,3-trifluoropropyl)-trimethoxysilane, (heptafluoroisopropoxy)propylmethyldichlorosilane, and (3-pentafluorophenylpropyl)dimethylchlorosilane (PFP). Other silanes that have been shown to inhibit cell adhesion (Klienfeld et al, Jour. Neurosci., Vol. 8., p. 4098 (1988)) such as n-tetradecanetrichlorosilane, and n- (3-trimethoxysilyl)propylethylenediaminetriacetic acid trisodium, along with other long acyl chain chloro-, methoxy-, and ethoxy-silanes, may also be used in the same manner as 13F.

In addition, epoxy silanes such as 3-glycidoxypropyltrimethoxysilane may be coated on the surface. Hydrolysis of the epoxide functionality results in the formation of a diol which inhibits cell adhesion as discussed in Massia et al., Anal. Biochem., vol. 187, p. 292-301 (1990) and U.S. Pat. No. 4,562,157, which is incorporated herein by reference. Furthermore, the substrate may be coated with a silane containing a terminal olefin, which may then be converted to either an alcohol by hydroboration or a diol by either KMnO4 or OsO4 as described in U.S. Pat. No. 4,539,061, which is incorporated herein by reference.

Other classes of materials which may act as cell adhesion promoters or inhibitors include titanates. Titanates have the general formula Ti(OR)4, where all four of the OR organic groups may be the same or different. These materials, and the related zirconate and aluminate classes of molecules, are recognized to be similar to silanes in that they spontaneously react with surface hydroxyl groups to give an organic monolayer which is covalently linked to the substrate with the evolution of an alcohol. An O-Ti bond is formed between the surface hydroxyls and the titanates. Titanates and zirconates with amino functionalities such as isopropyltri(n-ethylenediamino)ethyltitanate, neopentyl(dialiyl)oxytri(n-ethylenediamino) ethyltitanate, neopentyl(diallyl)oxytri(mamino)phenyltitanate, neopentyl(diallyl)oxytri(n-ethylenediamino) ethylzirconate, and neopentyl(diallyl)oxytri(m-amino)phenylzirconate may be used to promote cell adhesion. Potential adhesion inhibitors for cells include titanates and zirconates where long fluorinated or unfluorinated alkylchains are present in the molecule. Other film forming materials that may be used to control cell adhesion include thiol or disulfide films that assemble on gold surfaces and carboxylic acids or acid chlorides that assemble on surfaces such as alumina and other metal oxides.

A preferred cell adhesion inhibitor is one which contains one or more fluorinated alkyl groups.

Alternative strategies for creating differential cell adhesive patterns may also involve the covalent attachment of cell adherent biological moieties to preformed UTF patterns. For example, covalently binding cell adhesive peptides such as Gly-Arg-Gly-Asp-Tyr and Gly-Try-Ile-Gly-Ser-Arg-Tyr to glass surfaces (Massia et al, Anal. Biochem., Vol. 187, p. 292 (1990)) may be used in conjunction with a modification of the disclosed process described here. This modification involves the treatment of a surface with an adhesion inhibitor such as 13F, irradiation to form a pattern of regions devoid of the inhibitor, and treating the surface with a glycerolpropylsilane, such as 3-glycidoxypropyltrimethoxysilane, to bind to the region devoid of inhibitor. The attached glycerolpropylsilane may then be modified as described in Massia et al, Anal. Biochem., Vol. 187, p. 292 (1990), incorporated herein by reference, creating a surface that will selectively adhere various cell types. The patterning technique allows sequential modification with more than two chemical functionalities. Thus, cell-specific adhesive patterns might be designed.

Although it is not possible to pattern many of the cell adhesion inhibitors mentioned above with 193 nm or longer wavelength light., it has been demonstrated in U.S. patent application Ser. No. 07/182,123, that these films can be patterned with shorter wavelength light, such as the 185 nm line from a low pressure mercury argon pen lamp, or with even shorter wavelengths. It should be noted that several of the above mentioned molecular species, such as DAP and PFP, are phenyl derivatives which will absorb at wavelengths longer than 193 nm and may be patterned at longer wavelengths, as described in U.S. patent application No. 07/182,123.

Suitable substrates include those which intrinsically possess or have been treated to possess polar functional groups. Examples of substrates which intrinsically possess polar functional groups include silica (quartz and glass), silicon (doped and undoped), other semiconductors (e.g., germanium, gallium arsenide) or organic polymers such as polyvinyl alcohol, and polyvinylphenol, or metals that intrinsically posses metal oxides such as platinum, aluminum, and titanium.

