US5637851A - Laser scanner for reading two dimensional bar codes - Google Patents

Laser scanner for reading two dimensional bar codes Download PDF

Info

Publication number
US5637851A
US5637851A US08/388,480 US38848095A US5637851A US 5637851 A US5637851 A US 5637851A US 38848095 A US38848095 A US 38848095A US 5637851 A US5637851 A US 5637851A
Authority
US
United States
Prior art keywords
symbol
scan
scanning
light
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/388,480
Inventor
Jerome Swartz
Boris Metlitsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symbol Technologies LLC
Original Assignee
Symbol Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbol Technologies LLC filed Critical Symbol Technologies LLC
Priority to US08/388,480 priority Critical patent/US5637851A/en
Application granted granted Critical
Publication of US5637851A publication Critical patent/US5637851A/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SYMBOL TECHNOLOGIES, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/1093Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing, after transfer of the image of the data-field to an intermediate store, e.g. storage with cathode ray tube
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06009Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
    • G06K19/06037Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10881Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1439Methods for optical code recognition including a method step for retrieval of the optical code
    • G06K7/1456Methods for optical code recognition including a method step for retrieval of the optical code determining the orientation of the optical code with respect to the reader and correcting therefore
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K2019/06215Aspects not covered by other subgroups
    • G06K2019/06262Aspects not covered by other subgroups with target- or other orientation-indicating feature

Definitions

  • This invention generally relates to laser scanning systems for reading bar code symbols or similar indicia and, more particularly, to a laser imaging system for generating a laser beam scan pattern which extends in a two dimensional pattern over the symbols to be read, and a digital processing system for storing, manipulating, and analyzing the scanned image.
  • the bar code symbol itself is a coded pattern of indicia comprised of a series of bars of various widths spaced apart from one another to bound spaces of various widths, the bars and spaces having different light-reflecting characteristics.
  • the readers and scanning systems electro-optically decode the symbol to multiple alphanumerical characters that are intended to be descriptive of the article or some characteristic thereof.
  • one embodiment of such a scanning system resides, inter alia, in emitting a laser light beam from a hand-held, portable laser scanning head supported by a user, and aiming the head, and more particularly, the laser light beam, at a symbol to be read.
  • the scanner functions by repetitively scanning the laser beam in a line across the symbol. A portion of the reflected laser light which is reflected off the symbol is detected, and electronic circuitry or software decodes the electrical signal into a digital representation of the data represented by the symbol scanned.
  • a scanner includes a light source such as a gas laser or semiconductor laser that generates a light beam.
  • the use of semiconductor devices as the light source in scanner systems is especially desirable because of their small size, low cost and low power requirements.
  • the light beam is optically modified, typically by a lens, to form a beam spot of a certain size. It is preferred that the beam spot size be approximately the same as the minimum width between regions of different light reflectivity, i.e., the bars and spaces of the symbol.
  • the relative size of the bars and spaces is determined by the type of coding used, as is the actual size of the bars and spaces.
  • the number of characters per inch represented by the bar code symbol is referred to as the density of the symbol.
  • the light beam is directed by the lens or similar optical components along a light path toward a target that includes a bar code symbol on the surface.
  • a scanning component is also disposed in the light path. The scanning component may either sweep the beam spot across the symbol and trace a scan line across and past the symbol, or scan the field of view of the scanner or do both.
  • a scanner also includes a sensor or photodetector. The photodetector has a field of view which extends across and slightly past the symbol and functions to detect light reflected from the symbol.
  • the analog electrical signal from the photodetector is first typically converted into a pulse width modulated digital signal, with the widths corresponding to the physical widths of the bars and spaces. Such a signal is then decoded according to the specific symbology into a binary representation of the data encoded in the symbol, and to the alphanumeric characters so represented.
  • Laser scanners are not the only type of optical instrument capable of reading bar code symbols.
  • Another type of optical reader is one which is operative being placed by the user in direct contact with the symbol to be read.
  • Such readers typically incorporate detectors based upon charge coupled device (CCD) technology in which the size of the detector is larger than or substantially the same as the symbol to be read.
  • CCD charge coupled device
  • Such scanners are lightweight and easy to use, but require substantially direct contact or placement of the reader on the symbol to enable the symbol be read.
  • Such contact reading is a preferred mode of operation for some applications or as a matter of personal preference by the user.
  • Contact or near contact reading may also be implemented in an appropriately designed laser scanner.
  • U.S. patent application Ser. No. 944,848 now U.S. Pat. No. 4,816,661 describes a hand-held laser scanner that generates a scan pattern of mutually parallel scan lines extending linearly across each symbol.
  • the scan lines are arranged over the height of the symbol. At least one of the scan lines sweeps across each symbol along one sweep direction, whereas, at least another of the scan lines sweeps across each symbol along an opposite sweep direction countercurrent to said one sweep direction, thereby forming a bidirectional scan in which a respective symbol can be read by the a scan line no matter whether the symbol is oriented in the correct left-right direction, or is upside down.
  • U.S. Pat. No. 4,794,239 is hereby incorporated by reference as describing such a bar code structure.
  • a one-dimensional single-line scan as ordinarily the case for hand-held readers, where the laser beam is swept back and forth across a narrow arc, has disadvantages in reading these two dimensional bar codes; that is, the reader must be aimed at each row, individually.
  • the multiple-scan-line readers produce a number of scan lines at an angle to one another so these are not suitable for recognizing Code-49 type of two-dimensional symbols.
  • Prior to the present invention there has not been a laser scanner that is particularly suitable for reading two dimensional bar code symbols or other indicia.
  • the scanning system comprises a housing having an exit port, a laser source, e.g. a gas laser tube or a semiconductor laser diode, for generating laser beam, and scanning means in the housing for scanning the laser beam in scans across successive symbols located exteriorly of the housing.
  • the optical arrangement comprises optical means in the housing for directing the scanning beam along an optical path through the exit port at a controllable angular orientation.
  • the optical arrangement also forms the scanning beam with a cross-sectional beam spot of a predetermined waist size at a predetermined distance from the exit port of the housing.
  • FIG. 1 is a perspective view of a hand-held laser scanner including a scan pattern generator in accordance with this invention, and diagrammatically illustrating a multiple scan pattern;
  • FIG. 2 is a highly simplified block diagram of the image storage and processing circuitry used in the laser scanner according to the present invention
  • FIG. 3a is a simplified diagrammatic illustration of the operation of the present invention showing a single scan line passing through a two-dimensional bar code
  • FIG. 3b is a simplified diagrammatic illustration of the single scan passing through the two dimensional bar code at a second stage of operation
  • FIG. 3c is a simplified diagrammatic illustration of a single scan passing through a two-dimensional bar code at a third stage of operation
  • FIG. 3d is a diagrammatic illustration of the multiple scan pattern passing through a two-dimensional code at an angle which enables the bar code to be read;
  • FIG. 4 is an enlarged view of one row of a truncated bar code symbol to illustrate its component parts
  • FIG. 5 is an enlarged view of a UPC bar code symbol with a scan line at an oblique angle passing through the entire symbol
  • FIG. 6 is a schematic representation of a bit-mapped image of a two-dimensional bar code symbol in a memory array in the system of FIGS. 1 and 3.
  • reference numeral 10 in FIG. 1 generally identifies an optical arrangement in a laser scanning system of the type generally described in the above-identified patents and patent applications, the entire contents of all of which are hereby incorporated by reference herein, for reading symbols, particularly bar code symbols.
  • symbol is intended to be broadly construed and to cover not only symbol patterns composed of alternating bars and spaces of various widths, but also other one or two dimensional graphic patterns, as well as alphanumeric characters.
  • the arrangement 10 includes a housing 12, shown in dashed lines, and intended to represent a hand-held scanner.
  • the arrangement 10 may also be implemented in a desk-top workstation or stationary scanner.
  • the housing includes an exit port 14 through which an outgoing laser light beam is directed to impinge on, and to be scanned across, symbols located exteriorly of the housing.
  • a manually actuated trigger 110 or similar means are provided to initiate scanning so that each symbol may be scanned and read in its respective turn.
  • a laser source e.g. a gas laser tube 16 or a semiconductor laser diode, is mounted in the housing and, when energized, the source 16 generates a laser beam.
  • a multiple line scan pattern generator 120 is illustrated in FIG. 1 and is operative for generating multiple scan lines or traces shown as 150, 152, etc. across a symbol to be read in a scan line pattern 144.
  • the scan pattern generator 120 also functions for positioning at least some of the scan lines at different working distances from the housing 12 in which the generator 120 is housed.
  • Laser source 16 directs a laser beam through optical lens 122 for directing the beam onto rotary main mirror 124 which is mounted on a vertical shaft 126 which is rotated by a motor drive 128 about a vertical axis.
  • Mirror 124 has opposite major planar surfaces which are separated by a mirror thickness having dimension T 3 . A light-reflecting coating is applied over one of the surfaces.
  • the generator 120 also includes a pair of stationary first surface side mirrors 136, 138 inclined at angles relative to the vertical axis of the shaft 126, and also including an angle with each other.
  • Side mirrors 136, 138 have front surfaces on which light-reflecting coatings are respectively applied.
  • Inclined side mirrors 136, 138 are so positioned relative to main mirror 124 that, during rotation of mirror 124, laser light impinging on mirror 124 will, at certain times, during each revolution of mirror 124, be directed toward one of the side mirrors for reflection therefrom forwardly to the exterior target.
  • the motor 128 and mirror 124 are rotated about a horizontal axis parallel to the scan line 150, using a stepper motor, as disclosed in said copending application. After each horizontal scan, a step is introduced to change the angle slightly so that the next scan is vertically displaced. In this manner, a "raster" scan of the field of view is produced.
  • the multiple scan line pattern 144 depicted in FIG. 1 is generated as follows: Assume that mirror 124 is initially positioned with its coated surface directly facing laser source 16. The laser beam emitted by source 16 is returned along the same optical path for impingement on a symbol located at distance D 1 from the housing 12. During rotation of mirror 124, scan line 150 is generated. Eventually, the mirror 124 will direct the laser beam incident thereon to side mirror 136 for reflection by coated surface 140 forwardly for impingement on a symbol located at distance D 2 . D 2 is shorter that D 1 due to the diversion of the beam to side mirror 136. During rotation of mirror 124 scan line 152 is generated. Scan line 152 is swept in the opposite direction to that of scan line 150. A more detailed description of the operation of the optical arrangement 10 is set forth in U.S. patent application Ser. No. 944,848, now U.S. Pat. No. 4,816,661 incorporated herein by reference.
  • the scan pattern 144 comprises a plurality of scan lines in mutual parallelism, with scan lines 150 being a first scan line through 160 being an nth scan line
  • All the scan lines are spread apart over the height of the symbol. This spread can be controlled by, and is a function of, the thickness of mirror 124, the angle 0 of incidence of the laser beam on mirror 124, and the index of refraction n' of mirror 124, the latter being preferably constituted of glass. Also, the beam spot is focused and alternately located at either working distance D 1 or D 2 , thereby obtaining a zooming function.
  • one symbol might be located close-in to the scanner, whereas another symbol might be located far-out from the scanner and, in short, successive symbols may be located at different working distances from the scanner.
  • the scanner which has been designed to read symbols within a certain range of working distances, should it occur that a particular symbol falls outside this range, then the distance between the scanner and the symbol must be adjusted, and usually within a short time interval, for, otherwise, the symbol will not be read.
  • the scanner is usually manually moved toward or away from the symbol to adjust the distance between the scanner and the symbol.
  • FIG. 2 there is shown a highly simplified block diagram of the electronic subsystems of the bar code reader according to one embodiment of the present invention.
  • FIG. 2 an image is captured by photodetector 140 which is rotated electronically, or analyzed electronically, in the DRAM 20.
  • the photodetector 140 receives the reflected light and is used to generate an electrical image of the field of view of the photodetector.
  • the output of the photodetector 140 is preferably a serial binary signal.
  • an analog signal output from the photodetector 140 may be used, which is passed through line 15' and digitized by digitizer 33 or applied to an analog to digital converter 15 to produce a multi-bit binary representation of the light reaching the photodetector 140 as the laser beam is scanned throughout the scan pattern 144.
  • a serial single-bit, or multi-bit parallel binary output of the A/D converter represents the light impinging upon the photodetector.
  • the field of view of the photodetector 140 over an entire scan pattern may be represented as a large predetermined number of elements or pixels arranged in rows and columns.
  • the photodetector 140 produces a single-bit serial binary output, or the A/D converter 15 converts the analog signal into a multi-bit digital representation, one pixel at a time.
  • the digital representation from the photodetector 140 is shifted into a serial input 27 of the DRAM 20; however, if a multi-bit representation is used, it is loaded into a shift register 24, one group of elements at a time, by clock voltages applied to the register elements by clock lines 26.
  • the shift register 24 is clocked onto the line 21 by clock line 26.
  • a total of 50 to 100 lines or more, such as the lines 150 . . . 160, may be generated to form the scan pattern 144 with 2" scan lines over a target area of 1/2" or 1".
  • Each horizontal line 150, 152, etc. corresponds to one row in the array of the memory 20, so the size of the memory is correlated with the drive mechanism for the mirror 124 producing the raster scan of the field of view.
  • the laser beam will operate at a 10 to 20 fps sweep speed, with the laser spot moving at about 2500 ips.
  • the bar code density may be 7.5 to 10 mil square for reasonable resolution characteristics.
  • the bandwidth represented by such scanning is well within the capability of various commercially available signal processors and decoders.
  • the field of view scanned by the laser scanner may be divided into an array of for example, 256 ⁇ 256, 512 ⁇ 512, or 1024 ⁇ 1024, depending upon the scan generating mechanism.
  • 1024 ⁇ 1024 there would be 1024 rows of "pixels" and 1024 "pixels" in each row (1024 columns).
  • the density of the raster scan of the field of view by the laser beam, and thus of the memory 20, is selected according to the resolution required for the system, and may be more or less than these examples.
  • the memory 20 is also a 1024 ⁇ 1024 array.
  • a 1-M bit DRAM of the type commercially available may be provided having both serial and random-access I/0 ports.
  • the clocks used to load the DRAM 20 via serial input 27, and the addressing of the DRAM 20 to load data from its serial input register to its cell array, must both be correlated with the mechanical scan generator; every time a horizontal line such as 150 or 152 is finished, the data for this line should have filled the internal register and be shifted to the cell array.
  • the DRAM 20 has an array of dynamic memory cells in rows and columns having a one-for-one correspondence to the pixel array to be imaged, so there are 1024 rows and 1024 columns of cells. So, after 1024 clock pulses on the input 26, the internal shift register at its serial input is full, and one clock on its "transfer” input loads this 1024 bits of data onto the 1024 column lines of the DRAM array; then, one of the 1024 row lines of the array is activated by a row decoder to load this 1024 bits of data to one of the rows of memory cells of the array, where they will remain stored until written over.
  • the sequence then repeats for the next subsequent scan of the reference plane by the laser scanner; another 1024 bits are shifted into the internal shift register of the DRAM, so, after 1024 ⁇ 1024 clocks on line 26, all 1M-bit of data from the photodetector 140 will have been transferred to the DRAM 20.
  • the detected light representing a sequence of picture elements derivated from a scan of the field of view by the photoresponsive device 140 are thus transformed into electrical charge packets which are transferred in a bit-mapped manner into the memory 20, one-for-one, in corresponding locations.
  • a system bus 37 includes an address bus 37a, a data bus 37b and a control bus 37c: the bus is used for accessing the memory 36, and of course for accessing the DRAM 20, as well as for accessing an I/O controller (or controllers) 38 for communicating with a keyboard input, a display, or data output to a host computer, or the like, or to send a control signal to the optical component.
  • I/O controller or controllers
  • the DRAM 20 has a data I/O port connected to the data bus 37b for accessing the bit-mapped data by the CPU.
  • the DRAM 20 can have a 4-bit wide data I/O port, so four bits are accessed in parallel at one time, instead of 1-bit.
  • the DRAM 20 has a multiplexed address input connected to address bus 37a: a row address is applied first, along with a row address strobe on the control bus 37c, then a column address is applied along with a column address strobe.
  • These addresses are loaded into internal address buffers for the row and column decoders in the video DRAM 20.
  • an address is applied to the row decoder from the CPU to make a 1-of-1024 selection for loading the serial data input 27 to one of the 1024 rows of the DRAM cells.
  • an address is applied to the row decoder to select a row for input to the DRAM column decoder, then a 6-bit address applied to the column decoder from the CPU to select 4-or 256 columns for output on the data bus 37b to the CPU 35.
  • the CPU accesses the bit-mapped image data in the memory 20 to scan the image of the field of view, to find the symbol 10.
  • a test is done to determine whether a portion of a bar code has been detected, based upon the symbology or definition of the bar code itself. If an entire bar code has been detected, it will then be decoded.
  • the CPU 35 can access the DRAM 20 via data bus 37b and address bus 37b at the same time that the serial data is being clocked into the serial port 27 by clock 26, so the CPU can begin evaluating the image to find and orient the symbol before the entire image has been loaded.
  • the time needed to transfer the bit-mapped image is about (1M) ⁇ (50 ns) or 50-ms, assuming a 20 MHz clock 26, but during this time the CPU can make many thousands of accesses of the data in the DRAM for evaluation. If higher speeds are required, some video DRAMs support much higher serial clock rates, e.g., 40-MHZ. Also, a "by-4" serial input is available, which would allow four serial bit streams to be clocked in simultaneously.
  • a static RAM is used instead of a DRAM 20, clock speeds can be faster; a serial-to-parallel converter using a high-speed 8-bit shift register can be used to input the data from the CCD to a static RAM having an 8-bit parallel data I/O port.
  • FIG. 3a-4d shows an example of a bar code symbol of the type to be read by the system of FIGS. 1 and 2.
  • this symbol is a code-49 type, having (in this example) five rows 48 of characters represented by bar and space patterns.
  • the physical size of this symbol is variable; the lower limit is specified to be 7.5 mil for the "X" dimension, i.e., the width of a minimum-width line in one of the bars in one of the rows 48; the upper limit depends upon the method used to reproduce the symbols, the focal length and field of view of the optical system to be used, and of course the size of the objects to which the coded symbols are to be applied.
  • the optics, size of field of view 11, number of bits (resolution) of the photo-responsive device 140, etc., are all chosen so that the minimum line width in the patterns of FIGS. 3a-3a and 4, when translated to a bit-mapped image in the memory 20, produces at least one bit or one cell of data in the DRAM 20.
  • the pattern of FIG. 4 must be occupy at least about 75-bits of the 256-bit width of a row of the memory array.
  • a scan along a line 53 would intercept parts of more than one row 48 and so would produce a reading which would indicate the presence of a bar code, but will not correctly decode.
  • This is in contrast to a more-conventional UPC type of bar code symbol as seen in FIG. 5, where a scan line 54 at an angle to the central axis will still produce a valid reading since the UPC symbol illustrated is not truncated but extends in the Y-direction.
  • Addition of the multiple rows 48 in the Code-49 type of symbol seen in FIG. 3a-3d thus makes the scanning task more difficult. Nevertheless, even though not giving a valid reading of an entire row 48, the scan line 53 would still result in a valid decode of a part of a row.
  • the line 53 as it appears in FIG. 3a or 3b makes a complete trace of some words in a horizontal row, but not of all words.
  • This ability to intercept and interpret partial rows may be employed in the task of "finding" the symbol within the image in the memory 20 by the algorithm executed by the CPU 35.
  • the image of the bar code symbol in the memory 20 is not necessarily rectangular; this is in addition to the image likely being at an angle to the major axis.
  • the image is not necessarily rectangular because the package or object on which the symbol resides in the field of view 11 may be twisted rather than being aligned with the plane of the field. This non-alignment will result in a distorted shape as seen in FIG. 6, where the image of symbol bit-mapped into the cell array 55 of the memory 20 is at an angle to the rows of cells and also larger at one end than at the other. Five scan lines 56 must be generated, each at a slightly different angle.
  • the image might be reversed from left to right if the package having the bar code symbol on it is upside down in the field of view, so the direction of scan can be left-to-right or right-to-left, or otherwise the data can be transposed after loading into the CPU 35.
  • the data in memory 20 can of course be read in any pattern, as selected by the program executed by the CPU 35.
  • the row address loaded to the row decoder via bus 37a would be incremented after each read cycle, and the column address loaded to the column decoder would be decremented after a selected number of read cycles, depending upon the angle needed.
  • the number of row address increments for every column address decrement would be higher for the upper lines 56 than for the lower ones in FIG. 6, since the angle needed to trace the row 48 is greater.
  • the symbol 10' would have to be found in the memory array and the orientation of the rows 48 determined.
  • Various algorithms could be used for this purpose; one would comprise reading the memory array in a raster scan, one row (or column) at a time, in rectilinear fashion, to see if recognizable bar code patterns are found. Such a raster scan of the image of FIG. 6 would find a recognizable code pattern when it reached a position indicated by line 57, corresponding roughly to the 57' of FIG. 4.
  • Still another way of distinguishing is to compare two adjacent scans to see if the same sequence of 1's and 0's is produced over a substantial part of the row.
  • the patterns may be compared to valid code patterns stored in ROM in memory 36 by a table lookup. Using any one or combination of such methods, the symbol is found within the memory array by reading data and interpreting strings of this data read-out using instructions executed by the CPU 35 or equivalent logic circuitry. Then, when any part of the symbol has been located, the next task is to find the angular direction of rows.
  • the first attempt is of course a rectilinear line, i.e., a continuation of the line 57 for the remainder of the row, without changing the column address; this will produce no more recognizable bar-code patterns, so a series of angular scans can be implemented, starting at the centerpoint of the addresses which produced the recognized code pattern, for example at 5° increments, producing a series of scan lines 57a, 57b, 57c, etc., until the top line 56 is scanned and a complete line of code is recognized including start and stop codes 49 and 50.
  • the symbol will contain within its characters information on the number of rows and the number of characters in the symbol, as well as a checksum or CRC of the characters, so a complete symbol can be positively identified by a suitable algorithm executed by the CPU 35. After reading the bit patterns found in the memory array, the CPU 35 can execute table-lookups to convert the bit patterns into characters. Many other algorithms for interpreting the image in the memory 20 and decoding the bar code symbol represented by this image using the instruction set of a commercially-available microprocessor 35 may be selected by a skilled programmer.
  • the concept of the invention may be implemented in a hand-held reader unit 10 as illustrated in FIG. 1, as well as in a stationary unit.
  • the hand-held device of FIG. 1 is generally of the style disclosed in U.S. Pat. No. 4,760,248, issued to Swartz et al, assigned to Symbol Technologies, Inc., and also similar to the configuration of a bar code reader commercially available as model number LS 8100II from Symbol Technologies, Inc.
  • the present invention has been described with respect to reading bar codes, it is not limited to such embodiments, but may also be applicable to other types of image processing and analysis.
  • the scanning method of the present invention may also find application for use with various machine vision or optical character recognition applications in which information is derived from indicia such as characters of from the physical surface characteristics of the article being scanned.
  • the elements of the scanner may be assembled into a very compact package that allows the scanner to be fabricated as a single printed circuit board or integral module.
  • a module can interchangeably be used as the laser scanning element for a variety of different types of data acquisition systems.
  • the module may be alternately used in a hand-held scanner, a table top scanner attached to a flexible arm or mounting extending over the surface of the table or attached to the underside of the table top, or mounted as a subcomponent or subassembly of a more sophisticated data acquisition system.
  • the module would advantageously comprise a laser/optics subassembly mounted on a support, a scanning element such as a rotating or reciprocating mirror, and a photodetector component. Control or data lines associated with such components may be connected to an electrical connector mounted on the edge or external surface of the module to enable the module to be electrically connected to a mating connector associated with other elements of data acquisition system. Alternatively, a wireless connection, using RF or IR communications, may be used.
  • An individual module may have specific scanning characteristics associated with it, e.g. operability at a certain working distance, or operability with a certain density of symbols.
  • the scanning characteristics may also be defined through the manual setting of control switches associated with the module.
  • the user may also adapt the data acquisition system to scan different types of articles or the system may be adapted for different applications by simply interchanging modules.
  • the scanning module described above may also be implemented within a self-contained data acquisition system including one or more such components as keyboard, display, data storage, application software, and data bases.
  • a system may also include a communications interface to permit the data acquisition system to communicate with other components of a local area network or with the telephone exchange network, either through a modem or an ISDN interface, or by low power radio broadcast from the portable terminal to a stationary receiver.

