US5683333A - Stationary exercise apparatus - Google Patents

Stationary exercise apparatus Download PDF

Info

Publication number
US5683333A
US5683333A US08/602,952 US60295296A US5683333A US 5683333 A US5683333 A US 5683333A US 60295296 A US60295296 A US 60295296A US 5683333 A US5683333 A US 5683333A
Authority
US
United States
Prior art keywords
reciprocating member
platform
pivot axis
reciprocating
rear support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/602,952
Inventor
Robert E. Rodgers, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bowflex Inc
Original Assignee
CCS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
US case filed in Washington Western District Court litigation Critical https://portal.unifiedpatents.com/litigation/Washington%20Western%20District%20Court/case/3%3A14-cv-05487 Source: District Court Jurisdiction: Washington Western District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
First worldwide family litigation filed litigation https://patents.darts-ip.com/?family=23490739&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5683333(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CCS LLC filed Critical CCS LLC
Priority to US08/602,952 priority Critical patent/US5683333A/en
Priority to US08/615,103 priority patent/US5690589A/en
Priority to US08/841,123 priority patent/US5743834A/en
Priority to US08/956,503 priority patent/US5938567A/en
Application granted granted Critical
Publication of US5683333A publication Critical patent/US5683333A/en
Assigned to CCS FITNESS, INC. reassignment CCS FITNESS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CCS, LLC
Assigned to RODGERS JR., ROBERT E. reassignment RODGERS JR., ROBERT E. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CCS FITNESS, INC.
Assigned to NAUTILUS, INC. reassignment NAUTILUS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RODGERS JR., ROBERT E.
Assigned to CCS, LLC reassignment CCS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RODGERS, ROBERT E., JR.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT NOTICE OF GRANT OF SECURITY INTEREST Assignors: NAUTILUS, INC.
Assigned to BANK OF AMERICA, N.A. reassignment BANK OF AMERICA, N.A. SECURITY AGREEMENT Assignors: DASHAMERICA, INC., NAUTILUS, INC.
Assigned to DASHAMERICA, INC., NAUTILUS, INC. reassignment DASHAMERICA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Assigned to NAUTILUS, INC. reassignment NAUTILUS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A.
Assigned to BANK OF THE WEST reassignment BANK OF THE WEST SECURITY AGREEMENT Assignors: NAUTILUS, INC.
Anticipated expiration legal-status Critical
Assigned to NAUTILUS, INC. reassignment NAUTILUS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF THE WEST
Assigned to BOWFLEX INC. reassignment BOWFLEX INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NAUTILUS, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M1/00Rider propulsion of wheeled vehicles
    • B62M1/24Rider propulsion of wheeled vehicles with reciprocating levers, e.g. foot levers
    • B62M1/26Rider propulsion of wheeled vehicles with reciprocating levers, e.g. foot levers characterised by rotary cranks combined with reciprocating levers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/001Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M1/00Rider propulsion of wheeled vehicles
    • B62M1/12Rider propulsion of wheeled vehicles operated by both hand and foot power
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • A63B2022/0676Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user

Definitions

  • the present invention relates to an improved stationary exercising apparatus. More particular, the invention relates to an improved exercising apparatus which enables the user to move his feet in an elliptical path more accurately representing the body motion associated with climbing stairs or an inclined ramp.
  • Stair climbing is a popular form of exercise for the cardiovascular system. However, it can over prolonged use overstress the knees. Walking is also a popular form of exercise but it does not load the cardiovascular system to the extent stair climbing does. Therefore, the need exists for an improved stationary exercising device which will load the cardiovascular system as stair climbing does but does not overload or unduly stress the knees and other joints.
  • Prior art stair climbing devices have two common draw backs. First, they require excessive lifting of the knees or an exaggerated vertical movement of the lower legs. See, for example, U.S. Pat. Nos. 3,316,898; 4,949,993; 4,989,857; and 5,135,477. Alternatively, the devices which do tend to promote a more natural movement of the knees and ankles are difficult to ascend and descend because of the configuration of the devices. See, for example, U.S. Pat. No. 5,242,343.
  • an improved stationary exercise device which can combine the movements of the feet and hands in a more natural and rhythmic motion.
  • a frame which includes a base portion adapted to be supported by the floor, a mid portion and a top portion.
  • a coupling member is attached to the frame which includes a pulley defining a pivot axis.
  • Two reciprocating members are positioned in spaced relationship to the base portion of the frame. One end of each reciprocating member is adapted for linear movement substantially parallel with the floor. That end of each of the reciprocating member being linearly displaced may contact the base portion or it may slide directly on the floor. The other end of each reciprocating member is attached, directly or indirectly, to the pulley of the coupling member.
