Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS5662106 A
Tipo de publicaciónConcesión
Número de solicitudUS 08/593,188
Fecha de publicación2 Sep 1997
Fecha de presentación29 Ene 1996
Fecha de prioridad26 Mar 1993
TarifaCaducada
También publicado comoCA2158256A1, CA2158256C, DE69420399D1, DE69420399T2, EP0690694A1, EP0690694B1, US5368026, WO1994022360A1
Número de publicación08593188, 593188, US 5662106 A, US 5662106A, US-A-5662106, US5662106 A, US5662106A
InventoresDavid B. Swedlow, Robert S. Potratz
Cesionario originalNellcor Incorporated
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Oximeter with motion detection for alarm modification
US 5662106 A
Resumen
A pulse oximeter which modifies the alarm condition when motion is detected. Basically, if the lack of a pulse is determined to be as a result of motion artifact, the generation of an alarm is postponed. In addition, the display indicates that motion is present and that the last reading is questionable due to the presence of motion. The invention also determines if motion artifact is present from the pulse oximeter detector signal itself. The ratio of the positive and negative peaks of the derivative of the pulse signal are compared to a motion/blood pulse threshold.
Imágenes(6)
Previous page
Next page
Reclamaciones(20)
What is claimed is:
1. A method of operating a pulse oximeter which emits light, the method comprising the steps of:
(a) qualifying pulses in a detector signal, the detector signal corresponding to absorption by blood constituents of the light emitted by the oximeter;
(b) upon a condition suggesting a possible alarm situation, setting a first timer, the first timer expiring upon elapse of a time interval of a first predetermined duration;
(c) if a pulse is detected in the detector signal after the first timer has been set and before the first timer expires, performing the steps of:
(c1) determining if the pulse has resulted from motion artifact; and
(c2) if the pulse is determined to have resulted from motion artifact, resetting the first timer; and
(d) if and when the first timer expires, generating an alarm.
2. The method of claim 1, wherein step (c2) resets the first timer to expire upon elapse, from when step (c2) is performed, of a time interval of the first predetermined duration.
3. The method of claim 1, wherein the condition suggesting a possible alarm situation arises upon elapse of a time interval of a predetermined length during which a qualified pulse is not detected.
4. The method of claim 3, wherein the predetermined length is approximately 10 seconds.
5. The method of claim 1, wherein the first predetermined duration is approximately 6.3 seconds.
6. The method of claim 1, further comprising the step of:
(e) upon the condition suggesting a possible alarm situation, setting a second timer, the second timer expiring upon elapse of a time interval of a second predetermined duration, the second predetermined duration being larger than the first predetermined duration; and
(f) if and when the second timer expires, generating the alarm.
7. The method of claim 6, wherein the second predetermined duration is approximately 50 seconds.
8. The method of claim 6, further comprising the step of:
(g) if a predetermined number of qualified pulses are detected before either the first timer or the second timer expires, stopping the first and second timers.
9. The method of claim 8, wherein the predetermined number is approximately 4.
10. The method of claim 1, wherein step (c) further comprises the steps of:
(c3) determining if the pulse has resulted from noise; and
(c4) if the pulse is determined not to have resulted from noise, resetting the first timer.
11. The method of claim 10, wherein step (c4) resets the first timer to expire upon elapse, from when step (c4) is performed, of a time interval of the first predetermined duration.
12. A method of operating a pulse oximeter which emits light, the method comprising the steps of:
(a) qualifying pulses in a detector signal until a time interval of a predetermined length elapses during which a qualified pulse is not detected, the detector signal corresponding to absorption by blood constituents of the light emitted by the oximeter;
(b) if and when step (a) terminates, setting a count to zero and setting a first timer, the first timer expiring upon elapse of a time interval of a first predetermined duration;
(c) after each of steps (b), (e) and (h), setting a second timer, the second timer expiring upon elapse of a time interval of a second predetermined duration, the second predetermined duration being smaller than the first predetermined duration;
(d) after step (c), if a pulse is detected in the detector signal after the second timer has been set in step (c) and before the second timer expires, determining if the pulse has resulted from motion artifact and determining if the pulse has resulted from noise;
(e) after step (d), if the pulse is determined to have resulted from motion artifact, stopping the second timer and repeating steps (c) through (h);
(f) after step (d), if the pulse is determined to have resulted neither from motion artifact nor from noise, incrementing the count by one, the count indicating a number of qualified pulses detected since step (b) was last performed;
(g) after step (f), if the count is equal to a predetermined number, stopping the first and second timers, and repeating steps (a) through (h);
(h) after step (f), if the count is not equal to the predetermined number, stopping the second timer and repeating steps (c) through (h); and
(i) if and when either the first or the second timer expires, generating an alarm.
13. The method of claim 12, wherein the predetermined length is approximately 10 seconds.
14. The method of claim 12, wherein the first predetermined duration is approximately 50 seconds.
15. The method of claim 12, wherein the second predetermined duration is approximately 6.3 seconds.
16. The method of claim 12, wherein the predetermined number is approximately 4.
17. A pulse oximeter comprising:
an emitter for emitting light;
a photodetector for producing an analog detector signal corresponding to absorption of said light by blood constituents;
a circuit, coupled to the photodetector, for producing a digital detector signal corresponding to the analog detector signal; and
a processor, coupled to said circuit and programmed to:
(a) qualify pulses in the digital detector signal corresponding to arterial pulses;
(b) generate an alarm when no qualified pulses are detected in a time-out period; and
(c) modify the timing of the generation of said alarm if the processor determines that motion artifact is present during said time-out period.
18. The apparatus of claim 17, wherein the processor determines whether motion artifact is present during said time-out period by analyzing the digital detector signal.
19. The apparatus of claim 17, wherein the processor determines whether motion artifact is present during said time-out period by analyzing a signal generated by a motion detector attached to the pulse oximeter.
20. An apparatus for detecting motion artifact in a digital pulse oximeter signal comprising:
an emitter for emitting light at a body;
a photodetector for producing an analog detector signal corresponding to absorption of said light by the body;
a circuit, coupled to the photodetector, for producing the digital pulse oximeter signal from the analog detector signal; and
a processor, coupled to said circuit and programmed to:
(a) detect a pulse waveform in said digital pulse oximeter signal;
(b) determine the derivative of said pulse waveform;
(c) determine the ratio of a positive peak of said derivative to a negative peak of said derivative;
(d) compare said ratio to a threshold value; and
(e) indicate motion artifact when said ratio is less than said threshold.
Descripción

This is a continuation of application Ser. No. 08/304,914, filed Sep. 13, 1994, now abandoned, which is a continuation of application Ser. No. 08/037,953, filed Mar. 26, 1993, now U.S. Pat. No. 5,368,026.