Abstract

An apparatus and method for reading data in the form of indicia on a surface of a target, the indicia having a preferred reading direction, including a light source for illuminating a portion of the surface to be read with a laser beam in a scanning pattern at a predetermined scanning angle so as to scan spatially adjacent portions of the surface. A detector and a processor is provided that is operative for detecting at least a portion of the light reflected from the indicia and storing representations thereof, and further determining the angular difference between the preferred reading direction and the scanning angle. An optical component disposed adjacent the light source is provided for optically directing the laser beam along a path toward the surface and is capable of controlling and setting the predetermined scanning angle. Furthermore, the optical component may be automatically rotated so as to align the direction of scan with the preferred reading direction of the indicia.

Description

This application is a continuation under 37 C.F.R. §1.60 of application Ser. No. 08/000,794 filed Jan. 4, 1993, now U.S. Pat. No. 5,414,250 which is a file wrapper continuation of Ser. No. 07/317,433, filed Mar. 1, 1989 now abandoned.
REFERENCE TO RELATED APPLICATIONS
This application is related to U.S. patent application Ser. No. 944,848, filed Dec. 22, 1986, now U.S. Pat. No. 4,516,661 and to U.S. patent application Ser. No. 07/317,533, filed simultaneously herewith.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to laser scanning systems for reading bar code symbols or similar indicia and, more particularly, to a laser imaging system for generating a laser beam scan pattern which extends in a two dimensional pattern over the symbols to be read, and a digital processing system for storing, manipulating, and analyzing the scanned image.
2. Description of the Related Art
Various optical readers and optical scanning systems have been developed heretofore for reading bar code symbol appearing on a label or on the surface of an article. The bar code symbol itself is a coded pattern of indicia comprised of a series of bars of various widths spaced apart from one another to bound spaces of various widths, the bars and spaces having different light-reflecting characteristics. A number of different bar code standards or symbologies exist. These symbologies include UPC/EAN, Code 128, Codabar, and interleaved 2 of 5. The readers and scanning systems electro-optically decode the symbol to multiple alphanumerical characters that are intended to be descriptive of the article or some characteristic thereof. Such characters are typically represented in digital form as an input to a data processing system for applications in point-of-sale processing, inventory control, and the like Scanning systems of this general type have been disclosed, for example, in U.S. Pat. Nos. 4,251,798; 4,360,798; 4,369,361; 4,387,297; 4,409,470 and 4,460,120, all of which have been assigned to the same assignee as the instant application
As disclosed in some of the above patents, one embodiment of such a scanning system resides, inter alia, in emitting a laser light beam from a hand-held, portable laser scanning head supported by a user, and aiming the head, and more particularly, the laser light beam, at a symbol to be read. The scanner functions by repetitively scanning the laser beam in a line across the symbol. A portion of the reflected laser light which is reflected off the symbol is detected, and electronic circuitry or software decodes the electrical signal into a digital representation of the data represented by the symbol scanned.
More specifically, a scanner includes a light source such as a gas laser or semiconductor laser that generates a light beam. The use of semiconductor devices as the light source in scanner systems is especially desirable because of their small size, low cost and low power requirements. The light beam is optically modified, typically by a lens, to form a beam spot of a certain size. It is preferred that the beam spot size be approximately the same as the minimum width between regions of different light reflectivity, i.e., the bars and spaces of the symbol. The relative size of the bars and spaces is determined by the type of coding used, as is the actual size of the bars and spaces. The number of characters per inch represented by the bar code symbol is referred to as the density of the symbol.
The light beam is directed by the lens or similar optical components along a light path toward a target that includes a bar code symbol on the surface. A scanning component is also disposed in the light path. The scanning component may either sweep the beam spot across the symbol and trace a scan line across and past the symbol, or scan the field of view of the scanner or do both. A scanner also includes a sensor or photodetector. The photodetector has a field of view which extends across and slightly past the symbol and functions to detect light reflected from the symbol. The analog electrical signal from the photodetector is first typically converted into a pulse width modulated digital signal, with the widths corresponding to the physical widths of the bars and spaces. Such a signal is then decoded according to the specific symbology into a binary representation of the data encoded in the symbol, and to the alphanumeric characters so represented.
Laser scanners are not the only type of optical instrument capable of reading bar code symbols. Another type of optical reader is one which is operative being placed by the user in direct contact with the symbol to be read. Such readers typically incorporate detectors based upon charge coupled device (CCD) technology in which the size of the detector is larger than or substantially the same as the symbol to be read. Such scanners are lightweight and easy to use, but require substantially direct contact or placement of the reader on the symbol to enable the symbol be read. Such contact reading is a preferred mode of operation for some applications or as a matter of personal preference by the user. Contact or near contact reading may also be implemented in an appropriately designed laser scanner.
With respect to the scanning pattern generated by laser scanners, it has previously been known to generate scan patterns of mutually parallel scan lines extending along one or two directions, especially for fixed, stationary, or table-top type scanners. Omni-directional scan patterns of intersecting scan lines, and even curvilinear scan patterns, for superposition over the symbol to be read, are known in the prior art. The purpose of such scanning patterns is to insure that, no matter what the angular orientation of a symbol might be, within predetermined limits, at least one of the scan lines or part of the pattern will be scanned over the entire length of the respective symbol. A drawback of such an approach is that such patterns are typically generated by highly complex and expensive optical and mechanical systems.
U.S. patent application Ser. No. 944,848 now U.S. Pat. No. 4,816,661 describes a hand-held laser scanner that generates a scan pattern of mutually parallel scan lines extending linearly across each symbol. The scan lines are arranged over the height of the symbol. At least one of the scan lines sweeps across each symbol along one sweep direction, whereas, at least another of the scan lines sweeps across each symbol along an opposite sweep direction countercurrent to said one sweep direction, thereby forming a bidirectional scan in which a respective symbol can be read by the a scan line no matter whether the symbol is oriented in the correct left-right direction, or is upside down.
In either hand-held or stationary scanners, with the scan being generated by mechanically oscillating or moving a light source or a mirror, the direction of each scan is fixed relative to the reader housing. If there is only one scan line, and the bar code symbol is located at an angle to this linear scan of the laser beam, then the user of a hand-held unit must twist the unit to align it with the angle of the bar code. Or, the operator of a stationary unit must twist the product to retry, hoping to align the symbol with one of the several scan lines. When a hand-held reader unit is being used at a retail check-out counter, the objects having bar codes to be read will be randomly oriented, and the items will be of many different sizes and shapes. Properly positioning the hand-held reader unit for reading bar codes thus becomes an awkward task. On the other hand, scanners generating several scan paths at angles to one another still often require the operator to try several passes of the product until a valid read is obtained. Multiple-scan readers produce only a few fixed paths for scan lines, and if none of the paths are correct the operator must make additional passes until a code-recognition signal is produced.
In order to provide more information in the bar code symbols, and to allow the symbols to be smaller or more compactly shaped, new bar code standards have been adopted. One of these new code standards, Code-49, uses a more complex but efficient character set, and also introduces a "two-dimensional" feature so more data is contained in the symbol; this is accomplished by stacking rows of characters vertically instead of extending the bars horizontally. That is, there may be two or more rows of bar and space patterns up to eight, instead of only one row.
U.S. Pat. No. 4,794,239 is hereby incorporated by reference as describing such a bar code structure. A one-dimensional single-line scan, as ordinarily the case for hand-held readers, where the laser beam is swept back and forth across a narrow arc, has disadvantages in reading these two dimensional bar codes; that is, the reader must be aimed at each row, individually. Likewise, the multiple-scan-line readers produce a number of scan lines at an angle to one another so these are not suitable for recognizing Code-49 type of two-dimensional symbols. Prior to the present invention, there has not been a laser scanner that is particularly suitable for reading two dimensional bar code symbols or other indicia.
SUMMARY OF THE INVENTION
1. Objects of the Invention
It is a general object of this invention to advance the state of the art of laser scanning systems for reading bar code symbols.
It is another object of this invention to generate scan patterns of mutually parallel lines over the symbol with a relatively simple pattern generator system, with the option of changing the angular orientation of the mutually parallel lines to align with the horizontal direction of the bar code.
It is a further object of this invention to generate a scan pattern of mutually parallel scan lines, detecting the reflected light and producing and storing a digital representation thereof.
It is another to provide a laser scanning based computer imaging and analysis system for storing and analyzing coded indicia or other surface characteristics of an article.
Another is to provide a system for converting a laser scanned image of an article into a digital representation, storing the digital representation, and analyzing the digital representations to derive characteristics such as spatial orientation therefrom.
2. Features of the Invention
In keeping with these objects, and others which will become apparent hereinafter, one feature of this invention resides, briefly stated, in an optical arrangement for use in a laser scanning system for reading symbols, particularly bar code symbols having alternate bars and spaces arranged in a pattern which the symbol is affixed. The scanning system comprises a housing having an exit port, a laser source, e.g. a gas laser tube or a semiconductor laser diode, for generating laser beam, and scanning means in the housing for scanning the laser beam in scans across successive symbols located exteriorly of the housing. The optical arrangement comprises optical means in the housing for directing the scanning beam along an optical path through the exit port at a controllable angular orientation. The optical arrangement also forms the scanning beam with a cross-sectional beam spot of a predetermined waist size at a predetermined distance from the exit port of the housing.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, best will be understood from the following description of specific embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a perspective view of a hand-held laser scanner including a scan pattern generator in accordance with this invention, and diagrammatically illustrating a multiple scan pattern;
FIG. 2 is a highly simplified block diagram of the image storage and processing circuitry used in the laser scanner according to the present invention;
FIG. 3a is a simplified diagrammatic illustration of the operation of the present invention showing a single scan line passing through a two-dimensional bar code;
FIG. 3b is a simplified diagrammatic illustration of the single scan passing through the two dimensional bar code at a second stage of operation;
FIG. 3c is a simplified diagrammatic illustration of a single scan passing through a two-dimensional bar code at a third stage of operation;
FIG. 3d is a diagrammatic illustration of the multiple scan pattern passing through a two-dimensional code at an angle which enables the bar code to be read;
FIG. 4 is an enlarged view of one row of a truncated bar code symbol to illustrate its component parts;
FIG. 5 is an enlarged view of a UPC bar code symbol with a scan line at an oblique angle passing through the entire symbol; and
FIG. 6 is a schematic representation of a bit-mapped image of a two-dimensional bar code symbol in a memory array in the system of FIGS. 1 and 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawings, reference numeral 10 in FIG. 1 generally identifies an optical arrangement in a laser scanning system of the type generally described in the above-identified patents and patent applications, the entire contents of all of which are hereby incorporated by reference herein, for reading symbols, particularly bar code symbols. As used in this specification and the following claims, the term "symbol" is intended to be broadly construed and to cover not only symbol patterns composed of alternating bars and spaces of various widths, but also other one or two dimensional graphic patterns, as well as alphanumeric characters.
The arrangement 10 includes a housing 12, shown in dashed lines, and intended to represent a hand-held scanner. The arrangement 10 may also be implemented in a desk-top workstation or stationary scanner. In the preferred embodiment, the housing includes an exit port 14 through which an outgoing laser light beam is directed to impinge on, and to be scanned across, symbols located exteriorly of the housing. A manually actuated trigger 110 or similar means are provided to initiate scanning so that each symbol may be scanned and read in its respective turn. A laser source, e.g. a gas laser tube 16 or a semiconductor laser diode, is mounted in the housing and, when energized, the source 16 generates a laser beam.
A multiple line scan pattern generator 120 is illustrated in FIG. 1 and is operative for generating multiple scan lines or traces shown as 150, 152, etc. across a symbol to be read in a scan line pattern 144. The scan pattern generator 120 also functions for positioning at least some of the scan lines at different working distances from the housing 12 in which the generator 120 is housed.
Laser source 16 directs a laser beam through optical lens 122 for directing the beam onto rotary main mirror 124 which is mounted on a vertical shaft 126 which is rotated by a motor drive 128 about a vertical axis. Mirror 124 has opposite major planar surfaces which are separated by a mirror thickness having dimension T3. A light-reflecting coating is applied over one of the surfaces.
The generator 120 also includes a pair of stationary first surface side mirrors 136, 138 inclined at angles relative to the vertical axis of the shaft 126, and also including an angle with each other. Side mirrors 136, 138 have front surfaces on which light-reflecting coatings are respectively applied. Inclined side mirrors 136, 138 are so positioned relative to main mirror 124 that, during rotation of mirror 124, laser light impinging on mirror 124 will, at certain times, during each revolution of mirror 124, be directed toward one of the side mirrors for reflection therefrom forwardly to the exterior target.
To produce scan lines vertically spaced from one another, the motor 128 and mirror 124 are rotated about a horizontal axis parallel to the scan line 150, using a stepper motor, as disclosed in said copending application. After each horizontal scan, a step is introduced to change the angle slightly so that the next scan is vertically displaced. In this manner, a "raster" scan of the field of view is produced.
The multiple scan line pattern 144 depicted in FIG. 1 is generated as follows: Assume that mirror 124 is initially positioned with its coated surface directly facing laser source 16. The laser beam emitted by source 16 is returned along the same optical path for impingement on a symbol located at distance D1 from the housing 12. During rotation of mirror 124, scan line 150 is generated. Eventually, the mirror 124 will direct the laser beam incident thereon to side mirror 136 for reflection by coated surface 140 forwardly for impingement on a symbol located at distance D2. D2 is shorter that D1 due to the diversion of the beam to side mirror 136. During rotation of mirror 124 scan line 152 is generated. Scan line 152 is swept in the opposite direction to that of scan line 150. A more detailed description of the operation of the optical arrangement 10 is set forth in U.S. patent application Ser. No. 944,848, now U.S. Pat. No. 4,816,661 incorporated herein by reference.
As best shown in FIG. 1, it will be noted that the scan pattern 144 comprises a plurality of scan lines in mutual parallelism, with scan lines 150 being a first scan line through 160 being an nth scan line
All the scan lines are spread apart over the height of the symbol. This spread can be controlled by, and is a function of, the thickness of mirror 124, the angle 0 of incidence of the laser beam on mirror 124, and the index of refraction n' of mirror 124, the latter being preferably constituted of glass. Also, the beam spot is focused and alternately located at either working distance D1 or D2, thereby obtaining a zooming function.
Also, quite apart from the angular orientation of the symbols to be read, one symbol might be located close-in to the scanner, whereas another symbol might be located far-out from the scanner and, in short, successive symbols may be located at different working distances from the scanner, In the case of a scanner which has been designed to read symbols within a certain range of working distances, should it occur that a particular symbol falls outside this range, then the distance between the scanner and the symbol must be adjusted, and usually within a short time interval, for, otherwise, the symbol will not be read. In the case of a hand-held scanner, the scanner is usually manually moved toward or away from the symbol to adjust the distance between the scanner and the symbol.
Turning next to FIG. 2, there is shown a highly simplified block diagram of the electronic subsystems of the bar code reader according to one embodiment of the present invention.
In FIG. 2 an image is captured by photodetector 140 which is rotated electronically, or analyzed electronically, in the DRAM 20.