  • Such means for orienting the bottom of the foot may include a linkage assembly for each reciprocating member.
  • Each such linkage assembly comprises at least one link which is pivotally connected proximal one end between the two ends of the reciprocating member, closest to the end that is being displaced along the floor. This additional linkage is restrained at its other end within the base portion of the frame permitting the second end of the link only to move substantially parallel with the floor or base as is the case for the first and of each reciprocating member.
  • each linkage assembly includes a second link which is pivotally connected to the second end of the first link.
  • the second link is then pivotally restrained to the top portion of the frame proximate its other end. This second link also provides for hand movement.
  • each linkage assembly includes a single member which is pivotally supported proximal one end to the reciprocating member closest to the end moving substantially parallel with the floor or base and is vertically restrained proximal its other end to the base portion of the frame.
  • each linkage assembly includes a single member having a foot contact portion and an elongated portion. One end of the single member is pivotally attached proximal the foot portion to a reciprocating member proximal the first end of the reciprocating member. The single member is then laterally restrained proximal its distal end to the top portion of the frame permitting a substantially elliptical movement of the foot portion with the reciprocating member yet limiting displacement of the upper portion to a rotational or angular movement coupled with the longitudinal movement of the upper portion relative to the frame.
  • the means for providing substantially elliptical movement includes a pair of wedge members.
  • One wedge member being attached to each reciprocating member proximal the first end of said reciprocating member being linearly displayed substantially parallel with the floor.
  • a linkage assembly for each reciprocating member comprising two links, a first link being attached at one end to the first end of the reciprocating member being linearly displaced substantially parallel with the floor.
  • the second end of the first link is pivotally attached to the first end of the second link.
  • the second link is pivotally attached proximal to its other end to the top portion of the frame, and the other end of the second link includes a handle portion.
  • FIG. 1 is an elevation view of the preferred embodiment of the present invention.
  • FIG. 2 is a plan view of the preferred embodiment of the present invention.
  • FIG. 3 is an elevation view of an alternate embodiment of the present invention.
  • FIG. 4 is an elevation view of another alternate embodiment of the present invention.
  • FIG. 5 is an elevation view of yet another alternate embodiment of the present invention.
  • FIG. 6 is an elevation view of yet a further alternate embodiment of the present invention.
  • a frame 10 comprising a base portion 12, a mid portion 14, and a top portion 16.
  • the frame 10 comprises two bottom portions 12a and 12b, two mid portions 14a and 14b, and two top portions 16a and 16b.
  • the frame is comprised of two separate bents "a" and "b".
  • a coupling system 20 is fixed relative to the frame and comprises a pulley 22, crank members 24, resistant brake 23, sheave 28 and belt 30.
  • Two reciprocating members 32 are positioned in the lower proximity of frame 10. Each reciprocating member 32 has one end 34 which is adapted to move laterally in a linear direction as shown in FIG. 1.
  • a roller 36 is mounted at each end 34 of reciprocating member 32 and is adapted, as shown in FIG. 1, to ride on base portion 12 of frame 10. Alternatively, roller 36 may directly engage the floor, if desirable.
  • the other end 38 of each reciprocating member 32 is pivotally connected to one end of a crank 24.
  • the pivotal connection at end 38 may be through a pivotal connection member 25 (see FIG. 2) which extends between the other ends 38 of reciprocating members 32 and cranks 24.
  • the other end of crank 24 is attached to pulley 22 at the pivot axis 26 of the coupling system 20.
  • the pivot axis 26 is the axis about which pulley 22 rotates.
  • the present invention also includes two foot members, or contact members, 40.
  • Each foot member 40 is pivotally attached proximate a first end 42 through a pinned connection 44 to the reciprocating arm 32.
  • a foot pad 50 is attached to the top surface of each foot member 40 at its first end 42.
  • Each foot member 40 is pivotally attached at its other end 46 to an arm member 48.
  • Each arm member 48 is also pivotally attached proximal its other end to the top portion 16 of frame 10.
  • a handle portion 47 (see FIG. 2) is included at the top end 49 of each hand member 48.
  • the frame 10 comprises dual base portions 12A/12B, mid portions 14A/14B and top portions 16A/16B.
  • reciprocating members 32, foot members 40 and arm members 48 provide identical dual systems; each system resting on a base portion 12A or 12B of the frame and each arranged to accommodate one foot and one arm of the user.
  • the user "U” can ascend the present invention from the back or the sides which facilitate its use.
  • ascending and descending is difficult and cumbersome due to the location of the pulleys and other structures. See, for example, U.S. Pat. No. 5,242,343.