Examples of substrates which do not possess polar functional groups but which may be treated to form polar functional groups include poly(tetrafluoroethylene) (PTFE), polyethylene, polypropylene, and polystyrene. These polymers can have their surfaces modified by wet chemistry or radio frequency glow discharge plasma gas/liquid mixtures (RFGD) Vargo et al, J. Polym. Sci. Poly. Chem. Ed., Submitted for publication (Dec. 1989)). An example is the modification of a normally chemically inert polymer poly(tetrafluoroethylene). PTFE has been modified by exposure to Me2 SO solutions of the potassium salt of benzoin doanion with subsequent reactions to create surfaces containing covalently attached chlorine, bromine, hydroxyl, amino, and carboxylic acid functionalities (Costello et al, Macromolecules, Vol. 20, p. 2819 (1987)). Coupling silanes to these modified polymers may be achieved by the identical procedures used to couple silanes to inorganic substrates. Another process for modifying the surface of PTFE has been developed by Vargo et al. at the University of Buffalo (Vargo et al, J. Polym. Sci. Poly. Chem. Ed., Submitted for publication (Dec. 1989). This process uses RFGD to modify the polymer. Recent work at the University of Buffalo has demonstrated that PTFE films modified by RFGD can be silanized with an 3-aminopropyltriethoxysilane (Hook et al, Langmuir, submitted for publication (May, 1990).

The ability to fabricate high resolution patterns of aminosilanes on defined, three-dimensional topographies and on platinum substrates was demonstrated in patent application 07/182,123. This, combined with the ability to control the selective adhesion of cells, allows the placement of cells within lithographically defined physical barriers such as microtrenches or wells, and onto substrate-embedded microelectrodes or photodiodes. For example, the bottom of the microtrenches and metal microelectrodes may be coated with a cell adhesion promoter while the sides and steps are coated with an adhesion inhibitor. This permits the precise positioning and controlled growth of cells on solid state microcircuitry.

Thus as described above, the outer layer of the substrate which forms the UTF which can be identical and integral with the body of the substrate or a separately applied film of a different material, can be polar or non-polar depending on the particular application.

The self-assembling thin film procedure utilized in the invention produces a uniform ultra-thin (less than about 200 nm) film having externally accessible reactive groups. Various methods can be employed to alter the reactivity of those groups. The choice of method may be determined in part or in whole by the desired resolution of the pattern to be produced in the film. Among the various methods is one of making the substrate unreactive or less reactive by photolytic cleavage at the molecular structure. As a corollary, olefins could be made more reactive to certain coupling agents (such as appropriately modified biomolecules, catalysts, and spectroscopic probes) by oxidation to produce hydroxyl groups. Alteration of reactivity in predetermined regions of the thin film allows chemical reactions to occur either (1) only in those regions whose reactivity has been altered, or (2) everywhere except the altered regions. Consequently, an important attribute of the invention is the ability to produce, with high resolution, sites in the film of different chemical reactivity such that only the reactive moieties are receptive to adhesion by another chemical moiety.

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

EXAMPLES EXAMPLE 1: EDA and 13F UTFs plated with Neuro-2A mouse neuroblastoma cells.

Glass microscope slides were cleaned just prior to the first film formation by immersion in 50:50 (vol:vol) HCl:methanol at room temperature for 30 minutes and rinsed three times with 18 MΩ water from a Barnstead NANOpure™ II deionization system with 0.22 μm filter. The substrates were then immersed into concentrated H2 SO4 at room temperature for 30 minutes, then rinsed with 18 MΩ water five times. The last rinse was heated to boiling on a hot plate in a class 100 clean room.

The trimethoxysilane N-(2-aminoetbyl-3-aminopropyl)trimethoxysilane (EDA) was used as received from Huls of America, Petrarch Systems Silanes & Silicones. The glass slides were taken directly from boiling water and immersed in a fresh mixture of 1% (v:v) EDA/94% (1×10-3 M acetic acid/anhydrous methanol)/5% 18 MΩ water for 15 minutes at room temperature. The substrates were then rinsed in anhydrous methanol and the residual solvent was removed from the film by baking the slides on a hot plate for 5 minutes in a class 100 clean room at a temperature of 120° C. The water contact angle of the film, as measured using the sessile drop method with 18 MΩ water, was found to be 17°-21° for all substrates treated with EDA but increased to an equilibrium value of 28°-32° within 3 hours.

The monochlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-dimethylchlorosilane (UTF-13F), was used as received from Huls of America Petrarch Systems Silanes & Silicones. 1% (v/v) stock solutions of the monochlorosilanes in SureSeal TM anhydrous toluene bottles (Aldrich) were mixed and stored in a Vacuum Atmospheres dry box under helium at room temperature. Glass microscope slides were cleaned as above, removed from boiling water in a class 100 clean room and immersed in A.C.S. certified anhydrous acetone (Fisher Chemical) twice and then immersed into anhydrous toluene. The substrates were immersed in an aliquot of the 1% UTF-13F stock solution for 30 minutes. The substrates were then rinsed in anhydrous toluene and the residual solvent was removed from the films by baking the substrates on a hot plate for 5 minutes in a class 100 clean room at a temperature of 120° C. The contact angle of these films was measured with 18 MΩ water and was found to be 92°-94° for all substrates treated UTF-13F.