As illustrated in FIG. 2, the photodetector 140 receives the reflected light and is used to generate an electrical image of the field of view of the photodetector. The output of the photodetector 140 is preferably a serial binary signal. However, if a gray-scale type of resolution is needed, then an analog signal output from the photodetector 140 may be used, which is passed through line 15' and digitized by digitizer 33 or applied to an analog to digital converter 15 to produce a multi-bit binary representation of the light reaching the photodetector 140 as the laser beam is scanned throughout the scan pattern 144. A serial single-bit, or multi-bit parallel binary output of the A/D converter, represents the light impinging upon the photodetector.
The field of view of the photodetector 140 over an entire scan pattern may be represented as a large predetermined number of elements or pixels arranged in rows and columns. As each line is scanned, the photodetector 140 produces a single-bit serial binary output, or the A/D converter 15 converts the analog signal into a multi-bit digital representation, one pixel at a time. Assuming single-bit serial binary, the digital representation from the photodetector 140 is shifted into a serial input 27 of the DRAM 20; however, if a multi-bit representation is used, it is loaded into a shift register 24, one group of elements at a time, by clock voltages applied to the register elements by clock lines 26. The shift register 24 is clocked onto the line 21 by clock line 26.
As an example of the type of scanning that may be performed with the laser scanner according to the present invention, the following parameters may be presented as typical. A total of 50 to 100 lines or more, such as the lines 150 . . . 160, may be generated to form the scan pattern 144 with 2" scan lines over a target area of 1/2" or 1". Each horizontal line 150, 152, etc. corresponds to one row in the array of the memory 20, so the size of the memory is correlated with the drive mechanism for the mirror 124 producing the raster scan of the field of view. The laser beam will operate at a 10 to 20 fps sweep speed, with the laser spot moving at about 2500 ips. The bar code density may be 7.5 to 10 mil square for reasonable resolution characteristics. The bandwidth represented by such scanning is well within the capability of various commercially available signal processors and decoders.
The field of view scanned by the laser scanner may be divided into an array of for example, 256×256, 512×512, or 1024×1024, depending upon the scan generating mechanism. Using 1024×1024, there would be 1024 rows of "pixels" and 1024 "pixels" in each row (1024 columns). The density of the raster scan of the field of view by the laser beam, and thus of the memory 20, is selected according to the resolution required for the system, and may be more or less than these examples. However, continuing with the example of 1024×1024, note that the memory 20 is also a 1024×1024 array. For example, a 1-M bit DRAM of the type commercially available may be provided having both serial and random-access I/0 ports.
The clocks used to load the DRAM 20 via serial input 27, and the addressing of the DRAM 20 to load data from its serial input register to its cell array, must both be correlated with the mechanical scan generator; every time a horizontal line such as 150 or 152 is finished, the data for this line should have filled the internal register and be shifted to the cell array.
The DRAM 20 has an array of dynamic memory cells in rows and columns having a one-for-one correspondence to the pixel array to be imaged, so there are 1024 rows and 1024 columns of cells. So, after 1024 clock pulses on the input 26, the internal shift register at its serial input is full, and one clock on its "transfer" input loads this 1024 bits of data onto the 1024 column lines of the DRAM array; then, one of the 1024 row lines of the array is activated by a row decoder to load this 1024 bits of data to one of the rows of memory cells of the array, where they will remain stored until written over. The sequence then repeats for the next subsequent scan of the reference plane by the laser scanner; another 1024 bits are shifted into the internal shift register of the DRAM, so, after 1024×1024 clocks on line 26, all 1M-bit of data from the photodetector 140 will have been transferred to the DRAM 20. The detected light representing a sequence of picture elements derivated from a scan of the field of view by the photoresponsive device 140 are thus transformed into electrical charge packets which are transferred in a bit-mapped manner into the memory 20, one-for-one, in corresponding locations.
The bit-mapped image in the memory 20 is accessed by a CPU device 35 of FIG. 2. An external memory 36 may be employed for storing programs and data. A system bus 37 includes an address bus 37a, a data bus 37b and a control bus 37c: the bus is used for accessing the memory 36, and of course for accessing the DRAM 20, as well as for accessing an I/O controller (or controllers) 38 for communicating with a keyboard input, a display, or data output to a host computer, or the like, or to send a control signal to the optical component.
The DRAM 20 has a data I/O port connected to the data bus 37b for accessing the bit-mapped data by the CPU. The DRAM 20 can have a 4-bit wide data I/O port, so four bits are accessed in parallel at one time, instead of 1-bit. The DRAM 20 has a multiplexed address input connected to address bus 37a: a row address is applied first, along with a row address strobe on the control bus 37c, then a column address is applied along with a column address strobe.
These addresses are loaded into internal address buffers for the row and column decoders in the video DRAM 20. Thus, an address is applied to the row decoder from the CPU to make a 1-of-1024 selection for loading the serial data input 27 to one of the 1024 rows of the DRAM cells. Or, an address is applied to the row decoder to select a row for input to the DRAM column decoder, then a 6-bit address applied to the column decoder from the CPU to select 4-or 256 columns for output on the data bus 37b to the CPU 35. In this manner, the CPU accesses the bit-mapped image data in the memory 20 to scan the image of the field of view, to find the symbol 10. A test is done to determine whether a portion of a bar code has been detected, based upon the symbology or definition of the bar code itself. If an entire bar code has been detected, it will then be decoded.
The CPU 35 can access the DRAM 20 via data bus 37b and address bus 37b at the same time that the serial data is being clocked into the serial port 27 by clock 26, so the CPU can begin evaluating the image to find and orient the symbol before the entire image has been loaded. The time needed to transfer the bit-mapped image is about (1M)×(50 ns) or 50-ms, assuming a 20 MHz clock 26, but during this time the CPU can make many thousands of accesses of the data in the DRAM for evaluation. If higher speeds are required, some video DRAMs support much higher serial clock rates, e.g., 40-MHZ. Also, a "by-4" serial input is available, which would allow four serial bit streams to be clocked in simultaneously. In addition, if a static RAM is used instead of a DRAM 20, clock speeds can be faster; a serial-to-parallel converter using a high-speed 8-bit shift register can be used to input the data from the CCD to a static RAM having an 8-bit parallel data I/O port.
FIG. 3a-4d shows an example of a bar code symbol of the type to be read by the system of FIGS. 1 and 2. Although the system is suitable for reading various types of bar codes, this symbol is a code-49 type, having (in this example) five rows 48 of characters represented by bar and space patterns. The physical size of this symbol is variable; the lower limit is specified to be 7.5 mil for the "X" dimension, i.e., the width of a minimum-width line in one of the bars in one of the rows 48; the upper limit depends upon the method used to reproduce the symbols, the focal length and field of view of the optical system to be used, and of course the size of the objects to which the coded symbols are to be applied. Using minimum sized symbols, a net data density of 93.3 alphanumeric characters per inch or 154.3 numeric digits per inch can be achieved with this standard code. The Code-49 specification allows up to eight rows 48 in one symbol. The view of FIG. 3c-3d is much larger than actual size for many Code-49 type symbols printed for use in typical applications. Each row will always begin with a start pattern 49 and end with a stop pattern 50. Between the start and stop patterns, a number of words 51 are defined by the width and spacings of black lines and gaps; each word encodes two characters from a defined character set. The image bit-mapped into the memory 20 of course corresponds to tie black and white pattern of FIG. 3a-3d and 4 translated to binary ones and zeros. The optics, size of field of view 11, number of bits (resolution) of the photo-responsive device 140, etc., are all chosen so that the minimum line width in the patterns of FIGS. 3a-3a and 4, when translated to a bit-mapped image in the memory 20, produces at least one bit or one cell of data in the DRAM 20. For the example of the use of a 256×256 (64K-bit) memory 20, the pattern of FIG. 4 must be occupy at least about 75-bits of the 256-bit width of a row of the memory array.
Referring to FIG. 3a, a scan along a line 53 would intercept parts of more than one row 48 and so would produce a reading which would indicate the presence of a bar code, but will not correctly decode. This is in contrast to a more-conventional UPC type of bar code symbol as seen in FIG. 5, where a scan line 54 at an angle to the central axis will still produce a valid reading since the UPC symbol illustrated is not truncated but extends in the Y-direction. Addition of the multiple rows 48 in the Code-49 type of symbol seen in FIG. 3a-3d thus makes the scanning task more difficult. Nevertheless, even though not giving a valid reading of an entire row 48, the scan line 53 would still result in a valid decode of a part of a row. For example, the line 53 as it appears in FIG. 3a or 3b makes a complete trace of some words in a horizontal row, but not of all words. This ability to intercept and interpret partial rows may be employed in the task of "finding" the symbol within the image in the memory 20 by the algorithm executed by the CPU 35.
Another complicating factor is that the image of the bar code symbol in the memory 20 is not necessarily rectangular; this is in addition to the image likely being at an angle to the major axis. The image is not necessarily rectangular because the package or object on which the symbol resides in the field of view 11 may be twisted rather than being aligned with the plane of the field. This non-alignment will result in a distorted shape as seen in FIG. 6, where the image of symbol bit-mapped into the cell array 55 of the memory 20 is at an angle to the rows of cells and also larger at one end than at the other. Five scan lines 56 must be generated, each at a slightly different angle. Note also that the image might be reversed from left to right if the package having the bar code symbol on it is upside down in the field of view, so the direction of scan can be left-to-right or right-to-left, or otherwise the data can be transposed after loading into the CPU 35.
The data in memory 20 can of course be read in any pattern, as selected by the program executed by the CPU 35. To scan the memory along one of the scan lines 56 of FIG. 6, the row address loaded to the row decoder via bus 37a would be incremented after each read cycle, and the column address loaded to the column decoder would be decremented after a selected number of read cycles, depending upon the angle needed. The number of row address increments for every column address decrement would be higher for the upper lines 56 than for the lower ones in FIG. 6, since the angle needed to trace the row 48 is greater.
Before the scan lines 56 of FIG. 6 at the proper angles could be calculated, the symbol 10' would have to be found in the memory array and the orientation of the rows 48 determined. Various algorithms could be used for this purpose; one would comprise reading the memory array in a raster scan, one row (or column) at a time, in rectilinear fashion, to see if recognizable bar code patterns are found. Such a raster scan of the image of FIG. 6 would find a recognizable code pattern when it reached a position indicated by line 57, corresponding roughly to the 57' of FIG. 4. There are various ways to detecting the existence of a bar code in a serial electrical signal representing a sequence of samples produced by a linear scan; for example, the number of transitions between black and white (1's and 0's) can be counted, and this value, as a function of the length of scan (or transitions per unit length is a distinguishing factor. In this manner, the bar code pattern would be distinct from other printing on the product label such as text or numbers in the area 58 intercepted by the scan line 57 of FIG. 6. Another way of distinguishing a bar code pattern from other images such as area 58 is the ratio of black to white per unit length; bar code symbols fall into a range of such ratios different from printed text or alphanumeric characters found on product labels. Still another way of distinguishing is to compare two adjacent scans to see if the same sequence of 1's and 0's is produced over a substantial part of the row. In addition, of course, the patterns may be compared to valid code patterns stored in ROM in memory 36 by a table lookup. Using any one or combination of such methods, the symbol is found within the memory array by reading data and interpreting strings of this data read-out using instructions executed by the CPU 35 or equivalent logic circuitry. Then, when any part of the symbol has been located, the next task is to find the angular direction of rows. The first attempt is of course a rectilinear line, i.e., a continuation of the line 57 for the remainder of the row, without changing the column address; this will produce no more recognizable bar-code patterns, so a series of angular scans can be implemented, starting at the centerpoint of the addresses which produced the recognized code pattern, for example at 5° increments, producing a series of scan lines 57a, 57b, 57c, etc., until the top line 56 is scanned and a complete line of code is recognized including start and stop codes 49 and 50. If no complete recognizable row is found, but instead a set of partial row segments of increasing then decreasing number of recognizable characters, then the row is curved (resulting from a symbol on a curved surface such as a can or bottle) so the scan line will be switched to a different angle at the address of the end of the scan giving the most recognizable characters, producing a series of segments instead of a straight-line scan. In either event, after one row is recognized, then scans are made parallel to the good row until a different set of good characters is recognized, meaning a new row is being scanned. This continues until a complete symbol has been recognized. Usually, the symbol will contain within its characters information on the number of rows and the number of characters in the symbol, as well as a checksum or CRC of the characters, so a complete symbol can be positively identified by a suitable algorithm executed by the CPU 35. After reading the bit patterns found in the memory array, the CPU 35 can execute table-lookups to convert the bit patterns into characters. Many other algorithms for interpreting the image in the memory 20 and decoding the bar code symbol represented by this image using the instruction set of a commercially-available microprocessor 35 may be selected by a skilled programmer.
The concept of the invention may be implemented in a hand-held reader unit 10 as illustrated in FIG. 1, as well as in a stationary unit. The hand-held device of FIG. 1 is generally of the style disclosed in U.S. Pat. No. 4,760,248, issued to Swartz et al, assigned to Symbol Technologies, Inc., and also similar to the configuration of a bar code reader commercially available as model number LS 8100II from Symbol Technologies, Inc. Alternatively, or in addition, features of U.S. Pat. No. 4,387,297 issued to Swartz et al, or U.S. Pat. No. 4,409,470, issued to Shepard et al, both such patents assigned to Symbol Technologies, Inc., may be employed in constructing the bar code reader 10 of FIG. 1. These U.S. Pat. Nos. 4,760,248, 4,387,297, and 4,409,470 are incorporated herein by reference.
Although the present invention has been described with respect to reading bar codes, it is not limited to such embodiments, but may also be applicable to other types of image processing and analysis. For example, it is conceivable that the scanning method of the present invention may also find application for use with various machine vision or optical character recognition applications in which information is derived from indicia such as characters of from the physical surface characteristics of the article being scanned.
In all of the various embodiments, the elements of the scanner may be assembled into a very compact package that allows the scanner to be fabricated as a single printed circuit board or integral module. Such a module can interchangeably be used as the laser scanning element for a variety of different types of data acquisition systems. For example, the module may be alternately used in a hand-held scanner, a table top scanner attached to a flexible arm or mounting extending over the surface of the table or attached to the underside of the table top, or mounted as a subcomponent or subassembly of a more sophisticated data acquisition system.
The module would advantageously comprise a laser/optics subassembly mounted on a support, a scanning element such as a rotating or reciprocating mirror, and a photodetector component. Control or data lines associated with such components may be connected to an electrical connector mounted on the edge or external surface of the module to enable the module to be electrically connected to a mating connector associated with other elements of data acquisition system. Alternatively, a wireless connection, using RF or IR communications, may be used.
An individual module may have specific scanning characteristics associated with it, e.g. operability at a certain working distance, or operability with a certain density of symbols. The scanning characteristics may also be defined through the manual setting of control switches associated with the module. The user may also adapt the data acquisition system to scan different types of articles or the system may be adapted for different applications by simply interchanging modules.
The scanning module described above may also be implemented within a self-contained data acquisition system including one or more such components as keyboard, display, data storage, application software, and data bases. Such a system may also include a communications interface to permit the data acquisition system to communicate with other components of a local area network or with the telephone exchange network, either through a modem or an ISDN interface, or by low power radio broadcast from the portable terminal to a stationary receiver.
It will be understood that each of the features described above, or two or more together, may find a useful application in other types of scanners and bar codes readers differing from the types described above.
While the invention has been illustrated and described as embodied in laser scanners for reading two dimensional bar codes, it is not intended to be limited to the details shown, since various modifications and structural changes may be made without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention and, therefore, such adaptions should and are intended to be comprehended within the meaning and range of equivalence of the following claims.