  • a climbing motion by the user results in the displacement of first ends 34 of each reciprocating member 32 in the direction of arrow 100.
  • a circulating motion occurs at the second end 38 of each reciprocating member 32.
  • the motion gradually changes from a circular motion (at ends 38) to a linear motion the ends 34.
  • This geometric transition occurs in the form of an approximate ellipse. It is not a perfect elliptical shape; and it tends to be slightly more egg-shaped. However, it provides a more natural and rhythmic body movement.
  • each foot of the user follows an elliptical path (as shown by approximate ellipse 102) which is the more natural and comfortable geometric motion of the ankle and knees, minimizing stress on these joints yet permitting continued cardiovascular exercise.
  • the upper end 49 of each arm member 48 moves in an arc as shown by arrow 104. Such permits hand/arm/shoulder movements for exercising the upper body muscle groups while continuing the cardiovascular exercise.
  • Resistant brake 23 of coupling system 20 operates in a manner well known to those skilled in the art. Resistant brake 23 serves to increase or decrease the load on the pulley through the sheave 28/belt 30 arrangement. Thus, resistant brake 23 serves to increase or decrease the extent of the cardiovascular workout.
  • Frame 110 comprises a lower portion 116, a mid portion 114, and a top portion 116.
  • a coupling system 120 is included having identical components of the coupling system 20 described above for the preferred embodiment. Furthermore, coupling system 120 performs in an identical manner to coupling system 20 described above for the preferred embodiment.
  • a pair of reciprocating members 132 are also included, each having a first end 134 on which rollers 136 are mounted.
  • the second end 138 of each reciprocating member 132 is pivotally connected via a pinned connection or pin member 125 to one end of each crank 124.
  • two foot members 140 are included, each being pivotally connected proximate a first end 142 at pinned connection 144 to a corresponding reciprocating member 132.
  • Each foot member 140 also includes a foot pad 150 attached to the top surface of each foot member 140 at first end 142. In this embodiment, however, a roller 146 is attached to each foot member 140 at its second end 145. Each roller 146 engages a top bar 113 of frame 110.
  • Each top bar 113 is connected at one end to mid portion 114 of frame 110 and its other end to base portion 112.
  • the top portion 116 of each bent of frame 110 is connected by a bar 147 which is adapted to be held by the user during exercising to provide added stability.
  • first ends 134 of each foot member 140 are displaced in a linear manner in the direction of arrow 200, as in the case of the preferred embodiment.
  • ends 138 of each reciprocating member 132 move in a circular motion about pulley 122.
  • each foot member 140 is restrained also to move linearly in the direction of arrow 200.
  • Each roller 146 is restrained from vertical movement by means of bar 113.
  • the user does not employ an arm member as shown on the preferred embodiment. Rather, the user grabs the bar 147 for added stability.
  • Frame 210 again comprises a base portion 212, a mid portion 214 and a top portion 216.
  • a coupler system 220 is also provided which is identical in structure and function to coupling system 20 of the preferred embodiment (FIGS. 1-2).
  • This alternate embodiment also includes a pair of reciprocating members 232, each having a first end 234 which moves linearly in the direction of arrow 300 by means of rollers 236. As in the case of the previous embodiments, rollers 236 are shown engaging bottom portion 212 of the frame; however, they may slide along the floor rather than the base of the frame.
  • each reciprocating member 232 includes a second end 238 pivotally attached to one end of a crank 224.
  • two contact members 240 are included having a foot portion 250 angularly displaced from a longitudinal portion 251.
  • Each contact member 240 is pivotally connected at a first end 242 via pinned connection 244 to a reciprocating member 232.
  • This alternate embodiment also includes a sleeve 260 rotatably mounted to the top portion 216 of frame 210.
  • Each sleeve 260 serves to laterally restrain longitudinal member 251 of contact member 240 permitting only axial (or longitudinal) movement of member 251 relative to sleeve 260 and angular movement of member 251 relative to the top portion 216 of frame 210.
  • each longitudinal member 251 includes a handle portion 247 which can be grabbed by the user.
  • the climbing motion results in a lateral or linear displacement of first ends 234 of each reciprocating member 232 in the direction of arrow 300.
  • movement of the user's hands via handle portions 247 is not in an arc as described above with respect to the preferred embodiment or stationary as in the case of the first alternate embodiment. Rather, the path which the hands of the user takes in this alternate embodiment follows a generally elliptical path 304 as do the feet (see approximate elliptical path 302).
  • this embodiment provides a more extensive cardiovascular exercise in that both upper and lower body motion occurs in a "more" natural and rhythmic pattern minimizing excessive stress on the ankle, knee, elbow, and shoulder joints.