BACKGROUND

The present invention relates to a pulse oximeter for detecting blood oxygenation, and in particular to the detection of motion artifact which may affect the detected blood oxygenation signal.

Pulse oximeters typically measure and display various blood flow characteristics including but not limited to blood oxygen saturation of hemoglobin in arterial blood, volume of individual blood pulsations supplying the flesh, and the rate of blood pulsations corresponding to each heartbeat of the patient. The oximeters pass light through human or animal body tissue where blood perfuses the tissue such as a finger, an ear, the nasal septum or the scalp, and photoelectrically sense the absorption of light in the tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured.

The light passed through the tissue is selected to be of one or more wavelengths that is absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted light passed through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption.

For example, the Nellcor N-100 oximeter is a microprocessor controlled device that measures oxygen saturation of hemoglobin using light from two light emitting diodes (LED's), one having a discrete frequency of about 660 nanometers in the red light range and the other having a discrete frequency of about 900-920 nanometers in the infrared range. The N-100 oximeter microprocessor uses a four-state clock to provide a bipolar drive current for the two LED's so that a positive current pulse drives the infrared LED and a negative current pulse drives the red LED to illuminate alternately the two LED's so that the incident light will pass through, e.g., a fingertip, and the detected or transmitted light will be detected by a single photodetector. The clock uses a high strobing rate to be easily distinguished from other light sources. The photodetector current changes in response to the red and infrared light transmitted in sequence and is converted to a voltage signal, amplified, and separated by a two-channel synchronous detector--one channel for processing the red light waveform and the other channel for processing the infrared light waveform. The separated signals are filtered to remove the strobing frequency, electrical noise, and ambient noise and then digitized by an analog to digital converter.

The detected digital optical signal is processed by the microprocessor of the N-100 oximeter to analyze and identify optical pulses corresponding to arterial pulses and to develop a history as to pulse periodicity, pulse shape, and determined oxygen saturation. The N-100 oximeter microprocessor decides whether or not to accept a detected pulse as corresponding to an arterial pulse by comparing the detected pulse against the pulse history. To be accepted, a detected pulse must meet certain predetermined criteria, for example, the expected size of the pulse, when the pulse is expected to occur, and the expected ratio of the red light to infrared light of the detected optical pulse in accordance with a desired degree of confidence. Identified individual optical pulses accepted for processing are used to compute the oxygen saturation from the ratio of maximum and minimum pulse levels as seen by the red wavelength compared to the maximum and minimum pulse levels as seen by the infrared wavelength.

The optical signal can be degraded by both noise and motion artifact. One source of noise is ambient light which reaches the light detector. Another source of noise would be electromagnetic coupling from other electronic instruments in the area. Motion of the patient can also affect the signal. For instance, when moving, the coupling between the detector and the skin or the emitter and the skin can be affected, such as by the detector moving away from the skin temporarily, for instance. In addition, since blood is a fluid, it may not move at the same speed as the surrounding tissue, thus resulting in a momentary change in volume at the point the oximeter probe is attached.

Such motion can degrade the signal a doctor is relying on, with the doctor being unaware of it. This is especially true if there is remote monitoring of the patient, the motion is too small to be observed, the doctor is watching the instrument or other parts of the patient, and not the sensor site, or in a fetus, where motion is hidden.

In one oximeter system described in U.S. Pat. No. 5,025,791, an accelerometer is used to detect motion. When motion is detected, readings influenced by motion are either eliminated or indicated as being corrupted. In other systems, such as described in U.S. Pat. No. 4,802,486, assigned to Nellcor, an EKG signal is monitored and correlated to the oximeter reading to provide synchronization to limit the effect of noise and motion artifact pulses on the oximeter readings. This reduces the chances of the oximeter locking on to a periodic motion signal. Still other systems, such as that set forth in U.S. Pat. No. 5,078,136, assigned to Nellcor, use signal processing in an attempt to limit the effect of noise and motion artifact. The '136 patent, for instance, uses linear interpolation and rate of change techniques or selective frequency filtering to analyze the oximeter signal.

Many pulse oximeters have audible alarms which will activate if no pulse signal is detected for a certain period of time, such as 10 seconds. This is clearly desirable to detect when a patient has lost his or her pulse. However, when noise or motion artifact corrupts the pulse signals and prevents the detection of sufficient qualified pulses in a 10 second period, false alarms can be frequently generated and are not only very annoying, but can reduce the confidence in a true alarm situation.

SUMMARY OF THE INVENTION

The present invention provides a pulse oximeter which modifies the alarm condition when motion is detected. Basically, if the lack of a qualified pulse is determined to be as a result of motion artifact, the generation of an alarm is postponed. In addition, the display indicates that motion is present and that the last reading is questionable due to the presence of motion.

In a preferred embodiment, the oximeter operates in three different states. First, in a normal state, qualified pulses are present and processed, and blood oxygen and pulse readings are generated. Second, in a noise state, an alarm time-out period begins to run when there is an absence of sufficient qualified pulses which are not due to motion artifact. Third, a motion state is entered when the lack of sufficient qualified pulses is determined to be due to the presence of motion artifact. This causes the alarm period to be extended.

In a preferred embodiment, when no qualified pulse has been detected for 10 seconds, the oximeter enters a probationary state. A 6.3 second timer is set upon entering the probationary state. 6.3 seconds allows time for 2 heart pulses at 20 beats/min., plus a 5% cushion. If it is determined that the oximeter is in a noise state during this period, an alarm sounds after 6.3 seconds. If, instead, it is determined that motion is present and the oximeter enters the motion state (motion artifact is detected as causing pulses) the alarm generation is extended up to a maximum of 50 seconds. The oximeter can exit the motion state and enter the noise state upon the cessation of the detection of pulses due to the motion artifact, in which case the 6.3 second timer will reset and restart.