Claims (25)

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims:
1. A system for reading a bar code symbol, said symbol having at least one group of elements, comprising a hand-held scanning unit in a lightweight, portable housing comprising:
(a) a light source for generating light beam directed toward a target area including a symbol to be read;
(b) means for optically modifying and directing the light beam along an optical path toward said symbol located in the vicinity of a reference plane exterior to said scanning unit and for scanning spatially adjacent portions of said reference plane;
(c) a photo detector component having a field of view and operative for detecting light of variable intensity reflected off said target area and for generating electrical signals indicative of the detected intensity;
(d) means for converting said electrical signals into digital representations thereof, the digital representations embodying a bit map image of said target area;
(e) means for storing said digital representations in addressable storage medium;
(f) means for accessing said storage medium in an address sequence corresponding to a linear scan through the bit map image and processing each pixel in such linear scan to determine the presence in the bit map image of at least one group of elements of said symbol included within the field of view of said photo detector component; and
(g) means for automatically changing said address sequence to a second linear scan if said linear scan results in recognizing only a portion of a group of elements of said symbol.
2. The system of claim 1 wherein said group is a row.
3. The system of claim 1 wherein said light source comprises a laser diode.
4. The system of claim 1 wherein said addressable storage medium is a memory array.
5. An apparatus for detecting indicia including a plurality of groups of elements of different light reflectivity, comprising:
(a) a light source for emitting a light beam;
(b) an optical component disposed in the path of said beam for optically modifying and directing the light beam along an optical path toward a target located in the vicinity of a reference plane lying in said optical path so as to scan spatially adjacent elements of groups in said reference plane in a first scan direction;
(c) sensor means having a field of view operative for detecting light of variable intensity reflected off said target, and for generating an electrical image of said field of view of said sensor means;
(d) means for storing said electrical image in an addressable storage medium;
(e) means for performing a linear scan of said electrical image in said addressable storage medium; and
(f) means for changing said linear scan of said electrical image to a different linear scan if a partial but not complete group of elements is recognized by the linear scan of step (e).
6. The apparatus of claim 5 wherein said groups are rows.
7. The apparatus of claim 5 wherein said light source comprises a laser diode.
8. The apparatus of claim 5 wherein said optical component comprises a scanning mirror.
9. The apparatus of claim 8 wherein said scanning mirror is connected to mechanical means for moving said scanning mirror so as to direct said light beam along said optical path.
10. The apparatus of claim 5 wherein said means for processing said electrical signal comprises a microprocessor.
11. A system for reading a bar code symbol, said symbol having at least one row, comprising:
a hand-held scanning unit in a lightweight, portable housing including
(i) a light source for generating a light beam directed toward a symbol to be read;
(ii) means for optically modifying and directing the light beam along an optical path toward said symbol located in the vicinity of a reference plane exteriorly of the scanning trait and for scanning spatially adjacent portions of said reference plane;
(iii) a photodetector component having a field of view and operative for detecting at least a portion of light of variable intensity reflected off the symbol and for generating electrical signals indicative of the detected intensity;
(iv) means for converting said electrical signals into digital representations thereof, the digital representations embodying a bit-map image of the field of view of said photodetector component;
(v) means for storing said digital representations in an addressable storage medium; and
(vi) means for accessing said storage means in an address sequence corresponding to a linear scan through the bit-map image and determining if a row of the bit-map image corresponds to a row of the symbol; and
(vii) means responsive to said determining for automatically changing said accessing to a second address sequence if said linear scan recognizes a partial row of said symbol.
12. A system as defined in claim 11, wherein said means for accessing said storage means addresses rows and columns of an array of memory cells in a sequence of addresses representing a raster scan of the field of view at a predetermined angle with respect to the axes of the field of view.
13. A system as defined in claim 11, wherein said symbol includes a plurality of rows and bar and space patterns in a two-dimensional array, and further comprises means for processing the data derived from said storing means to determine whether a predetermined pattern is present in the field of view.
14. A system as defined in claim 11, wherein said means for optically modifying and directing the laser beam generates a scan pattern of mutually parallel scan lines.
15. A method for reading a symbol, the symbol comprising at least one recognizable code pattern, comprising the steps of:
(a) directing a light beam from a light source in a scanning pattern over a symbol to be read;
(b) detecting at least a portion of light of variable intensity reflected off the symbol over a field of view and generating digital data representative of the detected light intensity;
(c) transferring the digital data to a memory array such that a digital bitmapped image of the field of view is obtained;
(d) outputting a portion of the digital bitmapped image data from the memory array in such a manner that a scan of the bitmapped image of at least a portion of a scan line is obtained;
(e) processing said outputted portion of said digital bitmapped image data to determine if a code pattern of an entire row of a bar code symbol was scanned; and
(f) changing said outputting of a portion of the digital bitmapped image data if it is determined that a code pattern of a partial row of a bar code symbol was obtained in the output from the memory array.
16. The method of claim 15, wherein the symbol comprises at least two recognizable code patterns wherein steps (d), (e) and (f) further comprise the steps of:
(d) outputting the digital bitmapped image data from the memory array in a first manner such that a rectilinear scan of the bitmapped image is obtained;
(e) processing the output digital bitmapped image data from step (d) to identify a first recognizable code pattern;
(f1) outputting the digital bitmapped image data from the memory array in a second manner such that an angular scan of the bitmapped image is obtained; and
(f2) processing the output digital bitmapped image data from step (f1) to identify a second recognizable code pattern thereby reading the symbol.
17. The method of claim 15, wherein the scanning pattern of step (a) comprises a pattern of mutually parallel lines.
18. A method of reading a symbol containing light variable elements arranged in multiple rows comprising the steps of:
(a) directing a light beam across a target area containing said symbol in a pattern sufficient to capture all elements contained in said target area;
(b) creating an electrical image of reflected light of varying intensity from said target area;
(c) storing said electrical image in an addressable storage medium;
(d) processing said electrical image by performing a linear scan of said addressable storage medium in an effort to read said symbol;
(e) manipulating said linear scan of said addressable storage medium until the entire row of said symbol is recognized; and
(f) continuing the linear scan for which an entire row of said symbol was recognized, until the entire symbol is read.
19. The method as defined in claim 18 wherein said step of directing a light beam includes generating a scan pattern of mutually parallel scan lines.
20. The method of claim 18 wherein the steps are performed using a hand-held unit which includes a manually-activated trigger, and the method further includes the step of manually actuating said trigger to initiate said step of directing said light beam.
21. A method for scanning a bar code symbol having a plurality of discrete groups of information containing elements of different light reflectivity on a target, comprising the steps of:
(a) directing a light beam in a scanning pattern over a target area containing a symbol to be read;
(b) detecting reflected light of variable intensity reflected off said target area;
(c) generating electrical signals indicative of said detected light of variable intensity;
(d) converting said electrical signals into digital representations thereof, said digital representations comprising a bit map image of said target area;
(e) storing said digital representations in an addressable storage medium;
(f) accessing said addressable storage medium in a first address sequence corresponding to a first linear scan through said bit map image;
(g) processing each pixel in said linear scan to determine the presence in said bit map image of at least a portion of one group of elements of said symbol;
(h) changing said address sequence to create a different linear scan through said bit map image if less than all of a group of elements of said symbol was determined to be present;
(i) processing each pixel in said different linear scan to determine the presence in said bit map image of at least a portion of one group of elements of said symbol;
(j) repeating steps (g) and (h) until an entire group of elements of said symbol is recognized; and
(k) continuing the linear scan for which an entire group of elements of said symbol was recognized.
22. A method as defined in claim 21, wherein said step of directing said light beam includes generating a scan pattern of mutually parallel scan lines.
23. A method as defined in claim 21, wherein said step of accessing the addressable storage medium includes addressing the rows and columns of said addressable storage medium in a sequence of addresses that represents a linear traversal of the field of view.
24. The method of claim 21 wherein the steps are performed using a hand-held unit which includes a manually-activated trigger, and the method further includes the step of manually actuating said trigger to initiate said step of directing said light beam.
25. A method for scanning a bar code symbol having a plurality of rows of data comprising the steps of:
(a) scanning a light beam over a target area containing a symbol to be read;
(b) creating a digital representation of reflected light from said target area;
(c) storing said digital representation in memory;
(d) accessing said memory in a linear scan;
(e) determining for each scan line whether a portion of a row of said symbol has been recognized;
(f) changing said linear scan of said memory to a different scan path if only a portion of a row of said symbol was recognized in step (e);
(g) repeating steps (d)-(f) until an entire row of said symbol is recognized; and
continuing said linear scan with which an entire row was recognized.
US08/388,480 1989-03-01 1995-02-14 Laser scanner for reading two dimensional bar codes Expired - Lifetime US5637851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/388,480 US5637851A (en) 1989-03-01 1995-02-14 Laser scanner for reading two dimensional bar codes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31743389A 1989-03-01 1989-03-01
US08/000,794 US5414250A (en) 1989-03-01 1993-01-04 Method and apparatus for reading two-dimensional bar code employing bit-mapped imaging
US08/388,480 US5637851A (en) 1989-03-01 1995-02-14 Laser scanner for reading two dimensional bar codes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/000,794 Continuation US5414250A (en) 1989-03-01 1993-01-04 Method and apparatus for reading two-dimensional bar code employing bit-mapped imaging

Publications (1)

Publication Number Publication Date
US5637851A true US5637851A (en) 1997-06-10

Family

ID=23233621

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/000,794 Expired - Lifetime US5414250A (en) 1989-03-01 1993-01-04 Method and apparatus for reading two-dimensional bar code employing bit-mapped imaging
US08/388,480 Expired - Lifetime US5637851A (en) 1989-03-01 1995-02-14 Laser scanner for reading two dimensional bar codes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/000,794 Expired - Lifetime US5414250A (en) 1989-03-01 1993-01-04 Method and apparatus for reading two-dimensional bar code employing bit-mapped imaging

Country Status (5)

Country Link
US (2) US5414250A (en)
EP (1) EP0384955B1 (en)
JP (1) JP2792972B2 (en)
CA (1) CA1334218C (en)
DE (1) DE68928443T2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914477A (en) * 1996-06-26 1999-06-22 Ncr Corporation Line focus barcode scanner
US5988505A (en) * 1996-06-03 1999-11-23 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US6034805A (en) * 1998-04-27 2000-03-07 Lai; Ming Two dimensional scanner for a deep-UV laser beam
US6164546A (en) * 1995-07-20 2000-12-26 Fujitsu Limited Optical reader controlling operation between different scanning modes
US6314406B1 (en) 1996-06-26 2001-11-06 Telxon Corporation Customer information network
US6490376B1 (en) 1998-09-17 2002-12-03 Metrologic Instruments, Inc. Skew processing of raster scan images
US20020195497A1 (en) * 1995-07-20 2002-12-26 Fujitsu Limited Optical reader applicable to plurality of uses
US6672511B1 (en) 1996-06-03 2004-01-06 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US20040175052A1 (en) * 2003-03-06 2004-09-09 Bian Long Xiang Method and system for enhancing measurement
US6808118B2 (en) * 2001-12-31 2004-10-26 Zebra Atlantek, Inc. Security code verification for identification cards
US7347374B2 (en) 2003-11-13 2008-03-25 Metrologic Instruments, Inc. Hand-supportable digital imaging-based bar code symbol reader employing an event-driven system control subsystem, automatic IR-based object detection, and trigger-switch activated image capture and processing subsystem
US7357325B2 (en) 2003-11-13 2008-04-15 Metrologic Instruments, Inc. Hand-supportable imaging-based bar code symbol reader employing a CMOS-type image sensor using global exposure techniques
US20080116279A1 (en) * 1999-06-07 2008-05-22 Metrologic Instruments,Inc. Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging
US20080128507A1 (en) * 1998-03-24 2008-06-05 Tsikos Constantine J Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets
US20080156882A1 (en) * 1999-06-07 2008-07-03 Metrologic Instruments, Inc. Methods of and systems for producing digital images of objects with subtantially reduces speckle-noise power by illuminating said objects with wavefront-controlled planar laser illumination beams
US20080252985A1 (en) * 2000-11-24 2008-10-16 Metrologic Instruments, Inc. Tunnel-type digital imaging-based self-checkout system for use in retail point-of-sale environments
US7464877B2 (en) 2003-11-13 2008-12-16 Metrologic Instruments, Inc. Digital imaging-based bar code symbol reading system employing image cropping pattern generator and automatic cropped image processor
US7513428B2 (en) 2001-11-21 2009-04-07 Metrologic Instruments, Inc. Planar laser illumination and imaging device employing laser current modulation to generate spectral components and reduce temporal coherence of laser beam, so as to achieve a reduction in speckle-pattern noise during time-averaged detection of images of objects illuminated thereby during imaging operations
US7516898B2 (en) 2000-11-24 2009-04-14 Metrologic Instruments, Inc. Digital image capturing and processing system for producing and projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion and velocity of object
US7527202B2 (en) 2000-06-07 2009-05-05 Metrologic Instruments, Inc. Hand-supportable planar linear illumination and imaging (PLIIM) based code symbol reading system
US7527200B2 (en) 1998-03-24 2009-05-05 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) systems with integrated despeckling mechanisms provided therein
US7546952B2 (en) 2000-11-24 2009-06-16 Metrologic Instruments, Inc. Method of illuminating objects during digital image capture operations by mixing visible and invisible spectral illumination energy at point of sale (POS) environments
US7594609B2 (en) 2003-11-13 2009-09-29 Metrologic Instruments, Inc. Automatic digital video image capture and processing system supporting image-processing based code symbol reading during a pass-through mode of system operation at a retail point of sale (POS) station
US7607581B2 (en) 2003-11-13 2009-10-27 Metrologic Instruments, Inc. Digital imaging-based code symbol reading system permitting modification of system features and functionalities
US7708205B2 (en) 2003-11-13 2010-05-04 Metrologic Instruments, Inc. Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7870504B1 (en) * 2003-10-01 2011-01-11 TestPlant Inc. Method for monitoring a graphical user interface on a second computer display from a first computer
USD635568S1 (en) 2009-06-09 2011-04-05 Data Ltd., Inc. Tablet computer
USD638834S1 (en) 2009-10-05 2011-05-31 Data Ltd., Inc. Tablet computer
USD654499S1 (en) 2009-06-09 2012-02-21 Data Ltd., Inc. Tablet computer
USD690296S1 (en) 2011-02-01 2013-09-24 Data Ltd., Inc. Tablet computer
US11507496B2 (en) 2016-02-10 2022-11-22 Eggplant Limited Method of, and apparatus for, testing computer hardware and software
US11507494B2 (en) 2016-02-10 2022-11-22 Eggplant Limited Method of, and apparatus for, testing computer hardware and software
US20230124084A1 (en) * 2021-10-19 2023-04-20 Zebra Technologies Corporation Methods and apparatus for using an indicator window of a handheld scanner as a trigger