  • FIGS. 5 and 6 two further embodiments are shown. As in the case of the previous embodiments, similar structure will be referred with the same two-digit reference numeral but with a different prefix. In the case of FIG. 5, the designated structure has a 400 series prefix and in the case of FIG. 6, the designated structure has a 500 series prefix.
  • the frame 410 comprises a bottom portion 412, a mid portion 414 and a top portion 416.
  • a coupler system 420 is shown which includes the same components and functions identically with the coupling system 20 of the preferred embodiment.
  • Two reciprocating members 432 are included, each having a first end 434 to which a roller 436 is attached.
  • the other end 438 of each reciprocating member 432 is pivotally connected to one end of a crank 424 of coupling system 420.
  • the upper portion 416 of frame 410 includes a bar 447 to be grabbed by the user for stability.
  • a wedge or block 440 is attached to the top of each reciprocating member 432 proximate its first end 434.
  • Each block includes a foot pad 450.
  • each reciprocating member 432 is linearly displaced in the direction of arrow 400 and end 438 of each reciprocating member 432 is rotated about the pivot axis of 426 of coupling system 420.
  • such a configuration permits each foot of the user to follow an elliptical path generally shown by approximate ellipse 402.
  • Frame 510 comprises base portion 512, mid portion 514 and top portion 516.
  • a coupling system 520 is shown identical to that in structure and function of coupling system 420 in FIG. 5.
  • reciprocating members 532 and wedge members 540 and their interrelationship to coupling system 520 are identical to that depicted by elements 432, 440 and 420, respectively, of FIG. 5.
  • first ends 534 of reciprocating members 532 results in linear movement of first ends 534 of reciprocating members 532 in the direction of arrow 500.
  • the difference in this alternate embodiment is a pair of linkage assemblies (one for each reciprocating member 532) comprising a first link 547 and a second link 548.
  • One end of link 547 is attached to roller 536 of each reciprocating member 532.
  • First link 547 is pivotally connected at pinned connection 546 to second link 548.
  • Second link 548 is pivotally connected proximate its other end to the top potion 516 of frame 510.
  • the end of second link 548 distal said pinned connection 546 includes a handle portion similar to handle portion 47 of FIG. 2.
  • the user of the device shown in FIG. 6 easily ascends the device from the side or the rear, grabs the handle portion and begins to exert downward pressure on the foot pad portions of each wedge or block 540 in a stair climbing motion. As in the previous embodiments, this results in a smooth substantially elliptical motion of each foot of the user as shown by approximate ellipse 502. It also results in the exercising of certain muscle groups in the upper body through rotation of the hands along the arc in the direction of arrow 504.

Abstract

A stationary exercising device which promotes cardiovascular exercise yet minimizes impact to critical joints. A base frame supports a pair of reciprocating members which are displaced in a horizontal direction parallel with the floor at one end yet reciprocate in a circular motion at the other end through a coupling system attached to the frame. Structure is included which permits each foot of the user to move in a generally elliptical path during the climbing exercise. This provides for more natural movement of the knee and ankle joints minimizing unnecessary stress on the joints yet permitting a cardiovascular workout. The device may include linkage to facilitate a corresponding upper body exercise involving movement of the arm in which case each hand of the user is displaced along an arc or a substantially elliptical path, again promoting a more natural movement of the ankle, knee, elbow and shoulder joints and permitting a cardiovascular workout.

Description

RELATED APPLICATION
This is a continuation of application Ser. No. 08/377,846, filed Jan. 25, 1995, and issued as U.S. Pat. No. 5,573,480.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an improved stationary exercising apparatus. More particular, the invention relates to an improved exercising apparatus which enables the user to move his feet in an elliptical path more accurately representing the body motion associated with climbing stairs or an inclined ramp.
2. Description of the Prior Art
Stair climbing is a popular form of exercise for the cardiovascular system. However, it can over prolonged use overstress the knees. Walking is also a popular form of exercise but it does not load the cardiovascular system to the extent stair climbing does. Therefore, the need exists for an improved stationary exercising device which will load the cardiovascular system as stair climbing does but does not overload or unduly stress the knees and other joints. Prior art stair climbing devices have two common draw backs. First, they require excessive lifting of the knees or an exaggerated vertical movement of the lower legs. See, for example, U.S. Pat. Nos. 3,316,898; 4,949,993; 4,989,857; and 5,135,477. Alternatively, the devices which do tend to promote a more natural movement of the knees and ankles are difficult to ascend and descend because of the configuration of the devices. See, for example, U.S. Pat. No. 5,242,343.