Finally, the motion state can be exited and a return to the normal state can occur if a number of clean, qualified pulses are detected. This is preferably the same number of pulses required to be detected upon startup of the oximeter to establish a pulse reading and lock-on to a pulse frequency, but the return criteria may be different from the initial lock-on criteria. Thus, the exiting of the probationary state is made difficult to ensure that a clean pulse signal is indeed present.

The invention also provides a method and apparatus for determining if motion artifact is present from the pulse oximeter detector signal itself. When a pulse is detected, its derivative is calculated. The inventors have observed that a true pulse caused by the bloodflow from a heartbeat has a certain characteristic. That characteristic is that the ratio of the positive peak of the derivative signal to the negative peak of a derivative signal is typically greater than from 1 to 1.4. Motion artifact pulses, on the other hand, have been observed by the inventors to have approximately a 1:1 ratio of the values of the positive peak to the negative peak of the derivative signal. Accordingly, a threshold in the range of 1-1.4 is chosen, with values having a ratio greater than the threshold being considered real pulses, while those lower than the threshold being considered motion artifact pulses.

The present invention provides the advantage of limiting false alarms due to motion while still generating an alarm if motion is present for an extended period.

The present invention also provides the advantage of providing a motion indication by analyzing the existing pulse oximeter detector signal without requiring additional sensors or hardware.

For a fuller understanding of the nature and advantages of the invention, reference should be made to the ensuing detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a housing for a pulse oximeter according to the present invention;

FIG. 2 is a block diagram of the electronic circuitry of the pulse oximeter of FIG. 1;

FIG. 3 is a timing diagram illustrating the probationary period of the present invention;

FIG. 4 is a state diagram illustrating the normal, motion and noise state of the present invention;

FIG. 5 is a flowchart illustrating the operation of the present invention;

FIG. 6 is a diagram of a typical blood pulse signal and its derivative; and

FIG. 7 is a subroutine flowchart illustrating the motion detection test of FIG. 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Housing.

Referring to FIG. 1, the instrument housing 26 of this invention is illustrated. Outwardly, the housing includes a digit display 1, circuitry select button array 2 through 5, alarm status lights 6 through 9, an optically coupled adjustment knob 10, sync status light 11, LED digital viewmeter 12, and power switch 13. A speaker 15 is placed under and in the instrument housing.

From a connector (not shown) in housing 26 there extend leader wires 27. Wires 27 extend to a detector probe 29. Detector 29 is placed upon the finger 14 of a patient 28. Utilizing the placement of the detector 29 at the finger 14, all of the readings in this invention are made possible.

The oximeter housing also includes a motion indicator 30. When lit up, this indicator shows that motion has been detected. In addition, the digital display 1 will provide a blinking pulse reading with alternating dashes to indicate that the reliability is suspect due to the detection of motion.

Oximeter Circuitry.

A description of the electronic circuitry of the Nellcor N-200 pulse oximeter will be first presented, to enable understanding of the present invention. This is only an example of one pulse oximeter in which the present invention may be used.

Referring to FIG. 2, sensor circuit 100 has red LED 110 and infrared LED 120 connected in parallel, anode to cathode, so that the LED drive current alternately illuminates one LED and then the other LED. Circuit 100 also includes photodetector 130, preferably a photodiode, which detects the level of light transmitted through the patient's tissue, e.g., finger 140, as a single, analog optical signal containing both the red and infrared light plethysmographic, detected optical signal waveforms.

Patient module 200 includes preamplifier 210 for preamplifying the analog detected optical signal of photodetector 130. Alternately, the preamplifier may be in the oximeter itself. Preamplifier 210 may be an operational amplifier configured as a current to voltage converter, biased by a positive voltage to extend the dynamic range of the system, thereby converting the photocurrent of photodiode 130 into a usable voltage signal. Patient module 200 also includes leads for passing the LED drive voltages to LEDs 110 and 120.

Saturation analog front end circuit 300 receives the analog optical signal from patient module 200 and filters and processes the detected signal to provide separate red and infrared analog voltage signals corresponding to the detected red and infrared optical pulses. The voltage signal is passed through low pass filter 310 to remove unwanted high frequency components, AC coupled through capacitor 325 to remove the DC component, passed through high pass filter 320 to remove any unwanted low frequencies and passed through buffer 320 and passed through programmable gain stage 330 to amplify and optimize the signal level presented to synchronous detector 340.

Synchronous detector 340 removes any common mode signals present and splits the time multiplexed optical signal into two channels, one representing the red voltage signals and the other representing the infrared voltage signals. Each signal is then passed through respective filter chains having two 2-pole 20 hertz low pass filters 350 and 360, and offset amplifier 370 and 380. The filtered voltage signals now contain the signal information corresponding to the red and infrared detected optical signals.

Analog-to-Digital Converter (ADC) 1000 provides the analog to digital conversions required by the N-200 oximeter. The aforementioned two voltage signals, the red detected optical signal and the infrared detected optical signal from patient module 200, are input to ADC 1000. These signals are conventionally multiplexed and digitized by an expanded range 12-bit analog-to-digital conversion technique, yielding 16-bit resolution. The input signals are passed through multiplexor 1010 and buffer amplifier 1020. The converter stage includes offset amplifier 1030 and programmable gain circuitry 1040 which allows a portion of the signal to be removed and the remainder to be further amplified for greater resolution, sample and hold circuit 1050, comparator 1060, and 12-bit digital to analog convertor 1080. The buffered signal is passed through offset amplifier 1030 to add a DC bias to the signal wherein a portion of the signal is removed and the balance is amplified by being passed through programmable gain circuitry 1040 to improve the resolution. The amplified signal is then passed through sample and hold circuit 1050, the output of which is fed to one input of comparator 1060. The other input of comparator 1060 is the output of digital to analog (DAC) converter 1080 so that when the inputs to comparator 1060 are the same, the analog voltage at the sample and hold circuit is given the corresponding digital word in DAC converter 1080 which is then stored in an appropriate memory device as the digitized data for the sample and the next sample is sent to sample and hold circuit 1050 to be digitized.