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042079A (en) * 1988-08-12 1991-08-20 Casio Computer Co., Ltd. Method of recording/reproducing data of mesh pattern, and apparatus therefor
US5591957A (en) * 1988-08-12 1997-01-07 Casio Computer Co., Ltd. Apparatus for reading mesh pattern image data having bars along upper and lower sides of mesh pattern and a boundary line between horizontally adjacent dark and light area of mesh pattern
US6889903B1 (en) 1988-08-31 2005-05-10 Intermec Ip Corp. Method and apparatus for optically reading information
US6681994B1 (en) 1988-08-31 2004-01-27 Intermec Ip Corp. Method and apparatus for optically reading information
US5235167A (en) * 1988-10-21 1993-08-10 Symbol Technologies, Inc. Laser scanning system and scanning method for reading bar codes
US5710417A (en) * 1988-10-21 1998-01-20 Symbol Technologies, Inc. Bar code reader for reading both one dimensional and two dimensional symbologies with programmable resolution
US5600119A (en) * 1988-10-21 1997-02-04 Symbol Technologies, Inc. Dual line laser scanning system and scanning method for reading multidimensional bar codes
US5478997A (en) * 1988-10-21 1995-12-26 Symbol Technologies, Inc. Symbol scanning system and method having adaptive pattern generation
US5621203A (en) * 1992-09-25 1997-04-15 Symbol Technologies Method and apparatus for reading two-dimensional bar code symbols with an elongated laser line
US5304786A (en) * 1990-01-05 1994-04-19 Symbol Technologies, Inc. High density two-dimensional bar code symbol
US5635697A (en) * 1989-03-01 1997-06-03 Symbol Technologies, Inc. Method and apparatus for decoding two-dimensional bar code
US5319181A (en) * 1992-03-16 1994-06-07 Symbol Technologies, Inc. Method and apparatus for decoding two-dimensional bar code using CCD/CMD camera
US5153928A (en) * 1989-06-09 1992-10-06 Casio Computer Co., Ltd. Method and apparatus for recording/reproducing mesh pattern data
US5811828A (en) * 1991-09-17 1998-09-22 Norand Corporation Portable reader system having an adjustable optical focusing means for reading optical information over a substantial range of distances
KR100257128B1 (en) * 1991-11-11 2000-05-15 시모야마 도시로 Symbol information reading apparatus
US5354977A (en) * 1992-02-27 1994-10-11 Alex Roustaei Optical scanning head
US5756981A (en) * 1992-02-27 1998-05-26 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and-two-dimensional symbologies at variable depths of field including memory efficient high speed image processing means and high accuracy image analysis means
US6164545A (en) * 1992-03-12 2000-12-26 Intermec Ip Corp. Code reader for converting two dimensional information into a one dimensional format
US5821523A (en) * 1992-03-12 1998-10-13 Bunte; Alan G. Combined code reader and digital camera using a common photodetector
US5902988A (en) * 1992-03-12 1999-05-11 Norand Corporation Reader for decoding two-dimensional optically readable information
JPH05315207A (en) * 1992-05-08 1993-11-26 Nec Corp Semiconductor device
JP2788152B2 (en) * 1992-06-22 1998-08-20 松下電器産業株式会社 Barcode reader
JP2746501B2 (en) * 1992-06-22 1998-05-06 松下電器産業株式会社 Barcode reader
KR940001145A (en) * 1992-06-25 1994-01-10 시모야마 도시로오 Data record and printer system of the record and reading system of the record
US5343028A (en) * 1992-08-10 1994-08-30 United Parcel Service Of America, Inc. Method and apparatus for detecting and decoding bar code symbols using two-dimensional digital pixel images
CA2150698A1 (en) * 1992-12-04 1994-06-23 Jay M. Eastman Optical symbol (bar code) reading systems and devices
US5371361A (en) * 1993-02-01 1994-12-06 Spectra-Physics Scanning Systems, Inc. Optical processing system
US5591955A (en) * 1993-05-11 1997-01-07 Laser; Vadim Portable data file readers
US5304787A (en) * 1993-06-01 1994-04-19 Metamedia Corporation Locating 2-D bar codes
KR950006648A (en) * 1993-08-23 1995-03-21 기시모토 세이슈우 2D barcode syringe interface
CN1104791A (en) * 1993-12-30 1995-07-05 富冈信 Two dimensional code for processing data
US6005255A (en) * 1994-05-18 1999-12-21 Symbol Technologies, Inc. Timing synchronization for image scanning
US5959286A (en) * 1994-05-18 1999-09-28 Symbol Technologies, Inc. Method and apparatus for raster scanning of images
US5831674A (en) * 1994-06-10 1998-11-03 Metanetics Corporation Oblique access to image data for reading bar codes
US5481103A (en) * 1994-07-26 1996-01-02 Metanetics Corporation Packet bar code with data sequence encoded in address/data packets
US5523552A (en) * 1994-10-19 1996-06-04 Symbol Technologies, Inc. Method and apparatus to scan randomly oriented two-dimensional bar code symbols
US6032861A (en) * 1995-01-03 2000-03-07 Lemelson; Jerome H. Method and apparatus for encoding and decoding bar codes with primary and secondary information and method of using such bar codes
US6543691B1 (en) * 1995-01-03 2003-04-08 Jerome H. Lemelson Method and apparatus for encoding and decoding bar codes with primary and secondary information and method of using such bar codes
US5659431A (en) * 1995-10-23 1997-08-19 Intermec Corporation Fixed mount imager using optical module for reading one or two-dimensional symbology data
BR9713426A (en) 1996-11-25 2000-01-25 Metrologic Instr Inc System and method for executing transactions related to information,
US5889269A (en) * 1997-01-27 1999-03-30 Symbol Technologies, Inc. Linearization of raster patterns in 2D optical scanners
US5912452A (en) * 1997-02-06 1999-06-15 Intermec Corporation Method and apparatus for reading one-and two-dimensional symbols with a linear detector
US6003775A (en) * 1997-06-11 1999-12-21 Intermec Ip Corp. Generic handheld symbology scanner with a modular optical sensor
US5984186A (en) * 1997-10-29 1999-11-16 Psc Inc. CCD-base bar code scanner
US5988898A (en) * 1998-01-26 1999-11-23 Intermec Ip Corp. Label printer having integrated optical scanner module
US6126074A (en) * 1998-01-28 2000-10-03 Symbol Technologies, Inc. Error correction in macro bar code symbols
US6088482A (en) * 1998-10-22 2000-07-11 Symbol Technologies, Inc. Techniques for reading two dimensional code, including maxicode
FR2788871B1 (en) * 1999-01-22 2001-06-15 Intermec Scanner Technology Ct OPTOELECTRONIC DEVICE FOR ACQUIRING IMAGES OF CODES WITH ONE AND TWO DIMENSIONS
AU5737600A (en) * 1999-06-16 2001-01-02 Snorkel International, Inc Chain code position detector
FR2798491B1 (en) * 1999-09-10 2001-11-23 Intermec Scanner Technology Ct OPTOELECTRONIC DEVICE FOR ACQUIRING IMAGES OF PLANS-OBJECTS, ESPECIALLY BAR CODES
US6296187B1 (en) 1999-11-12 2001-10-02 Psc Inc. CCD-based bar code scanner
US6360951B1 (en) * 1999-12-16 2002-03-26 Xerox Corporation Hand-held scanning system for heuristically organizing scanned information
US6700997B1 (en) * 2000-06-05 2004-03-02 Glenn Steven Spitz Method of evaluating the print quality of 2-dimensional data carrying graphical symbols
US6456798B1 (en) * 2000-08-09 2002-09-24 Eastman Kodak Company Barcode and data storage arrangement on a photographic element
US6621063B2 (en) * 2001-06-21 2003-09-16 Psc Scanning, Inc. Omni-directional optical code reader using scheimpflug optics
US20050077358A1 (en) * 2003-10-08 2005-04-14 Thomas Boehm System and method for configuring an omnidirectional scanner
US7721966B2 (en) * 2004-10-18 2010-05-25 Datalogic Scanning, Inc. System and method of optical reading employing virtual scan lines
US7568628B2 (en) 2005-03-11 2009-08-04 Hand Held Products, Inc. Bar code reading device with global electronic shutter control
US7770799B2 (en) 2005-06-03 2010-08-10 Hand Held Products, Inc. Optical reader having reduced specular reflection read failures
US20090084856A1 (en) * 2007-09-28 2009-04-02 Igor Vinogradov Imaging reader with asymmetrical magnification
US20110290694A1 (en) 2010-05-27 2011-12-01 Monosol Rx, Llc Oral film dosage form having indicia thereon
JP7022981B2 (en) * 2018-01-15 2022-02-21 Hot Springs株式会社 Communication system and game system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774014A (en) * 1972-03-20 1973-11-20 Pitney Bowes Alpex Printed code scanning system
US3801775A (en) * 1972-08-07 1974-04-02 Scanner Method and apparatus for identifying objects
US4124797A (en) * 1977-10-31 1978-11-07 Recognition Equipment Incorporated Apparatus and method for reading randomly oriented characters
US4152583A (en) * 1976-03-31 1979-05-01 Mitsubishi Denki Kabushiki Kaisha System for reading out bar coded labels
JPS55115166A (en) * 1979-02-28 1980-09-04 Hitachi Ltd Optical information reader
US4387297A (en) * 1980-02-29 1983-06-07 Symbol Technologies, Inc. Portable laser scanning system and scanning methods
US4588882A (en) * 1984-06-06 1986-05-13 Drexler Technology Corporation Skew detection system for optically read data
US4652730A (en) * 1985-01-03 1987-03-24 Honeywell Information Systems Inc. Method and apparatus for skew compensation in an optical reader
US4777356A (en) * 1984-12-10 1988-10-11 Sony Corporation Reader for optical type record card
US4776464A (en) * 1985-06-17 1988-10-11 Bae Automated Systems, Inc. Automated article handling system and process
US4794239A (en) * 1987-10-13 1988-12-27 Intermec Corporation Multitrack bar code and associated decoding method
US4871904A (en) * 1987-12-28 1989-10-03 Symbol Technologies, Inc. Multidirectional optical scanner
US4873426A (en) * 1988-08-03 1989-10-10 Image Business Systems Corporation Technique for reading bar codes
US4879456A (en) * 1987-06-18 1989-11-07 Spectra-Physics, Inc. Method of decoding a binary scan signal
US4916297A (en) * 1986-11-17 1990-04-10 Tokyo Kogaku Kikai Kabushiki Kaisha Code reader
US4931628A (en) * 1985-11-18 1990-06-05 Sony Corporation Apparatus for reproducing optical card data without position indicators
US4933538A (en) * 1988-10-21 1990-06-12 Symbol Technologies, Inc. Scanning system with adjustable light output and/or scanning angle
US4967074A (en) * 1987-08-24 1990-10-30 Erwin Sick Gmbh Optik-Elektronik Scanner for the detection of bar codes on articles
US4988852A (en) * 1988-07-05 1991-01-29 Teknekron Transportation Systems, Inc. Bar code reader

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135534A (en) * 1973-04-28 1974-12-27
US3978317A (en) * 1974-02-26 1976-08-31 Matsushita Electric Industrial Co., Ltd. Optical bar code reader
US3978318A (en) * 1974-03-18 1976-08-31 Data General Corporation Hand-operated scanner
JPS5326624A (en) * 1976-08-25 1978-03-11 Mitsubishi Electric Corp Bar-code label reading device
US4251798A (en) * 1978-05-31 1981-02-17 Symbol Technologies Portable laser scanning arrangement for and method of evaluating and validating bar code symbols
US4360798A (en) * 1978-05-31 1982-11-23 Symbol Technologies, Inc. Portable laser scanning arrangement for and method of evaluating and validating bar code symbols
US4369361A (en) * 1980-03-25 1983-01-18 Symbol Technologies, Inc. Portable, stand-alone, desk-top laser scanning workstation for intelligent data acquisition terminal and method of scanning
US4355301A (en) * 1980-05-27 1982-10-19 Sumitomo Electric Industries, Ltd. Optical character reading system
DE3043557C2 (en) * 1980-11-19 1987-12-23 Hartmut 6900 Heidelberg Bernot Device for acquiring, transmitting and processing data in optically readable codes
US4333006A (en) * 1980-12-12 1982-06-01 Ncr Corporation Multifocal holographic scanning system
JPS57127272A (en) * 1981-01-30 1982-08-07 Sharp Corp Optical reader
US4766300A (en) * 1984-08-06 1988-08-23 Norand Corporation Instant portable bar code reader
US4570057A (en) * 1981-12-28 1986-02-11 Norand Corporation Instant portable bar code reader
US4460120A (en) * 1982-01-25 1984-07-17 Symbol Technologies, Inc. Narrow bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
US4758717A (en) * 1982-01-25 1988-07-19 Symbol Technologies, Inc. Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols
US4409470A (en) * 1982-01-25 1983-10-11 Symbol Technologies, Inc. Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols
US4673805A (en) * 1982-01-25 1987-06-16 Symbol Technologies, Inc. Narrow-bodied, single- and twin-windowed portable scanning head for reading bar code symbols
US4736095A (en) * 1982-01-25 1988-04-05 Symbol Technologies, Inc. Narrow-bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols
US4500776A (en) * 1982-11-08 1985-02-19 Vadim Laser Method and apparatus for remotely reading and decoding bar codes
US4560862A (en) * 1983-04-26 1985-12-24 Skan-A-Matic Corp. System for optical scanning over a large depth of field
US4608489A (en) * 1984-06-04 1986-08-26 International Business Machines Corporation Method and apparatus for dynamically segmenting a bar code
NL8403323A (en) * 1984-11-02 1986-06-02 Philips Nv READING DEVICE FOR BAR CODES.
EP0367299B1 (en) * 1985-02-28 1992-11-11 Symbol Technologies, Inc. Portable laser diode scanning head
US4753498A (en) * 1985-03-22 1988-06-28 Tokyo Kogaku Kikai Kabushiki Kaisha Optical reader
JPH0325240Y2 (en) * 1985-10-08 1991-05-31
US4761544A (en) * 1985-11-15 1988-08-02 Hewlett-Packard Company Means and method of scaling time interval measurements from an optical bar code scanner to improve decoder efficiency
US4727245A (en) * 1986-10-14 1988-02-23 Mars, Inc. Portable data scanner with removable modular printer
US4748318A (en) * 1986-10-22 1988-05-31 Bearden James D Wand for a hand-held combined light pen and bar code reader
US4816661A (en) * 1986-12-22 1989-03-28 Symbol Technologies, Inc. Scan pattern generators for bar code symbol readers
US4766297A (en) * 1987-01-08 1988-08-23 Recognition Equipment Incorporated Dual mode stationary and portable scanning system
US4728784A (en) * 1987-01-30 1988-03-01 Federal Express Corporation Apparatus and method of encoding and decoding barcodes
US4838632A (en) * 1988-05-06 1989-06-13 Lumisys Inc. Two-dimensional beam scanner

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774014A (en) * 1972-03-20 1973-11-20 Pitney Bowes Alpex Printed code scanning system
US3801775A (en) * 1972-08-07 1974-04-02 Scanner Method and apparatus for identifying objects
US4152583A (en) * 1976-03-31 1979-05-01 Mitsubishi Denki Kabushiki Kaisha System for reading out bar coded labels
US4124797A (en) * 1977-10-31 1978-11-07 Recognition Equipment Incorporated Apparatus and method for reading randomly oriented characters
JPS55115166A (en) * 1979-02-28 1980-09-04 Hitachi Ltd Optical information reader
US4387297A (en) * 1980-02-29 1983-06-07 Symbol Technologies, Inc. Portable laser scanning system and scanning methods
US4387297B1 (en) * 1980-02-29 1995-09-12 Symbol Technologies Inc Portable laser scanning system and scanning methods
US4588882A (en) * 1984-06-06 1986-05-13 Drexler Technology Corporation Skew detection system for optically read data
US4777356A (en) * 1984-12-10 1988-10-11 Sony Corporation Reader for optical type record card
US4652730A (en) * 1985-01-03 1987-03-24 Honeywell Information Systems Inc. Method and apparatus for skew compensation in an optical reader
US4776464A (en) * 1985-06-17 1988-10-11 Bae Automated Systems, Inc. Automated article handling system and process
US4931628A (en) * 1985-11-18 1990-06-05 Sony Corporation Apparatus for reproducing optical card data without position indicators
US4916297A (en) * 1986-11-17 1990-04-10 Tokyo Kogaku Kikai Kabushiki Kaisha Code reader
US4879456A (en) * 1987-06-18 1989-11-07 Spectra-Physics, Inc. Method of decoding a binary scan signal
US4967074A (en) * 1987-08-24 1990-10-30 Erwin Sick Gmbh Optik-Elektronik Scanner for the detection of bar codes on articles
US4794239A (en) * 1987-10-13 1988-12-27 Intermec Corporation Multitrack bar code and associated decoding method
US4871904A (en) * 1987-12-28 1989-10-03 Symbol Technologies, Inc. Multidirectional optical scanner
US4988852A (en) * 1988-07-05 1991-01-29 Teknekron Transportation Systems, Inc. Bar code reader
US4873426A (en) * 1988-08-03 1989-10-10 Image Business Systems Corporation Technique for reading bar codes
US4933538A (en) * 1988-10-21 1990-06-12 Symbol Technologies, Inc. Scanning system with adjustable light output and/or scanning angle