In addition, the need exists for a more rhythmic movement of the hand motions in combination with a stair climbing exercise to accelerate a cardiovascular workout and exercise the upper body muscle groups without unduly overstressing the elbows and shoulders. Hence, the need exists for an improved stationary exercise device which can combine the movements of the feet and hands in a more natural and rhythmic motion.
SUMMARY OF THE INVENTION
Briefly, the invention relates to an improved stationary exercising device. A frame is provided which includes a base portion adapted to be supported by the floor, a mid portion and a top portion. A coupling member is attached to the frame which includes a pulley defining a pivot axis. Two reciprocating members are positioned in spaced relationship to the base portion of the frame. One end of each reciprocating member is adapted for linear movement substantially parallel with the floor. That end of each of the reciprocating member being linearly displaced may contact the base portion or it may slide directly on the floor. The other end of each reciprocating member is attached, directly or indirectly, to the pulley of the coupling member. In this manner, rotation of the pulley rotates one end of each reciprocating member in a circular motion while the other end of each reciprocating member moves in a linear manner. Means are also included for orienting the bottom of each foot of the user so that each foot follows a substantially elliptical path during the operation of the apparatus.
Such means for orienting the bottom of the foot may include a linkage assembly for each reciprocating member. Each such linkage assembly comprises at least one link which is pivotally connected proximal one end between the two ends of the reciprocating member, closest to the end that is being displaced along the floor. This additional linkage is restrained at its other end within the base portion of the frame permitting the second end of the link only to move substantially parallel with the floor or base as is the case for the first and of each reciprocating member.
In the preferred embodiment, each linkage assembly includes a second link which is pivotally connected to the second end of the first link. The second link is then pivotally restrained to the top portion of the frame proximate its other end. This second link also provides for hand movement.
In another alternate embodiment, each linkage assembly includes a single member which is pivotally supported proximal one end to the reciprocating member closest to the end moving substantially parallel with the floor or base and is vertically restrained proximal its other end to the base portion of the frame.
In yet another alternate embodiment, each linkage assembly includes a single member having a foot contact portion and an elongated portion. One end of the single member is pivotally attached proximal the foot portion to a reciprocating member proximal the first end of the reciprocating member. The single member is then laterally restrained proximal its distal end to the top portion of the frame permitting a substantially elliptical movement of the foot portion with the reciprocating member yet limiting displacement of the upper portion to a rotational or angular movement coupled with the longitudinal movement of the upper portion relative to the frame.
In yet a further alternate embodiment, the means for providing substantially elliptical movement includes a pair of wedge members. One wedge member being attached to each reciprocating member proximal the first end of said reciprocating member being linearly displayed substantially parallel with the floor.
In yet another embodiment of the previous alternate embodiment, a linkage assembly is provided for each reciprocating member comprising two links, a first link being attached at one end to the first end of the reciprocating member being linearly displaced substantially parallel with the floor. The second end of the first link is pivotally attached to the first end of the second link. The second link is pivotally attached proximal to its other end to the top portion of the frame, and the other end of the second link includes a handle portion.
The more important features of this invention have been summarized rather broadly in order that the detailed description may be better understood. There are, of course, additional features of the invention which will be described hereafter and which will also form the subject of the claims appended hereto.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more fully describe the drawings used in the detailed description of the present invention, a brief description of each drawing is provided.
FIG. 1 is an elevation view of the preferred embodiment of the present invention.
FIG. 2 is a plan view of the preferred embodiment of the present invention.
FIG. 3 is an elevation view of an alternate embodiment of the present invention.
FIG. 4 is an elevation view of another alternate embodiment of the present invention.
FIG. 5 is an elevation view of yet another alternate embodiment of the present invention.
FIG. 6 is an elevation view of yet a further alternate embodiment of the present invention.
DETAILED DESCRIPTION OF PRESENT INVENTION
Referring to FIGS. 1 and 2, a frame 10 is shown comprising a base portion 12, a mid portion 14, and a top portion 16. Referring briefly to FIG. 2, the frame 10 comprises two bottom portions 12a and 12b, two mid portions 14a and 14b, and two top portions 16a and 16b. In essence, the frame is comprised of two separate bents "a" and "b". Obviously, variations can be made to frame 10 as disclosed without departing from the spirit of the invention.
A coupling system 20 is fixed relative to the frame and comprises a pulley 22, crank members 24, resistant brake 23, sheave 28 and belt 30. Two reciprocating members 32 are positioned in the lower proximity of frame 10. Each reciprocating member 32 has one end 34 which is adapted to move laterally in a linear direction as shown in FIG. 1. A roller 36 is mounted at each end 34 of reciprocating member 32 and is adapted, as shown in FIG. 1, to ride on base portion 12 of frame 10. Alternatively, roller 36 may directly engage the floor, if desirable. The other end 38 of each reciprocating member 32 is pivotally connected to one end of a crank 24. The pivotal connection at end 38 may be through a pivotal connection member 25 (see FIG. 2) which extends between the other ends 38 of reciprocating members 32 and cranks 24. The other end of crank 24 is attached to pulley 22 at the pivot axis 26 of the coupling system 20. The pivot axis 26 is the axis about which pulley 22 rotates.
