US5525537A - Process of producing diamond composite structure for electronic components - Google Patents

Process of producing diamond composite structure for electronic components Download PDF

Info

Publication number
US5525537A
US5525537A US08/432,853 US43285395A US5525537A US 5525537 A US5525537 A US 5525537A US 43285395 A US43285395 A US 43285395A US 5525537 A US5525537 A US 5525537A
Authority
US
United States
Prior art keywords
intermediate layer
layer
diamond
growth substrate
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/432,853
Inventor
Reinhard Zachai
Hans-Juergen Fuesser
Tim Gutheit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Assigned to DAIMLER-BENZ AG reassignment DAIMLER-BENZ AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUESSER, HANS-JUERGEN, GUTHEIT, TIM, ZACHAI, REINHARD
Priority to US08/594,038 priority Critical patent/US5744825A/en
Application granted granted Critical
Publication of US5525537A publication Critical patent/US5525537A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1602Diamond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/938Lattice strain control or utilization

Definitions

  • This invention relates to a composite structure for electronic components comprising a growth substrate, an intermediate layer arranged on the growth substrate, and a diamond layer applied over the intermediate layer, and to a process for producing such a composite structure as disclosed in published European Patent Application No. EP 282,054 A1.
  • the composite structure comprises a growth substrate of crystalline Si (silicon) or of crystalline GaAs (gallium arsenide), on which an intermediate layer of crystalline SiC (silicon carbide) is deposited and a diamond layer deposited on the intermediate layer, in which the layers are deposited by means of CVD (chemical vapor deposition) on the growth substrate.
  • CVD chemical vapor deposition
  • the intermediate layer of SiC thereby serves to diminish (compensate for) the prevailing lattice mismatch of approximately 52% or approximately 58% between the growth substrate on the one hand, whose lattice constant is approximately 5.43 ⁇ (Si) or 5.65 ⁇ (GaAs), and the applied diamond layer on the other hand with a lattice constant of approximately 3.57 ⁇ , with respect to the lattice constant of the diamond layer, in order to thereby facilitate an acceptable growth of the diamond layer on such growth substrates.
  • SiC has a lattice constant of approximately 4.36 ⁇
  • its lattice mismatch with respect to the lattice constant of the growth substrate amounts to approximately 25% (Si) or 30% (GaAs), and with respect to the diamond layer 22%, in which case the difference is with respect to the lattice constant of the diamond layer.
  • a composite structure for an electronic component comprising a growth substrate, an intermediate layer arranged on the growth substrate, and a diamond layer applied over the intermediate layer, in which the substrate, intermediate layer and diamond layer each have a crystal lattice exhibiting a lattice constant;
  • the intermediate layer has substantially a crystallographic lattice structure selected from the group consisting of a zinc blende structure, a diamond structure and a CaF 2 structure;
  • the crystal lattice of the intermediate layer has a fixed orientation relative to the crystal lattice of the growth substrate;
  • the lattice constants of the growth substrate and of the intermediate layer adjacent the growth substrate exhibit a difference amounting to less than 20% of the lattice constant of the intermediate layer adjacent the growth substrate, and the lattice constants of the diamond layer and of the intermediate layer adjacent the diamond layer satisfy the expression:
  • n and m are positive integers
  • a D is the lattice constant of the diamond layer
  • a ZS is the lattice constant of the intermediate layer adjacent the diamond layer.
  • the objects of the invention are also achieved by providing a process for producing a composite structure for electronic components comprising the steps of cleaning a surface of a growth substrate; applying an intermediate layer over the cleaned surface of the growth substrate; and applying a diamond layer over the intermediate layer, in which the applied intermediate layer has substantially a crystallographic lattice with a zinc blende structure, a diamond structure or a CaF 2 structure; and the intermediate layer and the diamond layer have lattice constants which satisfy the expression:
  • n and m are positive integers
  • a D is the lattice constant of the diamond layer
  • a ZS is the lattice constant of the intermediate layer adjacent the diamond layer.
  • the lattice constants of the intermediate lattice do not exhibit a constant value across the thickness of the intermediate layer, but instead are initially substantially matched to the lattice constant of the growth substrate and as the thickness of the intermediate layer increases, they approach a lattice constant which has a whole number ratio, for example 1:1 or 2:3, with the lattice constant of a diamond.
  • a material can be utilized for the intermediate layer (with Si substrates, for example, CoSi 2 ) whose modified lattice mismatch is very small. In both cases the stress at the boundary surfaces between the respective layers (growth side of the growth substrate/intermediate layer and intermediate layer/diamond layer) is substantially diminished.
  • the deposition of the individual layers can be effected by means of the known epitaxial process, in which MBE (molecular beam epitaxy) and RF-plasma MBE or microwave-plasma MBE or CVD (chemical vapor deposition), are especially suitable.
  • MBE molecular beam epitaxy
  • RF-plasma MBE or microwave-plasma MBE or CVD chemical vapor deposition
  • the improved quality of the diamond layers relates to the lower number and density of displacements and grain boundaries in the layer, and to better charge carrier mobility and thermal conductivity.
  • the orientation of the individual crystals deviates from the orientation of the substrate with a half-power bandwidth of approximately 6° so that the crystals are tipped or twisted. For electronic applications it is necessary that the density of the displacements and the grain boundaries be reduced.
  • the quality of the orientation of the crystallites along a predetermined substrate orientation can be determined by X-ray texture analysis.
  • the charge carrier (Hall) mobility which strongly depends on the displacement density, can be measured by Hall effect measurements. Diamond layers with improved orientation also exhibit higher thermal conductivity.
  • the composite structure while maintaining good quality of the diamond layer, can utilize as the growth substrate a commercially available and inexpensive growth substrate, particularly a growth substrate of Si or GaAs, whose lattice constants differ from the lattice constant of the diamond layer by more than 25% with respect to the lattice constant of a diamond, a composite structure of this type can be produced a favorable cost.
  • Tests have also shown that oriented diamond layers exhibit improved thermal properties (e.g. thermal conductivity) compared to statistically (random) oriented layers.
  • the lattice constant of the intermediate layer may vary as a function of the thickness of the layer, so that at the interface with the growth substrate, it will have a lattice constant at least close to that of the growth substrate, and at the interface with the diamond layer, it will have a lattice constant which at least approaches that of the diamond layer.
  • the lattice constant of the intermediate layer is modified in such a way that at the transition from the intermediate layer to the diamond layer, the difference between a whole number multiple of the lattice constant of the intermediate layer and a whole number multiple of the lattice constant of the diamond layer is less than 20%, and preferably less than 10% with respect to the same whole number multiple of the lattice constant of the intermediate layer, and ideally is approximately zero.
  • n and m are positive integers
  • a D is the lattice constant of the diamond layer
  • a ZS is the lattice constant of the intermediate layer at its transition to the diamond layer, is less than 0.2, and preferably less than 0.1.