Cited By (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6435413B1 (en) 1995-04-26 2002-08-20 Fujitsu Limited Optical reader controlling operation between multi-scanning and single-scanning modes
US20030006286A1 (en) * 1995-07-20 2003-01-09 Fujitsu Limited Optical reader applicable to plurality of uses
US7222794B2 (en) 1995-07-20 2007-05-29 Fujitsu Limiteed Optical reader applicable to plurality of uses
US7048188B2 (en) 1995-07-20 2006-05-23 Fujitsu Limited Optical reader applicable to plurality of uses
US6899274B2 (en) 1995-07-20 2005-05-31 Fujitsu Limited Optical reader applicable to plurality of uses
US6164546A (en) * 1995-07-20 2000-12-26 Fujitsu Limited Optical reader controlling operation between different scanning modes
US6216953B1 (en) * 1995-07-20 2001-04-17 Fujitsu Limited Optical reader controlling operation between different scanning modes
US6860426B2 (en) 1995-07-20 2005-03-01 Fujitsu Limited Optical reader applicable to plurality of uses
US6811086B1 (en) 1995-07-20 2004-11-02 Fujitsu Limited Stand for pivotably mounting an optical reading device
US20030201329A1 (en) * 1995-07-20 2003-10-30 Fujitsu Limited Optical reader applicable to plurality of uses
US20020195497A1 (en) * 1995-07-20 2002-12-26 Fujitsu Limited Optical reader applicable to plurality of uses
US20030001014A1 (en) * 1995-07-20 2003-01-02 Fujitsu Limited Optical reader applicable to plurality of uses
US6672511B1 (en) 1996-06-03 2004-01-06 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US6123262A (en) * 1996-06-03 2000-09-26 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional bar code symbols
US5988505A (en) * 1996-06-03 1999-11-23 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US20040031850A1 (en) * 1996-06-03 2004-02-19 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US7007846B2 (en) * 1996-06-03 2006-03-07 Symbol Technologies, Inc. Omnidirectional reading of two-dimensional symbols
US5914477A (en) * 1996-06-26 1999-06-22 Ncr Corporation Line focus barcode scanner
US20020178091A1 (en) * 1996-06-26 2002-11-28 O'hagan Timothy P. Authorized usage boundary notification system for customers using mobile computers in retail establishments
US6314406B1 (en) 1996-06-26 2001-11-06 Telxon Corporation Customer information network
US7527200B2 (en) 1998-03-24 2009-05-05 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) systems with integrated despeckling mechanisms provided therein
US7832643B2 (en) 1998-03-24 2010-11-16 Metrologic Instruments, Inc. Hand-supported planar laser illumination and imaging (PLIIM) based systems with laser despeckling mechanisms integrated therein
US7673803B2 (en) 1998-03-24 2010-03-09 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) based engine
US20080128506A1 (en) * 1998-03-24 2008-06-05 Tsikos Constantine J Hand-supportable planar laser illumination and imaging (PLIIM) based systems with laser despeckling mechanisms integrated therein
US7584893B2 (en) 1998-03-24 2009-09-08 Metrologic Instruments, Inc. Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets
US7581681B2 (en) 1998-03-24 2009-09-01 Metrologic Instruments, Inc. Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets
US20080128508A1 (en) * 1998-03-24 2008-06-05 Tsikos Constantine J Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets
US20080128507A1 (en) * 1998-03-24 2008-06-05 Tsikos Constantine J Tunnel-type digital imaging system for use within retail shopping environments such as supermarkets
US6034805A (en) * 1998-04-27 2000-03-07 Lai; Ming Two dimensional scanner for a deep-UV laser beam
US6490376B1 (en) 1998-09-17 2002-12-03 Metrologic Instruments, Inc. Skew processing of raster scan images
US20080116279A1 (en) * 1999-06-07 2008-05-22 Metrologic Instruments,Inc. Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging
US20080156882A1 (en) * 1999-06-07 2008-07-03 Metrologic Instruments, Inc. Methods of and systems for producing digital images of objects with subtantially reduces speckle-noise power by illuminating said objects with wavefront-controlled planar laser illumination beams
US7533821B2 (en) 1999-06-07 2009-05-19 Metrologic Instruments, Inc. Hand-supportable planar laser illumination and imaging (PLIIM) device for producing a planar laser illumination beam (PLIB) coplanar with the field of view (FOV) of a linear image detection array
US7600689B2 (en) 1999-06-07 2009-10-13 Metrologic Instruments, Inc. Tunnel-based object identification and dimensioning system
US7523863B2 (en) 1999-06-07 2009-04-28 Metrologic Instruments, Inc. Hand-supportable LED-based planar illumination and imaging system
US7644866B2 (en) 1999-06-07 2010-01-12 Metrologic Instruments, Inc. Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging
US7621455B2 (en) 1999-06-07 2009-11-24 Metrologic Instruments, Inc. Hand-supportable code symbol reader employing coplanar laser illumination and linear imaging
US7527202B2 (en) 2000-06-07 2009-05-05 Metrologic Instruments, Inc. Hand-supportable planar linear illumination and imaging (PLIIM) based code symbol reading system
US7516898B2 (en) 2000-11-24 2009-04-14 Metrologic Instruments, Inc. Digital image capturing and processing system for producing and projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion and velocity of object
US7556199B2 (en) 2000-11-24 2009-07-07 Metrologic Instruments, Inc. Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a complex of coplanar illumination and imaging planes into a 3D imaging volume so as to support pass-through and presentation modes of digital imaging at a point of sale (POS) environment
US7819326B2 (en) 2000-11-24 2010-10-26 Metrologic Instruments, Inc. Network of digital image capturing systems installed at retail POS-based stations and serviced by a remote image processing server in communication therewith
US7878407B2 (en) 2000-11-24 2011-02-01 Metrologic Instruments, Inc. POS-based digital image capturing and processing system employing automatic object motion detection and spectral-mixing based illumination techniques
US7815113B2 (en) 2000-11-24 2010-10-19 Metrologic Instruments, Inc. Method of and system for returning a consumer product in a retail environment so as to prevent or reduce employee theft, as well as provide greater accountability for returned merchandise in retail store environments
US7806336B2 (en) 2000-11-24 2010-10-05 Metrologic Instruments, Inc. Laser beam generation system employing a laser diode and high-frequency modulation circuitry mounted on a flexible circuit
US7651028B2 (en) 2000-11-24 2010-01-26 Metrologic Instruments, Inc. Intelligent system for automatically recognizing objects at a point of sale (POS) station by omni-directional imaging of the objects using a complex of coplanar illumination and imaging subsystems
US7806335B2 (en) 2000-11-24 2010-10-05 Metrologic Instruments, Inc. Digital image capturing and processing system for automatically recognizing objects in a POS environment
US7905413B2 (en) 2000-11-24 2011-03-15 Metrologic Instruments, Inc. Digital image capturing and processing system employing a plurality of coplanar illumination and imaging subsystems for digitally imaging objects in a 3D imaging volume, and a globally-deployed object motion detection subsystem for automatically detecting and analyzing the motion of objects passing through said 3-D imaging volume
US7520433B2 (en) 2000-11-24 2009-04-21 Metrologic Instruments, Inc. Method for intelligently controlling the illumination and imagine of objects as they are moved through the 3D imaging volume of a digital image capturing and processing system
US7954719B2 (en) 2000-11-24 2011-06-07 Metrologic Instruments, Inc. Tunnel-type digital imaging-based self-checkout system for use in retail point-of-sale environments
US8042740B2 (en) 2000-11-24 2011-10-25 Metrologic Instruments, Inc. Method of reading bar code symbols on objects at a point-of-sale station by passing said objects through a complex of stationary coplanar illumination and imaging planes projected into a 3D imaging volume
US7527204B2 (en) 2000-11-24 2009-05-05 Metrologic Instruments, Inc. Omni-directional digital image capturing and processing system comprising coplanar illumination and imaging stations automatically detecting object motion and velocity and adjusting exposure and/or illumination control parameters therewithin
US7793841B2 (en) 2000-11-24 2010-09-14 Metrologic Instruments, Inc. Laser illumination beam generation system employing despeckling of the laser beam using high-frequency modulation of the laser diode current and optical multiplexing of the component laser beams
US20080252985A1 (en) * 2000-11-24 2008-10-16 Metrologic Instruments, Inc. Tunnel-type digital imaging-based self-checkout system for use in retail point-of-sale environments
US7530497B2 (en) 2000-11-24 2009-05-12 Metrologic Instruments, Inc. Digital image capturing and processing system employing an image capturing and processing module and an integrated electronic weigh scale module having a load cell centrally located with respect to said image capturing and processing module
US7533820B2 (en) 2000-11-24 2009-05-19 Metrologic Instruments, Inc. Digital image capturing and processing system employing coplanar illumination and imaging stations which generate coplanar illumination and imaging planes only when and where an object is being moved within the 3D imaging volume
US8172141B2 (en) 2000-11-24 2012-05-08 Metrologic Instruments, Inc. Laser beam despeckling devices
US7533823B2 (en) 2000-11-24 2009-05-19 Metrologic Instruments, Inc. Digital image capturing and processing system employing a plurality of coplanar illuminating and imaging stations projecting a plurality of coplanar illumination and imaging planes into a 3D imaging volume, and controlling operations therewithin using control data derived from motion data collected from the automated detection of objects passing through said 3D imaging volume
US7537165B2 (en) 2000-11-24 2009-05-26 Metrologic Instruments, Inc. Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones within the system housing
US7784695B2 (en) 2000-11-24 2010-08-31 Metrologic Instruments, Inc. Planar laser illumination module (PLIM) employing high-frequency modulation (HFM) of the laser drive currents and optical multplexing of the output laser beams
US7540422B2 (en) 2000-11-24 2009-06-02 Metrologic Instruments, Inc. Digital image capturing and processing system employing imaging window protection plate having an aperture pattern and being disposed over said imaging window and beneath which resides a plurality of coplanar illumination and imaging stations
US7540424B2 (en) 2000-11-24 2009-06-02 Metrologic Instruments, Inc. Compact bar code symbol reading system employing a complex of coplanar illumination and imaging stations for omni-directional imaging of objects within a 3D imaging volume
US7775436B2 (en) 2000-11-24 2010-08-17 Metrologic Instruments, Inc. Method of driving a plurality of visible and invisible LEDs so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations
US7543749B2 (en) 2000-11-24 2009-06-09 Metrologic Instruments, Inc. Digital image capturing and processing system having a plurality of coplanar illumination and imaging subsystems, each employing a dual-type coplanar linear illumination and imaging engine that supports image-processing based object motion and velocity detection, and automatic image formation and detection along the coplanar illumination and imaging plane produced thereby
US7770796B2 (en) 2000-11-24 2010-08-10 Metrologic Instruments, Inc. Device for producing a laser beam of reduced coherency using high-frequency modulation of the laser diode current and optical multiplexing of the output laser beam
US7546952B2 (en) 2000-11-24 2009-06-16 Metrologic Instruments, Inc. Method of illuminating objects during digital image capture operations by mixing visible and invisible spectral illumination energy at point of sale (POS) environments
US7614560B2 (en) 2000-11-24 2009-11-10 Metrologic Instruments, Inc. Method of illuminating objects at a point of sale (POS) station by adaptively controlling the spectral composition of the wide-area illumination beam produced from an illumination subsystem within an automatic digital image capture and processing system
US7559474B2 (en) 2000-11-24 2009-07-14 Metrologic Instruments, Inc. Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing
US7762465B2 (en) 2000-11-24 2010-07-27 Metrologic Instruments, Inc. Device for optically multiplexing a laser beam
US7568626B2 (en) 2000-11-24 2009-08-04 Metrologic Instruments, Inc. Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system
US7731091B2 (en) 2000-11-24 2010-06-08 Metrologic Instruments, Inc. Digital image capturing and processing system employing automatic object detection and spectral-mixing based illumination techniques
US7571858B2 (en) 2000-11-24 2009-08-11 Metrologic Instruemtns, Inc. POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques
US7571859B2 (en) 2000-11-24 2009-08-11 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, global object motion detection subsystem for automatically detecting objects within its 3D imaging volume, and global control subsystem for managing the state of operation of said coplanar illumination and imaging substems
US7575169B2 (en) 2000-11-24 2009-08-18 Metrologic Instruments, Inc. Digital image capturing and processing system for producing and projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion of objects present therewithin
US7575170B2 (en) 2000-11-24 2009-08-18 Metrologic Instruments, Inc. POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques
US7673802B2 (en) 2000-11-24 2010-03-09 Metrologic Instruments, Inc. Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system
US7578442B2 (en) 2000-11-24 2009-08-25 Metrologic Instruments, Inc. Method of and apparatus for identifying consumer products in a retail environment when bar code symbols on the products are not readable or have been removed from packaging
US7578445B2 (en) 2000-11-24 2009-08-25 Metrologic Instruments, Inc. Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations
US7581680B2 (en) 2000-11-24 2009-09-01 Metrologic Instruments, Inc. Omni-directional digital image capturing and processing system employing coplanar illumination and imaging stations in horizontal and vertical housing sections of the system
US7658330B2 (en) 2000-11-24 2010-02-09 Metrologic Instruments, Inc. Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations
US7611062B2 (en) 2000-11-24 2009-11-03 Metrologic Instruments, Inc. Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones with the horizontal and vertical sections of the system housing
US7584892B2 (en) 2000-11-24 2009-09-08 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, each having a local object motion detection subsystem for automatic detecting objects within the 3D imaging volume, and a local control subsystem for transmitting object detection state data to a global control subsystem for managing the state of operation of said coplanar illumination and imaging subsystems
US7661595B2 (en) 2000-11-24 2010-02-16 Metrologic Instruments, Inc. Digital image capturing and processing system employing a plurality of area-type illuminating and imaging stations projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume, and controlling operations therewithin using
US7588188B2 (en) 2000-11-24 2009-09-15 Metrologic Instruments, Inc. Pos-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques
US7594608B2 (en) 2000-11-24 2009-09-29 Metrologic Instruments, Inc. Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing
US7665665B2 (en) 2000-11-24 2010-02-23 Metrologic Instruments, Inc. Digital illumination and imaging subsystem employing despeckling mechanism employing high-frequency modulation of laser diode drive current and optical beam multiplexing techniques
US7661597B2 (en) 2000-11-24 2010-02-16 Metrologic Instruments, Inc. Coplanar laser illumination and imaging subsystem employing spectral-mixing and despeckling of laser illumination