Initial cell adhesion experiments were performed using glass microscope slides coated with a single molecular species. Mouse Neuro-2A neuroblastoma cells were incubated in minimal essential medium (MEM) with 10% fetal calf serum (FCS) at 37° C., in 5% CO2. Prior to plating, cells were treated for 10 minutes with 0.1% trypsin and resuspended in either MEM alone or MEM with 10% FCS. Prior to cell plating, the UTF-coated slides were sterilized in 70% ethanol for 30 minutes. Cells were plated at a density of 8×104 cells/cm2 and incubated for 20 minutes. Substrate surfaces were cleared of non-adhered cells by gentle rinsing with media from a pipet. Before and after rinsing the plated substrates, the slides were inspected using an inverted phase contrast microscope. In the presence of 10% FCS, greater than 98% of SK-N-SH neuroblastoma cells adhered when plated on EDA while less than 2% adhered to 13F. Adhesion to the EDA was unaffected by FCS but about 10-15% of the cells adhered as loosely bound clumps to 13F-treated slides in 10% FCS.

EXAMPLE 2: Exposure of EDA films to DUV and remodification with 13F.

To determine if a protocol could be established for preparing patterned surfaces of EDA and 13F, pure UTFs of EDA were fabricated (as in example 1) and exposed to increasing dosages of 193 nm light from a pulsed (10 Hz at 15-20 mJ/cm2 per pulse) ArF excimer laser (Cymer XL-2). The exposed substrates were then immersed in a 1% 13F treatment solution as described in Example 1. The water contact angle of the exposed and sequentially remodified areas and unexposed areas were measured and the results are illustrated in FIG. 2. The contact angle increased steadily from that corresponding to a pure unexposed EDA surface (28°-32°) to that of pure 13F (92°-94°) after an exposure of greater than 13 J/cm2, indicating that the EDA had been completely replaced by 13F. However, 13F films did not undergo sufficient photochemical cleavage to yield a surface reactive to EDA. This was evidenced by only a slight change (86°-88°) in the contact angle, even when the film was exposed to dosages of about 20 J/cm2. It should be noted here that, if it is desirable to have mixed films of EDA and 13F, they could be prepared at known surface concentrations following exposure to intermediate dosages of DUV radiation.

EXAMPLE 3: Low resolution EDA/13F patterns plated with mouse Neuro-2A and human SK-N-SH neuroblastoma cells.

Low resolution EDA/13F patterns were formed using the same procedure described in Example 2, except that a mask was positioned against the film. The mask allowed only a 15.9 mm2 circular area to be exposed to a DUV dosage of 15 J/cm2. The patterned EDA/13F substrates (see FIG. 2) were then plated with mouse Neuro-2A and human SK-N-SH neuroblastoma cells (J. L. (Biedler et al, Cancer Res., Vol. 33, p. 2643 (1973) in MEM with 10% FCS as described in Example 1. After rinsing, greater than 98% of the Neuro-2A and SK-N-SH cells adhered selectively to the unexposed EDA treated areas. Less than 2% of either cell type adhered to the DUV-exposed film regions which remodified with 13F.

EXAMPLE 4: High resolution EDA/13F patterns plated with human SK-N-SH neuroblastoma cells.

To create high resolution, alternating patterns of EDA and 13F, the metallized surface of a fused silica mask was tightly positioned against a glass slide coated with EDA. The mask, which had chromium line space pairings ranging from 10 to 100 μm, provided selective shielding of the film against a 15 J/cm2 exposure (FIG. 3a). Following exposure, the slide was immediately immersed into a 1% 13F treatment solution, rinsed, and then baked as described in Example 1. Human SK-N-SH cells were plated, rinsed, and cultured in MEM with 10% FCS and 1.5 μM retinoic acid.

The effect of the substrate pattern on the morphology of SK-N-SH cells was clearly evident immediately after the slides were rinsed. Cells showed a nearly complete preferential adhesion to the patterned EDA regions, which appeared lighter due to the absence of color center defects which were formed in the neighboring areas of UV-exposed glass slides. On the 40 μm or greater wide lines of EDA (FIG. 3b), the cells maintained the same flattened spherical shapes which were normally observed on pure EDA substrates. However, in the 12 μm-wide EDA lines (FIG. 3c), the spatial resolution of the alternating EDA/13F patterns was finer than the spheroid cell diameters. This caused the cells to immediately elongate and adopt a morphology corresponding to the shape of the patterned EDA while minimizing interaction with the surrounding 13F surfaces.