In the preferred embodiment, the present invention also includes two foot members, or contact members, 40. Each foot member 40 is pivotally attached proximate a first end 42 through a pinned connection 44 to the reciprocating arm 32. A foot pad 50 is attached to the top surface of each foot member 40 at its first end 42. Each foot member 40 is pivotally attached at its other end 46 to an arm member 48. Each arm member 48 is also pivotally attached proximal its other end to the top portion 16 of frame 10. A handle portion 47 (see FIG. 2) is included at the top end 49 of each hand member 48. Referring to FIG. 2, it can be easily seen that the frame 10 comprises dual base portions 12A/12B, mid portions 14A/14B and top portions 16A/16B. Furthermore, it can be seen that reciprocating members 32, foot members 40 and arm members 48 provide identical dual systems; each system resting on a base portion 12A or 12B of the frame and each arranged to accommodate one foot and one arm of the user.
In the operation of the preferred embodiment the user "U" can ascend the present invention from the back or the sides which facilitate its use. In some prior art disclosures ascending and descending is difficult and cumbersome due to the location of the pulleys and other structures. See, for example, U.S. Pat. No. 5,242,343. However, in the case of the present invention it is easy to ascend and descend the device as there is a minimal amount of interference in the structure during exercise activity.
During operation, a climbing motion by the user results in the displacement of first ends 34 of each reciprocating member 32 in the direction of arrow 100. Similarly, a circulating motion occurs at the second end 38 of each reciprocating member 32. However at points between the opposite ends 34 and 38 of each reciprocating member 32, the motion gradually changes from a circular motion (at ends 38) to a linear motion the ends 34. This geometric transition occurs in the form of an approximate ellipse. It is not a perfect elliptical shape; and it tends to be slightly more egg-shaped. However, it provides a more natural and rhythmic body movement.
It appears that the preferred location of pinned connection 44 relative to the length of the reciprocating member 32 is in that 1/3 portion closest to the first end 34 of each reciprocating member 32. It is in this range that the movement of each foot of the user follows an elliptical path (as shown by approximate ellipse 102) which is the more natural and comfortable geometric motion of the ankle and knees, minimizing stress on these joints yet permitting continued cardiovascular exercise. During operation, the upper end 49 of each arm member 48 moves in an arc as shown by arrow 104. Such permits hand/arm/shoulder movements for exercising the upper body muscle groups while continuing the cardiovascular exercise.
Resistant brake 23 of coupling system 20 operates in a manner well known to those skilled in the art. Resistant brake 23 serves to increase or decrease the load on the pulley through the sheave 28/belt 30 arrangement. Thus, resistant brake 23 serves to increase or decrease the extent of the cardiovascular workout.
Referring now to FIG. 3, an alternate embodiment of the present invention is shown. Identical two-digit reference numerals will be used to designate similar structure found in the preferred embodiment but with a 100 series prefix. Frame 110 comprises a lower portion 116, a mid portion 114, and a top portion 116. A coupling system 120 is included having identical components of the coupling system 20 described above for the preferred embodiment. Furthermore, coupling system 120 performs in an identical manner to coupling system 20 described above for the preferred embodiment.
A pair of reciprocating members 132 are also included, each having a first end 134 on which rollers 136 are mounted. The second end 138 of each reciprocating member 132 is pivotally connected via a pinned connection or pin member 125 to one end of each crank 124. Again, two foot members 140 are included, each being pivotally connected proximate a first end 142 at pinned connection 144 to a corresponding reciprocating member 132. Each foot member 140 also includes a foot pad 150 attached to the top surface of each foot member 140 at first end 142. In this embodiment, however, a roller 146 is attached to each foot member 140 at its second end 145. Each roller 146 engages a top bar 113 of frame 110. Each top bar 113 is connected at one end to mid portion 114 of frame 110 and its other end to base portion 112. In addition, the top portion 116 of each bent of frame 110 is connected by a bar 147 which is adapted to be held by the user during exercising to provide added stability.