  • an intermediate layer of CoSi 2 fulfills the conditions for a good modified lattice fit with a diamond layer if n is 3 and m is 2:
  • the lattice misfit or mismatch has a large, non-linear influence on the quality of the interface and consequently on the quality of the applied layer.
  • the applied layer e.g. the diamond layer
  • the applied layer is stressed, and it has a tendency to relax by introducing displacements, i.e. the lattice constant approaches the equilibrium lattice constant. This relaxation occurs above a critical layer thickness. If the difference with respect to the underlying layer is smaller, then this relaxation commences later, or in other words the displacement density in the diamond layer decreases.
  • the intermediate layer it is not necessary for the intermediate layer to be deposited over the entire growth surface side of the growth substrate. Rather, it is sufficient to have a so-called island growth, i.e. the intermediate layer can be deposited in limited regions. In some cases this island growth, which arises in particular when there is a high proportion of carbon, can even favor the growth of the diamond.
  • FIG. 1 is a schematic representation of a section through a composite structure according to the invention with an alloy as intermediate layer;
  • FIG. 2 is a diagram of the change of the lattice constant of the composite structure according to FIG. 1 with a modified lattice fit of 1:1 between the intermediate layer and the diamond layer;
  • FIG. 3 is a schematic representation of a section through a composite structure according to the invention with an intermediate layer composed of a plurality of individual layers;
  • FIG. 4 is a diagram of the change of the lattice constant of the composite structure according to FIG. 3 with a modified lattice fit between the intermediate layer and the diamond layer;
  • FIG. 5 is a schematic representation of a section through a composite structure according to the invention with an intermediate layer which is formed from a region of the growth substrate into which carbon atoms have been introduced, and
  • FIG. 6 is a diagram of the change of the lattice constant of the composite structure according to FIG. 5 with a modified lattice fit between the intermediate layer and the diamond layer.
  • FIG. 1 depicts a section through a composite structure 11 for electronic components according to the invention.
  • the composite structure 11 comprises a substantially monocrystalline growth substrate 1, on the previously cleaned growth side 3 of which a silicon-carbon alloy is deposited.
  • the alloy has substantially a zinc blende-like or a diamond-like or a calcium fluoride-like (CaF 2 ) lattice structure, in which the atoms of the alloy (Si and C) are statistically distributed within the lattice of the alloy.
  • Silicon naturally has a crystalline diamond structure; CoSi 2 naturally has a CaF 2 structure. Carbon, in contrast, exists in graphite form (hexagonal lattice); diamond is only metastable. This means that if one does not introduce so much carbon into silicon that the resulting alloy becomes amorphous, then the resulting alloy will naturally assume the desired diamond structure.
  • the crystal lattice of the intermediate layer formed as an alloy 10 has a fixed orientation with respect to the crystal lattice of the growth substrate 1, in which case 20% to 100% of the crystallites of the diamond layer 2 with dimensions between 0.1 ⁇ m and 200 ⁇ m again are oriented on the crystal lattice of the intermediate layer.
  • the orientation of the crystallites is so constituted that the crystal orientations corresponding to each other (Miller indices hkl) in the intermediate layer 10 and in the crystallites are parallel to each other within the scope of a possible misorientation of less than 10°.
  • a diamond layer 2 is subsequently applied on top of this alloy.
  • FIG. 2 the change of the lattice constant of the composite substrate 11 is illustrated, with the thickness of the composite structure 11 recorded along the x-axis and the respective lattice constant in the region of the respective layer, that is to say the growth substrate 1, the Si--C alloy (intermediate layer 10) and the diamond layer 2, is recorded along the y-axis.
  • the boundaries between the various layers are designated as follows “O”, beginning of the growth substrate 1; “a”, beginning of the intermediate layer 10; and "b", beginning of the diamond layer 2.
  • the lattice constant of the alloy lattice changes with increasing thickness of the intermediate layer 10, i.e. with increased spacing from the growth substrate 1, with the proportion of carbon in the alloy increasing and the proportion of silicon in the alloy decreasing.
  • a decrease of the lattice constant a ZS of the alloy lattice is associated with this change in the composition of the alloy, by means of which the lattice constant a ZS of the alloy lattice at the outset, i.e. in the vicinity of the silicon growth substrate 1, corresponds approximately to the lattice constant a W of the growth substrate, and at the end, i.e.
  • the lattice constant of the alloy lattice corresponds approximately to the lattice constant a D of the diamond layer 2 subsequently deposited on the intermediate layer 10.
  • the lattice mismatch existing between the silicon growth substrate 1 and the diamond layer 2 which amounts to more than 50% with reference to the lattice constant a D of the diamond layer 2 and which leads to diamond layers 2 of inferior quality, is substantially diminished.
  • the intermediate layer 10 is formed as an Si--C alloy
  • the crystal structure of crystalline silicon remains so that epitaxial growth of the diamond layer 2 on the alloy is facilitated.
  • Diamond layers 2 produced in this way exhibit at least polycrystalline growth with a high degree of orientation.
  • the layers are produced as follows.
  • a silicon atom beam is produced by evaporating solid silicon with an electron beam evaporator under ultra-high vacuum; a carbon atom beam is produced in a similar fashion.
  • the ratio of Si to C can be varied from 0 to 1 by appropriately adjusting the two sources.
  • a substrate of single crystal silicon is placed in the beam, and an alloy layer is deposited on the surface of the substrate.
  • the lattice constant of the mixed layer varies in approximately linear manner between Si and diamond proportional to the carbon content (according to Vegard's Law). This can be measured by X-ray diffraction in layers produced in the foregoing manner.
  • the relaxation of the mixed layer i.e. alloy layer
  • the relaxation of the mixed layer leads to a decrease in the lattice constant. And if this transition is sufficiently gentle, then the crystal structure will be retained.
  • a diamond layer 2 of good quality can be deposited on the intermediate layer 10, which can be considered, from the frame of reference of the diamond layer 2 which is to be deposited thereon, to be the growth side 3 of a modified growth substrate 1 formed of silicon.
  • the growth substrate 1 is installed in an MBE (molecular beam epitaxy) reactor and the reactor is evacuated.
  • the pressure in the reactor should be less than 1*10 -6 mbar. Pressures of approximately 10 -8 mbar are advantageous.
  • the surface of the growth substrate 1 may be previously cleaned by wet chemical techniques.
  • the growth substrate 1 can be cleaned once again inside the MBE reactor, in which case this cleaning step may be effected in a simple manner by heating the growth substrate 1 to a temperature above 700° C. Furthermore, the cleaning may be effected by means of a plasma generated by means of radio waves or microwaves.
  • Plasma cleaning of the substrate may be effected, for example, at a pressure of 29 mbar, in an H 2 gas stream at a flow rate of 300 sccm, at a microwave power of 750 watts, with heating to 900° C. for a duration of 10 minutes.
  • the cleaning of the surface of the growth substrate 1 inside a MWCVD reactor of this type may also be effected by means of a process gas.
  • pure silicon is deposited on the growth side 3 of the growth substrate 1 by means of a solid silicon source, for example, commercially available high purity (99.99%) silicon.
  • the pure silicon is gradually replaced with carbon which is supplied from a solid carbon source, for example, commercially available high purity (99.99%) carbon.