After the patterned neuroblastoma cells had been incubated for 24 hours, neurite outgrowth was observed which was predominantly restricted to the EDA channels (FIG. 4). Clearly distinguishable growth cones were observed, indicating the suitability of the EDA substrates for cell growth. However, after 36 hours, an increasing number of neurites were observed to cross the 13F lines, as expected, due to the ability of fine filipodial processes at neurite tips to bridge narrow regions (less than 50 μm) of low-adhesivity substrata (Hammarback et al, Dev. Biol., Vol. 117, p. 655 (1986) and Kleinfeld, Jour. Neurosci., vol. 8, p. 4098 (1988)).

EXAMPLE 5: High resolution plating of dissociated mouse dorsal root ganglia (DRG) cells.

High resolution patterns of EDA/13F were fabricated as described in Example 4. DRG were isolated from fetal mice, dissociated, and plated onto high resolution EDA/13F patterns. Both neurons and glia from the heterogeneous cell mixture selectively adhered to 40 μm wide lines of EDA. After several days in culture, glial cell division and neuronal process outgrowth were predominantly restricted to the 40 μm wide EDA lines.

EXAMPLE 6: High resolution patterning of EDA treated glass substrate and plating of SK-N-SH neuroblastoma cells without backfilling of DUV-exposed regions with 13F.