US7513428B2 (en) 2001-11-21 2009-04-07 Metrologic Instruments, Inc. Planar laser illumination and imaging device employing laser current modulation to generate spectral components and reduce temporal coherence of laser beam, so as to achieve a reduction in speckle-pattern noise during time-averaged detection of images of objects illuminated thereby during imaging operations
US6808118B2 (en) * 2001-12-31 2004-10-26 Zebra Atlantek, Inc. Security code verification for identification cards
US7212682B2 (en) * 2003-03-06 2007-05-01 Sick Auto Ident, Inc. Method and system for enhancing measurement
US20040175052A1 (en) * 2003-03-06 2004-09-09 Bian Long Xiang Method and system for enhancing measurement
US9658931B2 (en) 2003-10-01 2017-05-23 TestPlant Inc. Method for monitoring a graphical user interface on a second computer display from a first computer
US9477567B2 (en) 2003-10-01 2016-10-25 Testplant, Inc. Method for monitoring a graphical user interface on a second computer display from a first computer
US7870504B1 (en) * 2003-10-01 2011-01-11 TestPlant Inc. Method for monitoring a graphical user interface on a second computer display from a first computer
US7503499B2 (en) 2003-11-13 2009-03-17 Metrologic Instruments, Inc. Digital image capturing and processing system producing narrow-band illumination when image sensor elements in a state of integration, and simultaneously detecting narrow-band illumination using an area-type image sensor and independently-operated photo-detector
US7490774B2 (en) 2003-11-13 2009-02-17 Metrologic Instruments, Inc. Hand-supportable imaging based bar code symbol reader employing automatic light exposure measurement and illumination control subsystem integrated therein
US7637433B1 (en) 2003-11-13 2009-12-29 Metrologic Instruments, Inc. Digital image capture and processing system employing a micro-computing platform with an event-driven multi-tier modular software architecture and supporting an image-processing based illumination metering program for automatically adjusting illumination during object illumination and imaging operations
US7624926B2 (en) 2003-11-13 2009-12-01 Metrologic Instruments, Inc. Method of automatically reading code symbols on objects present within the field of view (FOV) of a hand-supportable digital-imaging based code symbol reader, by simultaneously projecting an image cropping zone (ICZ) framing pattern and a field of illumination within the FOV during object illumination and imaging operations
US7654461B2 (en) 2003-11-13 2010-02-02 Metrologic Instruments, Inc, Automatically-triggered digital video imaging based code symbol reading system employing illumination and imaging subsystems controlled in response to real-time image quality analysis
US7611064B2 (en) 2003-11-13 2009-11-03 Metrologic Instruments, Inc. Digital image capture and processing system having automatic illumination measurement and control capabilities realized using a photodetector operating independently of the image sensing array, and an image-processing based illumination metering program for automatically adjusting the illumination duration of the system during object illumination and imaging operations
US7607581B2 (en) 2003-11-13 2009-10-27 Metrologic Instruments, Inc. Digital imaging-based code symbol reading system permitting modification of system features and functionalities
US7604175B2 (en) 2003-11-13 2009-10-20 Metrologic Instruments, Inc. Method of reading bar code symbols using a digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of bar code symbol reading application
US7594609B2 (en) 2003-11-13 2009-09-29 Metrologic Instruments, Inc. Automatic digital video image capture and processing system supporting image-processing based code symbol reading during a pass-through mode of system operation at a retail point of sale (POS) station
US7588190B2 (en) 2003-11-13 2009-09-15 Metrologic Instruments, Inc. Digital-imaging code symbol reading system supporting automatic programming of system parameters for automatic configuration of said system in hands-on and hands-free modes of operation
US7575167B2 (en) 2003-11-13 2009-08-18 Metrologic Instruments, Inc. Method of dynamically managing system control parameters in a digital image capture and processing system
US7681799B2 (en) 2003-11-13 2010-03-23 Metrologic Instruments, Inc. Method of reading code symbols using a digital image capturing and processing system employing a micro-computing platform with an event-driven multi-tier software architecture
US7708205B2 (en) 2003-11-13 2010-05-04 Metrologic Instruments, Inc. Digital image capture and processing system employing multi-layer software-based system architecture permitting modification and/or extension of system features and functions by way of third party code plug-ins
US7712666B2 (en) 2003-11-13 2010-05-11 Metrologic Instruments, Inc. Automatically-triggered digital video-imaging based code symbol reading system supporting dynamically controlled object illumination and digital video-imaging operations
US7568625B2 (en) 2003-11-13 2009-08-04 Metpologic Instruments, Inc. Hand-supportable digital image-processing based bar code symbol reading system employing image cropping zone (ICZ) framing and post-image capture cropping
US7735737B2 (en) 2003-11-13 2010-06-15 Metrologic Instruments, Inc. Automatically-triggered digital video-imaging based code symbol reading system supporting ambient illumination mode automatically selected by adaptive control process
US7559475B2 (en) 2003-11-13 2009-07-14 Metrologic Instruments, Inc. Automatic digital-imaging based bar code symbol reading system supporting a pass-through mode of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques
US7546951B2 (en) 2003-11-13 2009-06-16 Meterologic Instruments, Inc. Digital image capture and processing system employing real-time analysis of image exposure quality and the reconfiguration of system control parameters based on the results of such exposure quality analysis
US7770798B2 (en) 2003-11-13 2010-08-10 Metrologic Instruments, Inc. Automatically-triggered digital video-imaging based code symbol reading system for use in a point-of-sale (POS) environment
US7543752B2 (en) 2003-11-13 2009-06-09 Metrologic Instruments, Inc. Digital image capture and processing system employing a multi-mode illumination subsystem adaptable to ambient illumination levels
US7540425B2 (en) 2003-11-13 2009-06-02 Metrologic Instruments, Inc. Method of dynamically controlling illumination and image capturing operations in a digital image capture and processing system
US7789309B2 (en) 2003-11-13 2010-09-07 Metrologic Instruments, Inc. Automatic digital video-imaging based code symbol reading system employing illumination and imaging subsystems controlled within a control loop maintained as long as a code symbol has not been successfully read and the object is detected in the field of view of the system
US7527206B2 (en) 2003-11-13 2009-05-05 Metrologic Instruments, Inc. Method of setting the time duration of illumination from an LED-based illumination array employed in a digital imaging-based code symbol reader, using an image-processing based illumination metering program executed therewithin
US7513430B2 (en) 2003-11-13 2009-04-07 Metrologic Instruments, Inc. Digital image capturing and processing system employing an area-type image sensing array exposed to narrow-band illumination from a narrow-band illumination subsystem for a time duration controlled using a photodetector operated independently from said area-type image sensing array
US7510122B2 (en) 2003-11-13 2009-03-31 Metrologic Instruments, Inc. Portable digital image capturing and processing system employing an area-type image sensing array exposed to illumination produced from an LED-based illumination array and measured using a photodector operated independently from said area-type image sensing array
US7503498B2 (en) 2003-11-13 2009-03-17 Metrologic Instruments, Inc. Hand-supportable digital image capturing and processing system employing an area-type image sensing array exposed to illumination from an LED-based illumination array only when all sensor elements in said image-sensing array are activated and in a state of integration
US7815121B2 (en) 2003-11-13 2010-10-19 Metrologic Instruments, Inc. Method of modifying and/or extending the standard features and functions of a digital image capture and processing system
US7494063B2 (en) 2003-11-13 2009-02-24 Metrologic Instruments, Inc. Automatic imaging-based code symbol reading system supporting a multi-tier modular software architecture, automatic illumination control, and video image capture and processing techniques
US7490778B2 (en) 2003-11-13 2009-02-17 Metrologic Instruments, Inc. Method of reading code symbols using a hand-supportable digital image capturing and processing device employing a micro-computing platform supporting an event-driven multi-tier modular software architecture
US7841533B2 (en) 2003-11-13 2010-11-30 Metrologic Instruments, Inc. Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system
US7845559B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system
US7845561B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination
US7845563B2 (en) 2003-11-13 2010-12-07 Metrologic Instruments, Inc. Digital image capture and processing system employing an illumination subassembly mounted about a light transmission aperture, and a field of view folding mirror disposed beneath the light transmission aperture
US7854384B2 (en) 2003-11-13 2010-12-21 Metrologic Instruments, Inc. Digital image capture and processing engine employing optical waveguide technology for collecting and guiding LED-based illumination during object illumination and image capture modes of operation
US7861936B2 (en) 2003-11-13 2011-01-04 Metrologic Instruments, Inc. digital image capturing and processing system allowing third-parties to extend the features and functions of said system, and modify the standard behavior thereof without permanently modifying the standard features and functions thereof
US7637432B2 (en) 2003-11-13 2009-12-29 Metrologic Instruments, Inc. Automatic point-of-sale based code symbol reading system employing automatic object motion detection and illumination control, and digital video image capturing and processing techniques
US7487917B2 (en) 2003-11-13 2009-02-10 Metrologic Instruments, Inc. Automatic digital-imaging based code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection, narrow-area and wide-area illumination control, and narrow-area and wide-area video image capture and processing techniques
US7900839B2 (en) 2003-11-13 2011-03-08 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system having a printed circuit board with a light transmission aperture, through which the field of view (FOV) of the image detection array and visible targeting illumination beam are projected using a FOV-folding mirror
US7484666B2 (en) 2003-11-13 2009-02-03 Metrologic Instruments, Inc. Automatic digital-imaging based bar code symbol reading system supporting pass-through and presentation modes of system operation using automatic object direction detection and illumination control, and video image capture and processing techniques
US7922089B2 (en) 2003-11-13 2011-04-12 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system employing automatic object presence detection to control automatic generation of a linear targeting illumination beam within the field of view (FOV), and manual trigger switching to initiate illumination
US7950583B2 (en) 2003-11-13 2011-05-31 Metrologic Instruments, Inc Automatic digital video imaging based code symbol reading system employing an automatic object motion controlled illumination subsystem
US7469835B2 (en) 2003-11-13 2008-12-30 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system employing an event-driven multi-tier modular software architecture and supporting automatic operating system login and loading of code symbol reading application
US7967209B2 (en) 2003-11-13 2011-06-28 Metrologic Instruments, Inc. Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station
US7980471B2 (en) 2003-11-13 2011-07-19 Metrologic Instruments, Inc. Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols
US7988053B2 (en) 2003-11-13 2011-08-02 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV
US7997489B2 (en) 2003-11-13 2011-08-16 Metrologic Instruments, Inc. Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field
US8011585B2 (en) 2003-11-13 2011-09-06 Metrologic Instruments, Inc. Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system
US7464877B2 (en) 2003-11-13 2008-12-16 Metrologic Instruments, Inc. Digital imaging-based bar code symbol reading system employing image cropping pattern generator and automatic cropped image processor
US8047438B2 (en) 2003-11-13 2011-11-01 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination
US8052057B2 (en) 2003-11-13 2011-11-08 Metrologic Instruments, Inc. Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols
US8087588B2 (en) 2003-11-13 2012-01-03 Metrologic Instruments, Inc. Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system
US8100331B2 (en) 2003-11-13 2012-01-24 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture
US8132731B2 (en) 2003-11-13 2012-03-13 Metrologic Instruments, Inc. Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window
US8157174B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations
US8157175B2 (en) 2003-11-13 2012-04-17 Metrologic Instruments, Inc. Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation
US7407109B2 (en) 2003-11-13 2008-08-05 Metrologic Instruments, Inc. Digital-imaging based code symbol reading system employing a micro-computing platform supporting an event-driven multi-tier modular software architecture
US8317105B2 (en) 2003-11-13 2012-11-27 Metrologic Instruments, Inc. Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin
US8366005B2 (en) 2003-11-13 2013-02-05 Metrologic Instruments, Inc. Hand-supportable digital image capture and processing system supporting a multi-tier modular software architecture
US8479992B2 (en) 2003-11-13 2013-07-09 Metrologic Instruments, Inc. Optical code symbol reading system employing an acoustic-waveguide structure for coupling sonic energy, produced from an electro-transducer, to sound wave ports formed in the system housing
US9785811B2 (en) 2003-11-13 2017-10-10 Metrologic Instruments, Inc. Image capture and processing system supporting a multi-tier modular software architecture
US7347374B2 (en) 2003-11-13 2008-03-25 Metrologic Instruments, Inc. Hand-supportable digital imaging-based bar code symbol reader employing an event-driven system control subsystem, automatic IR-based object detection, and trigger-switch activated image capture and processing subsystem
US7357325B2 (en) 2003-11-13 2008-04-15 Metrologic Instruments, Inc. Hand-supportable imaging-based bar code symbol reader employing a CMOS-type image sensor using global exposure techniques
US9355288B2 (en) 2003-11-13 2016-05-31 Metrologic Instruments, Inc. Image capture and processing system supporting a multi-tier modular software architecture
US8844822B2 (en) 2003-11-13 2014-09-30 Metrologic Instruments, Inc. Image capture and processing system supporting a multi-tier modular software architecture
US9104930B2 (en) 2003-11-13 2015-08-11 Metrologic Instruments, Inc. Code symbol reading system
USD654499S1 (en) 2009-06-09 2012-02-21 Data Ltd., Inc. Tablet computer
USD635568S1 (en) 2009-06-09 2011-04-05 Data Ltd., Inc. Tablet computer
USD638834S1 (en) 2009-10-05 2011-05-31 Data Ltd., Inc. Tablet computer
USD690296S1 (en) 2011-02-01 2013-09-24 Data Ltd., Inc. Tablet computer
US11507496B2 (en) 2016-02-10 2022-11-22 Eggplant Limited Method of, and apparatus for, testing computer hardware and software
US11507494B2 (en) 2016-02-10 2022-11-22 Eggplant Limited Method of, and apparatus for, testing computer hardware and software
US20230124084A1 (en) * 2021-10-19 2023-04-20 Zebra Technologies Corporation Methods and apparatus for using an indicator window of a handheld scanner as a trigger