  • a silicon-carbon alloy with a zinc blende-like or diamond-like alloy lattice in which the carbon atoms and the silicon atoms are statistically distributed forms on the growth substrate 1.
  • Deposition may be effected, for example, at a rate of 0.1 nm/s.
  • the resulting layer thicknesses will typically range from 200 to 1000 nm.
  • the lattice constant of the alloy lattice which at the beginning of the alloy corresponds approximately to the lattice constant a W of the silicon growth substrate 1
  • the proportion of silicon in the alloy is decreased to approximately zero
  • the proportion of carbon in the alloy i.e. in the intermediate layer 10
  • the source may be regulated by closed-loop feedback in order to maintain a constant mass spectroscopy signal for carbon at 12 amu [see Peter et al., J. Vac. Sci. Tech. A, Vol. 9, No. 6, pages 3061-63 (1991)].
  • the solid sources consist of high purity silicon (99.999%) or high purity carbon (99.99%). High purity graphite is particularly advantageous.
  • the deposition of the intermediate layer takes place at a reactor pressure of less than 10 -6 mbar.
  • the temperature of the growth substrate 1 amounts to between 200° C. and 1200° C., particularly between 450° C. and 750° C.
  • the surface of the growing intermediate layer 10 can be additionally be subjected to a flux of low-energy ions, for example ion having an energy of from about 0 to about 200 eV, in particular argon ions or nitrogen ions with an average energy of at most approximately 100 eV, in order to favorably influence the surface kinetics of the growing intermediate layer 10.
  • a flux of low energy ions may be produced, for example, with an ECR plasma source as described by Popov et al., J. Vac. Sci. Tech. A, Vol. 8, No. 3, pages 1009-12 (1990).
  • a deposited carbon/silicon alloy increases in roughness as the growth of the layer proceeds until island growth occurs.
  • a deposited alloy layer may have a surface roughness of about 5 nm after an etching step to clean the surface.
  • the intermediate layer 10 can be subsequently covered with a silicon sacrificial layer which is etched away before the subsequent diamond deposition. This avoids removal of the intermediate layer 10 during the hydrogen plasma cleaning with which the diamond deposition procedure typically begins. Otherwise, if the plasma cleaning were carried out too long or the intermediate layer 10 were too thin, the intermediate layer could be eaten away.
  • the deposition of the diamond layer takes place in the presence of a hydrogen/methane gas stream which contains between 0.1 and 10% methane, at a temperature between 200° C. and 900° C., preferably above 600° C.
  • a hydrogen/methane gas stream which contains between 0.1 and 10% methane, at a temperature between 200° C. and 900° C., preferably above 600° C.
  • a suitable deposition procedure is disclosed, for example, in published German Patent Application No. DE 4,233,085.
  • the starting crystal forming phase can be promoted by the application of a bias voltage between +50 V to -300 V, in particular at -150 V.
  • the advantageous nature of the process according to the invention is apparent inter alia in that the composite substrate 11 which is produced has a modified lattice mismatch at the transitions between the respective layers which is less than 5%, in particular less than 3%.
  • FIG. 3 a further composite structure 21 is illustrated.
  • the change of the lattice constant of this composite structure 21 perpendicular to the surface of the growth substrate is shown in FIG. 4.
  • FIGS. 1 and 2 In order to avoid unnecessary repetition, only the differences with respect to the working embodiment according to FIGS. 1 and 2 will be discussed.
  • the intermediate layer 20 of the composite structure 21 according to FIGS. 3 and 4 is composed of a plurality of individual layers 20a, 20b and 20c which are stressed, in particular elastically stressed, with respect to each other.
  • the individual layers 20a, 20b and 20c can be formed of binary (e.g. CoSi 2 , AlN, GaAs, InP, ZrN) and/or ternary (e.g. InGaAs, InGaP, InAlAs) and/or even higher component (e.g. InGaAsP) crystalline substances and/or alloys of uniform and/or varying composition.
  • CoSi 2 has a lattice constant of 5.36 ⁇ ; AlN(cubic) a constant of 4.12 ⁇ ; GaAs a constant of 5.67 ⁇ ; InP a constant of 5.88 ⁇ ; and ZrN a constant of 0.57 ⁇ .
  • the lattice constants of the ternary and quaternary mixtures may adjusted to desired values by varying the proportions of the constituents.
  • the individual layers 20a, 20b and 20c are adjusted with respect to each other in such a way that their lattice mismatches with respect to each other amount to a maximum of 20%, in particular a maximum of 10%.
  • the lattice mismatch of the individual layer 20a which faces the growth substrate 1 is less than 10%.
  • n and m are positive integers
  • a D is the lattice constant of the diamond layer
  • a ZS is the lattice constant of the intermediate layer at its transition to the diamond layer; has a value of less than 0.2, and in particular less than 0.1.
  • the lattice constant of the last individual layer 20c of an intermediate layer 20 of this type which faces the diamond layer 2 has a whole number ratio to the lattice constant a D of the diamond layer 2 within an interval amounting to 20%, in particular 10%, in which the whole numbers of this relationship are advantageously less than 10, in particular less than 5.
  • this ratio may, for example, be 2:3.
  • a plurality of individual layers 20a, 20b and 20c are deposited on the growth side 3 of a cleaned growth substrate 1.
  • the lattice constants of these individual layers 20a, 20b and 20c become smaller as the number of individual layers increases.
  • a plurality of individual layers each having a constant ratio of carbon to silicon, but in which the ratios increase successively from layer to layer, can be deposited one after another using the procedure described above.
  • FIG. 5 A further working example of a composite structure 31 in accordance with the invention is illustrated in FIG. 5, and the change of its lattice constants across the thickness of the composite structure is illustrated in FIG. 6. Also in this case, in order to avoid unnecessary repetition, only the differences with respect to the working embodiments according to FIGS. 1 and 2 or FIGS. 3 and 4 will be discussed.
  • the intermediate layer 30 of this working example is formed by a region of the growth substrate 1 in which carbon atoms are arranged. These carbon atoms effect a change in the lattice constant a W of the growth substrate 1 in this region, in which the lattice structure of the growth substrate 1 is substantially retained.
  • This type of growth surface 3 of growth substrate 1 in the present working example has a lattice constant a ZS which may have a ratio, for example, of approximately 2:3 with the lattice constant a D of a diamond layer 2 to be deposited thereon.
  • This case also relates to a modified lattice fit, like that in the working example according to FIGS. 3 and 4, between the diamond layer 2 and an intermediate layer 30 formed by carbon atoms embedded in the surface of the growth substrate 1.
  • an intermediate layer 30 of this type is advantageously carried out in that the carbon atoms are diffused in a known manner or implanted by means of ion implantation into the growth surface 3 of the growth substrate 1.
  • carbon can be implanted in silicon by accelerating C + ions at 30 kV and targeting them at a Si substrate at a dosage of 1 E 16 ions/cm 2 .
  • the carbon concentration had a Gaussian profile with a maximum of 2.3% at a depth of 90 nm.
  • the depth of penetration is controlled by adjusting the energy.
  • both the maximum of the diffusion profile and also the maximum of the implantation profile are disposed several atom layers underneath the surface of the treated surface of the growth substrate 1, it is advantageous in both cases to remove some layers of atoms from this surface until the new surface has a lattice constant with which it is possible to appropriately match the lattices.
  • the removal of this surface region by a predetermined layer thickness is advantageously carried out by means of etching.