DAC 1080 also generates the sensor LED drive voltages, under the control of microprocessor 2040, using analog multiplexor 610, which separates the incoming analog signal into one of two channels for respectively driving the red and infrared LEDs, having respective sample and hold circuits 620 and 630, and LED driver circuit 640 for converting the respective analog voltage signals into the respective positive and negative bipolar current signals for driving LEDs 110 and 120.

Digital Signal Processor (DSP) 2000 controls all aspects of the signal processing operation including the signal input and output and intermediate processing. The apparatus includes 16-bit microprocessor 2040 and its associated support circuitry including data bus 10, random access memory (RAM) 2020, read only memory (ROM) 2030, a conventional LED display device 2020 (not described in detail), and system timing circuit 2050 for providing the necessary clock synchronizing signals.

Interrupt programs control the collection and digitization of incoming optical signal data. As particular events occur, various software flags are raised which transfer operation to various routines that are called from a main loop processing routine.

Probationary Period.

FIG. 3 illustrates a pulse oximeter detector signal 32 with bloodflow pulses being regularly detected in a first period 34. At a time 36, no more qualified pulses are detected. This cab be due to noise, motion artifact, or the absence of a blood pulse. The oximeter will continue looking for qualified pulses for a 10 second period 38 after the last qualified pulse. If no qualified pulse is detected within this time, a probationary state 40 is entered. In the first portion of the probationary state, a 6.3 second timer is set for a period 42.

State Diagram.

Referring to FIG. 4 as well, probationary state 40 is indicated in the state diagram of FIG. 4 as including a motion state 42 and a noise state 44. When the 6.3 second timer is set, this is initially the noise state 44. The noise state preferrably has affirmative criteria, but can also simply be the absence of motion or a qualified signal. An example of an affirmative criteria is the lack of correlation between the IR and red channels for a pulse. In the preferred embodiment, at least 2 pulses (noise or otherwise) must be detected as noise in the 6.3 second period. If no pulse is detected for 3.1 seconds, the preceding 3.1 second period is presumed to be a pulse, and is analyzed accordingly.

If motion is detected, motion state 42 is entered and the 6.3 second timer is halted. This can continue for the maximum probation period of 50 seconds. If motion continues to be detected after 50 seconds, an alarm is generated upon alarm state 46 of FIG. 4 being entered. The alarm will also be generated when the 6.3 second timer runs out.

Flow Chart of Probationary Period Operation.

FIG. 5 is a flowchart illustrating the software used to implement the states of FIG. 4. This software would reside in RAM 2020 of FIG. 2. After the start, a startup routine (step A) is entered wherein pulses are qualified and a good pulse signal is indicated after four consecutive qualified pulses. The qualification is done according to well-known techniques. Once this startup is completed, the software enters a normal qualification state (step B).

After each pulse is detected, a 10 second timer is started (step C). If 10 seconds has passed since the last qualified pulse was detected, the system enters the probation state and a 50 second timer is set (step D). The 6.3 second timer is also set (step E). The signal is then monitored for the detection of an IR (infrared) pulse (step F). The IR channel is monitored because the IR tends to be a lower noise source than the red signal. If no qualified pulse is detected for 6.3 seconds (step G) the alarm is sounded (step H). The 50 second timer is also checked (step I) in case it expires before a particular 6.3 second period.

If an IR pulse is detected in the probation period, a test is then done to see if motion is detected (step J). The detection of motion is shown in more detail in the motion detection flowchart of FIG. 6. Upon the detection of motion, the motion display on the monitor is illuminated (step K), and the 6.3 second timer is reset (step E) and the system continues to monitor for another pulse. If a pulse is detected and there is no motion, a test is done to determine fit should be rejected as being noisy (step L). In the noise state, a slower averaging algorithm is used than in the normal qualified state to insure that a false indication of a good blood pulse is not generated. If there is no noise rejection, it is a qualified pulse, and a qualified pulse count is incremented (step M). Upon the count equalling four consecutive pulses (step N), the probationary period is exited after turning off the display (step O).

Motion Detection.

The motion detection can be from a separate signal, motion sensor, such as an accelerometer or piezoelectric device attached to the oximeter sensor. Preferably, however, motion detection is accomplished by analyzing the optical detector signal itself.

FIG. 6 illustrates a typical qualified blood pulse. The pulse has a rising side 46, and then, after peaking, has a slowly trailing side 48. The derivative of this signal is calculated in microprocessor 2040 of FIG. 2 of the pulse oximeter. A plot of the derivative is also shown in FIG. 6 for the blood pulse. The derivative has a rising portion 50 corresponding to portion 46 of the pulse. After the peak of the pulse, the derivative of the signal rapidly progresses from a positive peak 52 to a negative peak 54, and then slowly approaches zero again. The height of the positive peak of the derivative signal, A, and the height of the negative peak, B, have been observed to have an A/B ratio of greater than 1-1.4 for a typical blood pulse. Motion artifact, on the other hand, typically has a 1/1 ratio.

Accordingly, the oximeter of the present invention, after determining the derivative of the pulse signal, calculates the ratio of A/B and compares it to a threshold to indicate whether it is a blood pulse signal or a motion signal pulse. Preferably, the threshold is in a range of 1.0-1.4. In a preferred embodiment, a ratio of 260/256 is used, which equals 1.0196/1. The selection of the exact threshold is tradeoff between rejecting good pulses and rejecting motion. A ratio of 1.4 has been observed to reject approximately 95% of motion artifact, but may also reject some good pulses as well. The ratio of 1.0196 provides a conservative level to retain most qualified pulses, will giving a good level of rejection of motion artifact.

FIG. 7 is a flowchart for the software routine for determining if a pulse is due to motion. When the routine is called, it first determines the derivative of the pulse signal (step P). Next, the ratio A/B of the positive to negative peak of the derivative signal is determined (step Q). If the ratio is less than 1.0196/1 (step R), the signal is presumably a motion pulse. If it is greater, it is an indication that the pulse is not motion (either qualified or noise pulse) (step S) and there is a return from the subroutine.

An optional second or alternative motion test may be used in addition to or in place of the ratio test. It has been observed by the inventors that for a motion signal, there will be correlation of the pulses in the infrared and red channels. Noise, on the other hand, tends to be uncorrelated, with different values in the IR and red channels. The correlation of the IR and red pulses are thus determined (optional step S) and compared (optional step T), and if they are not correlated, the pulse is presumably noise, and there is a return from the subroutine. If the infrared and red pulses are correlated, this is an indication that the pulse is due to motion, and a motion flag is set (step U), and there is a return from the subroutine.