Also Published As

Publication number Publication date
CA1334218C (en) 1995-01-31
DE68928443D1 (en) 1997-12-18
EP0384955A3 (en) 1991-10-16
EP0384955B1 (en) 1997-11-12
JP2792972B2 (en) 1998-09-03
DE68928443T2 (en) 1998-06-04
US5414250A (en) 1995-05-09
JPH02268382A (en) 1990-11-02
EP0384955A2 (en) 1990-09-05

Similar Documents

Publication Publication Date Title
US5637851A (en) Laser scanner for reading two dimensional bar codes
US5396054A (en) Bar code reader using scanned memory array
EP0980537B1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
US6257490B1 (en) CCD-based bar code scanner
US6296187B1 (en) CCD-based bar code scanner
US5124537A (en) Omnidirectional bar code reader using virtual scan of video raster scan memory
US5278398A (en) Decoding bar code symbols by determining the best alignment of partial scans
EP0348232B1 (en) Optical beam scanner for reading bar-codes
US5920060A (en) Bar code scanner with simplified auto-focus capablilty
US5621203A (en) Method and apparatus for reading two-dimensional bar code symbols with an elongated laser line
US5241164A (en) Method of decoding bar code symbols from partial scans
US5302813A (en) Multi-bit digitizer
US8353457B2 (en) Systems and methods for forming a composite image of multiple portions of an object from multiple perspectives
US5550363A (en) Optical information reading apparatus
US6082621A (en) Interface between threshold processing digitizer for bar code reader
US6523753B2 (en) System for reading barcode symbols
US6307208B1 (en) System for reading barcode symbols
EP1916557B1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
CA2577235A1 (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
CA2134698A1 (en) Digitizer for bar code reader

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SYMBOL TECHNOLOGIES, INC.;REEL/FRAME:016116/0203

Effective date: 20041229

FPAY Fee payment

Year of fee payment: 12