US5568475A - ATM network architecture employing an out-of-band signaling network - Google Patents

ATM network architecture employing an out-of-band signaling network Download PDF

Info

Publication number
US5568475A
US5568475A US08/360,897 US36089794A US5568475A US 5568475 A US5568475 A US 5568475A US 36089794 A US36089794 A US 36089794A US 5568475 A US5568475 A US 5568475A
Authority
US
United States
Prior art keywords
trunk
call
switch
atm
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/360,897
Inventor
Bharat T. Doshi
N. Farber
P. Harshavardhana
Rajiv Kapoor
Arik Kashper
Steven S. Katz
Kathleen S. Meier-Hellstern
Thomas S. Guiffrida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
AT&T Corp
Sound View Innovations LLC
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Priority to US08/360,897 priority Critical patent/US5568475A/en
Assigned to AT&T CORP. reassignment AT&T CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOSHI, BHARAT TARACHAND, FARBER, N., HARSHAVARDHANA, P., KAPOOR, RAJIV, KASHPER, ARIK, KATZ, STEVEN S., MEIER-HELLSTERN, KATHLEEN S.
Assigned to AT&T IPM CORP. reassignment AT&T IPM CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AT&T CORP.
Priority to CA002161473A priority patent/CA2161473C/en
Priority to EP95308753A priority patent/EP0719068A3/en
Priority to JP33157595A priority patent/JPH08242288A/en
Assigned to LUCENT TECHNOLOGIES, INC. reassignment LUCENT TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AT&T CORP.
Application granted granted Critical
Publication of US5568475A publication Critical patent/US5568475A/en
Assigned to THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT reassignment THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS Assignors: LUCENT TECHNOLOGIES INC. (DE CORPORATION)
Assigned to LUCENT TECHNOLOGIES INC. reassignment LUCENT TECHNOLOGIES INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS Assignors: JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK), AS ADMINISTRATIVE AGENT
Assigned to CREDIT SUISSE AG reassignment CREDIT SUISSE AG SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL-LUCENT USA INC.
Assigned to SOUND VIEW INNOVATIONS, LLC reassignment SOUND VIEW INNOVATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL LUCENT
Assigned to ALCATEL-LUCENT USA INC. reassignment ALCATEL-LUCENT USA INC. RELEASE OF SECURITY INTEREST Assignors: CREDIT SUISSE AG
Assigned to ALCATEL-LUCENT USA INC. reassignment ALCATEL-LUCENT USA INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG
Anticipated expiration legal-status Critical
Assigned to ALCATEL-LUCENT USA INC. reassignment ALCATEL-LUCENT USA INC. MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL USA MARKETING, INC., ALCATEL USA SOURCING, INC., ALCATEL-LUCENT USA INC., LUCENT TECHNOLOGIES, INC.
Assigned to NOKIA OF AMERICA CORPORATION reassignment NOKIA OF AMERICA CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALCATEL-LUCENT USA INC.
Assigned to ALCATEL LUCENT reassignment ALCATEL LUCENT NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: NOKIA OF AMERICA CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • H04L49/104Asynchronous transfer mode [ATM] switching fabrics
    • H04L49/105ATM switching elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6402Hybrid switching fabrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • H04L49/253Routing or path finding in a switch fabric using establishment or release of connections between ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3081ATM peripheral units, e.g. policing, insertion or extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0003Switching fabrics, e.g. transport network, control network
    • H04J2203/0012Switching modules and their interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0066Signalling, e.g. protocols, reference model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5629Admission control
    • H04L2012/563Signalling, e.g. protocols, reference model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports

Definitions

  • the invention relates to an architecture for a telecommunications network comprising Asynchronous Transfer Mode switches interfacing with existing out-of-band signaling networks, such as the SS7 signaling network, as well as Synchronous Transfer Mode transport networks.
  • Asynchronous Transfer Mode A protocol that will most likely be used for offering a wide range of different high-bandwidth services, e.g., multimedia services, will most likely be based on Asynchronous Transfer Mode (ATM) protocols.
  • ATM Asynchronous Transfer Mode
  • These protocols define a particular data structure called a "cell", which is a data packet of a fixed size (53 octets, each octet comprising eight bits).
  • a cell is formed by a header (five octets) and payload (48 octets) for transporting routing and user information.
  • VCI Virtual Path Identifier
  • VCI Virtual Channel Identifier
  • VCI Virtual Path Identifier
  • VCI Virtual Channel Identifier
  • the VCI and VPI pair have only local significance on the link between ATM switches (nodes).
  • ATM switches as well as so-called cross-connect apparatus use routing tables to map VCI and VPI values received via an incoming link to outgoing values and an outgoing link as a way of routing the associated cell through the ATM switch (or cross-connect apparatus).
  • a virtual Circuit Link (VCL) is a logical link between two switches (or a cross-connect nodes) and is identified by a VCI value.
  • VPL Virtual Path Link
  • VCC virtual Circuit Connection
  • VPC Virtual Path Connection
  • routing and cross-connection devices are digital circuit switched facilities, in which the routing of user information, e.g., voice and voice band-data services, from a source to a destination is via an end-to-end switched connection, which is dedicated for the duration of an associated call using the connection. That is, the call is set-up by assigning it to an idle time slot (one for each link) of a frame of time slots that are transported over a digital link(s) interconnecting origination and destination switches. As such, the connection is semi-permanent--lasting only for the duration of the associated call.
  • an ATM network does not use dedicated time slots. Instead, VCCs and VPCs share the network resources asynchronously. An ATM network thus has to ensure that it has sufficient resources to handle the traffic that is transported via the VCCs and/or VPCs that it has established (set up).
  • MF in-band signaling is still used in some of the switches associated with Local Exchange Carriers (LEC) to set up a call connection, but such signaling is being replaced by out-of-band packet signaling, for example, the packet signaling provided by the well-known Signaling System 7 (SS7).
  • SS7 signaling is used by Interexchange Carrier (IXC) networks (e.g., AT&T) to establish call connections over their associated intertoll digital networks and to access network databases.
  • IXC Interexchange Carrier
  • AT&T Interexchange Carrier
  • Network switches perform other functions in addition to signaling. These other functions include, for example, Digital Signal Processing (DSP) functions such as detecting special tones, playing recorded announcements, canceling echoes, etc.
  • DSP Digital Signal Processing
  • TA Terminal Adapter
  • AAL ATM Adaptation Layer
  • the art of telephone switching is advanced in accord with an aspect of the invention by arranging an ATM switch of an ATM network (and cross-connect apparatus) so that it exchanges signaling information with an STM switch and/or another ATM switch via a signaling mechanism that is employed by the STM switch to forward a call to a destination, for example, out-band signaling.
  • the ATM switch with an out-of-band signaling mechanism, for example, the SS7 network, and, then, in response to receiving from a STM or ATM switch via the signaling network a message containing, inter alia, an identity of a trunk that the sending switch will use to forward a telephone call to the ATM switch, translating the trunk identity into an identifier understood by the ATM switch, i.e., a virtual circuit identifier indicative of a virtual circuit over which information associated with the call will be received at an incoming port.
  • an out-of-band signaling mechanism for example, the SS7 network
  • the translation may be done on a one-to-one basis such that the virtual circuit identifier is made to be equivalent to the identity of the trunk. Similarly, the virtual path identifier is made to be equivalent to the identity of the associated trunk subgroup.
  • FIG. 1 is a broad block diagram of an illustrative ATM network in which the principles of the invention may be practiced
  • FIG. 2 illustrates a conventional busy/idle status table that is maintained by a call processor of FIG. 1;
  • FIG. 3 illustrates a translation table that a call processor of FIG. 1 may use to translate, in accord with the principles of the invention, the address of an incoming trunk and associated trunk subgroup into an incoming port, VCI and VPI;
  • FIG. 4 illustrates a translation table that a call processor of FIG. 1 may use to translate between, in accord with the principles of the invention, the address of an outgoing trunk and associated trunk subgroup into an outgoing port, VCI and VPI;
  • FIG. 5 illustrates a table that an ATM input controller of FIG. 1 populates with routing information relating to the routing of incoming VCI and VPI to an outgoing port, VCI and VPI;
  • FIG. 6 is broad block diagram of an illustrative ATM network arranged to interface with MF inband signaling in accord with an aspect of the principles of the invention
  • FIG. 7 is a simplified block diagram of an illustrative ATM network arranged to interface, in accord with an aspect of the invention, a signaling arrangement that is based on the "borrowed bit" scheme.
  • ATM network 200 includes a plurality of interconnected ATM switches. For the sake of clarity and simplicity only two ATM switches are shown in the FIG., namely ATM switches 215 and 220. ATM switches 215 and 220 are connected to one another via an ATM intertoll network 213 and are respectively connected to Local Exchange Carrier (LEC) networks 100 and 300. Network 200 also includes a Signal System 7 (SS7) network connected to the network 200 switches via respective signaling links, e.g., links 154 and 155, and associated Signal Transfer Points (STP), e.g., STPs 250-1 and 250-2.
  • SS7 Signal System 7
  • the network 200 ATM switches use the SS7 network to communicate signaling information to each other for the purpose of establishing respective virtual circuits, as will be discussed below in detail.
  • the ATM switches use the SS7 network to establish a virtual circuit connection, rather than a circuit switched connection, as is the case in STM networks.
  • the signaling between the LEC CO switch and the IXC ATM switch may be in-band or out-of-band using the SS7 signaling network.
  • a LEC CO switch may also use out-of-band signaling.
  • a LEC network comprises a plurality of so-called local Central Offices (CO) each of which may be, for example, the No. 5ESS switch available from AT&T and described in the AT&T Technical Journal, Vol. 64, No. 6, July/August 1985, pages 1303-1564. For the sake of clarity and simplicity only one CO is shown in each LEC network 100 and 300.
  • CO switch operates in a Synchronous Transfer Mode (STM) to transport speech signals associated with a particular call over a circuit-switched connection in digital form.
  • STM Synchronous Transfer Mode
  • a CO samples analog speech signals that it receives from a telephone station set at an 8 khz rate and supplies the resulting digital signals (samples) synchronously at a 64 kbs rate over the associated connection, in which each such sample is formed by, for example, eight bits (8-bit byte).
  • a CO converts digital signals that it receives over a circuit switched connection into analog signals and then supplies the resulting signals to a telephone line connected to a respective telephone station set engaged in the call.
  • a CO responsive to receipt of a telephone call originated by an associated telephone station set, e.g., station set S1, and responsive to a user thereat dialing a telephone number identifying a called telephone station set, e.g., station set S2, collects the digits as they are dialed by user.
  • CO 25 receives the last of the dialed digits, it then routes the call towards its destination via a trunk selected as a function of the dialed telephone number. The selected trunk, in turn, connects CO 25 to a next switch that will form part of the connection from the calling station to the called station set.
  • a CO alerts the next switch, i.e., ATM switch 215, by sending a call set-up message thereto via a signaling path.
  • signaling may be inband signaling, out-of-band signaling, etc.
  • the CO uses out-of-band signaling which is sent over an associated SS7 network.
  • a call set-up message contains, inter alia, (a) the dialed telephone number, (b) ANI identifying the calling station, (c) identifiers respectively identifying the trunk and associated trunk subgroup that will be used to route the call to switch 215, (d) a request for an end-to-end connection and (e) the address of switch 215. It will be assumed at this point that CO 25 transmits the message via link 26 and STP 28 of the LEC 100 SS7 network. (The transmitted call set-up message will also be referred to herein as an Initial Address Message (IAM).)
  • IAM Initial Address Message
  • STP 28 forwards the message to a destination STP--STP 250-1--identified as a function of the address contained in the received message.
  • STP 250-1 forwards the message to switch 215 via data link 154, which supplies the message to signal processor 215-1 interfacing ATM switch 215 with the SS7 network.
  • Signal processor 215-1 presents the received IAM to call processor 215-2.
  • Call processor 215-2 stores the IAM in associated memory and, identifies, as a function of the dialed number, the next, or destination, switch that may be used to establish the next or last segment of the connection to the destination CO, e.g., CO 50.
  • call processor 215-2 identifies ATM switch 220 as the destination IXC switch and identifies an idle one of its outgoing trunks and associated trunk subgroup that may be used to forward the incoming call to switch 220 via transmission path 213.
  • Call processor 215-2 does this by first translating the dialed number into the Network Switch Number (NSN) assigned to switch 220.
  • NSN Network Switch Number
  • Call processor 215-2 selects an idle outgoing trunk that may be used to forward the call to switch 220.
  • Call processor 215-2 selects such a trunk by translating the determined NSN into one or more trunk subgroups.
  • Call processor 215-2 then consults a trunk subgroup status map which it maintains in its associated memory to identify an outgoing trunk in one of the latter subgroups that is idle and may be used to forward the call to the destination switch. (An example of such status map is shown in FIG. 2, which is self explanatory.)
  • controller 215-2 forms its own IAM message containing the call information and identities (i.e., 213-1 and 60) of the trunk and subgroup that will be used to forward the call to switch 220.
  • Call processor 215-2 then sends the latter IAM to STP 250-1 via signal processor 215-2 and data link 154 for forwarding to switch 220.
  • STP 250-1 in turn and in a conventional manner, sends the message to STP 250-2 for delivery to ATM switch 220 vial link 155.
  • the switch 220 call processor (not shown) locates an idle outgoing trunk that may be used to connect the call to CO 50 and similarly creates its own IAM message for transmission to CO 50 via link 155, STP 250-2, LEC 300 STP 53 and data link 51.
  • CO 50 responsive to receipt of the IAM determines if the telephone connection 70 to station S2 is busy. If so, then CO 50 returns a busy message indicative thereof to switch 220 via the LEC 300 SS7 network. In response to receipt of the message, the call processor of switch 220 releases its outgoing trunk to CO 50 and forwards the busy message to switch 215 via the network 200 SS7 network. Similarly, call processor 215-2 releases outgoing trunk 213-1 of subgroup 60 and forwards the message to CO 25 via the SS7 networks of network 200 and LEC 100. CO 25, in turn, supplies busy tone to station S1 and releases its outgoing trunk to switch 215.
  • CO 50 returns a call complete message indicative thereof to switch 220 via the aforementioned SS7 network, and supplies ringing voltage to telephone line 70.
  • Switch 220 responsive to receipt of the call complete message passes the message to its associated call processor.
  • the switch 220 call processor then (a) forwards the call complete message to switch 215 via its associated signal processor and the SS7 network of network 200, (b) changes the status of its incoming trunk and outgoing trunk that will be involved in routing the call through its associated switching fabric to busy and (c) advises its associated translator circuit (not shown) of the connection involving the switch 220 incoming and outgoing trunks.
  • switch 220 (Since the architecture and operation of switch 220 is similar to that of switch 215, any discussion relating to switch 215 equally pertains to switch 220. Therefore, the following discussion of the operation of controller 215-3 equally pertains to the switch 220 controller, translator, etc., (not shown).)
  • signal processor 215-1 upon receipt of the call complete message via data link 154 passes the message to call processor 215-2.
  • processor 215-2 (a) forwards the call complete message to CO 25 via processor 215-1, STP 250-1 and the LEC 100 SS7 network, (b) changes the status of incoming trunk 27-1 and outgoing trunk 213-1 that will be involved in routing the call through its associated switching fabric to busy and (c) advises its associated translator circuit 215-3 of the connection that should be established between incoming trunk 1 of subgroup 27-1 and outgoing trunk 213-1 of subgroup 60.
  • Translator 215-3 more particularly, translates the incoming trunk and trunk subgroup identifiers received from call processor 215-2 into a form that is "understood" by conventional ATM switch controller 215-5. That is, in accord with an aspect of the invention, translator 215-3 translates the identifiers--1, and 27-1--associated with the incoming trunk into (a) respective predetermined VC and VP identifiers and (b) an incoming port circuit, e.g., port 27-1. Translator 215-3 does this using translation Table 400 shown in FIG. 3. Briefly, Table 400 comprises a plurality of entries in which each entry comprises five fields 411 through 415 containing associated translation data.
  • a data entry includes a trunk identifier (Tk) and associated trunk subgroup identifier (TSGi) in fields 411 and 412, respectively, which are translated into a predetermined incoming port (Pi), and VCIi and VPIi contained in fields 413 through 415, respectively.
  • Tk trunk identifier
  • TSGi trunk subgroup identifier
  • Pi predetermined incoming port
  • VCIi and VPIi contained in fields 413 through 415 respectively.
  • such a translation is done on a one-to-one basis as shown for entry 402, which translator 215-3 accesses to translate the trunk and trunk subgroup identifiers that it receives from call processor 215-2.
  • trunk and trunk subgroup identifiers 1 and 27-1 are translated on a one-to-one basis into a VCI of 1 and VPI of 27-1, respectively, as shown by the data inserted in fields 414 and 415 of entry 402.
  • the trunk and TSG are also mapped into an identifier identifying an incoming port, i.e., incoming port 27, as shown by the contents of field 413 of entry 402.
  • Translator 215-3 uses a similar table to translate the outgoing trunk and outgoing trunk subgroup identifiers (213-1 and 60, respectively) into an outgoing port identifier, VCIo and VPIo. An illustrative example of such a table is shown in FIG. 4, in which entry 501 is used to do the latter translation.)
  • Translator 215-3 then supplies the results of the translation to controller 215-5.
  • Controller 215-5 activates the virtual circuit connection from input port 1 to output port 213-1 so that speech signals originating at station set S1 and destined for station S2 may be transported over 45 switch fabric 215-4 during the associated virtual connection. Controller 215-5 does this by supplying the input VCI/VPI (1/27) to output VCI/VPI (213-1/60) mapping to input port 27. Port 27, in turn, enters the output VCI/VPI mapping data in a routing map. An example of the latter map is shown in FIG. 5. In particular, each of the switch 215 (220) port circuits stores a routing map 600 in its associated port memory (not shown).
  • fields 602 and 603 of each entry in the table respectively contain a virtual channel and virtual path identifiers. That is, the virtual channels associated with a particular virtual path are entered in field 602 of sequential entries in the table, as shown for entry 601 and the following entries.
  • a port receives routing information from its associated controller 215-5, it enters the routing information in an appropriate one of the table 600 entries. For example, it is seen that routing information has been entered in fields 604 through 606 of entry 601.
  • input port 1 receives an ATM cell bearing a VCI and VPI of 1 and 27, respectively, then it processes the cell in accord with the contents of entry 601 of routing table 600, as will be explained below in detail.
  • Controller 215-5 also activates another, but opposite, virtual connection from port 213-1 to port 27 to transport speech or data signals that originate at station S2 and received via switch 220 and destined for station S1. Accordingly, an opposite virtual connection may be so activated when a cell carrying samples of station S2 speech samples (or voice-band data) are received via switch 220. (It is noted that switch 220 performs similar routing functions in response to receipt of the call complete message.)
  • CO 25 When CO 25 receives the call complete message, it supplies an alerting tone to telephone line 26 to notify the user thereat that the call connection has been completed and that a ringing signal is being supplied to station S2. When the user at station S2 answers the call, then he/she may communicate with the station S1 user in which the ensuing speech (or voice-band data) will be transported via ATM network 200. Specifically, first considering speech signals received at CO 25 from station S1, CO 25 digitizes such signals in the manner described above and outputs the result to its associated trunk 1 of TSG 27.
  • trunk and TSG respectively correspond to a channel (channel 1) and group of channels (group 27) of a time frame during which CO transmits a digital sample of a station S1 speech signal over path 27-1.
  • Echo Canceler 205 receives the digital sample and, in a conventional manner, cancels the sample if it represents an echo of a digital speech sample originating at station S2. If not, then the sample is presented to STM/ATM Terminal Adapter 210.
  • TA 210 is arranged to pack samples of voice signals as they are received from STM switch 25 via trunk (channel) 1 of trunk group 27 into an ATM cell.
  • TA 210 maintains a predetermined table which it uses to map between trunks and VCIs and between trunk subgroups and VPIs transported over link 211.
  • a payload of 47 or 48 octets (depending on the particular ATM adaptation layer) have been so collected, then TA 210, in accord with an aspect of the invention, translates the trunk address and trunk group address over which the samples were received into a VCI, VPI and incoming port address.
  • such a translation is done at TA 210 (similarly so at TA 225) on a one-to-one basis. Accordingly, TA 210 translates a trunk address of 1 and a TSG address of 27 into a VCI of 1 and VPI of 27, respectively.
  • TA 210 then forms a cell header of five octets including the translated VCI and VPI values and prepends (prefixes) the header to the 48 octet payload to form an ATM cell.
  • TA 210 then supplies the resulting ATM cell to originating port 27-1 of switch 215.
  • Port 27-1 responsive to receipt of the cell, checks its associated routing table 600 to determine if routing translation information has been stored therein for the VCI and VPI contained in the received cell. If not, port 27-1 discards the cell. Otherwise, port 27-1 translates the VCI and VPI contained in the cell into an outgoing address.
  • port 27-1 translates the VCI and VPI of 1 and 27, respectively, into an outgoing port address of 213-1, VCI of 213-1 and VPI of 60 based on the contents of entry 601 of table 600 (FIG. 5).
  • Port 27-1 then substitutes the latter VC and VP identifiers for the VCI and VPI identifiers contained in the received cell and presents the result to switch fabric 215-4 for routing, in a conventional manner. That is, switch fabric 215-4 routes the cell to port 213-1 via a virtual circuit connection identified by the VC and VP identifiers attached to the routed cell.
  • output port 213-1 Upon receipt of the cell from switch fabric 215-4, output port 213-1 stores the cell in a queue (e.g., a First-In, First-Out memory) associated with high-speed transmission path 213. When the data cell reaches the top of queue, it is then unloaded from the queue and transmitted, either by itself or part of a so-called super frame, over path 213 to destination ATM switch 220.
  • ATM switch 220 then, using its own table 500, similarly translates the VC and VP identifiers in the received cell into output VC and VP identifiers and then routes the cell via its associated switch fabric and virtual circuit identified as a function of the latter identifiers.
  • the switch 220 output port Upon receipt of the cell via the associated switch fabric, the switch 220 output port stores the cell in an associated queue.
  • TA 225 When the cell is thereafter unloaded from the queue it is transmitted over path 226 connected to TA 225.
  • TA 225 translates the VC and VP identifiers contained in the received cell into trunk and trunk subgroup identifiers, in accord with an aspect of the invention. In accord with above mentioned aspect of the invention, such translation is done on a one-to-one basis.
  • TA 225 then unpacks the payload of 48 octets of the received cell and supplies them to the so-called ATM Adaptation Layer (AAL) implemented in TA 225.
  • ATM Adaptation Layer ATM Adaptation Layer
  • the AAL (a) buffers the received octets, (b) removes the AAL header, if any, (c) performs AAL functions with respect to the received octets, and (d) then sends each octet in sequence to CO 50 via EC 230 and translated trunk and subgroup of path 52.
  • the latter trunk and trunk subgroup may be a time slot of a group of time slots, in which the such transmission of octets over path 231-1 occurs during the identified time slot.
  • an STM switch may employ in-band MF signaling to communicate signaling information to an IXC.
  • ATM network 200 may be readily adapted to receive such information via in-band signaling and then, in accord with an aspect of the invention, present such information to the originating ATM switch, e.g., switch 215, via another signaling network, e.g., the SS7 network.
  • the architecture of network 200 does not have to change to interface with a signaling technique different from the signaling technique employed by the SS7 network.
  • ATM network 200 may interface with central offices using different signaling techniques to communicate signaling information to a next switch, wherein the next switch may be an ATM switch rather than an STM switch.
  • CO 175 When CO 175 has collected the last of the dialed digits and has determined that the call is to be routed via network 200, it selects an idle trunk connecting to network 200 and transmits an off-hook signal thereto over the selected trunk and path 176.
  • Signal processor 240 of module 245 monitors the signals received via the selected trunk of port 241 and returns a signal over the trunk to CO 175 if the call can be accepted by TA 255 (referred to as TA 210 in FIG. 1).
  • CO 175 begins to transmit the dialed telephone number and caller's ANI via the selected trunk (digital channel of path 176).
  • Interface port 241 of module 245 multiplexes the contents (eight bit byte) of each trunk (channel) to a respective signal path 242 extending to an associated EC 244, which then presents the byte to Terminal Adapter (TA) 255.
  • TA 255 accumulates such bytes as they are received from the source trunk to form a cell and then presents the cell to an associated input port of switch 215, as described above. However, the input port discards the cell since a virtual circuit connection for the call has not yet been activated.
  • port 241 extracts the signaling information and sends it to signal processor 240 via path 242.
  • Signal processor 240 responsive to data indicative of a MF signal appearing on path 242, collects the data and succeeding such data until it has accumulated the signals indicative of at least the called telephone number.
  • Signal processor 240 then, as described above, forms an SS7 IAM message containing, inter alia, (a) the dialed telephone number, (b) ANI identifying the calling station, if acquired (c) identifiers respectively identifying the trunk and associated trunk subgroup over which the calling information was received, (d) a request for an end-to-end connection and (e) the address of switch 215.
  • Signal processor 245 then transmits the message via data link 157 and STP 250-4. Switch 215 and then switch 220 process the IAM message in the manner discussed above.
  • the switch 220 call processor locates an idle outgoing trunk that may be used to route the call to the destination CO and then creates its own IAM message for transmission via link 155 and STP 250-2 to the network 200 signal transfer point that interfaces with that CO.
  • the latter STP in turn, retransmits the message to STP 250-3 for delivery to signal processor 240 of module 235.
  • signal processor 240 of module 235 selects the idle trunk to CO 180 (associated with the trunk from switch 250 to TA 225) and sends an off-hook signal thereto via port 241 of module 235 and the selected trunk. If CO 180 can accept the call, then it returns an off-hook signal via the latter trunk.
  • Signal processor 240 of module 235 responds to the off-hook by transmitting the called number contained in the received IAM message over the selected trunk to CO 180.
  • signal processor 240 of module 235 returns a call complete message to switch 220 via the network 200 SS7 network, in which the latter message contains the trunk and TSG of the trunk selected by the latter signals processor.
  • ATM switch 220 processes the call complete message in the manner described above and transmits a call complete message to switch 215, which similarly processes the message in the manner described above.
  • switch 215 returns an SS7 call complete message to the originating CO. However, in the instance case, the latter message is sent via signal processor 240 of module 245.
  • Signal processor sends an off-hook (wink) signal to CO 175 via the trunk that CO 175 selected to route the station set S3 call to network 200.
  • wink an off-hook
  • the latter wink signal is a functional equivalent of the SS7 call complete message.
  • the station S3 user may begin to communicate with the station S4 user via the virtual connections that are respectively established by switches 215 and 220 as they are needed.
  • CO 175 or 180 When either the station set S3 or S4 user terminates the call--"hangs up", then CO 175 or 180, as the case may be, sends an on-hook signal to network 200. Assuming that the on-hook signal is sent by CO 175 over the selected trunk connecting to module 245, then signal processor 240 of module 245, responsive to receipt of the on-hook signal (sent by port 241 of module 245), forms an SS7 network call termination message containing, inter alia, the identity of the latter trunk and its associated TSG and then sends the message to switch 215 via data link 157 and the SS7 network.
  • the switch 215 call processor Upon receipt of the termination message, the switch 215 call processor (a) directs the input port associated with the call to clear the entry that it made in its translation Table 600 for the call, (FIG. 5), (b) sets the status of the trunk to idle in the status table (FIG. 2) associated with switch 215 and (c) sends a call termination message to switch 220, in which the latter message identifies the trunk and TSG identifiers that translate to VCI and VPI that are used to route the call from switch 215 to switch 220.
  • the switch 220 call processor responds similarly to the receipt of the latter message and sends a call termination message to the destination CO via link 155 and STP 250-2 such that the message is instead delivered to signal processor 240 of module 135 via STP 250-3 and link 156.
  • the latter signal processor transmits an on-hook signal to CO 180.
  • CO 180 sets the status of the return path of the trunk connecting to module 235 to idle and then waits for the station set S4 user to "hang-up".
  • an incoming port of an ATM switch discards a data cell if a virtual circuit connection for the associated call has not been activated.
  • such discarding may be done at the Terminal Adapter, e.g., TA 255, 210. etc., at the direction of the call processor of the associated ATM switch, e.g., switch 215.
  • TA 255 (210, etc.,) may be arranged so that it receives control instructions from the associated call processor via a communications path connecting the TA to the call processor.
  • Such a path may comprise a virtual circuit connection from the call processor through the switch fabric to a control port connecting connections to the TA via path 216.
  • the call processor may instruct the TA not to accumulate data received via a particular trunk, i.e., an idle trunk. Thereafter, when the trunk become busy and a virtual circuit has been assigned thereto, then the call processor instructs the TA to begin forming data cells from the data received via the trunk.
  • ATM network 200 may thus interface with central offices, or other entities, that use different signaling techniques, as discussed above in connection with in-band signaling.
  • a nodal for example, a Private Branch Exchange (PBX)
  • PBX Private Branch Exchange
  • FIG. 7 there is shown nodal (PBX) 190 connected to network 200 via communications path 195, in which the latter path 195 may be a so-called T1 carrier transmission line.
  • the transmission protocol that is used in a T1 carrier system is a 125 microsecond frame composed of 24 channels in which each channel comprises eight bits.
  • a telephone call is routed via the T1 carrier system via a channel assigned to the call.
  • PBX 190 routes long distance calls originating at PBX 190 to network (or IXC ) 200 by assigning each such call to a respective one of the aforementioned channels for the duration of the call.
  • a channel is either busy (off-hook) or idle (on-hook).
  • Signaling information indicative of whether a channel is off-hook or on-hook is transmitted over the channel by "borrowing" one bit (i.e., the least significant bit) from the channel every sixth and twelfth frames, in which the latter frames correspond to A and B signaling messages.
  • Each signaling bit of each of the 24 channels relates only to the associated channel.
  • the borrowed signaling bit of a channel is available more than 1300 times each second, which suffices to transmit supervisory signals (e.g., off-hook and on-hook) and other signaling information.
  • PBX 190 responsive to the off-hook accumulates the dialed digits and then determines that the call is to be routed over path 195, and therefor, assigns the call to an idle channel of path 195.
  • T1 carrier equipment (not shown) located and interfacing with PBX 190 changes the state of the signaling bit of the assigned channel in the sixth and twelfth frames to a one.
  • PBX 190 then outputs each of the dialed digits to path 195 via the latter equipment and assigned channel.
  • Interface port circuit 241 of module 260 multiplexes the contents (eight bit byte) of each of the twenty four channels to respective signaling paths 242 extending to an associated EC 244, which then sends the signaling bits to a respective input port of switch 215 and to the associated signal processor 265.
  • Signal processor 265 of module 260 monitors the contents of the aforementioned assigned channel and responds upon receipt of signaling information via the borrowed bits. That is, signal processor 240 associates the assigned channel with a trunk identifier and associates the 24 channels with a TSG identifier. Signal processor 240 then begins to accumulate the digits that will be transmitted via succeeding ones of the assigned channel.
  • signal processor When signal processor receives the last of the dialed digits it then forms an IAM message addressed to switch 215, in which the message also contains, inter alia (a) the trunk and TSG identifiers that have been associated with the assigned channel, (b) calling station ANI and (c)dialed digits.
  • Signal processor 240 of module 260 then transmits the message to switch 215 via STP 250-4 and network 200 SS7 network. Switch 215 similarly responds to the receipt of the message in the manner discussed above.
  • Signal processor 240 performs an opposite function with respect to signaling information (e.g., call complete message, termination message, etc.,) that it receives from switch 215. For example, responsive to receipt of a call complete message, signal processor 240 of module 260 converts the messages into the T1 carrier protocol and then transmits the message to nodal 190 one bit at a time using the borrowed signaling bit of a return channel assigned to the call.
  • signaling information e.g., call complete message, termination message, etc.
  • one or more of the analog type telephone stations sets shown in the FIGs. may be ISDN type station sets.
  • a CO switch may be an ATM based switch and one or more IXC switches may be a STM based switch.

Abstract

An Asynchronous Transfer(ATM) network comprising a plurality of ATM switches may be arranged so that it receives calls from Synchronous Transfer Mode (STM) switches that employ out-of-band signaling such that the ATM switches communicate telephone call signaling information between each other and the STM switches via an out-of-band signaling network associated with the ATM network and interface with out-of-band networks associated with the STM switches.