Alternately, a different motion test could be used. For instance, the saturation value of a pulse could be determined using the ratio of ratios, as is well known in the industry. This calculation can be done for several different parts of the pulse. For a qualified blood pulse, the values should be approximately the same. If the values differ, it could be motion or noise. The correlation test could then be run to determine if it is noise or motion.

As will be understood by those familiar with the art, the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. For example, only a single one of the motion tests of FIG. 8 could be used, or the use of a piezoelectric accelerometer sensor could be substituted for the optical signal analysis in order to determine whether a motion signal is present. Accordingly, the disclosure of the preferred embodiment of the invention is intended to be illustrative, without limiting the scope of the invention which is set forth in the following claims.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4381788 *27 Feb 19813 May 1983Douglas David WMethod and apparatus for detecting apnea
US4824242 *26 Sep 198625 Abr 1989Sensormedics CorporationNon-invasive oximeter and method
US5025791 *1 Jun 199025 Jun 1991Colin Electronics Co., Ltd.Pulse oximeter with physical motion sensor
US5206807 *16 Feb 198927 Abr 1993Air-Shields, Inc.Neonatal cardiorespirograph incorporating multi-variable display and memory
US5225672 *3 Oct 19916 Jul 1993Spacelabs Medical, Inc.Method and apparatus for detecting movement of an electro-optical transducer
US5368026 *26 Mar 199329 Nov 1994Nellcor IncorporatedOximeter with motion detection for alarm modification
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US6035223 *19 Nov 19977 Mar 2000Nellcor Puritan Bennett Inc.Method and apparatus for determining the state of an oximetry sensor
US6049730 *28 Dic 199811 Abr 2000Flaga HfMethod and apparatus for improving the accuracy of interpretation of ECG-signals
US6094592 *26 May 199825 Jul 2000Nellcor Puritan Bennett, Inc.Methods and apparatus for estimating a physiological parameter using transforms
US635678521 Oct 199812 Mar 2002Cecily Anne SnyderExternal defibrillator with CPR prompts and ACLS prompts and methods of use
US652975217 Ene 20014 Mar 2003David T. KrausmanSleep disorder breathing event counter
US687985016 Ago 200212 Abr 2005Optical Sensors IncorporatedPulse oximeter with motion detection
US712047925 Feb 200410 Oct 2006Nellcor Puritan Bennett Inc.Switch-mode oximeter LED drive with a single inductor
US712048025 Feb 200410 Oct 2006Nellcor Puritan Bennett Inc.LED forward voltage estimation in pulse oximeter
US714214225 Feb 200428 Nov 2006Nelicor Puritan Bennett, Inc.Multi-bit ADC with sigma-delta modulation
US716228825 Feb 20049 Ene 2007Nellcor Purtain Bennett IncorporatedTechniques for detecting heart pulses and reducing power consumption in sensors
US719098525 Feb 200413 Mar 2007Nellcor Puritan Bennett Inc.Oximeter ambient light cancellation
US721284725 Feb 20041 May 2007Nellcor Puritan Bennett LlcDelta-sigma modulator for outputting analog representation of physiological signal
US721598525 Feb 20048 May 2007Nellcor Puritain Bennett Inc.Oximeter cross-talk reduction
US735553927 Nov 20068 Abr 2008Nellcor Puritan Bennett Inc.Multi-bit ADC with sigma-delta modulation
US737319225 Feb 200413 May 2008Nellcor Puritan Bennett Inc.Oximeter red and IR zero calibration control
US740091928 Jul 200615 Jul 2008Nellcor Puritan Bennett LlcOximeter ambient light cancellation
US76470831 Mar 200612 Ene 2010Masimo Laboratories, Inc.Multiple wavelength sensor equalization
US764708428 Jul 200612 Ene 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US76501771 Ago 200619 Ene 2010Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US76572948 Ago 20052 Feb 2010Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US76572958 Ago 20052 Feb 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US765729628 Jul 20062 Feb 2010Nellcor Puritan Bennett LlcUnitary medical sensor assembly and technique for using the same
US765865228 Ene 20099 Feb 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US767625330 Ago 20069 Mar 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US768052229 Sep 200616 Mar 2010Nellcor Puritan Bennett LlcMethod and apparatus for detecting misapplied sensors
US768484229 Sep 200623 Mar 2010Nellcor Puritan Bennett LlcSystem and method for preventing sensor misuse
US768484328 Jul 200623 Mar 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US768925910 Mar 200430 Mar 2010Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US769355928 Jul 20066 Abr 2010Nellcor Puritan Bennett LlcMedical sensor having a deformable region and technique for using the same
US769800229 Sep 200613 Abr 2010Nellcor Puritan Bennett LlcSystems and methods for user interface and identification in a medical device
US770689629 Sep 200627 Abr 2010Nellcor Puritan Bennett LlcUser interface and identification in a medical device system and method
US772051616 Nov 200418 May 2010Nellcor Puritan Bennett LlcMotion compatible sensor for non-invasive optical blood analysis
US77271593 Ago 20041 Jun 2010Samsung Electronics Co., Ltd.Apparatus and method for detecting blood flow signal free from motion artifact and stress test apparatus using the same
US77297331 Mar 20061 Jun 2010Masimo Laboratories, Inc.Configurable physiological measurement system
US772973630 Ago 20061 Jun 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US773893728 Jul 200615 Jun 2010Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US77611271 Mar 200620 Jul 2010Masimo Laboratories, Inc.Multiple wavelength sensor substrate
US77649821 Mar 200627 Jul 2010Masimo Laboratories, Inc.Multiple wavelength sensor emitters
US7766830 *30 Nov 20043 Ago 2010Medtronic Minimed, Inc.System for monitoring physiological characteristics