Abstract

The invention relates to a composite structure for electronic components comprising a growth substrate, an intermediate layer having substantially a crystallographic lattice structure arranged on the growth substrate, and a diamond layer applied on top of the intermediate layer, and to a process for producing a composite structure of this type. In order to obtain a diamond layer of highest quality, the intermediate layer has substantially a zinc blende or diamond or a calcium fluoride structure, in which at the outset of the intermediate layer the difference between the lattice constant of the intermediate layer and the lattice constant of the growth substrate, relative to the lattice constant of the growth substrate, is less than 20%, in particular less than 10%, and in which at the transition from the intermediate layer to the diamond layer for the lattice constant of the intermediate layer and the lattice constant of the diamond layer the value of the expression
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS
is less than 0.2, in particular less than 0.1, wherein
n and m are natural numbers,
aD is the lattice constant of the diamond layer, and
aZS is the lattice constant of the intermediate layer at the transition to the diamond layer.

Description

BACKGROUND OF THE INVENTION
This invention relates to a composite structure for electronic components comprising a growth substrate, an intermediate layer arranged on the growth substrate, and a diamond layer applied over the intermediate layer, and to a process for producing such a composite structure as disclosed in published European Patent Application No. EP 282,054 A1.
Published European Patent Application No. EP 282,054 A1 describes a composite structure for electronic components and a process for producing such composite structures. The composite structure comprises a growth substrate of crystalline Si (silicon) or of crystalline GaAs (gallium arsenide), on which an intermediate layer of crystalline SiC (silicon carbide) is deposited and a diamond layer deposited on the intermediate layer, in which the layers are deposited by means of CVD (chemical vapor deposition) on the growth substrate. The intermediate layer of SiC thereby serves to diminish (compensate for) the prevailing lattice mismatch of approximately 52% or approximately 58% between the growth substrate on the one hand, whose lattice constant is approximately 5.43 Å (Si) or 5.65 Å (GaAs), and the applied diamond layer on the other hand with a lattice constant of approximately 3.57 Å, with respect to the lattice constant of the diamond layer, in order to thereby facilitate an acceptable growth of the diamond layer on such growth substrates. Since SiC has a lattice constant of approximately 4.36 Å, its lattice mismatch with respect to the lattice constant of the growth substrate amounts to approximately 25% (Si) or 30% (GaAs), and with respect to the diamond layer 22%, in which case the difference is with respect to the lattice constant of the diamond layer. By means of the bridging of the crystalline SiC-layer, the effects of the existing lattice mismatch on the quality of the deposited diamond layer are minimized. Despite this measure, the quality of the deposited diamond layer, however, is still unsatisfactory because the number and density of the grain boundaries and displacements is very high.
SUMMARY OF THE INVENTION
It is the object of the invention to further develop the aforedescribed fundamental composite structure to such an extent that the quality of a diamond layer applied on a growth substrate is improved.
Furthermore it is an object of the invention to develop a process for producing a diamond layer disposed on such growth substrates.
These and other objects are achieved in the present invention by providing a composite structure for an electronic component comprising a growth substrate, an intermediate layer arranged on the growth substrate, and a diamond layer applied over the intermediate layer, in which the substrate, intermediate layer and diamond layer each have a crystal lattice exhibiting a lattice constant; the intermediate layer has substantially a crystallographic lattice structure selected from the group consisting of a zinc blende structure, a diamond structure and a CaF2 structure; the crystal lattice of the intermediate layer has a fixed orientation relative to the crystal lattice of the growth substrate; the lattice constants of the growth substrate and of the intermediate layer adjacent the growth substrate exhibit a difference amounting to less than 20% of the lattice constant of the intermediate layer adjacent the growth substrate, and the lattice constants of the diamond layer and of the intermediate layer adjacent the diamond layer satisfy the expression:
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS <0.2
where n and m are positive integers, aD is the lattice constant of the diamond layer, and aZS is the lattice constant of the intermediate layer adjacent the diamond layer.
In further aspects of the invention, the objects of the invention are also achieved by providing a process for producing a composite structure for electronic components comprising the steps of cleaning a surface of a growth substrate; applying an intermediate layer over the cleaned surface of the growth substrate; and applying a diamond layer over the intermediate layer, in which the applied intermediate layer has substantially a crystallographic lattice with a zinc blende structure, a diamond structure or a CaF2 structure; and the intermediate layer and the diamond layer have lattice constants which satisfy the expression:
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS <0.2
in which n and m are positive integers, aD is the lattice constant of the diamond layer, and aZS is the lattice constant of the intermediate layer adjacent the diamond layer.
In accordance with the invention, the lattice constants of the intermediate lattice do not exhibit a constant value across the thickness of the intermediate layer, but instead are initially substantially matched to the lattice constant of the growth substrate and as the thickness of the intermediate layer increases, they approach a lattice constant which has a whole number ratio, for example 1:1 or 2:3, with the lattice constant of a diamond. Alternatively, for example, a material can be utilized for the intermediate layer (with Si substrates, for example, CoSi2) whose modified lattice mismatch is very small. In both cases the stress at the boundary surfaces between the respective layers (growth side of the growth substrate/intermediate layer and intermediate layer/diamond layer) is substantially diminished. This facilitates a good quality and particularly a deposition with improved orientation of the deposited diamond layer. The deposition of the individual layers can be effected by means of the known epitaxial process, in which MBE (molecular beam epitaxy) and RF-plasma MBE or microwave-plasma MBE or CVD (chemical vapor deposition), are especially suitable.
The improved quality of the diamond layers relates to the lower number and density of displacements and grain boundaries in the layer, and to better charge carrier mobility and thermal conductivity. The orientation of the individual crystals deviates from the orientation of the substrate with a half-power bandwidth of approximately 6° so that the crystals are tipped or twisted. For electronic applications it is necessary that the density of the displacements and the grain boundaries be reduced. The quality of the orientation of the crystallites along a predetermined substrate orientation can be determined by X-ray texture analysis. The charge carrier (Hall) mobility, which strongly depends on the displacement density, can be measured by Hall effect measurements. Diamond layers with improved orientation also exhibit higher thermal conductivity.
Since in the invention, the composite structure, while maintaining good quality of the diamond layer, can utilize as the growth substrate a commercially available and inexpensive growth substrate, particularly a growth substrate of Si or GaAs, whose lattice constants differ from the lattice constant of the diamond layer by more than 25% with respect to the lattice constant of a diamond, a composite structure of this type can be produced a favorable cost. Tests have also shown that oriented diamond layers exhibit improved thermal properties (e.g. thermal conductivity) compared to statistically (random) oriented layers.
In accordance with the invention, the lattice constant of the intermediate layer may vary as a function of the thickness of the layer, so that at the interface with the growth substrate, it will have a lattice constant at least close to that of the growth substrate, and at the interface with the diamond layer, it will have a lattice constant which at least approaches that of the diamond layer.
It is of particular advantage if the lattice constant of the intermediate layer is modified in such a way that at the transition from the intermediate layer to the diamond layer, the difference between a whole number multiple of the lattice constant of the intermediate layer and a whole number multiple of the lattice constant of the diamond layer is less than 20%, and preferably less than 10% with respect to the same whole number multiple of the lattice constant of the intermediate layer, and ideally is approximately zero. In other words, the value of the expression
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS
in which n and m are positive integers, aD is the lattice constant of the diamond layer, and aZS is the lattice constant of the intermediate layer at its transition to the diamond layer, is less than 0.2, and preferably less than 0.1.
For example, an intermediate layer of CoSi2 fulfills the conditions for a good modified lattice fit with a diamond layer if n is 3 and m is 2:
(2*5.36-3*3.57)/3.57=0.3%
The lattice misfit or mismatch has a large, non-linear influence on the quality of the interface and consequently on the quality of the applied layer. The smaller the mismatch, the better the quality. As a result of the mismatch, the applied layer (e.g. the diamond layer) is stressed, and it has a tendency to relax by introducing displacements, i.e. the lattice constant approaches the equilibrium lattice constant. This relaxation occurs above a critical layer thickness. If the difference with respect to the underlying layer is smaller, then this relaxation commences later, or in other words the displacement density in the diamond layer decreases.
It is not necessary for the intermediate layer to be deposited over the entire growth surface side of the growth substrate. Rather, it is sufficient to have a so-called island growth, i.e. the intermediate layer can be deposited in limited regions. In some cases this island growth, which arises in particular when there is a high proportion of carbon, can even favor the growth of the diamond.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be explained in further detail hereinafter with reference to illustrative working embodiments shown in the accompanying drawings in which:
FIG. 1 is a schematic representation of a section through a composite structure according to the invention with an alloy as intermediate layer;
FIG. 2 is a diagram of the change of the lattice constant of the composite structure according to FIG. 1 with a modified lattice fit of 1:1 between the intermediate layer and the diamond layer;
FIG. 3 is a schematic representation of a section through a composite structure according to the invention with an intermediate layer composed of a plurality of individual layers;
FIG. 4 is a diagram of the change of the lattice constant of the composite structure according to FIG. 3 with a modified lattice fit between the intermediate layer and the diamond layer;
FIG. 5 is a schematic representation of a section through a composite structure according to the invention with an intermediate layer which is formed from a region of the growth substrate into which carbon atoms have been introduced, and
FIG. 6 is a diagram of the change of the lattice constant of the composite structure according to FIG. 5 with a modified lattice fit between the intermediate layer and the diamond layer.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 depicts a section through a composite structure 11 for electronic components according to the invention. The composite structure 11 comprises a substantially monocrystalline growth substrate 1, on the previously cleaned growth side 3 of which a silicon-carbon alloy is deposited. In regard to its crystallography, the alloy has substantially a zinc blende-like or a diamond-like or a calcium fluoride-like (CaF2) lattice structure, in which the atoms of the alloy (Si and C) are statistically distributed within the lattice of the alloy.
Silicon naturally has a crystalline diamond structure; CoSi2 naturally has a CaF2 structure. Carbon, in contrast, exists in graphite form (hexagonal lattice); diamond is only metastable. This means that if one does not introduce so much carbon into silicon that the resulting alloy becomes amorphous, then the resulting alloy will naturally assume the desired diamond structure.
The crystal lattice of the intermediate layer formed as an alloy 10 has a fixed orientation with respect to the crystal lattice of the growth substrate 1, in which case 20% to 100% of the crystallites of the diamond layer 2 with dimensions between 0.1 μm and 200 μm again are oriented on the crystal lattice of the intermediate layer. In this case, the orientation of the crystallites is so constituted that the crystal orientations corresponding to each other (Miller indices hkl) in the intermediate layer 10 and in the crystallites are parallel to each other within the scope of a possible misorientation of less than 10°. A diamond layer 2 is subsequently applied on top of this alloy.
In FIG. 2 the change of the lattice constant of the composite substrate 11 is illustrated, with the thickness of the composite structure 11 recorded along the x-axis and the respective lattice constant in the region of the respective layer, that is to say the growth substrate 1, the Si--C alloy (intermediate layer 10) and the diamond layer 2, is recorded along the y-axis. The boundaries between the various layers are designated as follows "O", beginning of the growth substrate 1; "a", beginning of the intermediate layer 10; and "b", beginning of the diamond layer 2.
In accordance with the diagram of FIG. 2 the lattice constant of the alloy lattice changes with increasing thickness of the intermediate layer 10, i.e. with increased spacing from the growth substrate 1, with the proportion of carbon in the alloy increasing and the proportion of silicon in the alloy decreasing. A decrease of the lattice constant aZS of the alloy lattice is associated with this change in the composition of the alloy, by means of which the lattice constant aZS of the alloy lattice at the outset, i.e. in the vicinity of the silicon growth substrate 1, corresponds approximately to the lattice constant aW of the growth substrate, and at the end, i.e. in the vicinity of greatest spacing of the alloy from the growth substrate 1, the lattice constant of the alloy lattice corresponds approximately to the lattice constant aD of the diamond layer 2 subsequently deposited on the intermediate layer 10. In this way the lattice mismatch existing between the silicon growth substrate 1 and the diamond layer 2, which amounts to more than 50% with reference to the lattice constant aD of the diamond layer 2 and which leads to diamond layers 2 of inferior quality, is substantially diminished.
Advantageously, when the intermediate layer 10 is formed as an Si--C alloy, the crystal structure of crystalline silicon remains so that epitaxial growth of the diamond layer 2 on the alloy is facilitated. Diamond layers 2 produced in this way exhibit at least polycrystalline growth with a high degree of orientation.
The layers are produced as follows. A silicon atom beam is produced by evaporating solid silicon with an electron beam evaporator under ultra-high vacuum; a carbon atom beam is produced in a similar fashion. The ratio of Si to C can be varied from 0 to 1 by appropriately adjusting the two sources. A substrate of single crystal silicon is placed in the beam, and an alloy layer is deposited on the surface of the substrate. The lattice constant of the mixed layer varies in approximately linear manner between Si and diamond proportional to the carbon content (according to Vegard's Law). This can be measured by X-ray diffraction in layers produced in the foregoing manner.
If the gradient is selected small enough, the relaxation of the mixed layer (i.e. alloy layer), which is stressed relative to the silicon substrate, leads to a decrease in the lattice constant. And if this transition is sufficiently gentle, then the crystal structure will be retained.
Through the modification of the lattice constants by means of the alloy according to the invention, a diamond layer 2 of good quality can be deposited on the intermediate layer 10, which can be considered, from the frame of reference of the diamond layer 2 which is to be deposited thereon, to be the growth side 3 of a modified growth substrate 1 formed of silicon.
One possible process for producing a composite structure 11 according to the invention is described hereinafter. The growth substrate 1 is installed in an MBE (molecular beam epitaxy) reactor and the reactor is evacuated. The pressure in the reactor should be less than 1*10-6 mbar. Pressures of approximately 10-8 mbar are advantageous. The surface of the growth substrate 1 may be previously cleaned by wet chemical techniques. The growth substrate 1 can be cleaned once again inside the MBE reactor, in which case this cleaning step may be effected in a simple manner by heating the growth substrate 1 to a temperature above 700° C. Furthermore, the cleaning may be effected by means of a plasma generated by means of radio waves or microwaves. In this case it may also make sense to heat the growth substrate 1 and/or to apply a predetermined electric potential to the growth substrate 1. Plasma cleaning of the substrate may be effected, for example, at a pressure of 29 mbar, in an H2 gas stream at a flow rate of 300 sccm, at a microwave power of 750 watts, with heating to 900° C. for a duration of 10 minutes.
If the composite structure 11 is produced, for example, with a microwave supported MWCVD (microwave chemical vapor deposition), the cleaning of the surface of the growth substrate 1 inside a MWCVD reactor of this type may also be effected by means of a process gas.
After the cleaning of the growth substrate 1 in the MBE reactor, pure silicon is deposited on the growth side 3 of the growth substrate 1 by means of a solid silicon source, for example, commercially available high purity (99.99%) silicon. The pure silicon is gradually replaced with carbon which is supplied from a solid carbon source, for example, commercially available high purity (99.99%) carbon. During the mixed deposition of carbon and silicon, a silicon-carbon alloy with a zinc blende-like or diamond-like alloy lattice in which the carbon atoms and the silicon atoms are statistically distributed, forms on the growth substrate 1. Deposition may be effected, for example, at a rate of 0.1 nm/s. The resulting layer thicknesses will typically range from 200 to 1000 nm.