Description

FIELD OF THE INVENTION
The invention relates to an architecture for a telecommunications network comprising Asynchronous Transfer Mode switches interfacing with existing out-of-band signaling networks, such as the SS7 signaling network, as well as Synchronous Transfer Mode transport networks.
BACKGROUND OF THE INVENTION
In telecommunications systems, the vehicle that will most likely be used for offering a wide range of different high-bandwidth services, e.g., multimedia services, will most likely be based on Asynchronous Transfer Mode (ATM) protocols. These protocols define a particular data structure called a "cell", which is a data packet of a fixed size (53 octets, each octet comprising eight bits). A cell is formed by a header (five octets) and payload (48 octets) for transporting routing and user information.
The cell-routing concept in ATM is based on two aspects comprising a routing field in the cell header containing a Virtual Path Identifier (VPI) and Virtual Channel Identifier (VCI). The VCI and VPI pair have only local significance on the link between ATM switches (nodes). ATM switches as well as so-called cross-connect apparatus use routing tables to map VCI and VPI values received via an incoming link to outgoing values and an outgoing link as a way of routing the associated cell through the ATM switch (or cross-connect apparatus). A virtual Circuit Link (VCL) is a logical link between two switches (or a cross-connect nodes) and is identified by a VCI value. Similarly, a Virtual Path Link (VPL) is a logical link between two switches (or cross-connect nodes) identified by a respective VPI value. A virtual Circuit Connection (VCC) is an end-to-end connection between two devices and is formed by the concatenation of VCLs, and a Virtual Path Connection (VPC) is formed by the concatenation of VPLs. If an appreciable number of VCCs follow the same route segment, then it is likely that they will share the same VPC associated with that segment. In such a case, intermediate switches do not change the VCI values, and, therefore, are referred to as VP switches.
Current telephone networks as well as their associated transmission media, routing and cross-connection devices are digital circuit switched facilities, in which the routing of user information, e.g., voice and voice band-data services, from a source to a destination is via an end-to-end switched connection, which is dedicated for the duration of an associated call using the connection. That is, the call is set-up by assigning it to an idle time slot (one for each link) of a frame of time slots that are transported over a digital link(s) interconnecting origination and destination switches. As such, the connection is semi-permanent--lasting only for the duration of the associated call.
In contrast, an ATM network does not use dedicated time slots. Instead, VCCs and VPCs share the network resources asynchronously. An ATM network thus has to ensure that it has sufficient resources to handle the traffic that is transported via the VCCs and/or VPCs that it has established (set up).
It is well-known that current circuit-switched voice and voice-band data services use one of a number of different signaling and messaging techniques for the purpose of establishing a circuit switched connection between Synchronous Transfer Mode (STM) switches or accessing network databases to process special telephone services. Such signaling techniques include in-band signaling using so-called "borrowed bits" associated with a data stream; in-band signaling using Multi-Frequency (MF) tones, and out-of-band signaling using a separate packet network. In-band signaling using "borrowed bits" is used by customer premises equipment (e.g., a private branch exchange) to signal an STM network switch over a digital transmission facility. MF in-band signaling is still used in some of the switches associated with Local Exchange Carriers (LEC) to set up a call connection, but such signaling is being replaced by out-of-band packet signaling, for example, the packet signaling provided by the well-known Signaling System 7 (SS7). SS7 signaling is used by Interexchange Carrier (IXC) networks (e.g., AT&T) to establish call connections over their associated intertoll digital networks and to access network databases. Advantageously, most, but not all, LEC switches are now being provided with the SS7 type of out-of-band signaling capability.
Network switches perform other functions in addition to signaling. These other functions include, for example, Digital Signal Processing (DSP) functions such as detecting special tones, playing recorded announcements, canceling echoes, etc.
Presently, the designers of telecommunications networks are seriously considering replacing the STM switching and associated transport facilities with Broadband ISDN (B-ISDN) based on ATM as the underlying technology. What this means is that the circuit switched structure, associated signaling systems, databases, operations systems, etc., will be replaced by systems using ATM based transport, signaling and messaging. At this point in time, it appears that changing the STM switched transport to ATM transport may be relatively easy and could be accomplished in the near future. However, network signaling and messaging have been designed and developed over many years to guarantee that critical network applications will operate correctly. It is therefore unlikely that the entire signaling network will be converted at once to broadband signaling. It is also unlikely that a telecommunications carrier (LEC or IXC) will replace its entire STM network at once with a B-ISDN/ATM network, but will more likely migrate toward that end in stages such that during intermediate stages of the conversion network may be composed of STM and ATM elements. Accordingly, there will be a need to develop technology that will gracefully interface STM elements with ATM elements and allow ATM type switches to interface with the different types of existing signaling networks. The need for such interfacing has been recognized, but has been limited to the transport of user information only. Accordingly, the relevant technology has only advanced to the point of defining a Terminal Adapter (TA) function to implement appropriate ATM Adaptation Layer (AAL) protocols to interface conventional circuit-switched-transport protocols (e.g., time slot protocols for voice and dedicated circuits) with ATM based transport protocols.
SUMMARY OF THE INVENTION
The art of telephone switching is advanced in accord with an aspect of the invention by arranging an ATM switch of an ATM network (and cross-connect apparatus) so that it exchanges signaling information with an STM switch and/or another ATM switch via a signaling mechanism that is employed by the STM switch to forward a call to a destination, for example, out-band signaling. In particular, we achieve an advantage by interconnecting the ATM switch with an out-of-band signaling mechanism, for example, the SS7 network, and, then, in response to receiving from a STM or ATM switch via the signaling network a message containing, inter alia, an identity of a trunk that the sending switch will use to forward a telephone call to the ATM switch, translating the trunk identity into an identifier understood by the ATM switch, i.e., a virtual circuit identifier indicative of a virtual circuit over which information associated with the call will be received at an incoming port.
In accord with an aspect of the invention, the translation may be done on a one-to-one basis such that the virtual circuit identifier is made to be equivalent to the identity of the trunk. Similarly, the virtual path identifier is made to be equivalent to the identity of the associated trunk subgroup.
These and other aspects of the invention will be appreciated as they are disclosed in the following detailed description and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
In the drawing:
FIG. 1 is a broad block diagram of an illustrative ATM network in which the principles of the invention may be practiced;
FIG. 2 illustrates a conventional busy/idle status table that is maintained by a call processor of FIG. 1;
FIG. 3 illustrates a translation table that a call processor of FIG. 1 may use to translate, in accord with the principles of the invention, the address of an incoming trunk and associated trunk subgroup into an incoming port, VCI and VPI;
FIG. 4 illustrates a translation table that a call processor of FIG. 1 may use to translate between, in accord with the principles of the invention, the address of an outgoing trunk and associated trunk subgroup into an outgoing port, VCI and VPI;
FIG. 5 illustrates a table that an ATM input controller of FIG. 1 populates with routing information relating to the routing of incoming VCI and VPI to an outgoing port, VCI and VPI;
FIG. 6 is broad block diagram of an illustrative ATM network arranged to interface with MF inband signaling in accord with an aspect of the principles of the invention;
FIG. 7 is a simplified block diagram of an illustrative ATM network arranged to interface, in accord with an aspect of the invention, a signaling arrangement that is based on the "borrowed bit" scheme.
DETAILED DESCRIPTION
An exemplary embodiment of an ATM network arranged as an IntereXChange Carrier network is shown in FIG. 1. ATM network 200 includes a plurality of interconnected ATM switches. For the sake of clarity and simplicity only two ATM switches are shown in the FIG., namely ATM switches 215 and 220. ATM switches 215 and 220 are connected to one another via an ATM intertoll network 213 and are respectively connected to Local Exchange Carrier (LEC) networks 100 and 300. Network 200 also includes a Signal System 7 (SS7) network connected to the network 200 switches via respective signaling links, e.g., links 154 and 155, and associated Signal Transfer Points (STP), e.g., STPs 250-1 and 250-2. In accord with an aspect of the invention, the network 200 ATM switches use the SS7 network to communicate signaling information to each other for the purpose of establishing respective virtual circuits, as will be discussed below in detail. Thus, in accord with an aspect of the invention, the ATM switches use the SS7 network to establish a virtual circuit connection, rather than a circuit switched connection, as is the case in STM networks. The signaling between the LEC CO switch and the IXC ATM switch may be in-band or out-of-band using the SS7 signaling network. In accord with an illustrative embodiment of the invention, a LEC CO switch may also use out-of-band signaling.
As is well-known, a LEC network comprises a plurality of so-called local Central Offices (CO) each of which may be, for example, the No. 5ESS switch available from AT&T and described in the AT&T Technical Journal, Vol. 64, No. 6, July/August 1985, pages 1303-1564. For the sake of clarity and simplicity only one CO is shown in each LEC network 100 and 300. In an illustrative embodiment of the invention, a CO switch operates in a Synchronous Transfer Mode (STM) to transport speech signals associated with a particular call over a circuit-switched connection in digital form. That is, a CO samples analog speech signals that it receives from a telephone station set at an 8 khz rate and supplies the resulting digital signals (samples) synchronously at a 64 kbs rate over the associated connection, in which each such sample is formed by, for example, eight bits (8-bit byte). Conversely, A CO converts digital signals that it receives over a circuit switched connection into analog signals and then supplies the resulting signals to a telephone line connected to a respective telephone station set engaged in the call.
More particularly, a CO, e.g., CO 25, responsive to receipt of a telephone call originated by an associated telephone station set, e.g., station set S1, and responsive to a user thereat dialing a telephone number identifying a called telephone station set, e.g., station set S2, collects the digits as they are dialed by user. When CO 25 receives the last of the dialed digits, it then routes the call towards its destination via a trunk selected as a function of the dialed telephone number. The selected trunk, in turn, connects CO 25 to a next switch that will form part of the connection from the calling station to the called station set. As is well known, and as discussed to some extent above, a CO alerts the next switch, i.e., ATM switch 215, by sending a call set-up message thereto via a signaling path. As mentioned above, such signaling may be inband signaling, out-of-band signaling, etc. Assume at this point that the CO uses out-of-band signaling which is sent over an associated SS7 network. With this signaling mechanism, a call set-up message contains, inter alia, (a) the dialed telephone number, (b) ANI identifying the calling station, (c) identifiers respectively identifying the trunk and associated trunk subgroup that will be used to route the call to switch 215, (d) a request for an end-to-end connection and (e) the address of switch 215. It will be assumed at this point that CO 25 transmits the message via link 26 and STP 28 of the LEC 100 SS7 network. (The transmitted call set-up message will also be referred to herein as an Initial Address Message (IAM).)
Responsive to receipt of the IAM, STP 28 forwards the message to a destination STP--STP 250-1--identified as a function of the address contained in the received message. In a similar manner, STP 250-1 forwards the message to switch 215 via data link 154, which supplies the message to signal processor 215-1 interfacing ATM switch 215 with the SS7 network. Signal processor 215-1, in turn, presents the received IAM to call processor 215-2. Call processor 215-2 stores the IAM in associated memory and, identifies, as a function of the dialed number, the next, or destination, switch that may be used to establish the next or last segment of the connection to the destination CO, e.g., CO 50. Since the called station set is station S2, then call processor 215-2 identifies ATM switch 220 as the destination IXC switch and identifies an idle one of its outgoing trunks and associated trunk subgroup that may be used to forward the incoming call to switch 220 via transmission path 213. Call processor 215-2 does this by first translating the dialed number into the Network Switch Number (NSN) assigned to switch 220. Call processor 215-2 then selects an idle outgoing trunk that may be used to forward the call to switch 220. Call processor 215-2 selects such a trunk by translating the determined NSN into one or more trunk subgroups. Call processor 215-2 then consults a trunk subgroup status map which it maintains in its associated memory to identify an outgoing trunk in one of the latter subgroups that is idle and may be used to forward the call to the destination switch. (An example of such status map is shown in FIG. 2, which is self explanatory.)
Assuming that the selected outgoing trunk and subgroup are, for example, outgoing trunk 213-1 of subgroup 60 (not shown in the FIG.), then controller 215-2 forms its own IAM message containing the call information and identities (i.e., 213-1 and 60) of the trunk and subgroup that will be used to forward the call to switch 220. Call processor 215-2 then sends the latter IAM to STP 250-1 via signal processor 215-2 and data link 154 for forwarding to switch 220. STP 250-1, in turn and in a conventional manner, sends the message to STP 250-2 for delivery to ATM switch 220 vial link 155. Similarly, the switch 220 call processor (not shown) locates an idle outgoing trunk that may be used to connect the call to CO 50 and similarly creates its own IAM message for transmission to CO 50 via link 155, STP 250-2, LEC 300 STP 53 and data link 51.
CO 50, responsive to receipt of the IAM determines if the telephone connection 70 to station S2 is busy. If so, then CO 50 returns a busy message indicative thereof to switch 220 via the LEC 300 SS7 network. In response to receipt of the message, the call processor of switch 220 releases its outgoing trunk to CO 50 and forwards the busy message to switch 215 via the network 200 SS7 network. Similarly, call processor 215-2 releases outgoing trunk 213-1 of subgroup 60 and forwards the message to CO 25 via the SS7 networks of network 200 and LEC 100. CO 25, in turn, supplies busy tone to station S1 and releases its outgoing trunk to switch 215.
If, on the other hand, telephone line 70 is not busy, then CO 50 returns a call complete message indicative thereof to switch 220 via the aforementioned SS7 network, and supplies ringing voltage to telephone line 70. Switch 220, responsive to receipt of the call complete message passes the message to its associated call processor. The switch 220 call processor then (a) forwards the call complete message to switch 215 via its associated signal processor and the SS7 network of network 200, (b) changes the status of its incoming trunk and outgoing trunk that will be involved in routing the call through its associated switching fabric to busy and (c) advises its associated translator circuit (not shown) of the connection involving the switch 220 incoming and outgoing trunks. (Since the architecture and operation of switch 220 is similar to that of switch 215, any discussion relating to switch 215 equally pertains to switch 220. Therefore, the following discussion of the operation of controller 215-3 equally pertains to the switch 220 controller, translator, etc., (not shown).)
In particular, signal processor 215-1 upon receipt of the call complete message via data link 154 passes the message to call processor 215-2. Similarly, processor 215-2 (a) forwards the call complete message to CO 25 via processor 215-1, STP 250-1 and the LEC 100 SS7 network, (b) changes the status of incoming trunk 27-1 and outgoing trunk 213-1 that will be involved in routing the call through its associated switching fabric to busy and (c) advises its associated translator circuit 215-3 of the connection that should be established between incoming trunk 1 of subgroup 27-1 and outgoing trunk 213-1 of subgroup 60. Translator 215-3, more particularly, translates the incoming trunk and trunk subgroup identifiers received from call processor 215-2 into a form that is "understood" by conventional ATM switch controller 215-5. That is, in accord with an aspect of the invention, translator 215-3 translates the identifiers--1, and 27-1--associated with the incoming trunk into (a) respective predetermined VC and VP identifiers and (b) an incoming port circuit, e.g., port 27-1. Translator 215-3 does this using translation Table 400 shown in FIG. 3. Briefly, Table 400 comprises a plurality of entries in which each entry comprises five fields 411 through 415 containing associated translation data. Referring to entry 401, for example, a data entry includes a trunk identifier (Tk) and associated trunk subgroup identifier (TSGi) in fields 411 and 412, respectively, which are translated into a predetermined incoming port (Pi), and VCIi and VPIi contained in fields 413 through 415, respectively. In accord with an aspect of the invention, such a translation is done on a one-to-one basis as shown for entry 402, which translator 215-3 accesses to translate the trunk and trunk subgroup identifiers that it receives from call processor 215-2. For example, trunk and trunk subgroup identifiers 1 and 27-1, respectively, are translated on a one-to-one basis into a VCI of 1 and VPI of 27-1, respectively, as shown by the data inserted in fields 414 and 415 of entry 402. The trunk and TSG are also mapped into an identifier identifying an incoming port, i.e., incoming port 27, as shown by the contents of field 413 of entry 402. (Translator 215-3 uses a similar table to translate the outgoing trunk and outgoing trunk subgroup identifiers (213-1 and 60, respectively) into an outgoing port identifier, VCIo and VPIo. An illustrative example of such a table is shown in FIG. 4, in which entry 501 is used to do the latter translation.) Translator 215-3 then supplies the results of the translation to controller 215-5.
Controller 215-5 activates the virtual circuit connection from input port 1 to output port 213-1 so that speech signals originating at station set S1 and destined for station S2 may be transported over 45 switch fabric 215-4 during the associated virtual connection. Controller 215-5 does this by supplying the input VCI/VPI (1/27) to output VCI/VPI (213-1/60) mapping to input port 27. Port 27, in turn, enters the output VCI/VPI mapping data in a routing map. An example of the latter map is shown in FIG. 5. In particular, each of the switch 215 (220) port circuits stores a routing map 600 in its associated port memory (not shown). The contents of fields 602 and 603 of each entry in the table, e.g., entry 601, respectively contain a virtual channel and virtual path identifiers. That is, the virtual channels associated with a particular virtual path are entered in field 602 of sequential entries in the table, as shown for entry 601 and the following entries. Thereafter, when a port receives routing information from its associated controller 215-5, it enters the routing information in an appropriate one of the table 600 entries. For example, it is seen that routing information has been entered in fields 604 through 606 of entry 601. Thereafter, when input port 1 receives an ATM cell bearing a VCI and VPI of 1 and 27, respectively, then it processes the cell in accord with the contents of entry 601 of routing table 600, as will be explained below in detail.
Controller 215-5 also activates another, but opposite, virtual connection from port 213-1 to port 27 to transport speech or data signals that originate at station S2 and received via switch 220 and destined for station S1. Accordingly, an opposite virtual connection may be so activated when a cell carrying samples of station S2 speech samples (or voice-band data) are received via switch 220. (It is noted that switch 220 performs similar routing functions in response to receipt of the call complete message.)
When CO 25 receives the call complete message, it supplies an alerting tone to telephone line 26 to notify the user thereat that the call connection has been completed and that a ringing signal is being supplied to station S2. When the user at station S2 answers the call, then he/she may communicate with the station S1 user in which the ensuing speech (or voice-band data) will be transported via ATM network 200. Specifically, first considering speech signals received at CO 25 from station S1, CO 25 digitizes such signals in the manner described above and outputs the result to its associated trunk 1 of TSG 27. (It is noted that the latter trunk and TSG respectively correspond to a channel (channel 1) and group of channels (group 27) of a time frame during which CO transmits a digital sample of a station S1 speech signal over path 27-1. Echo Canceler 205 receives the digital sample and, in a conventional manner, cancels the sample if it represents an echo of a digital speech sample originating at station S2. If not, then the sample is presented to STM/ATM Terminal Adapter 210. TA 210, more particularly, is arranged to pack samples of voice signals as they are received from STM switch 25 via trunk (channel) 1 of trunk group 27 into an ATM cell. TA 210 maintains a predetermined table which it uses to map between trunks and VCIs and between trunk subgroups and VPIs transported over link 211. When a payload of 47 or 48 octets (depending on the particular ATM adaptation layer) have been so collected, then TA 210, in accord with an aspect of the invention, translates the trunk address and trunk group address over which the samples were received into a VCI, VPI and incoming port address. In accord with another aspect of the invention, such a translation is done at TA 210 (similarly so at TA 225) on a one-to-one basis. Accordingly, TA 210 translates a trunk address of 1 and a TSG address of 27 into a VCI of 1 and VPI of 27, respectively. TA 210 then forms a cell header of five octets including the translated VCI and VPI values and prepends (prefixes) the header to the 48 octet payload to form an ATM cell. TA 210 then supplies the resulting ATM cell to originating port 27-1 of switch 215. Port 27-1, responsive to receipt of the cell, checks its associated routing table 600 to determine if routing translation information has been stored therein for the VCI and VPI contained in the received cell. If not, port 27-1 discards the cell. Otherwise, port 27-1 translates the VCI and VPI contained in the cell into an outgoing address. In the instant case, port 27-1 translates the VCI and VPI of 1 and 27, respectively, into an outgoing port address of 213-1, VCI of 213-1 and VPI of 60 based on the contents of entry 601 of table 600 (FIG. 5). Port 27-1 then substitutes the latter VC and VP identifiers for the VCI and VPI identifiers contained in the received cell and presents the result to switch fabric 215-4 for routing, in a conventional manner. That is, switch fabric 215-4 routes the cell to port 213-1 via a virtual circuit connection identified by the VC and VP identifiers attached to the routed cell. Upon receipt of the cell from switch fabric 215-4, output port 213-1 stores the cell in a queue (e.g., a First-In, First-Out memory) associated with high-speed transmission path 213. When the data cell reaches the top of queue, it is then unloaded from the queue and transmitted, either by itself or part of a so-called super frame, over path 213 to destination ATM switch 220. ATM switch 220 then, using its own table 500, similarly translates the VC and VP identifiers in the received cell into output VC and VP identifiers and then routes the cell via its associated switch fabric and virtual circuit identified as a function of the latter identifiers. Upon receipt of the cell via the associated switch fabric, the switch 220 output port stores the cell in an associated queue. When the cell is thereafter unloaded from the queue it is transmitted over path 226 connected to TA 225. TA 225, in turn, translates the VC and VP identifiers contained in the received cell into trunk and trunk subgroup identifiers, in accord with an aspect of the invention. In accord with above mentioned aspect of the invention, such translation is done on a one-to-one basis. TA 225 then unpacks the payload of 48 octets of the received cell and supplies them to the so-called ATM Adaptation Layer (AAL) implemented in TA 225. The AAL (a) buffers the received octets, (b) removes the AAL header, if any, (c) performs AAL functions with respect to the received octets, and (d) then sends each octet in sequence to CO 50 via EC 230 and translated trunk and subgroup of path 52. As mentioned above, the latter trunk and trunk subgroup may be a time slot of a group of time slots, in which the such transmission of octets over path 231-1 occurs during the identified time slot.
As mentioned above, an STM switch may employ in-band MF signaling to communicate signaling information to an IXC. We have recognized that ATM network 200 may be readily adapted to receive such information via in-band signaling and then, in accord with an aspect of the invention, present such information to the originating ATM switch, e.g., switch 215, via another signaling network, e.g., the SS7 network. Thus, the architecture of network 200 does not have to change to interface with a signaling technique different from the signaling technique employed by the SS7 network. Advantageously, then, ATM network 200 may interface with central offices using different signaling techniques to communicate signaling information to a next switch, wherein the next switch may be an ATM switch rather than an STM switch.
Referring then to FIG. 6, assume that the user at station set S3 places a call to station set S4 by going off-hook and dialing the telephone number associated with the latter station set. When CO 175 has collected the last of the dialed digits and has determined that the call is to be routed via network 200, it selects an idle trunk connecting to network 200 and transmits an off-hook signal thereto over the selected trunk and path 176. Signal processor 240 of module 245 monitors the signals received via the selected trunk of port 241 and returns a signal over the trunk to CO 175 if the call can be accepted by TA 255 (referred to as TA 210 in FIG. 1). Assuming that TA 255 accepts the call, then CO 175 begins to transmit the dialed telephone number and caller's ANI via the selected trunk (digital channel of path 176). Interface port 241 of module 245 multiplexes the contents (eight bit byte) of each trunk (channel) to a respective signal path 242 extending to an associated EC 244, which then presents the byte to Terminal Adapter (TA) 255. TA 255, in turn, accumulates such bytes as they are received from the source trunk to form a cell and then presents the cell to an associated input port of switch 215, as described above. However, the input port discards the cell since a virtual circuit connection for the call has not yet been activated. If, on the other hand, the data byte contains signaling information (e.g., dialed digits), then port 241 extracts the signaling information and sends it to signal processor 240 via path 242. Signal processor 240, responsive to data indicative of a MF signal appearing on path 242, collects the data and succeeding such data until it has accumulated the signals indicative of at least the called telephone number. Signal processor 240 then, as described above, forms an SS7 IAM message containing, inter alia, (a) the dialed telephone number, (b) ANI identifying the calling station, if acquired (c) identifiers respectively identifying the trunk and associated trunk subgroup over which the calling information was received, (d) a request for an end-to-end connection and (e) the address of switch 215. Signal processor 245 then transmits the message via data link 157 and STP 250-4. Switch 215 and then switch 220 process the IAM message in the manner discussed above. That is, the switch 220 call processor locates an idle outgoing trunk that may be used to route the call to the destination CO and then creates its own IAM message for transmission via link 155 and STP 250-2 to the network 200 signal transfer point that interfaces with that CO. The latter STP, in turn, retransmits the message to STP 250-3 for delivery to signal processor 240 of module 235. Responsive to receipt of the IAM message via link 156, signal processor 240 of module 235 selects the idle trunk to CO 180 (associated with the trunk from switch 250 to TA 225) and sends an off-hook signal thereto via port 241 of module 235 and the selected trunk. If CO 180 can accept the call, then it returns an off-hook signal via the latter trunk. Signal processor 240 of module 235 responds to the off-hook by transmitting the called number contained in the received IAM message over the selected trunk to CO 180. In addition, signal processor 240 of module 235 returns a call complete message to switch 220 via the network 200 SS7 network, in which the latter message contains the trunk and TSG of the trunk selected by the latter signals processor. ATM switch 220 processes the call complete message in the manner described above and transmits a call complete message to switch 215, which similarly processes the message in the manner described above. As also mentioned above, switch 215 returns an SS7 call complete message to the originating CO. However, in the instance case, the latter message is sent via signal processor 240 of module 245. Signal processor, in turn, sends an off-hook (wink) signal to CO 175 via the trunk that CO 175 selected to route the station set S3 call to network 200. As is well-known, the latter wink signal is a functional equivalent of the SS7 call complete message. When the station S4 user answers the call, then the station S3 user may begin to communicate with the station S4 user via the virtual connections that are respectively established by switches 215 and 220 as they are needed.
When either the station set S3 or S4 user terminates the call--"hangs up", then CO 175 or 180, as the case may be, sends an on-hook signal to network 200. Assuming that the on-hook signal is sent by CO 175 over the selected trunk connecting to module 245, then signal processor 240 of module 245, responsive to receipt of the on-hook signal (sent by port 241 of module 245), forms an SS7 network call termination message containing, inter alia, the identity of the latter trunk and its associated TSG and then sends the message to switch 215 via data link 157 and the SS7 network. Upon receipt of the termination message, the switch 215 call processor (a) directs the input port associated with the call to clear the entry that it made in its translation Table 600 for the call, (FIG. 5), (b) sets the status of the trunk to idle in the status table (FIG. 2) associated with switch 215 and (c) sends a call termination message to switch 220, in which the latter message identifies the trunk and TSG identifiers that translate to VCI and VPI that are used to route the call from switch 215 to switch 220. The switch 220 call processor responds similarly to the receipt of the latter message and sends a call termination message to the destination CO via link 155 and STP 250-2 such that the message is instead delivered to signal processor 240 of module 135 via STP 250-3 and link 156. The latter signal processor, in turn, transmits an on-hook signal to CO 180. CO 180 sets the status of the return path of the trunk connecting to module 235 to idle and then waits for the station set S4 user to "hang-up".
As mentioned above, an incoming port of an ATM switch discards a data cell if a virtual circuit connection for the associated call has not been activated. Alternatively, such discarding may be done at the Terminal Adapter, e.g., TA 255, 210. etc., at the direction of the call processor of the associated ATM switch, e.g., switch 215. Specifically, TA 255 (210, etc.,) may be arranged so that it receives control instructions from the associated call processor via a communications path connecting the TA to the call processor. Such a path may comprise a virtual circuit connection from the call processor through the switch fabric to a control port connecting connections to the TA via path 216. In this way, the call processor may instruct the TA not to accumulate data received via a particular trunk, i.e., an idle trunk. Thereafter, when the trunk become busy and a virtual circuit has been assigned thereto, then the call processor instructs the TA to begin forming data cells from the data received via the trunk.
As also mentioned above, the architecture of network 200 does not change to interface with a method of signaling different than Signaling System 7. ATM network 200 may thus interface with central offices, or other entities, that use different signaling techniques, as discussed above in connection with in-band signaling. One such entity that is commonly referred to as a nodal, for example, a Private Branch Exchange (PBX), uses a "bit borrowing" scheme to transmit signaling information. Turning then to FIG. 7, there is shown nodal (PBX) 190 connected to network 200 via communications path 195, in which the latter path 195 may be a so-called T1 carrier transmission line. As is well-known, the transmission protocol that is used in a T1 carrier system is a 125 microsecond frame composed of 24 channels in which each channel comprises eight bits. A telephone call is routed via the T1 carrier system via a channel assigned to the call. For example, PBX 190 routes long distance calls originating at PBX 190 to network (or IXC ) 200 by assigning each such call to a respective one of the aforementioned channels for the duration of the call. In this sense a channel is either busy (off-hook) or idle (on-hook). Signaling information indicative of whether a channel is off-hook or on-hook is transmitted over the channel by "borrowing" one bit (i.e., the least significant bit) from the channel every sixth and twelfth frames, in which the latter frames correspond to A and B signaling messages. Each signaling bit of each of the 24 channels relates only to the associated channel. As is well-known, the borrowed signaling bit of a channel is available more than 1300 times each second, which suffices to transmit supervisory signals (e.g., off-hook and on-hook) and other signaling information.
With the foregoing in mind, assume that a user causes terminal S1 to go off-hook and dials a telephone number that will route the associated call through network 200. PBX 190, responsive to the off-hook accumulates the dialed digits and then determines that the call is to be routed over path 195, and therefor, assigns the call to an idle channel of path 195. As result of the assignment, T1 carrier equipment (not shown) located and interfacing with PBX 190 changes the state of the signaling bit of the assigned channel in the sixth and twelfth frames to a one. PBX 190 then outputs each of the dialed digits to path 195 via the latter equipment and assigned channel. Interface port circuit 241 of module 260 multiplexes the contents (eight bit byte) of each of the twenty four channels to respective signaling paths 242 extending to an associated EC 244, which then sends the signaling bits to a respective input port of switch 215 and to the associated signal processor 265. Signal processor 265 of module 260 monitors the contents of the aforementioned assigned channel and responds upon receipt of signaling information via the borrowed bits. That is, signal processor 240 associates the assigned channel with a trunk identifier and associates the 24 channels with a TSG identifier. Signal processor 240 then begins to accumulate the digits that will be transmitted via succeeding ones of the assigned channel. When signal processor receives the last of the dialed digits it then forms an IAM message addressed to switch 215, in which the message also contains, inter alia (a) the trunk and TSG identifiers that have been associated with the assigned channel, (b) calling station ANI and (c)dialed digits. Signal processor 240 of module 260 then transmits the message to switch 215 via STP 250-4 and network 200 SS7 network. Switch 215 similarly responds to the receipt of the message in the manner discussed above.
Signal processor 240 performs an opposite function with respect to signaling information (e.g., call complete message, termination message, etc.,) that it receives from switch 215. For example, responsive to receipt of a call complete message, signal processor 240 of module 260 converts the messages into the T1 carrier protocol and then transmits the message to nodal 190 one bit at a time using the borrowed signaling bit of a return channel assigned to the call.
The foregoing is merely illustrative of the principles of the invention. Those skilled in the art will be able to devise numerous arrangements, which, although not explicitly shown or described herein, nevertheless embody those principles that are within the spirit and scope of the invention. For example, one or more of the analog type telephone stations sets shown in the FIGs. may be ISDN type station sets. As another example, a CO switch may be an ATM based switch and one or more IXC switches may be a STM based switch.