Glass slides were cleaned, treated with EDA, and exposed to patterned irradiation as in Example 4, or cleaned and exposed to patterned irradiation without treatment of EDA. Both sets of slides in these experiments were not treated with 13F. These slides, as well as clean, unexposed slides, were plated with SK-N-SH neuroblastoma cells as described in Example 1. Before and after rinsing, the substrates were inspected using an inverted phase contrast microscope. Approximately 10% of the plated cells adhered to clean glass after rinsing whether or not the slides were exposed to DUV. The cell adhesion on glass which was exposed was independent of the irradiation pattern. Thus, there was no preferential adhesion to DUV-exposed areas of the clean glass. When cells were plated on to EDA films which were exposed to patterned DUV irradiation through 40 μm line pair spacings, approximately 90% of the total number of cells plated became preferentially adhered to 40 μm wide lines of unexposed EDA prior to rinsing. However, of the 10% of the total number of cells plated which sedimented onto the 40 μm wide lines of exposed EDA, 78% remained after rinsing. Although the unexposed EDA caused a preferential patterning of the cells, before and after rinsing, the percentage of cells which remained bound to the exposed EDA was four times higher than on exposed EDA which was remodified with UTF-13F.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3884704 *4 Oct 197320 May 1975Macdermid IncCatalyst system for activating surfaces prior to electroless deposition
US4199649 *12 Abr 197822 Abr 1980Bard Laboratories, Inc.Amorphous monomolecular surface coatings
US4539061 *7 Sep 19833 Sep 1985Yeda Research And Development Co., Ltd.Process for the production of built-up films by the stepwise adsorption of individual monolayers
US4587203 *23 May 19856 May 1986Hughes Aircraft CompanyWet process for developing styrene polymer resists for submicron lithography
US4661372 *23 Dic 198528 Abr 1987General Motors CorporationUV-induced copper-catalyzed electroless deposition onto styrene-derivative polymer surface
US5079600 *14 Abr 19887 Ene 1992Schnur Joel MHigh resolution patterning on solid substrates
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US5733538 *7 Jun 199531 Mar 1998Thoratec Laboratories, Inc.Surface-modifying copolymers having cell adhesion properties
US5814414 *15 Feb 199629 Sep 1998The United States Of America As Represented By The Secretary Of The NavyHigh aspect ratio metal microstructures and method for preparing the same
US5828432 *25 Jun 199727 Oct 1998The United States Of America As Represented By The Secretary Of The NavyConducting substrate, liquid crystal device made therefrom and liquid crystalline composition in contact therewith
US5965305 *3 Ene 199512 Oct 1999The United States Of America As Represented By The Secretary Of The NavyMethod for surface modification to create regions resistant to adsorption of biomolecules
US6031072 *11 Jul 199729 Feb 2000Mcgill UniversityCompounds and methods for modulating cell adhesion
US6103479 *29 May 199715 Ago 2000Cellomics, Inc.Miniaturized cell array methods and apparatus for cell-based screening
US616907123 Dic 19972 Ene 2001Mcgill UniversityCompounds and methods for modulating cell adhesion
US620378829 Sep 199720 Mar 2001Adherex Inc.Compounds and methods for regulating cell adhesion
US620763914 Jul 199827 Mar 2001Mcgill UniversityCompounds and methods for modulating neurite outgrowth
US627782410 Jul 199821 Ago 2001Adherex TechnologiesCompounds and methods for modulating adhesion molecule function
US632635217 Feb 20004 Dic 2001Mcgill UniversityCompounds and methods for modulating cell adhesion
US633330712 Feb 199925 Dic 2001Mcgill UniversityCompounds and method for modulating neurite outgrowth
US634651210 Feb 199912 Feb 2002Mcgill UniversityCompounds and methods for modulating cell adhesion
US641732520 Jul 19999 Jul 2002Mcgill UniversityCompounds and methods for cancer therapy
US646505420 Oct 199815 Oct 2002Roche Diagnostics GmbhProcess for coating surfaces
US646542710 Dic 199915 Oct 2002Mcgill UniversityCompounds and methods for modulating cell adhesion
US64723689 Jul 199929 Oct 2002Adherex Technologies, Inc.Compounds and methods for modulating adhesion molecule function
US654102217 Mar 20001 Abr 2003The Regents Of The University Of MichiganMineral and cellular patterning on biomaterial surfaces
US656278610 Feb 199913 May 2003Mcgill UniversityCompounds and methods for modulating apoptosis
US66108217 Abr 200026 Ago 2003Mcgill UniversityCompounds and methods for modulating endothelial cell adhesion
US66566781 Jun 20002 Dic 2003Micronas GmbhMethod for examination of a surface layer
US667667519 Abr 200113 Ene 2004Iowa State University Research Foundation, Inc.Patterned substrates and methods for nerve regeneration
US675896128 Jul 19986 Jul 2004Ecole Polytechnique Federale De LausannePositioning and electrophysiological characterization of individual cells and reconstituted membrane systems on microstructured carriers
US676792817 Mar 200027 Jul 2004The Regents Of The University Of MichiganMineralization and biological modification of biomaterial surfaces
US678084529 Ene 200224 Ago 2004Mcgill UniversityCompounds and methods for cancer therapy
US680625510 Jul 200219 Oct 2004Adherex Technologies, Inc.Compounds and methods for modulating adhesion molecule function