In order that the lattice constant of the alloy lattice, which at the beginning of the alloy corresponds approximately to the lattice constant aW of the silicon growth substrate 1, can be decreased to the value of the lattice constant aD of a diamond, the proportion of silicon in the alloy is decreased to approximately zero, while the proportion of carbon in the alloy, i.e. in the intermediate layer 10, is increased by appropriate adjustment of the respective solid sources as the thickness of the alloy layer increases. For example, the source may be regulated by closed-loop feedback in order to maintain a constant mass spectroscopy signal for carbon at 12 amu [see Peter et al., J. Vac. Sci. Tech. A, Vol. 9, No. 6, pages 3061-63 (1991)].
It has thereby proved to be advantageous to vary the composition of the alloy within a thickness range of approximately 0.1 μm to 2 μm. The solid sources consist of high purity silicon (99.999%) or high purity carbon (99.99%). High purity graphite is particularly advantageous. The deposition of the intermediate layer takes place at a reactor pressure of less than 10-6 mbar. The temperature of the growth substrate 1 amounts to between 200° C. and 1200° C., particularly between 450° C. and 750° C. During the growth, the surface of the growing intermediate layer 10 can be additionally be subjected to a flux of low-energy ions, for example ion having an energy of from about 0 to about 200 eV, in particular argon ions or nitrogen ions with an average energy of at most approximately 100 eV, in order to favorably influence the surface kinetics of the growing intermediate layer 10. A suitable flux of low energy ions may be produced, for example, with an ECR plasma source as described by Popov et al., J. Vac. Sci. Tech. A, Vol. 8, No. 3, pages 1009-12 (1990).
Because diamond has a higher surface energy than silicon, it is difficult to form diamond nuclei when attempting to deposit a diamond layer on a silicon substrate. However, the presence of carbon atoms in the surface layer of the growth substrate increases the surface energy of the substrate. Furthermore, by applying a negative bias voltage with respect to the plasma potential, carbon-containing positive ions are accelerated toward the surface (40 to 100 eV at a U-bias of 220 V). In this way it is possible to increase the surface energy of the substrate. Without the bias, no nucleation is observed, but if bias is applied, nucleation can be detected. These nuclei are, in part, built into the surface layers and above a critical size can develop into oriented crystallites. Even if carbon is already present in the surface of the substrate, this process will further promote the process of crystallite formation.
At very high carbon contents, the surface of a deposited carbon/silicon alloy increases in roughness as the growth of the layer proceeds until island growth occurs. Under normal conditions, a deposited alloy layer may have a surface roughness of about 5 nm after an etching step to clean the surface.
In order to protect it, the intermediate layer 10 can be subsequently covered with a silicon sacrificial layer which is etched away before the subsequent diamond deposition. This avoids removal of the intermediate layer 10 during the hydrogen plasma cleaning with which the diamond deposition procedure typically begins. Otherwise, if the plasma cleaning were carried out too long or the intermediate layer 10 were too thin, the intermediate layer could be eaten away.
The deposition of the diamond layer takes place in the presence of a hydrogen/methane gas stream which contains between 0.1 and 10% methane, at a temperature between 200° C. and 900° C., preferably above 600° C. A suitable deposition procedure is disclosed, for example, in published German Patent Application No. DE 4,233,085. The starting crystal forming phase can be promoted by the application of a bias voltage between +50 V to -300 V, in particular at -150 V.
The advantageous nature of the process according to the invention is apparent inter alia in that the composite substrate 11 which is produced has a modified lattice mismatch at the transitions between the respective layers which is less than 5%, in particular less than 3%.
In FIG. 3 a further composite structure 21 is illustrated. The change of the lattice constant of this composite structure 21 perpendicular to the surface of the growth substrate is shown in FIG. 4. In order to avoid unnecessary repetition, only the differences with respect to the working embodiment according to FIGS. 1 and 2 will be discussed.
In contrast to the working embodiment according to FIGS. 1 and 2, the intermediate layer 20 of the composite structure 21 according to FIGS. 3 and 4 is composed of a plurality of individual layers 20a, 20b and 20c which are stressed, in particular elastically stressed, with respect to each other. The individual layers 20a, 20b and 20c can be formed of binary (e.g. CoSi2, AlN, GaAs, InP, ZrN) and/or ternary (e.g. InGaAs, InGaP, InAlAs) and/or even higher component (e.g. InGaAsP) crystalline substances and/or alloys of uniform and/or varying composition. CoSi2 has a lattice constant of 5.36 Å; AlN(cubic) a constant of 4.12 Å; GaAs a constant of 5.67 Å; InP a constant of 5.88 Å; and ZrN a constant of 0.57 Å. The lattice constants of the ternary and quaternary mixtures may adjusted to desired values by varying the proportions of the constituents. The individual layers 20a, 20b and 20c are adjusted with respect to each other in such a way that their lattice mismatches with respect to each other amount to a maximum of 20%, in particular a maximum of 10%. The lattice mismatch of the individual layer 20a which faces the growth substrate 1 is less than 10%.
In order that the thickness of the intermediate layer 20 does not assume too large a value when there are large differences between the lattice constant aWS of the growth substrate 1 and the lattice constant aD of a diamond layer 2, in such cases a modified lattice fit is utilized in accordance with which the expression
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS
in which n and m are positive integers, aD is the lattice constant of the diamond layer, and aZS is the lattice constant of the intermediate layer at its transition to the diamond layer; has a value of less than 0.2, and in particular less than 0.1. In modified lattice fits of this type, the lattice constant of the last individual layer 20c of an intermediate layer 20 of this type which faces the diamond layer 2, has a whole number ratio to the lattice constant aD of the diamond layer 2 within an interval amounting to 20%, in particular 10%, in which the whole numbers of this relationship are advantageously less than 10, in particular less than 5. In the present working embodiment illustrated schematically in FIGS. 3 and 4, this ratio may, for example, be 2:3. This means that three unit cells of the diamond layer 2 are arranged on two unit cells of the last individual layer 20c of intermediate layer 20, with the difference between the length of two unit cells of the last individual layer 20c and the length of three unit cells of the diamond layer 2 being less than 20%, in particular less than 10%, with reference to three times the lattice constant of the last individual layer 20c.
In order to produce the intermediate layer 20, a plurality of individual layers 20a, 20b and 20c are deposited on the growth side 3 of a cleaned growth substrate 1. The lattice constants of these individual layers 20a, 20b and 20c become smaller as the number of individual layers increases. For example, a plurality of individual layers each having a constant ratio of carbon to silicon, but in which the ratios increase successively from layer to layer, can be deposited one after another using the procedure described above.
A further working example of a composite structure 31 in accordance with the invention is illustrated in FIG. 5, and the change of its lattice constants across the thickness of the composite structure is illustrated in FIG. 6. Also in this case, in order to avoid unnecessary repetition, only the differences with respect to the working embodiments according to FIGS. 1 and 2 or FIGS. 3 and 4 will be discussed.
The intermediate layer 30 of this working example is formed by a region of the growth substrate 1 in which carbon atoms are arranged. These carbon atoms effect a change in the lattice constant aW of the growth substrate 1 in this region, in which the lattice structure of the growth substrate 1 is substantially retained. This type of growth surface 3 of growth substrate 1 in the present working example has a lattice constant aZS which may have a ratio, for example, of approximately 2:3 with the lattice constant aD of a diamond layer 2 to be deposited thereon. This case also relates to a modified lattice fit, like that in the working example according to FIGS. 3 and 4, between the diamond layer 2 and an intermediate layer 30 formed by carbon atoms embedded in the surface of the growth substrate 1.
The production of an intermediate layer 30 of this type is advantageously carried out in that the carbon atoms are diffused in a known manner or implanted by means of ion implantation into the growth surface 3 of the growth substrate 1. For example, carbon can be implanted in silicon by accelerating C+ ions at 30 kV and targeting them at a Si substrate at a dosage of 1 E16 ions/cm2. The carbon concentration had a Gaussian profile with a maximum of 2.3% at a depth of 90 nm. The depth of penetration is controlled by adjusting the energy. The concentration is regulated by adjusting the dosage (=time of implantation). Since both the maximum of the diffusion profile and also the maximum of the implantation profile are disposed several atom layers underneath the surface of the treated surface of the growth substrate 1, it is advantageous in both cases to remove some layers of atoms from this surface until the new surface has a lattice constant with which it is possible to appropriately match the lattices. The removal of this surface region by a predetermined layer thickness is advantageously carried out by means of etching.
The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