Claims (17)

We claim:
1. A method of establishing a connection for a call that is being forwarded from an origination STM switch to an intended destination switch via an ATM network formed from a plurality of interconnected ATM switches, said method comprising the steps of
at said first STM switch, transmitting routing information associated with said call to a first one of said ATM switches via an out-of-band signaling network, said routing information including at least a called telephone number and identity of a trunk over which said STM switch will forward said call to said first ATM switch,
providing an interface between each of said ATM switches and said out-of-band signaling network to translate an identity of a trunk contained in routing information received via said out-of-band signaling network into at least a predetermined virtual channel identifier, and
receiving said routing information associated with said call at said first ATM and translating the trunk identity contained in such routing information into a particular virtual channel identifier and routing said call through said first ATM switch as a function of said particular virtual channel identifier.
2. The method of claim 1 wherein said step of translating includes the step of translating said trunk identity into said particular virtual channel identifier on a one-to-one basis such that said particular virtual channel identifier is made to equal said trunk identity.
3. The method of claim 1 wherein said routing information associated with said call includes an identity of a trunk subgroup associated with trunk identified in the routing information and wherein said step of translating includes the step of translating the identity of said trunk subgroup into a virtual path identifier.
4. The method of claim 3 wherein said step of translating the identity of said trunk subgroup includes the step of translating said trunk subgroup identity into said virtual path identifier on a one-to-one basis such that said virtual path identifier is made to equal said trunk subgroup identity.
5. The method of claim 4 wherein said method further comprises the step of translating said virtual circuit and virtual path identifiers into output virtual circuit and virtual path identifiers as a function of a called number associated with said call and wherein said step of routing includes the step of routing said call through said first ATM switch as a function Of said output virtual circuit and virtual path identifiers.
6. The method of claim 5 further comprising the steps of
at said first ATM switch, deriving, as a function of at least said output virtual circuit identifier, an identity of an outgoing trunk and associated trunk subgroup defining a path to a second one of said ATM switches that will forward said call to said destination,
generating a call set-up message containing at least (a) the identity of said outgoing trunk and (b) said called number, and
sending said call set-up message to said second ATM switch via said out-of-band signaling network.
7. The method of claim 6 further comprising the steps of
receiving said call set-up message at the interface interfacing said second ATM switch with said out-of-band signaling network, and
responsive to receipt of said call-set up message, translating the identity of the outgoing trunk and associated trunk subgroup contained in said message into an input port, virtual circuit and virtual path identifiers, respectively,
determining, as a function of the called number, at least an identity of an output port, and output virtual circuit and virtual path identifiers that may be used at said second switch to forward said call to said destination and supplying the identity of said output port and output virtual circuit and virtual path identifiers to said second switch input port so that voice signals received via said first ATM switch and associated with said call may be routed to said output port via a virtual connection derived as a function of said second switch outgoing virtual circuit and virtual path identifiers.
8. The method of claim 7 further comprising the steps of
at said second ATM switch, respectively translating said second switch output virtual circuit and virtual path identifiers into an outgoing trunk and associated trunk subgroup defining a path to said destination,
generating a call set-up message containing at least (a) identifiers respectively identifying said outgoing trunk and associated trunk subgroup, and (b) said called number, and
sending said call set-up message toward said destination via said out-of-band signaling network.
9. The method of claim 1 further comprising the steps of
at a terminal adapter interfacing said first ATM switch with said trunk, accumulating voice signals received over said trunk and forming the accumulated signals into a message having a format acceptable to said first ATM switch,
translating said trunk identity and identity of an associated trunk subgroup into respective virtual channel and virtual path identifiers and affixing said identifiers to said accumulated signals, and
supplying the resulting message to an input of said first ATM switch.
10. The method of claim 8 further comprising the steps of
at a terminal adapter interfacing said output port of said second ATM switch with said destination, responsive to receipt of a data cell containing a sequence of octets from said output port, supplying the payload of the data cell to an ATM adaptation layer function such that the adaptation layer function supplies respective ones of the octets to a trunk of a trunk subgroup associated with a communications path extending to said destination, in which said trunk and trunk subgroup associated with said path are selected as a function of the outgoing virtual circuit and virtual path identifiers determined by said second switch.
11. The method of claim 1, wherein said out-of-band signaling is performed over a Signaling System 7 network.
12. A method of interfacing an ATM switch of an ATM network with an out-of-band signaling network comprising the steps of
interconnecting said ATM switch with said out-of-band signaling network, and
responsive to receiving via said out-of-band signaling network a message containing, inter alia, an identity of a trunk over which voice signals associated with a telephone call will be transported, translating said identity into at least a virtual circuit identifier and an identity of an incoming port which will receive said voice signals at said ATM switch.
13. The method of claim 12 further comprising the step of
determining, as a function of a called number associated with said telephone call, an output port that may be used to forward said voice signals to their intended destination and at least an output virtual circuit identifier identifying an associated virtual circuit connection that may be used to route said voice signals from said input port to said output port.
14. The method of claim 13 further comprising the steps of
translating said output virtual circuit identifier into an identifier identifying an output trunk,
generating a call set-up message containing at least (a) the identifier identifying said output trunk, and (b) said called number, and
sending said call set-up message to a destination switch.
15. A method of a transmitting signaling messages from a first ATM switch to a second ATM switch comprising the steps of
connecting said first and second ATM switches to an out-of-band signaling network via respective signaling interface arrangements,
at each of said interface arrangements, responsive to receipt of a signaling message via said out-of-band network in which the message identifies at least a trunk and associated trunk subgroup over which a respective telephone call is to be routed to the associated one of said ATM switches, translating said trunk and trunk subgroup identities into respective virtual circuit and virtual path identifiers and passing said identifiers to the associated one of said switches, and
responsive to receiving output virtual channel and virtual path identifier from the associated one of said switches, respectively translating said output virtual channel and virtual path identifiers into an output trunk identifier and trunk subgroup identifier and transmitting a signaling message containing said trunk and said trunk group identifiers over said out-of-band signaling network.
16. The method of claim 15 wherein said step of translating said trunk identity and trunk subgroup identity into respective virtual circuit and virtual path identifiers includes the step of performing the translating on a one-to-one basis such that said trunk identity and trunk subgroup identity are made to equal said virtual circuit and virtual path identifiers, respectively.
17. The method of claim 15 wherein said step of translating said output virtual channel and virtual path identifiers into output trunk and trunk subgroup identifiers includes the step of performing the translating on a one-to-one basis such that identities of said output virtual channel and virtual path identifiers are made to respectively equal said output trunk and trunk subgroup identifiers.
US08/360,897 1994-12-21 1994-12-21 ATM network architecture employing an out-of-band signaling network Expired - Lifetime US5568475A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/360,897 US5568475A (en) 1994-12-21 1994-12-21 ATM network architecture employing an out-of-band signaling network
CA002161473A CA2161473C (en) 1994-12-21 1995-10-26 Atm network architecture employing an out-of-band signaling network
EP95308753A EP0719068A3 (en) 1994-12-21 1995-12-05 ATM network architecture employing an out-of-band signaling network
JP33157595A JPH08242288A (en) 1994-12-21 1995-12-20 Telephone call setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/360,897 US5568475A (en) 1994-12-21 1994-12-21 ATM network architecture employing an out-of-band signaling network

Publications (1)

Publication Number Publication Date
US5568475A true US5568475A (en) 1996-10-22

Family

ID=23419844

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/360,897 Expired - Lifetime US5568475A (en) 1994-12-21 1994-12-21 ATM network architecture employing an out-of-band signaling network

Country Status (4)

Country Link
US (1) US5568475A (en)
EP (1) EP0719068A3 (en)
JP (1) JPH08242288A (en)
CA (1) CA2161473C (en)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642396A (en) * 1995-05-10 1997-06-24 Mci Corporation Release cause table for failed calls in SS7/ISDN Networks
WO1998023095A2 (en) * 1996-11-22 1998-05-28 Sprint Communications Company, L.P. System and method for interfacing a local communication device
WO1998023056A1 (en) * 1996-11-22 1998-05-28 Sprint Communications Company, L.P. Broadband telecommunications system interface
US5872785A (en) * 1995-09-19 1999-02-16 Siemens Aktiengesellschaft Method for switching narrowband partial line bundles between communications systems via an ATM communication network
US5920562A (en) 1996-11-22 1999-07-06 Sprint Communications Co. L.P. Systems and methods for providing enhanced services for telecommunication call
US5933426A (en) * 1996-04-11 1999-08-03 Fujitsu Limited Interface apparatus of ATM/STM coexistence network system
US5940393A (en) 1996-05-28 1999-08-17 Sprint Communications Co. L.P. Telecommunications system with a connection processing system
US5953316A (en) * 1997-04-17 1999-09-14 The Trustees Of Columbia University In The City Of New York Reservation method and system for asynchronous transfer mode communications
US5956334A (en) * 1997-02-10 1999-09-21 At & T Corporation Method for interfacing a telephony and an ATM network to establish voice communication
US5991301A (en) 1994-05-05 1999-11-23 Sprint Communications Co. L.P. Broadband telecommunications system
US6014378A (en) 1996-11-22 2000-01-11 Sprint Communications Company, L.P. Telecommunications tandem system for circuit-based traffic
US6023474A (en) 1996-11-22 2000-02-08 Sprint Communications C.O.L.P. Broadband telecommunications system interface
US6026091A (en) 1996-02-02 2000-02-15 Sprint Communications Co. L.P. ATM gateway system
US6031840A (en) 1995-12-07 2000-02-29 Sprint Communications Co. L.P. Telecommunications system
WO2000018178A1 (en) * 1998-09-23 2000-03-30 Siemens Aktiengesellschaft Method for determining a network access address
US6067299A (en) 1997-04-16 2000-05-23 Sprint Communications Company, L.P. Communications system for providing ATM connections and echo cancellation
US6081529A (en) * 1995-11-22 2000-06-27 Sprint Communications Company, L. P. ATM transport system
US6081525A (en) 1995-09-08 2000-06-27 Sprint Communications Co., L.P. Broadband telecommunications system
US6097726A (en) * 1997-09-18 2000-08-01 Ascend Communications, Inc. Virtual path merging in a multipoint-to-point network tunneling protocol
US6104718A (en) 1994-05-05 2000-08-15 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US6115380A (en) 1996-11-22 2000-09-05 Sprint Communications Co., L.P. Broadband telecommunications system
US6128301A (en) * 1996-11-07 2000-10-03 Nortel Networks Limited Architecture for distribution of voice over ATM networks
US6137800A (en) 1997-05-09 2000-10-24 Sprint Communications Company, L. P. System and method for connecting a call
US6141342A (en) * 1998-12-02 2000-10-31 Nortel Networks Corporation Apparatus and method for completing inter-switch calls using large trunk groups
US6157657A (en) * 1997-10-02 2000-12-05 Alcatel Usa Sourcing, L.P. System and method for data bus interface
US6169735B1 (en) 1998-04-30 2001-01-02 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US6172977B1 (en) 1994-05-05 2001-01-09 Sprint Communications Company, L. P. ATM direct access line system
US6178170B1 (en) 1997-05-13 2001-01-23 Sprint Communications Company, L. P. System and method for transporting a call
US6195714B1 (en) 1998-06-08 2001-02-27 Nortel Networks Limited System for transferring STM calls through ATM network by converting the STM calls to ATM and vice versa at the edge nodes of ATM network
US6236655B1 (en) * 1995-07-19 2001-05-22 Fujitsu Network Communications, Inc. Port and link identification
US6243383B1 (en) * 1997-12-01 2001-06-05 Nortel Networks Limited Method and apparatus for ATM address resolution
US6249529B1 (en) 1995-09-08 2001-06-19 Sprint Communications Company, L.P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US6249522B1 (en) * 1997-10-17 2001-06-19 Fujitsu Limited Path merging type communication apparatus, method thereof, and storage medium thereof
WO2001047161A1 (en) * 1999-12-23 2001-06-28 Qwest Communications International Inc. Method and system for interfacing between circuit network switches and atm edge switches
US6262992B1 (en) 1996-11-22 2001-07-17 Sprint Communications Company, L. P. System and method for transporting a call in a telecommunication network
WO2001055864A1 (en) * 2000-01-28 2001-08-02 Morphics Technology Inc. A method of generating a configuration for a configurable spread spectrum communication device
US6282194B1 (en) 1998-09-23 2001-08-28 Nortel Networks Limited Transit trunk subnetwork system
US20010026553A1 (en) * 2000-01-20 2001-10-04 Gallant John K. Intelligent policy server system and method for bandwidth control in an ATM network
US20010036158A1 (en) * 1999-07-14 2001-11-01 Magnus Hallenstal Combining narrowband applications with broadband transport
US20010036177A1 (en) * 1999-07-14 2001-11-01 Magnus Hallenstal Combining narrowband applications with broadband transport
US6314103B1 (en) 1994-05-05 2001-11-06 Sprint Communications Company, L.P. System and method for allocating bandwidth for a call
US20010043604A1 (en) * 1997-04-25 2001-11-22 Northern Telecom Limited. Method and apparatus for ATM address resolution
US6324174B2 (en) 1997-12-31 2001-11-27 At&T Corporation Telecommunications network architecture for transporting fax, voice and data via an ATM switch including a STM to ATM terminal adapter
US6327267B1 (en) * 1998-12-21 2001-12-04 Ericssoninc Systems and methods for routing a message through a signaling network associated with a public switched telephone network (PSTN), including a method for performing global title routing on an internet protocol (IP) address
US20020003794A1 (en) * 1999-07-14 2002-01-10 Magnus Hallenstal Combining narrowband applications with broadband transport
US6351521B1 (en) 1998-04-10 2002-02-26 Sprint Communications Company L.P. Communications test system
US6381246B1 (en) * 1997-11-19 2002-04-30 Nortel Networks Limited Telephony system and method of signalling
US20020051443A1 (en) * 1999-07-14 2002-05-02 Ros-Marie Furtenback Combining narrowband applications with broadband transport
US6389014B1 (en) 1997-06-11 2002-05-14 Samsung Electronics Co., Ltd. ATM switching device and method capable of providing voice call service
US20020064267A1 (en) * 2000-03-31 2002-05-30 Robert Martin Telecommunications portal capable of interpreting messages from an external device
US20020064129A1 (en) * 2000-01-20 2002-05-30 Sbc Technology Resources, Inc. System and method for measurement-based adaptive caching of virtual connections
US6442169B1 (en) 1998-11-20 2002-08-27 Level 3 Communications, Inc. System and method for bypassing data from egress facilities
US20020122426A1 (en) * 1999-07-14 2002-09-05 Jan Lindquist Combining narrowband applications with broadband transport
US20020126676A1 (en) * 1999-07-14 2002-09-12 Kent Johnson Combining narrowband applications with broadband transport
US20020131430A1 (en) * 1999-07-14 2002-09-19 Jan Lindquist Combining narrowband applications with broadband transport
US20020131429A1 (en) * 1999-07-14 2002-09-19 Stacy Scott Combining narrowband applications with broadband transport
US6470019B1 (en) 1998-02-20 2002-10-22 Sprint Communications Company L.P. System and method for treating a call for call processing
US6470009B1 (en) 1990-11-22 2002-10-22 Sprint Communications Company L.P. Broadband telecommunications system interface
US6483837B1 (en) 1998-02-20 2002-11-19 Sprint Communications Company L.P. System and method for connecting a call with an interworking system
GB2376157A (en) * 2001-01-29 2002-12-04 Morphics Tech Inc A method of generating a configuration for a configurable spread spectrum communication device
US20030007621A1 (en) * 1999-03-06 2003-01-09 Graves Richard C. Systems and processes for call and call feature administration on a telecommunications network
US6532229B1 (en) * 1999-01-15 2003-03-11 Brian Weatherred Johnson Low cost link aggregation method and system
US6535507B1 (en) 1998-07-06 2003-03-18 Nortel Networks Limited Method of address resolution for the transfer of synchronous transfer mode calls through multiple domains in a broadband data network
US20030053451A1 (en) * 1998-12-22 2003-03-20 Sprint Communications Company, L.P. System and method for connecting calls with a time division multiplex matrix
US6546022B1 (en) 1998-04-03 2003-04-08 Sprint Communications Company, L.P. Method, system and apparatus for processing information in a telecommunications system
US6553111B1 (en) 1999-10-13 2003-04-22 3C Ltd. Synchronous digital hierarchy switch system
US6563918B1 (en) 1998-02-20 2003-05-13 Sprint Communications Company, LP Telecommunications system architecture for connecting a call
US6570868B1 (en) * 1997-08-08 2003-05-27 Nortel Networks Limited System and method for establishing a communication connection
US6614781B1 (en) 1998-11-20 2003-09-02 Level 3 Communications, Inc. Voice over data telecommunications network architecture
US6631133B1 (en) 1994-05-05 2003-10-07 Sprint Communications Company L.P. Broadband telecommunications system
US6633561B2 (en) 1994-05-05 2003-10-14 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US20030202484A1 (en) * 2002-04-25 2003-10-30 Kutter Robert W. Inter-switch telecommunications system for interconnecting packet-capable time division multiplexed switches with non-packet-capable time division multiplexed switches via an asynchronous transfer mode network
US6658022B1 (en) * 1998-09-30 2003-12-02 Cisco Technology, Inc. Signaling protocol for controlling voice calls in a packet switching network
US20030227904A1 (en) * 2002-06-06 2003-12-11 Adc Telecommunications Israel Ltd. Associating virtual channel identifier to a user phone number at an access node in a VoATM telecommunication system
US6667982B2 (en) * 1996-11-22 2003-12-23 Sprint Communications Company, L.P. Broadband telecommunications system interface
US6697353B2 (en) 1997-12-31 2004-02-24 At&T Corp. Voice-over-ATM switch architecture allowing congestion-dependent transport of silence cells
US6704327B1 (en) 1997-05-09 2004-03-09 Sprint Communications Company, L.P. System and method for connecting a call
US6704314B1 (en) * 1999-12-15 2004-03-09 Sprint Communications Company, L.P. Method and apparatus to control cell substitution
US6724765B1 (en) 1998-12-22 2004-04-20 Sprint Communications Company, L.P. Telecommunication call processing and connection system architecture
US20040081174A1 (en) * 1998-12-23 2004-04-29 Nortel Networks Limited Direct end-office trunking
US20040095947A1 (en) * 1999-05-11 2004-05-20 Luciani James V. System, device, and method for supporting virtual private networks
US6744768B2 (en) 1999-07-14 2004-06-01 Telefonaktiebolaget Lm Ericsson Combining narrowband applications with broadband transport
US6757278B1 (en) 1998-04-30 2004-06-29 Sbc Technology Resources, Inc. Secure ATM-based distributed virtual tandem switching system and method
US6757285B1 (en) 1998-12-17 2004-06-29 Nortel Networks Limited Method and apparatus for completing telephone calls between subnetworks
US6785377B1 (en) 2000-01-19 2004-08-31 Sprint Communications Company L.P. Data calls using both constant bit rate and variable bit rate connections
US6785725B1 (en) * 2000-04-28 2004-08-31 Ciena Corporation Signaling address resolution in a communication network
US6785282B1 (en) * 1998-12-22 2004-08-31 Sprint Communications Company L.P. System and method for connecting a call with a gateway system
US20040213244A1 (en) * 2001-02-15 2004-10-28 Buhrke Rolfe Erwin ATM packet access gateway
US6816497B1 (en) 1999-11-05 2004-11-09 Sprint Communications Company, L.P. System and method for processing a call
US6888833B1 (en) 1998-12-22 2005-05-03 Sprint Communications Company L.P. System and method for processing call signaling
US6914911B2 (en) 1999-07-14 2005-07-05 Telefonaktiebolaget Lm Ericsson Combining narrowband applications with broadband transport
US6947427B1 (en) * 1999-09-29 2005-09-20 Nec Corporation Transmission method and network system for accommodating a plurality of kinds of traffic in a common network
US20050220006A1 (en) * 2002-10-29 2005-10-06 Fujitsu Limited Node apparatus and maintenance and operation supporting device
US6970456B1 (en) * 1999-07-01 2005-11-29 Alcatel Method of monitoring the use of a chargeable dynamic signaling port of an inter-exchange trunk
US6982950B1 (en) * 1998-12-22 2006-01-03 Sprint Communications Company L.P. System and method for connecting a call in a tandem architecture
US7050421B1 (en) * 1996-12-20 2006-05-23 Telefonaktiebolaget Lm Ericsson (Publ) ATM network providing transparently narrowband based telephony services without requiring ATM-switching
US7212518B2 (en) 1999-07-14 2007-05-01 Ericsson Inc. Combining narrowband applications with broadband transport
US20070211731A1 (en) * 2006-03-06 2007-09-13 Sergey Balandin Aggregation of VCI routing tables
US7324635B2 (en) 2000-05-04 2008-01-29 Telemaze Llc Branch calling and caller ID based call routing telephone features
US7359402B2 (en) 1999-05-04 2008-04-15 Sprint Communications Company L.P. System and method for configuring bandwidth transmission rates for call connections
US7646765B2 (en) 1999-02-25 2010-01-12 Sprint Communications Company L.P. System and method for caching called number information
US7693974B2 (en) 1998-12-18 2010-04-06 Sprint Communications Company L.P. System and method for providing a graphical user interface to, for building, and/or for monitoring a telecommunication network
US8059811B2 (en) 1999-05-21 2011-11-15 Sprint Communications Company L.P. System and method for controlling a call processing system
US8117298B1 (en) 1996-02-26 2012-02-14 Graphon Corporation Multi-homed web server
US8705704B2 (en) 2011-04-04 2014-04-22 Numerex Corp. Delivery of alarm system event data and audio over hybrid networks
US8705716B2 (en) 2011-04-27 2014-04-22 Numerex Corp. Interactive control of alarm systems by telephone interface using an intermediate gateway
US8798260B2 (en) 2011-04-04 2014-08-05 Numerex Corp. Delivery of alarm system event data and audio
US9054893B2 (en) 2002-06-20 2015-06-09 Numerex Corp. Alarm system IP network with PSTN output
US9094410B2 (en) 2002-06-20 2015-07-28 Numerex Corp. Wireless VoIP network for security system monitoring
US9131040B2 (en) 2002-06-20 2015-09-08 Numerex Corp. Alarm system for use over satellite broadband
US9177464B2 (en) 2012-09-28 2015-11-03 Numerex Corp. Method and system for untethered two-way voice communication for an alarm system
US9183730B1 (en) 2014-07-16 2015-11-10 Numerex Corp. Method and system for mitigating invasion risk associated with stranger interactions in a security system environment
US9449497B2 (en) 2014-10-24 2016-09-20 Numerex Corp. Method and system for detecting alarm system tampering