In the operation of this alternate embodiment, the user ascends the device from the side or the rear with ease, places both feet on pads 150, grabs bar 147 and begins a stair climbing motion. At that point, first ends 134 of each foot member 140 are displaced in a linear manner in the direction of arrow 200, as in the case of the preferred embodiment. Similarly, as in the case of the preferred embodiment, ends 138 of each reciprocating member 132 move in a circular motion about pulley 122. Again, the change from a linear movement of first ends 134 of reciprocating members 132 and a circular movement of second end 138 of reciprocating member 132 is an approximate ellipse of varying shape. In this alternate embodiment, the second end 145 of each foot member 140 is restrained also to move linearly in the direction of arrow 200. Each roller 146 is restrained from vertical movement by means of bar 113. Thus, in this embodiment, the user does not employ an arm member as shown on the preferred embodiment. Rather, the user grabs the bar 147 for added stability.
Referring now to FIG. 4, another alternate embodiment of the present invention is shown. As before, similar parts will be designated by the same two-digit reference numeral as shown in the preferred embodiment but now with a 200 series prefix. Frame 210 again comprises a base portion 212, a mid portion 214 and a top portion 216. A coupler system 220 is also provided which is identical in structure and function to coupling system 20 of the preferred embodiment (FIGS. 1-2). This alternate embodiment also includes a pair of reciprocating members 232, each having a first end 234 which moves linearly in the direction of arrow 300 by means of rollers 236. As in the case of the previous embodiments, rollers 236 are shown engaging bottom portion 212 of the frame; however, they may slide along the floor rather than the base of the frame. Similarly, each reciprocating member 232 includes a second end 238 pivotally attached to one end of a crank 224. In this alternate embodiment two contact members 240 are included having a foot portion 250 angularly displaced from a longitudinal portion 251. Each contact member 240 is pivotally connected at a first end 242 via pinned connection 244 to a reciprocating member 232. This alternate embodiment also includes a sleeve 260 rotatably mounted to the top portion 216 of frame 210. Each sleeve 260 serves to laterally restrain longitudinal member 251 of contact member 240 permitting only axial (or longitudinal) movement of member 251 relative to sleeve 260 and angular movement of member 251 relative to the top portion 216 of frame 210.
In operation the user ascends the device from the side or the rear and begins the climbing motion using his feet engaging foot portions 250. The upper portion of each longitudinal member 251 includes a handle portion 247 which can be grabbed by the user. As in the case of the previous embodiments, the climbing motion results in a lateral or linear displacement of first ends 234 of each reciprocating member 232 in the direction of arrow 300. However, movement of the user's hands via handle portions 247 is not in an arc as described above with respect to the preferred embodiment or stationary as in the case of the first alternate embodiment. Rather, the path which the hands of the user takes in this alternate embodiment follows a generally elliptical path 304 as do the feet (see approximate elliptical path 302). Thus, this embodiment provides a more extensive cardiovascular exercise in that both upper and lower body motion occurs in a "more" natural and rhythmic pattern minimizing excessive stress on the ankle, knee, elbow, and shoulder joints.
Referring now to FIGS. 5 and 6, two further embodiments are shown. As in the case of the previous embodiments, similar structure will be referred with the same two-digit reference numeral but with a different prefix. In the case of FIG. 5, the designated structure has a 400 series prefix and in the case of FIG. 6, the designated structure has a 500 series prefix.
Referring to FIG. 5, the frame 410 comprises a bottom portion 412, a mid portion 414 and a top portion 416. A coupler system 420 is shown which includes the same components and functions identically with the coupling system 20 of the preferred embodiment. Two reciprocating members 432 are included, each having a first end 434 to which a roller 436 is attached. The other end 438 of each reciprocating member 432 is pivotally connected to one end of a crank 424 of coupling system 420. The upper portion 416 of frame 410 includes a bar 447 to be grabbed by the user for stability. A wedge or block 440 is attached to the top of each reciprocating member 432 proximate its first end 434. Each block includes a foot pad 450.
As in the case of previous embodiments, the user ascends the device from the side or rear and begins a stair climbing motion by pressing downwardly on each foot pad 450. In this manner the first end 434 of each reciprocating member 432 is linearly displaced in the direction of arrow 400 and end 438 of each reciprocating member 432 is rotated about the pivot axis of 426 of coupling system 420. As in the previous embodiments, such a configuration permits each foot of the user to follow an elliptical path generally shown by approximate ellipse 402.
Referring now to FIG. 6, an alternate embodiment of the version depicted in FIG. 5 is illustrated. Frame 510 comprises base portion 512, mid portion 514 and top portion 516. Once again, a coupling system 520 is shown identical to that in structure and function of coupling system 420 in FIG. 5. Moreover, reciprocating members 532 and wedge members 540 and their interrelationship to coupling system 520 are identical to that depicted by elements 432, 440 and 420, respectively, of FIG. 5.