Claims (14)

What is claimed is:
1. A process for producing a composite structure for electronic components, said process comprising the steps of
cleaning a surface of a growth substrate;
applying an intermediate layer over the cleaned surface of the growth substrate; and
applying a diamond layer over the intermediate layer, wherein:
the applied intermediate layer has substantially a crystallographic lattice with a zinc blende structure, a diamond structure or a CaF2 structure, said intermediate layer consisting of an alloy with alloy constituent atoms statistically distributed throughout its crystal lattice, and said alloy having a composition which changes as the thickness of the intermediate layer increases; and wherein:
the intermediate layer and the diamond layer have lattice constants which satisfy the expression:
|(n*a.sub.ZS -m*a.sub.D)|/n*a.sub.ZS <0.2
in which
n and m are positive integers,
aD is the lattice constant of the diamond layer, and
aZS is the lattice constant of the intermediate layer adjacent the diamond layer.
2. A process according to claim 1, wherein said intermediate layer consists of a carbon-containing alloy, and the proportion of carbon in the alloy increases as the thickness of the intermediate layer increases.
3. A process according to claim 1, wherein the growth substrate consists essentially of substantially monocrystalline silicon; the intermediate layer consists essentially of silicon-carbon alloy with atoms of silicon and carbon statistically distributed therein, and the proportion of silicon in the intermediate layer decreases with increasing distance from the growth substrate.
4. A process according to claim 1, wherein the intermediate layer is composed of a plurality of individual sublayers each having a lattice constant which differs from that of adjacent sublayers by a maximum of 20%, and each of the sublayers is elastically stressed with respect to adjacent sublayers.
5. A process according to claim 4, wherein each of the sublayers has a lattice constant which differs from that of adjacent sublayers by a maximum of 10%.
6. A process according to claim 1, wherein the intermediate layer comprises a surface layer of the growth substrate into which carbon atoms have been embedded by means of diffusion or by means of ion implantation.
7. A process according to claim 6, further comprising after the carbon atoms have been embedded in the surface layer of the growth substrate, removing a thickness of said surface layer by etching prior to applying the diamond layer over the intermediate layer.
8. A process according to claim 1, wherein the intermediate layer and the diamond layer are applied by molecular beam epitaxy of known solid material sources.
9. A process according to claim 1, wherein the intermediate layer is produced by applying onto a silicon growth substrate a first material which deposits pure silicon and a second material which admixes carbon with the deposited silicon, a decreasing proportion of the first material and an increasing proportion of the second material being applied as the intermediate layer increases in thickness.
10. A process according to claim 1, wherein a flux of ions having an energy less than about 200 eV is applied to the intermediate layer as the intermediate layer is deposited on the growth substrate.
11. A process according to claim 10, wherein said ions are selected from the group consisting of nitrogen ions, argon ions, and mixtures of nitrogen ions and argon ions.
12. A process according to claim 1, further comprising covering the intermediate layer with a protective layer of silicon and subsequently removing the protective layer by etching prior to applying the diamond layer over the intermediate layer.
13. A process according to claim 1, wherein the intermediate layer has a surface roughness greater than 5 nm prior to applying the diamond layer thereover.
14. A process according to claim 1, further comprising prior to applying the diamond layer over the intermediate layer, increasing the surface energy of the intermediate layer relative to the surface energy of the growth substrate in order to facilitate diamond nucleation on the surface of the intermediate layer.
US08/432,853 1994-05-04 1995-05-02 Process of producing diamond composite structure for electronic components Expired - Fee Related US5525537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/594,038 US5744825A (en) 1994-05-04 1996-01-30 Composite structure for an electronic component comprising a growth substrate, a diamond layer, and an intermediate layer therebetween

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4415601.4 1994-05-04
DE4415601A DE4415601C2 (en) 1994-05-04 1994-05-04 Composite structure for electronic components and process for their manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/594,038 Division US5744825A (en) 1994-05-04 1996-01-30 Composite structure for an electronic component comprising a growth substrate, a diamond layer, and an intermediate layer therebetween

Publications (1)

Publication Number Publication Date
US5525537A true US5525537A (en) 1996-06-11

Family

ID=6517190

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/432,853 Expired - Fee Related US5525537A (en) 1994-05-04 1995-05-02 Process of producing diamond composite structure for electronic components
US08/594,038 Expired - Lifetime US5744825A (en) 1994-05-04 1996-01-30 Composite structure for an electronic component comprising a growth substrate, a diamond layer, and an intermediate layer therebetween

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/594,038 Expired - Lifetime US5744825A (en) 1994-05-04 1996-01-30 Composite structure for an electronic component comprising a growth substrate, a diamond layer, and an intermediate layer therebetween

Country Status (4)

Country Link
US (2) US5525537A (en)
EP (1) EP0681314B1 (en)
JP (1) JP3180207B2 (en)
DE (2) DE4415601C2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861058A (en) * 1995-04-20 1999-01-19 Daimler-Benz Aktiengesellschaft Composite structure and method for the production thereof
US6402787B1 (en) 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6494918B1 (en) 2000-01-30 2002-12-17 Diamicron, Inc. Component for a prosthetic joint having a diamond load bearing and articulation surface
US6514289B1 (en) 2000-01-30 2003-02-04 Diamicron, Inc. Diamond articulation surface for use in a prosthetic joint
US6589333B1 (en) 1999-09-17 2003-07-08 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method for the manufacture of a substrate, substrate manufactured in accordance with this method, carrier wafer and diamond jewel
US6596225B1 (en) 2000-01-31 2003-07-22 Diamicron, Inc. Methods for manufacturing a diamond prosthetic joint component
US20030157746A1 (en) * 2000-09-01 2003-08-21 Herbert Guttler Composite structure for electronic microsystems and method for production of said composite structure
US6676704B1 (en) 1994-08-12 2004-01-13 Diamicron, Inc. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6709463B1 (en) 2000-01-30 2004-03-23 Diamicron, Inc. Prosthetic joint component having at least one solid polycrystalline diamond component
US6793681B1 (en) 1994-08-12 2004-09-21 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond articulation surface and a plurality of substrate layers
US20070111475A1 (en) * 2004-04-16 2007-05-17 Thomas Licht Method for the structured application of a laminatable film to a substrate for a semiconductor module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615740A1 (en) * 1996-04-20 1997-06-05 Daimler Benz Ag Diamond-coated composite structure for electronics
US6063187A (en) * 1997-08-13 2000-05-16 City University Of Hong Kong Deposition method for heteroepitaxial diamond
DE10043587B4 (en) * 1999-09-17 2006-03-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method for producing a substrate, substrate produced by this method
JP4529212B2 (en) * 2000-01-19 2010-08-25 住友電気工業株式会社 Diamond wiring board and manufacturing method thereof
JP2002343717A (en) * 2001-05-18 2002-11-29 Matsushita Electric Ind Co Ltd Method for producing semiconductor crystal
US8157914B1 (en) 2007-02-07 2012-04-17 Chien-Min Sung Substrate surface modifications for compositional gradation of crystalline materials and associated products
US7799600B2 (en) * 2007-05-31 2010-09-21 Chien-Min Sung Doped diamond LED devices and associated methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006203A (en) * 1988-08-12 1991-04-09 Texas Instruments Incorporated Diamond growth method
US5034784A (en) * 1989-06-22 1991-07-23 Semiconductor Energy Laboratory Co., Ltd. Diamond electric device on silicon
WO1992001314A1 (en) * 1990-07-06 1992-01-23 Advanced Technology Materials, Inc. N-type semiconducting diamond, and method of making the same
JPH04197431A (en) * 1990-11-29 1992-07-17 Sumitomo Electric Ind Ltd Synthesis of diamond
US5173761A (en) * 1991-01-28 1992-12-22 Kobe Steel Usa Inc., Electronic Materials Center Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer
US5243199A (en) * 1990-01-19 1993-09-07 Sumitomo Electric Industries, Ltd. High frequency device
US5252840A (en) * 1990-05-17 1993-10-12 Sumitomo Electric Industries, Ltd. Semiconductor device having differently doped diamond layers
US5254862A (en) * 1991-08-14 1993-10-19 Kobe Steel U.S.A., Inc. Diamond field-effect transistor with a particular boron distribution profile