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816861A1 (en) * 1998-04-16 1999-10-21 Deutsche Telekom Ag Method and device for the transmission of recorded sound and image reports
US6930998B1 (en) 1998-12-07 2005-08-16 Nortel Networks Limited Hybrid TDM and ATM voice switching central office and method of completing inter-office calls using same
US6735215B1 (en) * 2000-03-11 2004-05-11 Lucent Technologies Inc. Apparatus and method for automatic port identity discovery in heterogenous systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086461A (en) * 1990-01-23 1992-02-04 Network Access Corporation Apparatus and method for providing existing 1ESS and 1AESS telephone switching equipment with the capability of using the SS7 protocol
US5220563A (en) * 1990-12-20 1993-06-15 Thomson-Csf Device for the transmission by an asynchronous network, notably an atm type network, of signalling data, channel by channel, assembled in a multiframe transmitted synchronously in out-of-band mode
US5282244A (en) * 1991-06-24 1994-01-25 At&T Bell Laboratories Virtual signaling network method
US5345445A (en) * 1992-11-06 1994-09-06 At&T Bell Laboratories Establishing telecommunications calls in a broadband network
US5363433A (en) * 1991-05-08 1994-11-08 Fujitsu Limited Information acquisition system
US5384840A (en) * 1992-10-09 1995-01-24 At&T Corp. Telecommunications system SS7 signaling interface with signal transfer capability
US5400339A (en) * 1992-03-18 1995-03-21 Fujitsu Limited Bidirectional communication apparatus for reducing transmitted data
US5422882A (en) * 1993-12-20 1995-06-06 At&T Corp. ATM networks for narrow band communications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878805B2 (en) * 1990-08-20 1999-04-05 株式会社東芝 ATM switch
JPH05122240A (en) * 1991-10-24 1993-05-18 Fujitsu Ltd Vpi vci allocation system in atm transmission
US5345558A (en) * 1992-11-23 1994-09-06 Synoptics Communications, Inc. Topology independent broadcast of cells in an ATM network or the like

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086461A (en) * 1990-01-23 1992-02-04 Network Access Corporation Apparatus and method for providing existing 1ESS and 1AESS telephone switching equipment with the capability of using the SS7 protocol
US5220563A (en) * 1990-12-20 1993-06-15 Thomson-Csf Device for the transmission by an asynchronous network, notably an atm type network, of signalling data, channel by channel, assembled in a multiframe transmitted synchronously in out-of-band mode
US5363433A (en) * 1991-05-08 1994-11-08 Fujitsu Limited Information acquisition system
US5282244A (en) * 1991-06-24 1994-01-25 At&T Bell Laboratories Virtual signaling network method
US5400339A (en) * 1992-03-18 1995-03-21 Fujitsu Limited Bidirectional communication apparatus for reducing transmitted data
US5384840A (en) * 1992-10-09 1995-01-24 At&T Corp. Telecommunications system SS7 signaling interface with signal transfer capability
US5345445A (en) * 1992-11-06 1994-09-06 At&T Bell Laboratories Establishing telecommunications calls in a broadband network
US5422882A (en) * 1993-12-20 1995-06-06 At&T Corp. ATM networks for narrow band communications