US6822833 *22 Oct 200223 Nov 2004Seagate Technology LlcDisc drive magnetic component with self assembled features
US6828096 *10 May 20007 Dic 2004Symyx Technologies, Inc.Polymer libraries on a substrate, method of forming polymer libraries on a substrate and characterization methods with same
US688742717 Jun 20023 May 2005Roche Diagnostics GmbhCoated biosensor
US689385015 Mar 200117 May 2005President And Fellows Of Harvard CollegeMethod for cell patterning
US69140444 Dic 20015 Jul 2005Mcgill UniversityCompounds and methods for modulating cell adhesion
US696723822 Mar 200222 Nov 2005Mcgill UniversityCompounds and methods for modulating cell adhesion
US704134318 May 20009 May 2006Sony International (Europe) GmbhMethod for providing a substrate structure for oriented neurite outgrowth, substrate structure, and device for monitoring neuron
US706704621 May 200127 Jun 2006Essen Instruments, Inc.System for rapid chemical activation in high-throughput electrophysiological measurements
US71226231 Ago 200317 Oct 2006Adherex Technologies, Inc.Compounds and methods for modulating cell adhesion
US71383694 Feb 200321 Nov 2006Mcgill UniversityCompounds and methods for modulating apoptosis
US72018367 Mar 200210 Abr 2007Molecular Devices CorporationMultiaperture sample positioning and analysis system
US724434927 Ago 200217 Jul 2007Molecular Devices CorporationMultiaperture sample positioning and analysis system
US72707305 Sep 200218 Sep 2007Essen Instruments, Inc.High-throughput electrophysiological measurement system
US728224020 Oct 200016 Oct 2007President And Fellows Of Harvard CollegeElastomeric mask and use in fabrication of devices
US732668625 Ago 20035 Feb 2008Adherex Inc.Compounds and methods for regulating cell adhesion
US738771531 Dic 200217 Jun 2008Molecular Devices CorporationSample positioning and analysis system
US745615314 Nov 200325 Nov 2008Adherex Technologies Inc.Compounds and methods for modulating functions of classical cadherins
US7485453 *3 May 20023 Feb 2009Kimberly-Clark Worldwide, Inc.Diffraction-based diagnostic devices
US763077125 Jun 20078 Dic 2009Microtransponder, Inc.Grooved electrode and wireless microtransponder system
US767846211 Jul 200516 Mar 2010Honeywell International, Inc.Spin-on-glass anti-reflective coatings for photolithography
US76959797 May 200713 Abr 2010Kimberly-Clark Worldwide, Inc.Biomolecule diagnostic devices
US77719223 May 200210 Ago 2010Kimberly-Clark Worldwide, Inc.Biomolecule diagnostic device
US784638920 May 20057 Dic 2010Xention LimitedHigh throughput screen
US7879764 *28 Dic 20041 Feb 2011Intel CorporationElectrically active combinatorial chemical (EACC) chip for biochemical analyte detection
US8110243 *15 May 20087 Feb 2012Advanced Cardiovascular Systems, Inc.Coating for a stent and a method of forming the same
US811034910 Ago 20107 Feb 2012Kimberly-Clark Worldwide, Inc.Method for producing biomolecule diagnostic devices
US814785928 Mar 20053 Abr 2012Advanced Bio Prosthetic Surfaces, Ltd.Implantable material having patterned surface of raised elements and photochemically altered elements and method of making same
US826834023 Abr 200918 Sep 2012Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
US834408815 Nov 20011 Ene 2013Honeywell International Inc.Spin-on anti-reflective coatings for photolithography
US84498255 Nov 201028 May 2013Xention LimitedHigh throughput screen
US85578778 Jun 201015 Oct 2013Honeywell International Inc.Anti-reflective coatings for optically transparent substrates
US86325839 May 201121 Ene 2014Palmaz Scientific, Inc.Implantable medical device having enhanced endothelial migration features and methods of making the same
US864224614 Ago 20074 Feb 2014Honeywell International Inc.Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof
US86752104 Sep 201218 Mar 2014Asml Netherlands B.V.Level sensor, lithographic apparatus, and substrate surface positioning method
US867951713 May 201125 Mar 2014Palmaz Scientific, Inc.Implantable materials having engineered surfaces made by vacuum deposition and method of making same
US870906624 Jun 201129 Abr 2014Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces comprising a pattern of features and method of making same
US87285633 May 201120 May 2014Palmaz Scientific, Inc.Endoluminal implantable surfaces, stents, and grafts and method of making same
US87590172 May 201324 Jun 2014Xention LimitedHigh throughput screen
US878498511 Sep 201322 Jul 2014Honeywell International Inc.Anti-reflective coatings for optically transparent substrates
US8842293 *12 Mar 201023 Sep 2014Asml Netherlands B.V.Level sensor arrangement for lithographic apparatus and device manufacturing method
US886489831 May 201121 Oct 2014Honeywell International Inc.Coating formulations for optical elements
US893234713 Ago 201213 Ene 2015Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
US899280625 Ago 201131 Mar 2015Honeywell International Inc.Antireflective coatings for via fill and photolithography applications and methods of preparation thereof
US906913312 Nov 200230 Jun 2015Honeywell International Inc.Anti-reflective coating for photolithography and methods of preparation thereof
US907281330 Abr 20097 Jul 2015The Regents Of The University Of MichiganMineralization and biological modification of biomaterial surfaces
US927207719 Mar 20141 Mar 2016Palmaz Scientific, Inc.Implantable materials having engineered surfaces and method of making same