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177321A (en) * 1972-07-25 1979-12-04 Semiconductor Research Foundation Single crystal of semiconductive material on crystal of insulating material
US3821033A (en) * 1972-08-03 1974-06-28 Ibm Method for producing flat composite semiconductor substrates
JPS61107721A (en) * 1984-10-31 1986-05-26 Matsushita Electric Ind Co Ltd Si substrate provided with iii-v compound single crystal thin film and manufacture thereof
US4863529A (en) * 1987-03-12 1989-09-05 Sumitomo Electric Industries, Ltd. Thin film single crystal diamond substrate
JPH01317197A (en) * 1988-06-16 1989-12-21 Kanegafuchi Chem Ind Co Ltd Diamond thin film substrate and production thereof
JP2895179B2 (en) * 1990-08-04 1999-05-24 財団法人ファインセラミックスセンター Vapor phase synthesis method of diamond single crystal thin film
JPH04114995A (en) * 1990-09-04 1992-04-15 Matsushita Electric Ind Co Ltd Method for depositing diamond thin film
JP2617374B2 (en) * 1990-09-25 1997-06-04 株式会社半導体エネルギー研究所 Diamond thin film and its preparation method
US5236545A (en) * 1992-10-05 1993-08-17 The Board Of Governors Of Wayne State University Method for heteroepitaxial diamond film development

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006203A (en) * 1988-08-12 1991-04-09 Texas Instruments Incorporated Diamond growth method
US5034784A (en) * 1989-06-22 1991-07-23 Semiconductor Energy Laboratory Co., Ltd. Diamond electric device on silicon
US5243199A (en) * 1990-01-19 1993-09-07 Sumitomo Electric Industries, Ltd. High frequency device
US5252840A (en) * 1990-05-17 1993-10-12 Sumitomo Electric Industries, Ltd. Semiconductor device having differently doped diamond layers
WO1992001314A1 (en) * 1990-07-06 1992-01-23 Advanced Technology Materials, Inc. N-type semiconducting diamond, and method of making the same
JPH04197431A (en) * 1990-11-29 1992-07-17 Sumitomo Electric Ind Ltd Synthesis of diamond
US5173761A (en) * 1991-01-28 1992-12-22 Kobe Steel Usa Inc., Electronic Materials Center Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer
US5254862A (en) * 1991-08-14 1993-10-19 Kobe Steel U.S.A., Inc. Diamond field-effect transistor with a particular boron distribution profile

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800095B1 (en) 1994-08-12 2004-10-05 Diamicron, Inc. Diamond-surfaced femoral head for use in a prosthetic joint
US6793681B1 (en) 1994-08-12 2004-09-21 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond articulation surface and a plurality of substrate layers
US6676704B1 (en) 1994-08-12 2004-01-13 Diamicron, Inc. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US5861058A (en) * 1995-04-20 1999-01-19 Daimler-Benz Aktiengesellschaft Composite structure and method for the production thereof
US6589333B1 (en) 1999-09-17 2003-07-08 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method for the manufacture of a substrate, substrate manufactured in accordance with this method, carrier wafer and diamond jewel
US6709463B1 (en) 2000-01-30 2004-03-23 Diamicron, Inc. Prosthetic joint component having at least one solid polycrystalline diamond component
US6517583B1 (en) 2000-01-30 2003-02-11 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond compact articulation surface and a counter bearing surface
US6514289B1 (en) 2000-01-30 2003-02-04 Diamicron, Inc. Diamond articulation surface for use in a prosthetic joint
US6494918B1 (en) 2000-01-30 2002-12-17 Diamicron, Inc. Component for a prosthetic joint having a diamond load bearing and articulation surface
US6402787B1 (en) 2000-01-30 2002-06-11 Bill J. Pope Prosthetic hip joint having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6596225B1 (en) 2000-01-31 2003-07-22 Diamicron, Inc. Methods for manufacturing a diamond prosthetic joint component
US20030157746A1 (en) * 2000-09-01 2003-08-21 Herbert Guttler Composite structure for electronic microsystems and method for production of said composite structure
US7056763B2 (en) 2000-09-01 2006-06-06 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Composite structure for electronic microsystems and method for production of said composite structure
US20070111475A1 (en) * 2004-04-16 2007-05-17 Thomas Licht Method for the structured application of a laminatable film to a substrate for a semiconductor module
US7742843B2 (en) * 2004-04-16 2010-06-22 Infineon Technologies Ag Method for the structured application of a laminatable film to a substrate for a semiconductor module

Also Published As

Publication number Publication date
EP0681314B1 (en) 1998-12-16
US5744825A (en) 1998-04-28
EP0681314A3 (en) 1996-09-04
DE4415601A1 (en) 1995-11-09
JPH0864527A (en) 1996-03-08
DE59504533D1 (en) 1999-01-28
DE4415601C2 (en) 1997-12-18
EP0681314A2 (en) 1995-11-08
JP3180207B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US5525537A (en) Process of producing diamond composite structure for electronic components
He et al. Synthesis of epitaxial Sn x Ge1− x alloy films by ion‐assisted molecular beam epitaxy
Nishino et al. Chemical Vapor Deposition of Single Crystalline β‐SiC Films on Silicon Substrate with Sputtered SiC Intermediate Layer
US6054719A (en) Composite structure of an electronic component
US5656828A (en) Electronic component with a semiconductor composite structure
Raiko et al. MPCVD diamond deposition on porous silicon pretreated with the bias method
Hatayama et al. Time-resolved reflection high-energy electron diffraction analysis in initial stage of 3C-SiC growth on Si (001) by gas source molecular beam epitaxy
JP2522617B2 (en) Carbon alloyed cubic boron nitride film
Yang et al. Role of As 4 in Ga diffusion on the GaAs (001)-(2× 4) surface: A molecular beam epitaxy-scanning tunneling microscopy study
Yagi et al. 3C SiC growth by alternate supply of SiH2Cl2 and C2H2
Ebe et al. (111) A CdTe rotation growth on (111) Si with low growth rate by metalorganic chemical vapor deposition
He et al. Synthesis of dislocation free Si y (Sn x C1− x) 1− y alloys by molecular beam deposition and solid phase epitaxy
Uchida et al. Characterization of nitridated layers and their effect on the growth and quality of GaN
Jones et al. The properties of annealed AlN films deposited by pulsed laser deposition
Li et al. Molecular beam epitaxial growth of Si 1− x Ge x/Si pseudomorphic layers using disilane and germanium
Woo et al. Epitaxial growth of β–SiC on silicon by bias-assisted hot filament chemical vapor deposition from solid graphite and silicon sources
JP2006521681A (en) Formation of semiconductor layers by chemical vapor deposition using low energy plasma and semiconductor heterostructure devices
Henke et al. Low Temperature Formation of β-SiC by C60Deposition on Silicon
Bar-Yam et al. Quasi-Equilibrium Nucleation and Growth of Diamond and Cubic Boron-Nitride
Gerlach et al. Study of Low-Energy Ion Assisted Epitaxy of Gan Films: Influence of the Initial Growth Rate
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
Järrendahl et al. Growth of highly (0001)-oriented aluminum nitride thin films with smooth surfaces on silicon carbide by gas-source molecular beam epitaxy
Atwater et al. Epitaxial Growth of Metastable SnχGe1-χ Alloy Films by Ion-Assisted Molecular Beam Epitaxy
Abidri et al. Effect of Cu deposition and annealing upon a GaSe/Si (111) heterojunction
Gotoh et al. Growth mechanism of a Ag crystal particle containing a twin plane grown on a Mo (110) surface

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIMLER-BENZ AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZACHAI, REINHARD;FUESSER, HANS-JUERGEN;GUTHEIT, TIM;REEL/FRAME:007483/0371;SIGNING DATES FROM 19950505 TO 19950509

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20040611

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362