Cited By (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470009B1 (en) 1990-11-22 2002-10-22 Sprint Communications Company L.P. Broadband telecommunications system interface
US6304580B1 (en) 1994-05-05 2001-10-16 Sprint Communications Co. L.P. Broadband telecommunications system interface
US6683878B2 (en) 1994-05-05 2004-01-27 Sprint Communications Company, L.P. ATM gateway system
US6665294B2 (en) * 1994-05-05 2003-12-16 Sprint Communications Company, L.P. Broadband telecommunications system
US20040037328A1 (en) * 1994-05-05 2004-02-26 Sprint Communications Company, L.P. Method system and apparatus for telecommunications control
US6643282B1 (en) 1994-05-05 2003-11-04 Sprint Communications Company L.P. Method, system and apparatus for telecommunications control
US20040081107A1 (en) * 1994-05-05 2004-04-29 Sprint Communications Company, L.P. Broadband telecommunications system
US6633561B2 (en) 1994-05-05 2003-10-14 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US20030189941A1 (en) * 1994-05-05 2003-10-09 Sprint Communication Company, L.P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US6631133B1 (en) 1994-05-05 2003-10-07 Sprint Communications Company L.P. Broadband telecommunications system
US20040090973A1 (en) * 1994-05-05 2004-05-13 Sprint Communications Company, L. P. ATM gateway system
US5991301A (en) 1994-05-05 1999-11-23 Sprint Communications Co. L.P. Broadband telecommunications system
US6563828B1 (en) 1994-05-05 2003-05-13 Sprint Communications Company L.P. Broadband telecommunications system
US6560241B2 (en) 1994-05-05 2003-05-06 Sprint Communications Company, L.P. Broadband telecommunications system interface
US6529514B2 (en) * 1994-05-05 2003-03-04 Sprint Communications Company L.P. ATM gateway system
US20030016665A1 (en) * 1994-05-05 2003-01-23 Christie Joseph Michael ATM gateway system
US20030002491A1 (en) * 1994-05-05 2003-01-02 Christie Joseph Michael Broadband telecommunications system
US6480493B1 (en) 1994-05-05 2002-11-12 Sprint Communications Company L.P. System for managing telecommunications
US20050147101A1 (en) * 1994-05-05 2005-07-07 Sprint Communications Company, L.P. Broadband telecommunications system
US6463052B1 (en) 1994-05-05 2002-10-08 Sprint Communications Company L.P. Method, system and apparatus for telecommunications control
US6961339B2 (en) 1994-05-05 2005-11-01 Sprint Communications Company L.P. Telecommunications system
US6452928B1 (en) * 1994-05-05 2002-09-17 Sprint Communications Company L.P. Broadband telecommunications system
US6104718A (en) 1994-05-05 2000-08-15 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US6108341A (en) 1994-05-05 2000-08-22 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US6449280B1 (en) * 1994-05-05 2002-09-10 Sprint Communications Company L.P. Broadband telecommunications system
US6430195B1 (en) 1994-05-05 2002-08-06 Sprint Communications Company L.P. Broadband telecommunications system interface
US7239644B2 (en) 1994-05-05 2007-07-03 Sprint Communications Company L.P. ATM gateway system
US7286561B2 (en) * 1994-05-05 2007-10-23 Sprint Communications Company L.P. Method system and apparatus for telecommunications control
US6424652B1 (en) * 1994-05-05 2002-07-23 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US6421344B1 (en) 1994-05-05 2002-07-16 Sprint Communications Company L.P. ATM direct access line system
US20020089986A1 (en) * 1994-05-05 2002-07-11 Christie Joseph Michael Telecommunications system
US6172977B1 (en) 1994-05-05 2001-01-09 Sprint Communications Company, L. P. ATM direct access line system
US20070263644A1 (en) * 1994-05-05 2007-11-15 Sprint Communications Company L.P. Gateway system to interface different communication networks
US6411624B1 (en) * 1994-05-05 2002-06-25 Sprint Communications Company L.P. Telecommunications system
US6185219B1 (en) 1994-05-05 2001-02-06 Sprint Communications Company, L. P. Method, system and apparatus for telecommunications control
US6192052B1 (en) 1994-05-05 2001-02-20 Sprint Communications Company, L. P. Method system and apparatus for telecommunications control
US20020064178A1 (en) * 1994-05-05 2002-05-30 Christie Joseph Michael Broadband telecommunications system interface
US6201812B1 (en) 1994-05-05 2001-03-13 Sprint Communications Company, L. P. Method system and apparatus for telecommunications control
US6208660B1 (en) 1994-05-05 2001-03-27 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US6212193B1 (en) * 1994-05-05 2001-04-03 Sprint Communications Company, L. P. Method, system and apparatus for telecommunications control
US7327728B2 (en) 1994-05-05 2008-02-05 Sprint Communications Company L.P. Broadband telecommunications system
US7336651B2 (en) 1994-05-05 2008-02-26 Sprint Communications Company L.P. Broadband telecommunications system
US6366586B1 (en) 1994-05-05 2002-04-02 Sprint Communications Company L.P. Method, system and apparatus for telecommunications control
US6343084B1 (en) * 1994-05-05 2002-01-29 Sprint Communications Company, L.P. Broadband telecommunications system
US7394894B2 (en) 1994-05-05 2008-07-01 Sprint Communications Company L.P. System for managing telecommunications
US6314103B1 (en) 1994-05-05 2001-11-06 Sprint Communications Company, L.P. System and method for allocating bandwidth for a call
US7471698B2 (en) 1994-05-05 2008-12-30 Sprint Communications Company L.P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US6304572B1 (en) 1994-05-05 2001-10-16 Sprint Communications Company, L.P. Method, system and apparatus for telecommunications control
US5642396A (en) * 1995-05-10 1997-06-24 Mci Corporation Release cause table for failed calls in SS7/ISDN Networks
US6236655B1 (en) * 1995-07-19 2001-05-22 Fujitsu Network Communications, Inc. Port and link identification
US20080075087A1 (en) * 1995-09-08 2008-03-27 Sprint Communications Company L.P. Broadband telecommunications system
US6181703B1 (en) 1995-09-08 2001-01-30 Sprint Communications Company L. P. System for managing telecommunications
US6690656B1 (en) 1995-09-08 2004-02-10 Sprint Communications Company, L.P. System for managing telecommunications
US6081525A (en) 1995-09-08 2000-06-27 Sprint Communications Co., L.P. Broadband telecommunications system
US6674759B1 (en) 1995-09-08 2004-01-06 Sprint Communications Company, L.P. System for managing telecommunications
US8730971B2 (en) * 1995-09-08 2014-05-20 Sprint Communications Company L.P. Broadband telecommunications system
US6249529B1 (en) 1995-09-08 2001-06-19 Sprint Communications Company, L.P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US20040125814A1 (en) * 1995-09-08 2004-07-01 Sprint Communications Company, L. P. System for managing telecommunications
US6327270B1 (en) 1995-09-08 2001-12-04 Sprint Communications Company, L. P. Telecommunications apparatus, system, and method with an enhanced signal transfer point
US5872785A (en) * 1995-09-19 1999-02-16 Siemens Aktiengesellschaft Method for switching narrowband partial line bundles between communications systems via an ATM communication network
US6081529A (en) * 1995-11-22 2000-06-27 Sprint Communications Company, L. P. ATM transport system
US6031840A (en) 1995-12-07 2000-02-29 Sprint Communications Co. L.P. Telecommunications system
US6026091A (en) 1996-02-02 2000-02-15 Sprint Communications Co. L.P. ATM gateway system
US8356073B1 (en) 1996-02-26 2013-01-15 Graphon Corporation Multi-homed web server with animation player and programmable functionality
US8364754B1 (en) 1996-02-26 2013-01-29 Graphon Corporation Multi-homed web server with compiled animation server and programmable functionality
US8346861B1 (en) 1996-02-26 2013-01-01 Graphon Corporation Web server with animation player
US8370476B1 (en) 1996-02-26 2013-02-05 Graphon Corporation Modular multi-homed web server with animation player
US8359368B1 (en) 1996-02-26 2013-01-22 Graphon Corporation Multi-homed web server with animation player
US8370453B1 (en) 1996-02-26 2013-02-05 Graphon Corporation Modular multi-homed web server with compiled animation server
US8346890B1 (en) 1996-02-26 2013-01-01 Graphon Corporation Multi-homed web server with compiled animation server
US8117298B1 (en) 1996-02-26 2012-02-14 Graphon Corporation Multi-homed web server
US5933426A (en) * 1996-04-11 1999-08-03 Fujitsu Limited Interface apparatus of ATM/STM coexistence network system
US5940393A (en) 1996-05-28 1999-08-17 Sprint Communications Co. L.P. Telecommunications system with a connection processing system
US6147994A (en) 1996-05-28 2000-11-14 Sprint Communications Company, L.P. Telecommunications system with a connection processing system
US6128301A (en) * 1996-11-07 2000-10-03 Nortel Networks Limited Architecture for distribution of voice over ATM networks
US7324534B2 (en) 1996-11-22 2008-01-29 Sprint Communications Company L.P. Broadband telecommunications system interface
US6115380A (en) 1996-11-22 2000-09-05 Sprint Communications Co., L.P. Broadband telecommunications system
US6002689A (en) 1996-11-22 1999-12-14 Sprint Communications Co. L.P. System and method for interfacing a local communication device
US20040085975A1 (en) * 1996-11-22 2004-05-06 Sprint Communications Company, L.P. Broadband telecommunications system interface
US20010015981A1 (en) * 1996-11-22 2001-08-23 Nelson Tracy Lee System and method for transporting a call in a telecommunication network
US7289511B2 (en) 1996-11-22 2007-10-30 Sprint Communications Company L.P. System and method for providing enhanced services for a telecommunication call
AU731833B2 (en) * 1996-11-22 2001-04-05 Sprint Communications Company, L.P. Broadband telecommunications system interface
US6690674B1 (en) * 1996-11-22 2004-02-10 Sprint Communications Company L.P. System and method for interfacing a local communication device
US6014378A (en) 1996-11-22 2000-01-11 Sprint Communications Company, L.P. Telecommunications tandem system for circuit-based traffic
US6639912B1 (en) * 1996-11-22 2003-10-28 Sprint Communications Company, L.P. Number portability in a communications system
WO1998023095A2 (en) * 1996-11-22 1998-05-28 Sprint Communications Company, L.P. System and method for interfacing a local communication device
US5920562A (en) 1996-11-22 1999-07-06 Sprint Communications Co. L.P. Systems and methods for providing enhanced services for telecommunication call
US6262992B1 (en) 1996-11-22 2001-07-17 Sprint Communications Company, L. P. System and method for transporting a call in a telecommunication network
US20030026278A1 (en) * 1996-11-22 2003-02-06 Sprint Communication Co., L.P. Telecommunications systems
US6999463B2 (en) 1996-11-22 2006-02-14 Sprint Communications Company L.P. Number portability in a communications system
US7545824B2 (en) 1996-11-22 2009-06-09 Sprint Communications Company L.P. System and method for transporting a call in a telecommunication network
AU731264B2 (en) * 1996-11-22 2001-03-29 Sprint Communications Company, L.P. Telecommunications system
US6788693B1 (en) 1996-11-22 2004-09-07 Sprint Communication Company, L.P. System and method for interfacing a local communication device
US6667982B2 (en) * 1996-11-22 2003-12-23 Sprint Communications Company, L.P. Broadband telecommunications system interface
US6931008B2 (en) 1996-11-22 2005-08-16 Sprint Communications Company L.P. Broadband telecommunications system
US6795440B1 (en) 1996-11-22 2004-09-21 Sprint Communcations Company, L.P. Telecommunications tandem system for circuit-based traffic
US6023474A (en) 1996-11-22 2000-02-08 Sprint Communications C.O.L.P. Broadband telecommunications system interface
WO1998023056A1 (en) * 1996-11-22 1998-05-28 Sprint Communications Company, L.P. Broadband telecommunications system interface
US20040057427A1 (en) * 1996-11-22 2004-03-25 Sprint Communications Company, L.P. Number portability in a communications system
AU719041B2 (en) * 1996-11-22 2000-05-04 Sprint Communications Company, L.P. System and method for interfacing a local communication device
CZ299026B6 (en) * 1996-11-22 2008-04-09 Sprint Communications Company, L. P. Telecommunication system and operating method thereof
WO1998023095A3 (en) * 1996-11-22 1998-08-27 Sprint Communications Co System and method for interfacing a local communication device
US6904060B2 (en) 1996-11-22 2005-06-07 Sprint Communications Company L.P. System and method for transporting a call in a telecommunication network
US7050421B1 (en) * 1996-12-20 2006-05-23 Telefonaktiebolaget Lm Ericsson (Publ) ATM network providing transparently narrowband based telephony services without requiring ATM-switching
US5956334A (en) * 1997-02-10 1999-09-21 At & T Corporation Method for interfacing a telephony and an ATM network to establish voice communication
US6067299A (en) 1997-04-16 2000-05-23 Sprint Communications Company, L.P. Communications system for providing ATM connections and echo cancellation
US6674729B1 (en) 1997-04-16 2004-01-06 Sprint Communications Company, L.P. Communications system for providing ATM connections and echo cancellation
US5953316A (en) * 1997-04-17 1999-09-14 The Trustees Of Columbia University In The City Of New York Reservation method and system for asynchronous transfer mode communications
US7075931B2 (en) 1997-04-25 2006-07-11 Nortel Networks Limited Method and apparatus for ATM address resolution
US20010043604A1 (en) * 1997-04-25 2001-11-22 Northern Telecom Limited. Method and apparatus for ATM address resolution
US20050174999A1 (en) * 1997-05-09 2005-08-11 Sprint Communications Company L.P. System and method for connecting a call
US6470018B1 (en) 1997-05-09 2002-10-22 Sprint Communications Company L.P. System and method for connecting a call
US6885671B1 (en) 1997-05-09 2005-04-26 Sprint Communications Company L.P. System and method for connecting a call
US6137800A (en) 1997-05-09 2000-10-24 Sprint Communications Company, L. P. System and method for connecting a call
US6704327B1 (en) 1997-05-09 2004-03-09 Sprint Communications Company, L.P. System and method for connecting a call
US7203199B1 (en) 1997-05-13 2007-04-10 Sprint Communications Company L.P. System and method for transporting a call
US6178170B1 (en) 1997-05-13 2001-01-23 Sprint Communications Company, L. P. System and method for transporting a call
US7376131B2 (en) 1997-05-13 2008-05-20 Sprint Communications Company L.P. System and method for transporting a call
US6389014B1 (en) 1997-06-11 2002-05-14 Samsung Electronics Co., Ltd. ATM switching device and method capable of providing voice call service
US6570868B1 (en) * 1997-08-08 2003-05-27 Nortel Networks Limited System and method for establishing a communication connection
US6967955B1 (en) 1997-09-18 2005-11-22 Ascend Communications, Inc. Virtual path merging in a multipoint-to-point network tunneling protocol
US6097726A (en) * 1997-09-18 2000-08-01 Ascend Communications, Inc. Virtual path merging in a multipoint-to-point network tunneling protocol
US6157657A (en) * 1997-10-02 2000-12-05 Alcatel Usa Sourcing, L.P. System and method for data bus interface
US6320877B1 (en) 1997-10-02 2001-11-20 Alcatel Usa Sourcing, L.P. System and method for data bus interface
US6249522B1 (en) * 1997-10-17 2001-06-19 Fujitsu Limited Path merging type communication apparatus, method thereof, and storage medium thereof
US6381246B1 (en) * 1997-11-19 2002-04-30 Nortel Networks Limited Telephony system and method of signalling
US6243383B1 (en) * 1997-12-01 2001-06-05 Nortel Networks Limited Method and apparatus for ATM address resolution
US6680937B1 (en) 1997-12-31 2004-01-20 At&T Corp. Telecommunications network architecture for transporting fax, voice and data via an ATM switch including a STM to ATM terminal adapter
US6522663B1 (en) 1997-12-31 2003-02-18 At&T Corp. Telecommunications network architecture for transporting fax, voice and data via an ATM switch including a STM to ATM terminal adapter
US6324174B2 (en) 1997-12-31 2001-11-27 At&T Corporation Telecommunications network architecture for transporting fax, voice and data via an ATM switch including a STM to ATM terminal adapter
US6697353B2 (en) 1997-12-31 2004-02-24 At&T Corp. Voice-over-ATM switch architecture allowing congestion-dependent transport of silence cells
US6483837B1 (en) 1998-02-20 2002-11-19 Sprint Communications Company L.P. System and method for connecting a call with an interworking system
US6470019B1 (en) 1998-02-20 2002-10-22 Sprint Communications Company L.P. System and method for treating a call for call processing
US6744770B1 (en) 1998-02-20 2004-06-01 Sprint Communications Company L.P. System and method for treating a call for call processing
US6563918B1 (en) 1998-02-20 2003-05-13 Sprint Communications Company, LP Telecommunications system architecture for connecting a call
US6546022B1 (en) 1998-04-03 2003-04-08 Sprint Communications Company, L.P. Method, system and apparatus for processing information in a telecommunications system
US6351521B1 (en) 1998-04-10 2002-02-26 Sprint Communications Company L.P. Communications test system
US7304986B2 (en) 1998-04-30 2007-12-04 At&T Labs, Inc. ATM-based distributed network switching system
US20060274732A1 (en) * 1998-04-30 2006-12-07 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching systme
US6389011B2 (en) * 1998-04-30 2002-05-14 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US20040233909A1 (en) * 1998-04-30 2004-11-25 Sbc Technology Resources, Inc. ATM-based distributed network switching system
US6169735B1 (en) 1998-04-30 2001-01-02 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US6219348B1 (en) 1998-04-30 2001-04-17 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US20070286200A1 (en) * 1998-04-30 2007-12-13 At&T Labs, Inc. Fault tolerant atm-based distributed virtual tandem switching system and method
US20020093947A1 (en) * 1998-04-30 2002-07-18 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US7227837B1 (en) 1998-04-30 2007-06-05 At&T Labs, Inc. Fault tolerant virtual tandem switch
US6345048B1 (en) 1998-04-30 2002-02-05 Sbc Technology Resources, Inc. ATM-based distributed virtual tandem switching system
US7843932B2 (en) 1998-04-30 2010-11-30 At&T Labs, Inc. Secure ATM-based distributed virtual tandem switching system and method
US20040179531A1 (en) * 1998-04-30 2004-09-16 Sbc Technology Resources, Inc. Secure ATM-based distributed virtual tandem switching system and method