US943978915 Ene 201413 Sep 2016Palmaz Scientific, Inc.Implantable medical device having enhanced endothelial migration features and methods of making the same
US948077328 May 20151 Nov 2016The Regents Of The University Of MichiganMineralization and biological modification of biomaterial surfaces
US20010055882 *15 Mar 200127 Dic 2001Emanuele OstuniCell patterning technique
US20020014408 *21 May 20017 Feb 2002Schroeder Kirk S.System for rapid chemical activation in high-throughput electrophysiological measurements
US20020123134 *13 Dic 20015 Sep 2002Mingxian HuangActive and biocompatible platforms prepared by polymerization of surface coating films
US20030013655 *5 Feb 200116 Ene 2003Blaschuk Orest W.Compounds and methods for regulating cell adhesion
US20030087811 *29 Ene 20028 May 2003Mcgill UniversityCompounds and methods for cancer therapy
US20030098248 *27 Ago 200229 May 2003Horst VogelMultiaperture sample positioning and analysis system
US20030109454 *10 Jul 200212 Jun 2003Adherex Technologies, Inc.Compounds and methods for modulating adhesion molecule function
US20030121778 *20 Dic 20003 Jul 2003John DodgsonApparatus for and method of making electrical measurements on an object
US20030146091 *31 Dic 20027 Ago 2003Horst VogelMultiaperture sample positioning and analysis system
US20030203002 *31 Mar 200330 Oct 2003The Regents Of The University Of MichiganMineralization and cellular patterning on biomaterial surfaces
US20030207253 *3 May 20026 Nov 2003Rosann KaylorDiffraction-based diagnostic devices
US20030207254 *3 May 20026 Nov 2003David CohenDiffraction-based diagnostic devices
US20030207255 *3 May 20026 Nov 2003David CohenDiffraction-based diagnostic devices
US20030207256 *3 May 20026 Nov 2003Curtis SayreBiomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US20030207257 *3 May 20026 Nov 2003David CohenDiffraction-based diagnostic devices
US20030207258 *3 May 20026 Nov 2003David CohenBiomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US20030224978 *4 Feb 20034 Dic 2003Mcgill UniversityCompounds and methods for modulating apoptosis
US20030235008 *22 Oct 200225 Dic 2003Yang XiaominDisc drive component with self-assembled features
US20040002110 *26 Jun 20021 Ene 2004Kimberly-Clark Worldwide, Inc.Enhanced diffraction-based biosensor devices
US20040006011 *28 Abr 20038 Ene 2004Gour Barbara J.Peptidomimetic modulators of cell adhesion
US20040063146 *26 Sep 20021 Abr 2004Kimberly-Clark Worldwide, Inc.Diffraction-based diagnostic devices
US20040073298 *8 Oct 200315 Abr 2004Hossainy Syed Faiyaz AhmedCoating for a stent and a method of forming the same
US20040091997 *24 Oct 200313 May 2004Micronas GmbhProcess for structuring a surface layer
US20040132651 *25 Ago 20038 Jul 2004Adherex Technologies, Inc.Compounds and methods for regulating cell adhesion
US20040228900 *18 Jun 200418 Nov 2004The Regents Of The University Of MichiganMineralization and cellular patterning on biomaterial surfaces
US20050042623 *30 Oct 200324 Feb 2005Dana Ault-RicheSystems for capture and analysis of biological particles and methods using the systems
US20050097528 *31 Oct 20035 May 2005Chakrabarti Dhruva R.Cross-file inlining by using summaries and global worklist
US20050129676 *14 Nov 200316 Jun 2005Adherex Technologies, Inc.Compounds and methods for modulating functions of classical cadherins
US20050158880 *17 Feb 200521 Jul 2005President And Fellows Of Harvard CollegeCell patterning technique
US20050163786 *1 Oct 200428 Jul 2005Adherex Technologies, Inc.Compounds and methods for modulating adhesion molecule function
US20050221282 *20 May 20056 Oct 2005Cenes LimitedHigh throughput screen
US20050232968 *28 Mar 200520 Oct 2005Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
US20050260423 *18 May 200424 Nov 2005Mohan NatesanModified microsurfaces and methods of their manufacture
US20060018911 *10 Ene 200526 Ene 2006Dana Ault-RicheDesign of therapeutics and therapeutics
US20060141485 *28 Dic 200429 Jun 2006Intel CorporationElectrically active combinatorial chemical (EACC) chip for biochemical analyte detection
US20060141539 *16 Feb 200629 Jun 2006Taylor D LMiniaturized cell array methods and apparatus for cell-based screening
US20060154379 *9 Mar 200613 Jul 2006Micronas GmbhProcess for structuring a surface layer
US20060183884 *9 Dic 200517 Ago 2006Adherex Technologies, Inc.Compounds and methods for modulating cell adhesion
US20060255315 *10 Feb 200616 Nov 2006Yellowaga Deborah LSelective removal chemistries for semiconductor applications, methods of production and uses thereof
US20070059437 *25 May 200615 Mar 2007The Regents Of The University Of MichiganMineralization and biological modification of biomaterial surfaces
US20070203057 *27 Dic 200630 Ago 2007Adherex Technologies, Inc.Compounds and methods for modulating adhesion molecule function
US20080026454 *7 May 200731 Ene 2008Kimberly-Clark Worldwide, Inc.Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices
US20080063851 *6 Ago 200713 Mar 2008President And Fellows Of Harvard CollegeElastomeric mask and use in fabrication of devices
US20080215141 *15 May 20084 Sep 2008Syed Faiyaz Ahmed HossainyCoating for a Stent and a Method of Forming the Same
US20080220541 *14 May 200811 Sep 2008Micronas GmbhProcess for structuring a surface layer
US20080319506 *25 Jun 200725 Dic 2008Microtransponder, Inc.Grooved electrode and wireless microtransponder system