US779426613 Sep 200714 Sep 2010Nellcor Puritan Bennett LlcDevice and method for reducing crosstalk
US779640328 Sep 200614 Sep 2010Nellcor Puritan Bennett LlcMeans for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US786984926 Sep 200611 Ene 2011Nellcor Puritan Bennett LlcOpaque, electrically nonconductive region on a medical sensor
US786985029 Sep 200511 Ene 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US788088430 Jun 20081 Feb 2011Nellcor Puritan Bennett LlcSystem and method for coating and shielding electronic sensor components
US788176230 Sep 20051 Feb 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US788734530 Jun 200815 Feb 2011Nellcor Puritan Bennett LlcSingle use connector for pulse oximetry sensors
US789015328 Sep 200615 Feb 2011Nellcor Puritan Bennett LlcSystem and method for mitigating interference in pulse oximetry
US78948699 Mar 200722 Feb 2011Nellcor Puritan Bennett LlcMultiple configuration medical sensor and technique for using the same
US789951029 Sep 20051 Mar 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US790413029 Sep 20058 Mar 2011Nellcor Puritan Bennett LlcMedical sensor and technique for using the same
US792551129 Sep 200612 Abr 2011Nellcor Puritan Bennett LlcSystem and method for secure voice identification in a medical device
US79577801 Mar 20067 Jun 2011Masimo Laboratories, Inc.Physiological parameter confidence measure
US80507281 Mar 20061 Nov 2011Masimo Laboratories, Inc.Multiple wavelength sensor drivers
US80601711 Ago 200615 Nov 2011Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US806222130 Sep 200522 Nov 2011Nellcor Puritan Bennett LlcSensor for tissue gas detection and technique for using the same
US806889129 Sep 200629 Nov 2011Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US807050824 Dic 20086 Dic 2011Nellcor Puritan Bennett LlcMethod and apparatus for aligning and securing a cable strain relief
US807193530 Jun 20086 Dic 2011Nellcor Puritan Bennett LlcOptical detector with an overmolded faraday shield
US80735182 May 20066 Dic 2011Nellcor Puritan Bennett LlcClip-style medical sensor and technique for using the same
US807824630 Sep 200513 Dic 2011Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US809237929 Sep 200510 Ene 2012Nellcor Puritan Bennett LlcMethod and system for determining when to reposition a physiological sensor
US809299318 Dic 200810 Ene 2012Nellcor Puritan Bennett LlcHydrogel thin film for use as a biosensor
US81098829 Mar 20077 Feb 2012Nellcor Puritan Bennett LlcSystem and method for venous pulsation detection using near infrared wavelengths
US811237527 Mar 20097 Feb 2012Nellcor Puritan Bennett LlcWavelength selection and outlier detection in reduced rank linear models
US812369527 Sep 200628 Feb 2012Nellcor Puritan Bennett LlcMethod and apparatus for detection of venous pulsation
US81301051 Mar 20066 Mar 2012Masimo Laboratories, Inc.Noninvasive multi-parameter patient monitor
US813317630 Sep 200513 Mar 2012Tyco Healthcare Group LpMethod and circuit for indicating quality and accuracy of physiological measurements
US814528822 Ago 200627 Mar 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US816068330 Dic 201017 Abr 2012Nellcor Puritan Bennett LlcSystem and method for integrating voice with a medical device
US816072616 Feb 201017 Abr 2012Nellcor Puritan Bennett LlcUser interface and identification in a medical device system and method
US817566729 Sep 20068 May 2012Nellcor Puritan Bennett LlcSymmetric LED array for pulse oximetry
US817567122 Sep 20068 May 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US81902231 Mar 200629 May 2012Masimo Laboratories, Inc.Noninvasive multi-parameter patient monitor
US819022422 Sep 200629 May 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US819022522 Sep 200629 May 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US819526226 Jul 20065 Jun 2012Nellcor Puritan Bennett LlcSwitch-mode oximeter LED drive with a single inductor
US819526422 Sep 20065 Jun 2012Nellcor Puritan Bennett LlcMedical sensor for reducing signal artifacts and technique for using the same
US819900729 Dic 200812 Jun 2012Nellcor Puritan Bennett LlcFlex circuit snap track for a biometric sensor
US821917020 Sep 200610 Jul 2012Nellcor Puritan Bennett LlcSystem and method for practicing spectrophotometry using light emitting nanostructure devices
US822131925 Mar 200917 Jul 2012Nellcor Puritan Bennett LlcMedical device for assessing intravascular blood volume and technique for using the same
US82213269 Mar 200717 Jul 2012Nellcor Puritan Bennett LlcDetection of oximetry sensor sites based on waveform characteristics
US82244111 Mar 200617 Jul 2012Masimo Laboratories, Inc.Noninvasive multi-parameter patient monitor
US822441212 Ene 201017 Jul 2012Nellcor Puritan Bennett LlcPulse oximeter sensor with piece-wise function
US82295309 Mar 200724 Jul 2012Nellcor Puritan Bennett LlcSystem and method for detection of venous pulsation
US823395430 Sep 200531 Jul 2012Nellcor Puritan Bennett LlcMucosal sensor for the assessment of tissue and blood constituents and technique for using the same
US825502719 Jul 201028 Ago 2012Cercacor Laboratories, Inc.Multiple wavelength sensor substrate
US826039114 Jul 20104 Sep 2012Nellcor Puritan Bennett LlcMedical sensor for reducing motion artifacts and technique for using the same
US82657249 Mar 200711 Sep 2012Nellcor Puritan Bennett LlcCancellation of light shunting
US82804699 Mar 20072 Oct 2012Nellcor Puritan Bennett LlcMethod for detection of aberrant tissue spectra
US829073030 Jun 200916 Oct 2012Nellcor Puritan Bennett IrelandSystems and methods for assessing measurements in physiological monitoring devices
US830121728 Sep 200930 Oct 2012Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US831160130 Jun 200913 Nov 2012Nellcor Puritan Bennett LlcReflectance and/or transmissive pulse oximeter