US7136378B2 (en) 1998-04-30 2006-11-14 Sbc Technology Resources, Inc. Secure ATM-based distributed virtual tandem switching system and method
US7099311B2 (en) 1998-04-30 2006-08-29 Sbc Technology Resources, Inc. Virtual tandem switch
US6757278B1 (en) 1998-04-30 2004-06-29 Sbc Technology Resources, Inc. Secure ATM-based distributed virtual tandem switching system and method
US7095734B2 (en) 1998-04-30 2006-08-22 Sbc Technology Resources, Inc. Distributed virtual tandem switch
US6765903B1 (en) 1998-04-30 2004-07-20 Sbc Technology Resources, Inc. ATM-based distributed network switching system
US6195714B1 (en) 1998-06-08 2001-02-27 Nortel Networks Limited System for transferring STM calls through ATM network by converting the STM calls to ATM and vice versa at the edge nodes of ATM network
US6535507B1 (en) 1998-07-06 2003-03-18 Nortel Networks Limited Method of address resolution for the transfer of synchronous transfer mode calls through multiple domains in a broadband data network
US6282194B1 (en) 1998-09-23 2001-08-28 Nortel Networks Limited Transit trunk subnetwork system
US7027438B1 (en) 1998-09-23 2006-04-11 Siemens Aktiengesellschaft Method for determining a network access address
WO2000018178A1 (en) * 1998-09-23 2000-03-30 Siemens Aktiengesellschaft Method for determining a network access address
US6658022B1 (en) * 1998-09-30 2003-12-02 Cisco Technology, Inc. Signaling protocol for controlling voice calls in a packet switching network
US7369545B1 (en) 1998-09-30 2008-05-06 Cisco Technology, Inc. System using a signaling protocol for controlling voice calls originating in a circuit switching telephone network and routed over a packet switching network
US7720081B2 (en) 1998-11-20 2010-05-18 Level 3 Communications, Llc System and method for bypassing data from egress facilities
US8089958B2 (en) 1998-11-20 2012-01-03 Level 3 Communications, Llc Voice over data telecommunications network architecture
US6442169B1 (en) 1998-11-20 2002-08-27 Level 3 Communications, Inc. System and method for bypassing data from egress facilities
US8036214B2 (en) 1998-11-20 2011-10-11 Level 3 Communications, Llc Voice over data telecommunications network architecture
US7200150B2 (en) 1998-11-20 2007-04-03 Level 3 Communications, Inc. System and method for bypassing data from egress facilities
US8416769B2 (en) 1998-11-20 2013-04-09 Level 3 Communications, Llc System and method for bypassing data from egress facilities
US6614781B1 (en) 1998-11-20 2003-09-02 Level 3 Communications, Inc. Voice over data telecommunications network architecture
US8085761B2 (en) 1998-11-20 2011-12-27 Level 3 Communications, Llc Voice over data telecommunications network architecture
US8953585B2 (en) 1998-11-20 2015-02-10 Level 3 Communications, Llc System and method for bypassing data from egress facilities
US20030198216A1 (en) * 1998-11-20 2003-10-23 Level 3 Communications, Inc. System and method for bypassing data from egress facilities
US8693347B2 (en) 1998-11-20 2014-04-08 Level 3 Communications, Llc Voice over data telecommunications network architecture
US20070201515A1 (en) * 1998-11-20 2007-08-30 Level 3 Communications, Inc. System and Method for Bypassing Data From Egress Facilities
US8270421B2 (en) 1998-11-20 2012-09-18 Level 3 Communications, Llc Voice over data telecommunications network architecture
US6141342A (en) * 1998-12-02 2000-10-31 Nortel Networks Corporation Apparatus and method for completing inter-switch calls using large trunk groups
US6757285B1 (en) 1998-12-17 2004-06-29 Nortel Networks Limited Method and apparatus for completing telephone calls between subnetworks
US7693974B2 (en) 1998-12-18 2010-04-06 Sprint Communications Company L.P. System and method for providing a graphical user interface to, for building, and/or for monitoring a telecommunication network
US6327267B1 (en) * 1998-12-21 2001-12-04 Ericssoninc Systems and methods for routing a message through a signaling network associated with a public switched telephone network (PSTN), including a method for performing global title routing on an internet protocol (IP) address
US6724765B1 (en) 1998-12-22 2004-04-20 Sprint Communications Company, L.P. Telecommunication call processing and connection system architecture
US6888833B1 (en) 1998-12-22 2005-05-03 Sprint Communications Company L.P. System and method for processing call signaling
US6785282B1 (en) * 1998-12-22 2004-08-31 Sprint Communications Company L.P. System and method for connecting a call with a gateway system
US6982950B1 (en) * 1998-12-22 2006-01-03 Sprint Communications Company L.P. System and method for connecting a call in a tandem architecture
US6763027B2 (en) 1998-12-22 2004-07-13 Sprint Communications Company L.P. System and method for connecting calls with a time division multiplex matrix
US20030053451A1 (en) * 1998-12-22 2003-03-20 Sprint Communications Company, L.P. System and method for connecting calls with a time division multiplex matrix
US7269167B2 (en) 1998-12-23 2007-09-11 Nortel Networks Limited Direct end-office trunking
US20040081174A1 (en) * 1998-12-23 2004-04-29 Nortel Networks Limited Direct end-office trunking
US6532229B1 (en) * 1999-01-15 2003-03-11 Brian Weatherred Johnson Low cost link aggregation method and system
US7646765B2 (en) 1999-02-25 2010-01-12 Sprint Communications Company L.P. System and method for caching called number information
US20030007621A1 (en) * 1999-03-06 2003-01-09 Graves Richard C. Systems and processes for call and call feature administration on a telecommunications network
US7069291B2 (en) 1999-03-06 2006-06-27 Coppercom, Inc. Systems and processes for call and call feature administration on a telecommunications network
US7359402B2 (en) 1999-05-04 2008-04-15 Sprint Communications Company L.P. System and method for configuring bandwidth transmission rates for call connections
US7327738B2 (en) * 1999-05-11 2008-02-05 Nortel Networks, Ltd. System, device, and method for supporting virtual private networks
US20040095947A1 (en) * 1999-05-11 2004-05-20 Luciani James V. System, device, and method for supporting virtual private networks
US8059811B2 (en) 1999-05-21 2011-11-15 Sprint Communications Company L.P. System and method for controlling a call processing system
US6970456B1 (en) * 1999-07-01 2005-11-29 Alcatel Method of monitoring the use of a chargeable dynamic signaling port of an inter-exchange trunk
US20010036158A1 (en) * 1999-07-14 2001-11-01 Magnus Hallenstal Combining narrowband applications with broadband transport
US20020051443A1 (en) * 1999-07-14 2002-05-02 Ros-Marie Furtenback Combining narrowband applications with broadband transport
US20020131429A1 (en) * 1999-07-14 2002-09-19 Stacy Scott Combining narrowband applications with broadband transport
US20020122426A1 (en) * 1999-07-14 2002-09-05 Jan Lindquist Combining narrowband applications with broadband transport
US7212518B2 (en) 1999-07-14 2007-05-01 Ericsson Inc. Combining narrowband applications with broadband transport
US7212519B2 (en) 1999-07-14 2007-05-01 Ericsson Inc. Combining narrowband applications with broadband transport
US7009982B2 (en) 1999-07-14 2006-03-07 Ericsson Inc. Combining narrowband applications with broadband transport
US20020126676A1 (en) * 1999-07-14 2002-09-12 Kent Johnson Combining narrowband applications with broadband transport
US6980544B2 (en) 1999-07-14 2005-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
US6744768B2 (en) 1999-07-14 2004-06-01 Telefonaktiebolaget Lm Ericsson Combining narrowband applications with broadband transport
US7263092B2 (en) 1999-07-14 2007-08-28 Ericsson Inc. Combining narrowband applications with broadband transport
US20020131430A1 (en) * 1999-07-14 2002-09-19 Jan Lindquist Combining narrowband applications with broadband transport
US7054305B2 (en) * 1999-07-14 2006-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
US7075920B2 (en) 1999-07-14 2006-07-11 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
US6914911B2 (en) 1999-07-14 2005-07-05 Telefonaktiebolaget Lm Ericsson Combining narrowband applications with broadband transport
US7457280B2 (en) 1999-07-14 2008-11-25 Telefonaktiebolaget L M Ericsson (Publ) Combining narrowband applications with broadband transport
US20010036177A1 (en) * 1999-07-14 2001-11-01 Magnus Hallenstal Combining narrowband applications with broadband transport
US6775266B1 (en) 1999-07-14 2004-08-10 Telefonaktiebolaget Lm Ericsson Narrowband applications using ATM switching and transport
US20020003794A1 (en) * 1999-07-14 2002-01-10 Magnus Hallenstal Combining narrowband applications with broadband transport
US6947427B1 (en) * 1999-09-29 2005-09-20 Nec Corporation Transmission method and network system for accommodating a plurality of kinds of traffic in a common network
US6553111B1 (en) 1999-10-13 2003-04-22 3C Ltd. Synchronous digital hierarchy switch system
US6816497B1 (en) 1999-11-05 2004-11-09 Sprint Communications Company, L.P. System and method for processing a call
US6704314B1 (en) * 1999-12-15 2004-03-09 Sprint Communications Company, L.P. Method and apparatus to control cell substitution
US7327737B2 (en) 1999-12-15 2008-02-05 Sprint Communications Company L.P. Method and apparatus to control cell substitution
WO2001047161A1 (en) * 1999-12-23 2001-06-28 Qwest Communications International Inc. Method and system for interfacing between circuit network switches and atm edge switches
US6388991B1 (en) 1999-12-23 2002-05-14 West Communications International Inc. Method and system for interfacing between circuit network switches and ATM edge switches
US6785377B1 (en) 2000-01-19 2004-08-31 Sprint Communications Company L.P. Data calls using both constant bit rate and variable bit rate connections
US20070230340A1 (en) * 2000-01-20 2007-10-04 At&T Labs, Inc. System and method for measurement-based adaptive caching of virtual connections
US7567574B2 (en) 2000-01-20 2009-07-28 Verizon Business Global Llc Intelligent network and method for providing voice telephony over ATM and private address translation
US8401023B2 (en) 2000-01-20 2013-03-19 Verizon Business Global Llc Intelligent network and method for providing voice telephony over ATM and private address translation
US8059536B2 (en) 2000-01-20 2011-11-15 At&T Labs, Inc. System and method for measurement-based adaptive caching of virtual connections
US20020064129A1 (en) * 2000-01-20 2002-05-30 Sbc Technology Resources, Inc. System and method for measurement-based adaptive caching of virtual connections
US20060215642A1 (en) * 2000-01-20 2006-09-28 Mci, Llc Intelligent network and method for providing voice telephony over ATM and alias addressing
US20010026553A1 (en) * 2000-01-20 2001-10-04 Gallant John K. Intelligent policy server system and method for bandwidth control in an ATM network
US20050083914A1 (en) * 2000-01-20 2005-04-21 Gallant John K. Intelligent network and method for providing voice telephony over ATM and private address translation
US20080075025A1 (en) * 2000-01-20 2008-03-27 Verizon Business Gobal Llc Intelligent network and method for providing voice telephony over atm and point-to-multipoint connectivity
US8483225B2 (en) 2000-01-20 2013-07-09 Verizon Business Global Llc Intelligent policy server system and method for bandwidth control in an ATM network
US7586844B2 (en) 2000-01-20 2009-09-08 At&T Labs, Inc. System and method for measurement-based adaptive caching of virtual connections
US8040876B2 (en) * 2000-01-20 2011-10-18 Verizon Business Global Llc Intelligent network and method for providing voice telephony over ATM and alias addressing
US20090262730A1 (en) * 2000-01-20 2009-10-22 Mci, Inc. Intelligent network and method for providing voice telephony over atm and private address translation
US20090296576A1 (en) * 2000-01-20 2009-12-03 At&T Labs, Inc System and method for measurement-based adaptive caching of virtual connections
US7248562B2 (en) 2000-01-20 2007-07-24 At&T Labs, Inc. System and method for measurement-based adaptive caching of virtual connections
US8780919B2 (en) 2000-01-20 2014-07-15 Verizon Patent And Licensing Inc. Intelligent policy server system and method for bandwidth control in an ATM network
US8467378B2 (en) 2000-01-20 2013-06-18 Verizon Business Global Llc Intelligent network and method for providing voice telephony over ATM and point-to-multipoint connectivity
US6701431B2 (en) 2000-01-28 2004-03-02 Infineon Technologies Ag Method of generating a configuration for a configurable spread spectrum communication device
WO2001055864A1 (en) * 2000-01-28 2001-08-02 Morphics Technology Inc. A method of generating a configuration for a configurable spread spectrum communication device
US7216350B2 (en) 2000-03-31 2007-05-08 Coppercom, Inc. Methods and apparatus for call service processing by instantiating an object that executes a compiled representation of a mark-up language description of operations for performing a call feature or service
US7046778B2 (en) 2000-03-31 2006-05-16 Coppercom, Inc. Telecommunications portal capable of interpreting messages from an external device
US20020085696A1 (en) * 2000-03-31 2002-07-04 Robert Martin Methods and apparatus for call service processing
US20020064267A1 (en) * 2000-03-31 2002-05-30 Robert Martin Telecommunications portal capable of interpreting messages from an external device
US6785725B1 (en) * 2000-04-28 2004-08-31 Ciena Corporation Signaling address resolution in a communication network
US7764777B2 (en) 2000-05-04 2010-07-27 Telemaze Llc Branch calling and caller ID based call routing telephone features
US8457113B2 (en) 2000-05-04 2013-06-04 Telemaze Llc Branch calling and caller ID based call routing telephone features
US8718252B2 (en) 2000-05-04 2014-05-06 Focal Ip, Llc Tandem access controller within the public switched telephone network
US8155298B2 (en) 2000-05-04 2012-04-10 Telemaze Llc Tandem access controller within the public switched telephone network
US8175240B2 (en) 2000-05-04 2012-05-08 Telemaze Llc Tandem access controller within the public switched telephone network
US7587036B2 (en) 2000-05-04 2009-09-08 Telemaze Llc Tandem access controller within the public switched telephone network
US8848894B2 (en) 2000-05-04 2014-09-30 Focal Ip, Llc Tandem access controller within the public switched telephone network
US9083719B2 (en) 2000-05-04 2015-07-14 Focal Ip, Llc Controller for the intelligent interconnection of two communication networks, and method of use for same
US7324635B2 (en) 2000-05-04 2008-01-29 Telemaze Llc Branch calling and caller ID based call routing telephone features
WO2002058429A3 (en) * 2001-01-17 2002-10-10 Ericsson Telefon Ab L M Combining narrowband applications with broadband transport
WO2002058430A2 (en) * 2001-01-17 2002-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
WO2002058428A3 (en) * 2001-01-17 2002-10-10 Ericsson Telefon Ab L M Combining narrowband applications with broadband transport
WO2002058429A2 (en) * 2001-01-17 2002-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
WO2002058428A2 (en) * 2001-01-17 2002-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Combining narrowband applications with broadband transport
WO2002058430A3 (en) * 2001-01-17 2002-10-10 Ericsson Telefon Ab L M Combining narrowband applications with broadband transport
GB2376157B (en) * 2001-01-29 2003-12-10 Morphics Tech Inc A method of generating a configuration for a configurable spread spectrum communication device
GB2376157A (en) * 2001-01-29 2002-12-04 Morphics Tech Inc A method of generating a configuration for a configurable spread spectrum communication device
US20040213244A1 (en) * 2001-02-15 2004-10-28 Buhrke Rolfe Erwin ATM packet access gateway
US6925082B2 (en) * 2001-02-15 2005-08-02 Lucent Technologies Inc. ATM packet access gateway
US20030202484A1 (en) * 2002-04-25 2003-10-30 Kutter Robert W. Inter-switch telecommunications system for interconnecting packet-capable time division multiplexed switches with non-packet-capable time division multiplexed switches via an asynchronous transfer mode network
US7177305B2 (en) * 2002-04-25 2007-02-13 Lucent Technologies Inc. Inter-switch telecommunications system for interconnecting packet-capable Time Division Multiplexed switches with non-packet-capable Time Division Multiplexed switches via an asynchronous transfer mode network
US20030227904A1 (en) * 2002-06-06 2003-12-11 Adc Telecommunications Israel Ltd. Associating virtual channel identifier to a user phone number at an access node in a VoATM telecommunication system
US9131040B2 (en) 2002-06-20 2015-09-08 Numerex Corp. Alarm system for use over satellite broadband
US9356798B2 (en) 2002-06-20 2016-05-31 Numerex Corp. Alarm system IP network with PSTN output
US9094410B2 (en) 2002-06-20 2015-07-28 Numerex Corp. Wireless VoIP network for security system monitoring
US9054893B2 (en) 2002-06-20 2015-06-09 Numerex Corp. Alarm system IP network with PSTN output
US7835266B2 (en) * 2002-10-29 2010-11-16 Fujitsu Limited Node apparatus and maintenance and operation supporting device
US20050220006A1 (en) * 2002-10-29 2005-10-06 Fujitsu Limited Node apparatus and maintenance and operation supporting device
US8743865B2 (en) * 2006-03-06 2014-06-03 Nokia Corporation Aggregation of VCI routing tables
US20070211731A1 (en) * 2006-03-06 2007-09-13 Sergey Balandin Aggregation of VCI routing tables
US8798260B2 (en) 2011-04-04 2014-08-05 Numerex Corp. Delivery of alarm system event data and audio
US9350871B2 (en) 2011-04-04 2016-05-24 Numerex Corp. Delivery of alarm system event data and audio over hybrid networks
US8705704B2 (en) 2011-04-04 2014-04-22 Numerex Corp. Delivery of alarm system event data and audio over hybrid networks
US9462135B2 (en) 2011-04-04 2016-10-04 Numerex Corp. Delivery of alarm system event data and audio
US8705716B2 (en) 2011-04-27 2014-04-22 Numerex Corp. Interactive control of alarm systems by telephone interface using an intermediate gateway
US9177464B2 (en) 2012-09-28 2015-11-03 Numerex Corp. Method and system for untethered two-way voice communication for an alarm system
US9183730B1 (en) 2014-07-16 2015-11-10 Numerex Corp. Method and system for mitigating invasion risk associated with stranger interactions in a security system environment
US9449497B2 (en) 2014-10-24 2016-09-20 Numerex Corp. Method and system for detecting alarm system tampering