US20090226602 *30 Abr 200910 Sep 2009The Regents Of The University Of MichiganMineralization and Biological Modification of Biomaterial Surfaces
US20090304772 *23 Abr 200910 Dic 2009Advanced Bio Prosthetic Surfaces, A Wholly Owned Subsidiary Of Palmaz Scientific, Inc.Implantable materials having engineered surfaces and method of making same
US20100233600 *12 Mar 201016 Sep 2010Asml Netherlands B.V.Level sensor arrangement for lithographic apparatus and device manufacturing method
US20100239833 *6 Ago 200723 Sep 2010President And Fellows Of Harvard CollegeElastomeric mask and use in fabrication of devices
US20110048939 *5 Nov 20103 Mar 2011Xention LimitedHigh Throughput Screen
US20110086161 *10 Ago 201014 Abr 2011Kimberly-Clark Worldwide, Inc.Method for producing biomolecule diagnostic devices
US20110136693 *10 Dic 20109 Jun 2011Xing SuElectrically active combinatorial chemical (eacc) chip for biochemical analyte detection
US20110163446 *4 Ene 20117 Jul 2011International Business Machines CorporationMethod to generate airgaps with a template first scheme and a self aligned blockout mask and structure
DE19753790A1 *4 Dic 199717 Jun 1999Micronas Intermetall GmbhBiochemical method of examining or structuring a surface or surface layer
DE19753790C2 *4 Dic 199719 Jul 2001Micronas GmbhVerfahren zur Untersuchung einer Oberflächenschicht
EP0911088A2 *20 Oct 199828 Abr 1999Boehringer Mannheim GmbHProcess for coating a surface
EP0911088A3 *20 Oct 199831 Jul 2002Boehringer Mannheim GmbHProcess for coating a surface
EP1277482A2 *17 Mar 200022 Ene 2003The Regents Of The University Of MichiganMineralization and cellular patterning on biomaterial surfaces
EP1277482A3 *17 Mar 200011 May 2005The Regents Of The University Of MichiganMineralization and cellular patterning on biomaterial surfaces
EP1551569A2 *26 Sep 200313 Jul 2005Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
EP1551569A4 *26 Sep 200311 Feb 2009Advanced Bio Prosthetic SurfacImplantable materials having engineered surfaces and method of making same
EP1598659A1 *10 May 200523 Nov 2005Forschungszentrum Karlsruhe GmbHApparatus for in-vivo characterization of cells and use of said apparatus
EP1970383A15 May 199917 Sep 2008Adherex Technologies, Inc.Compounds and methods for modulating nonclassical cadherin-mediated functions
EP2438925A210 Sep 200411 Abr 2012Wyeth LLCCompounds that modulate neuronal growth and their uses
WO2000056375A2 *17 Mar 200028 Sep 2000The Regents Of The University Of MichiganMineralization and cellular patterning on biomaterial surfaces
WO2000056375A3 *17 Mar 200011 Ene 2001Univ MichiganMineralization and cellular patterning on biomaterial surfaces
WO2000071677A1 *18 May 200030 Nov 2000Sony International (Europe) GmbhMethod for providing a substrate structure for oriented neurite outgrowth, substrate structure, and device for monitoring neurons
WO2001048475A1 *20 Dic 20005 Jul 2001Astrazeneca AbApparatus for and method of making electrical measurements on an object
WO2001081552A1 *19 Abr 20011 Nov 2001Iowa State University Research Foundation, Inc.Patterned substrates and methods for nerve regeneration
WO2002059597A1 *26 Ene 20011 Ago 2002Cytion SaMethods and devices for the electrically tight adhesion of a cell to a surface
WO2003016781A2 *14 Ago 200227 Feb 2003The President And Fellows Of Harvard CollegeSurface plasmon enhanced illumination system
WO2003016781A3 *14 Ago 200218 Sep 2003Harvard CollegeSurface plasmon enhanced illumination system
WO2004028347A226 Sep 20038 Abr 2004Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
WO2004028347A3 *26 Sep 200317 Feb 2005Advanced Bio Prosthetic SurfacImplantable materials having engineered surfaces and method of making same
WO2006073465A2 *17 May 200513 Jul 2006Protiveris, Inc.Modified microsurfaces and methods of their manufacture
WO2006073465A3 *17 May 200516 Abr 2009Protiveris IncModified microsurfaces and methods of their manufacture
WO2010124072A2 *22 Abr 201028 Oct 2010Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
WO2010124072A3 *22 Abr 201021 Abr 2011Advanced Bio Prosthetic Surfaces, Ltd.Implantable materials having engineered surfaces and method of making same
Clasificaciones
Clasificación de EE.UU.257/32, 430/315, 257/E21.175, 257/37, 438/1, 257/E21.174, 435/29
Clasificación internacionalH05K3/18, G03F7/16, G06N3/00, H01L21/288, G03F7/004, C40B60/14, C23C18/16, B05D1/18, H05K3/06, C12N5/00, C09D4/00, G06N99/00
Clasificación cooperativaY10T428/265, Y10T428/12056, B82Y40/00, B82Y10/00, B82Y30/00, C23C18/1893, C23C18/1608, C23C18/1612, B82Y5/00, H01L21/288, G06N3/002, B01J2219/00626, B01J2219/00637, G03F7/165, B01J2219/00711, B05D1/185, B01J2219/00432, G03F7/004, B01J2219/00612, B01J2219/0063, B01J2219/00605, B01J2219/00659, B01J2219/0061, H05K3/185, B01J2219/00603, C12N5/0068, C12N2535/10, H01L51/0595, C40B60/14, C09D4/00, H01L21/2885, G06N99/007, B01J2219/00621, B01J2219/00617
Clasificación europeaB82Y10/00, B82Y5/00, B82Y30/00, H01L51/05D10, C09D4/00, G03F7/16L, H05K3/18B2C, B82Y40/00, B05D1/18C, C12N5/00S, H01L21/288E, H01L21/288, G03F7/004, G06N3/00B, G06N99/00M
Eventos legales
FechaCódigoEventoDescripción
26 Jul 1999FPAYFee payment
Year of fee payment: 4
12 Nov 2003REMIMaintenance fee reminder mailed
23 Abr 2004LAPSLapse for failure to pay maintenance fees
22 Jun 2004FPExpired due to failure to pay maintenance fee
Effective date: 20040423