US831160224 Jun 200913 Nov 2012Nellcor Puritan Bennett LlcCompliant diaphragm medical sensor and technique for using the same
US831568414 Jul 200820 Nov 2012Covidien LpOximeter ambient light cancellation
US831568525 Jun 200920 Nov 2012Nellcor Puritan Bennett LlcFlexible medical sensor enclosure
US834632821 Dic 20071 Ene 2013Covidien LpMedical sensor and technique for using the same
US835200421 Dic 20078 Ene 2013Covidien LpMedical sensor and technique for using the same
US83520095 Ene 20098 Ene 2013Covidien LpMedical sensor and technique for using the same
US835201026 May 20098 Ene 2013Covidien LpFolding medical sensor and technique for using the same
US836422025 Sep 200829 Ene 2013Covidien LpMedical sensor and technique for using the same
US836661324 Dic 20085 Feb 2013Covidien LpLED drive circuit for pulse oximetry and method for using same
US838599613 Abr 200926 Feb 2013Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US83860029 Ene 200926 Feb 2013Covidien LpOptically aligned pulse oximetry sensor and technique for using the same
US839194117 Jul 20095 Mar 2013Covidien LpSystem and method for memory switching for multiple configuration medical sensor
US839652722 Sep 200612 Mar 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US840160616 Oct 200619 Mar 2013Covidien LpNuisance alarm reductions in a physiological monitor
US840160731 Mar 200819 Mar 2013Covidien LpNuisance alarm reductions in a physiological monitor
US841730930 Sep 20089 Abr 2013Covidien LpMedical sensor
US841731010 Ago 20099 Abr 2013Covidien LpDigital switching in multi-site sensor
US842311230 Sep 200816 Abr 2013Covidien LpMedical sensor and technique for using the same
US842867519 Ago 200923 Abr 2013Covidien LpNanofiber adhesives used in medical devices
US84333837 Jul 200630 Abr 2013Covidien LpStacked adhesive optical sensor
US843782227 Mar 20097 May 2013Covidien LpSystem and method for estimating blood analyte concentration
US84378267 Nov 20117 May 2013Covidien LpClip-style medical sensor and technique for using the same
US844260824 Dic 200814 May 2013Covidien LpSystem and method for estimating physiological parameters by deconvolving artifacts
US845236424 Dic 200828 May 2013Covidien LLPSystem and method for attaching a sensor to a patient's skin
US845236616 Mar 200928 May 2013Covidien LpMedical monitoring device with flexible circuitry
US84785387 May 20092 Jul 2013Nellcor Puritan Bennett IrelandSelection of signal regions for parameter extraction
US848378731 Oct 20119 Jul 2013Cercacor Laboratories, Inc.Multiple wavelength sensor drivers
US84837907 Mar 20079 Jul 2013Covidien LpNon-adhesive oximeter sensor for sensitive skin
US850582130 Jun 200913 Ago 2013Covidien LpSystem and method for providing sensor quality assurance
US850986915 May 200913 Ago 2013Covidien LpMethod and apparatus for detecting and analyzing variations in a physiologic parameter
US852818521 Ago 200910 Sep 2013Covidien LpBi-stable medical sensor and technique for using the same
US857743424 Dic 20085 Nov 2013Covidien LpCoaxial LED light sources
US85774365 Mar 20125 Nov 2013Covidien LpMedical sensor for reducing signal artifacts and technique for using the same
US85817325 Mar 201212 Nov 2013Carcacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US86004697 Feb 20113 Dic 2013Covidien LpMedical sensor and technique for using the same
US8611977 *8 Mar 200417 Dic 2013Covidien LpMethod and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US863488918 May 201021 Ene 2014Cercacor Laboratories, Inc.Configurable physiological measurement system
US863489120 May 200921 Ene 2014Covidien LpMethod and system for self regulation of sensor component contact pressure
US864983924 Jun 201011 Feb 2014Covidien LpMotion compatible sensor for non-invasive optical blood analysis
US86606264 Feb 201125 Feb 2014Covidien LpSystem and method for mitigating interference in pulse oximetry
US867903019 Jun 201325 Mar 2014Earlysense Ltd.Monitoring a condition of a subject
US87187353 Jun 20116 May 2014Cercacor Laboratories, Inc.Physiological parameter confidence measure
US87316466 Sep 201320 May 2014Earlysense Ltd.Prediction and monitoring of clinical episodes
US873436015 Oct 201327 May 2014Earlysense Ltd.Monitoring, predicting and treating clinical episodes
US87618549 Jul 201324 Jun 2014Coviden LpMethod for respiration rate and blood pressure alarm management
US878154426 Mar 200815 Jul 2014Cercacor Laboratories, Inc.Multiple wavelength optical sensor
US88016133 Dic 201012 Ago 2014Masimo CorporationCalibration for multi-stage physiological monitors
US882141810 May 20092 Sep 2014Earlysense Ltd.Monitoring, predicting and treating clinical episodes
US883819614 Mar 201316 Sep 2014Covidien LpNuisance alarm reductions in a physiological monitor
US88405648 Ene 201423 Sep 2014Early Sense Ltd.Monitoring a condition of a subject
US884936525 Feb 201330 Sep 2014Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US887418129 Oct 201228 Oct 2014Covidien LpOximeter ambient light cancellation
US888268430 May 201311 Nov 2014Earlysense Ltd.Monitoring, predicting and treating clinical episodes
US889785029 Dic 200825 Nov 2014Covidien LpSensor with integrated living hinge and spring
US891290911 Nov 201316 Dic 2014Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US891408830 Sep 200816 Dic 2014Covidien LpMedical sensor and technique for using the same
US89299648 Jul 20136 Ene 2015Cercacor Laboratories, Inc.Multiple wavelength sensor drivers
US89427797 Ago 201427 Ene 2015Early Sense Ltd.Monitoring a condition of a subject
US896547111 Feb 201324 Feb 2015Cercacor Laboratories, Inc.Tissue profile wellness monitor
US89654736 Oct 201124 Feb 2015Covidien LpMedical sensor for reducing motion artifacts and technique for using the same
US89924341 Abr 201431 Mar 2015Earlysense Ltd.Prediction and monitoring of clinical episodes
US899883013 Ago 20147 Abr 2015Earlysense Ltd.Monitoring, predicting and treating clinical episodes