Also Published As

Publication number Publication date
EP0719068A3 (en) 1998-12-16
CA2161473C (en) 2001-04-10
JPH08242288A (en) 1996-09-17
EP0719068A2 (en) 1996-06-26
CA2161473A1 (en) 1996-06-22

Similar Documents

Publication Publication Date Title
US5568475A (en) ATM network architecture employing an out-of-band signaling network
US5483527A (en) Terminal adapter for interfacing an ATM network with a STM network
US6324179B1 (en) ATM network arranged to interface with STM in-band signaling
US6081525A (en) Broadband telecommunications system
US5940393A (en) Telecommunications system with a connection processing system
US6298064B1 (en) Broadband telecommunications system
US6389130B1 (en) Public switched telephone network call routing using dyamic asynchronous mode transfer bearer voice trunking
KR100317863B1 (en) Signaling system for broadband networks
CA2271763C (en) Telecommunications tandem system for circuit-based traffic
US20070263644A1 (en) Gateway system to interface different communication networks
US6496508B1 (en) Communication system architecture and method of establishing a communication connection therein
US6483842B1 (en) Multimedia switching system
US6501759B1 (en) Broadband telecommunications system
US7327728B2 (en) Broadband telecommunications system
EP1453257B1 (en) System and method for establishing a communication connection
JPH11136291A (en) Cell transmitter whit voice inter-work function
WO2001011825A2 (en) Communications using hybrid circuit-switched and packet-switched networks
KR100222223B1 (en) Method and system for combining connections over atm network
AU670662B2 (en) A telecommunications system and a method of transmitting data in a telecommunications system
US7006493B1 (en) Virtual voice port configured to connect a switched voice call to a permanent voice call
Park et al. An implementation of voice message connection control for PSTN subscribers in ATM switching system
Eng ATM Objectives and Requirements For Next-Generation Networks
WO2001075547A2 (en) Multi-service interworking switch using dynamic asynchronous transfer mode bearer trunking
WO2001076215A1 (en) Scalable carrier class switch and its application to intra-domain public switched telephone network call routing

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT&T CORP., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOSHI, BHARAT TARACHAND;FARBER, N.;HARSHAVARDHANA, P.;AND OTHERS;REEL/FRAME:007284/0671

Effective date: 19941220

AS Assignment

Owner name: AT&T IPM CORP., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T CORP.;REEL/FRAME:007467/0511

Effective date: 19950428

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: LUCENT TECHNOLOGIES, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T CORP.;REEL/FRAME:008102/0142

Effective date: 19960329

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT, TEX

Free format text: CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:LUCENT TECHNOLOGIES INC. (DE CORPORATION);REEL/FRAME:011722/0048

Effective date: 20010222

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK), AS ADMINISTRATIVE AGENT;REEL/FRAME:018584/0446

Effective date: 20061130

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:ALCATEL-LUCENT USA INC.;REEL/FRAME:030510/0627

Effective date: 20130130

AS Assignment

Owner name: SOUND VIEW INNOVATIONS, LLC, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:032086/0016

Effective date: 20131223

AS Assignment

Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:032537/0133

Effective date: 20131223

AS Assignment

Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033950/0001

Effective date: 20140819

AS Assignment

Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:ALCATEL USA MARKETING, INC.;ALCATEL USA SOURCING, INC.;LUCENT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:050460/0510

Effective date: 20081017

AS Assignment

Owner name: NOKIA OF AMERICA CORPORATION, DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:ALCATEL-LUCENT USA INC.;REEL/FRAME:050476/0085

Effective date: 20180103

AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:NOKIA OF AMERICA CORPORATION;REEL/FRAME:050662/0204

Effective date: 20190927