US901063430 Jun 200921 Abr 2015Covidien LpSystem and method for linking patient data to a patient and providing sensor quality assurance
US90261992 Dic 20145 May 2015Earlysense Ltd.Monitoring a condition of a subject
US913188211 Oct 201315 Sep 2015Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US913190218 Feb 201515 Sep 2015Earlysense Ltd.Prediction and monitoring of clinical episodes
US916799518 Mar 201427 Oct 2015Cercacor Laboratories, Inc.Physiological parameter confidence measure
US9220856 *6 Oct 200529 Dic 2015Resmed LimitedMethod and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
US924166211 Dic 201326 Ene 2016Cercacor Laboratories, Inc.Configurable physiological measurement system
US93516752 Dic 201431 May 2016Cercacor Laboratories, Inc.Noninvasive multi-parameter patient monitor
US9451887 *31 Mar 201027 Sep 2016Nellcor Puritan Bennett IrelandSystems and methods for measuring electromechanical delay of the heart
US954969621 Sep 201524 Ene 2017Cercacor Laboratories, Inc.Physiological parameter confidence measure
US964903823 Mar 200516 May 2017Samsung Electronics Co., Ltd.Method, medium, and apparatus for measuring heart rate
US975044329 Ago 20145 Sep 2017Cercacor Laboratories, Inc.Multiple wavelength sensor emitters
US20050038349 *3 Ago 200417 Feb 2005Samsung Electronics Co., Ltd.Apparatus and method for detecting blood flow signal free from motion artifact and stress test apparatus using the same
US20050096511 *30 Nov 20045 May 2005Fox James K.System for monitoring physiological characteristics
US20050096512 *30 Nov 20045 May 2005Fox James K.System for monitoring physiological characteristics
US20050113653 *30 Nov 200426 May 2005Fox James K.System for monitoring physiological characteristics
US20050184895 *25 Feb 200425 Ago 2005Nellcor Puritan Bennett Inc.Multi-bit ADC with sigma-delta modulation
US20050187446 *25 Feb 200425 Ago 2005Nellcor Puritan BennettTechniques for detecting heart pulses and reducing power consumption in sensors
US20050187448 *25 Feb 200425 Ago 2005Nellcor Puritan Bennett Inc.Oximeter ambient light cancellation
US20050187449 *25 Feb 200425 Ago 2005Nellcor Puritan Bennett Inc.Oximeter red and IR zero calibration control
US20050187450 *25 Feb 200425 Ago 2005Nellcor Puritan Bennett Inc.LED forward voltage estimation in pulse oximeter
US20050187452 *25 Feb 200425 Ago 2005Nellcor Puritan Bennett Inc.Oximeter cross-talk reduction
US20050197579 *8 Mar 20048 Sep 2005Nellcor Puritan Bennett IncorporatedMethod and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
US20050215913 *23 Mar 200529 Sep 2005Samsung Electronics Co., Ltd.Method, medium, and apparatus for measuring heart rate
US20060264720 *26 Jul 200623 Nov 2006Nellcor Puritan Bennett Incorporated A Corporation Of DelawareSwitch-mode oximeter LED drive with a single inductor
US20060264721 *28 Jul 200623 Nov 2006Nellcor Puritan Bennett Incorporated A Corporation Of DelawareOximeter ambient light cancellation
US20070132618 *27 Nov 200614 Jun 2007Nellcor Puritan Bennett Inc.Multi-bit ADC with sigma-delta modulation
US20080066753 *6 Oct 200520 Mar 2008Resmed LimitedMethod And Apparatus For Non-Invasive Monitoring Of Respiratory Parameters In Sleep Disordered Breathing
US20080077022 *27 Sep 200627 Mar 2008Nellcor Puritan Bennett IncorporatedMethod and apparatus for detection of venous pulsation
US20080097175 *29 Sep 200624 Abr 2008Boyce Robin SSystem and method for display control of patient monitor
US20080114226 *29 Sep 200615 May 2008Doug MusicSystems and methods for user interface and identification in a medical device
US20080221417 *9 Mar 200711 Sep 2008Nellcor Puritan Bennett LlcSystem and method for detection of venous pulsation
US20080275349 *1 May 20086 Nov 2008Earlysense Ltd.Monitoring, predicting and treating clinical episodes
US20100286495 *7 May 200911 Nov 2010Nellcor Puritan Bennett IrelandSelection Of Signal Regions For Parameter Extraction
US20110112442 *10 May 200912 May 2011Earlysense Ltd.Monitoring, Predicting and Treating Clinical Episodes
US20110245690 *31 Mar 20106 Oct 2011Nellcor Puritan Bennett IrelandSystems and methods for measuring electromechanical delay of the heart
DE102012206293A117 Abr 201217 Oct 2013Siemens AktiengesellschaftMethod for operating pulse oximeter, involves identifying motion artifacts in measuring signal, where measuring signal is evaluated with respect to arterial oxygen saturation in time intervals of measuring signal
EP1297784A128 Sep 20012 Abr 2003C.S.E.M. Centre Suisse D'electronique Et De Microtechnique SaMethod and device for pulse rate detection
EP1506736A210 Ago 200416 Feb 2005Samsung Electronics Co., Ltd.Apparatus and method for detecting blood flow signal free from motion artifact and stress test apparatus using the same
EP1740091B1 *7 Mar 20056 May 2015Covidien LPMethod and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
EP2116183A17 May 200811 Nov 2009CSEM Centre Suisse d'Electronique et de Microtechnique SARobust opto-electrical ear located cardiovascular monitoring device
WO2004016170A1 *12 Ago 200326 Feb 2004Optical Sensors, Inc.Pulse oximeter with motion detection
WO2010128275A1 *26 Abr 201011 Nov 2010Nellcor Puritan Bennett IrelandSelection of signal regions for parameter extraction
Clasificaciones
Clasificación de EE.UU.600/331, 356/41
Clasificación internacionalG01N21/35, A61B5/145, A61B5/1455, A61B5/00, A61B5/11
Clasificación cooperativaA61B5/7239, A61B5/14551, A61B5/7207, A61B5/1104, A61B5/746, A61B5/721, A61B5/6826
Clasificación europeaA61B5/1455N, A61B5/72B2B, A61B5/74H, A61B5/72B2, A61B5/11H
Eventos legales
FechaCódigoEventoDescripción
1 Mar 2001FPAYFee payment
Year of fee payment: 4
2 Mar 2005FPAYFee payment
Year of fee payment: 8
9 Mar 2009REMIMaintenance fee reminder mailed
2 Sep 2009LAPSLapse for failure to pay maintenance fees
20 Oct 2009FPExpired due to failure to pay maintenance fee
Effective date: 20090902