As in the case of the previous embodiments, operation of the device shown in FIG. 6 results in linear movement of first ends 534 of reciprocating members 532 in the direction of arrow 500. The difference in this alternate embodiment, however, is a pair of linkage assemblies (one for each reciprocating member 532) comprising a first link 547 and a second link 548. One end of link 547 is attached to roller 536 of each reciprocating member 532. First link 547 is pivotally connected at pinned connection 546 to second link 548. Second link 548 is pivotally connected proximate its other end to the top potion 516 of frame 510. The end of second link 548 distal said pinned connection 546 includes a handle portion similar to handle portion 47 of FIG. 2. As in the case of the embodiment shown in FIG. 5, the user of the device shown in FIG. 6 easily ascends the device from the side or the rear, grabs the handle portion and begins to exert downward pressure on the foot pad portions of each wedge or block 540 in a stair climbing motion. As in the previous embodiments, this results in a smooth substantially elliptical motion of each foot of the user as shown by approximate ellipse 502. It also results in the exercising of certain muscle groups in the upper body through rotation of the hands along the arc in the direction of arrow 504.
An improved stationary exercising device is disclosed in the foregoing preferred and alternate embodiments which maximizes cardiovascular exercise yet minimizes stress on critical joints. Obviously, modifications and alternations to the embodiments disclosed herein will be apparent to those skilled in the art in view of this disclosure. However, it is intended that all such variations and modifications fall within the spirit and scope of this invention as claimed.

Claims (6)

What is claimed is:
1. An apparatus for exercising comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a rear support and a front end;
a coupler supported by said frame defining a pivot axis and having crank members, each said crank member adapted to revolve about the pivot axis at one end and adapted to displace a reciprocating member from the other end of the crank member so that a portion of each reciprocating member proximate said rear support of each reciprocating member moves in a substantially reciprocating motion while the one end of each crank member revolves about the pivot axis; and
first and second platforms for orienting the bottom of the feet of the user so that each foot of the user follows a substantially elliptical path during operation of the apparatus, each said platform positioned generally between the rear support and the front end of a corresponding reciprocating member and inclined at an acute angle relative to an axis extending from the rear support of the corresponding reciprocating member to the front end of the same corresponding reciprocating member to orient the user to face the pivot axis, each said platform having a heel end and a toe end, first and second arm linkage assemblies, each said arm linkage assembly pivotally attached at one end proximate the rear support of a reciprocating member and pivotally connected proximal the other end of said arm linkage assembly to said frame,
wherein the heel end of each platform is above the toe end of the same corresponding platform during a portion of the rearward movement of each platform away from the pivot axis.
2. The exercise apparatus according to claim 1 wherein each said rear support comprises a roller attached to each reciprocating member and adapted to rollably engage the base portion of said frame.
3. An apparatus for exercising comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a rear support and a front end;
a coupler supported by said frame defining a pivot axis and having crank members, each said crank member adapted to revolve about the pivot axis at one end and to displace a reciprocating member from the other end of the crank member so that a portion of each reciprocating member proximate the rear support of each reciprocating member moves in a substantially reciprocating motion while the one end of each said crank member revolves about the pivot axis; and
first and second platforms for orienting the bottom of the feet of the user so that each foot of the user follows a substantially elliptical path during operation of the apparatus, each said platform positioned generally between the rear support and the front end of a corresponding reciprocating member and inclined at an acute angle relative to an axis extending from the rear support of the corresponding reciprocating member to the front end of the same corresponding reciprocating member to orient the user to face the pivot axis, each said platform having a heel end and a toe end, first and second arm linkage assemblies, each said arm linkage assembly pivotally attached at one end proximate the rear support of a reciprocating member and pivotally connected proximal the other end of said arm linkage assembly to said frame,
wherein during operation of the apparatus as each platform initially moves rearwardly away from the pivot axis the toe end of each platform falls at a faster rate than the heel end of the same corresponding platform.
4. The exercise apparatus according to claim 3 wherein each said rear support comprises a roller attached to each reciprocating member and adapted to rollably engage the base portion of said frame.
5. An apparatus for exercising comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a first end and a second end and a support proximate the first end of each reciprocating member;
a coupler supported by said frame defining a pivot axis and having crank members, each said crank member adapted to revolve about the pivot axis at one end and adapted to displace a reciprocating member from the other end of the crank member so that a portion of each reciprocating member proximate the first end of each reciprocating member moves in a substantially reciprocating motion while the one end of each crank member revolves about the pivot axis; and
first and second platforms for orienting the bottom of the feet of the user so that each foot of the user follows a substantially elliptical path during operation of the apparatus, each said platform positioned generally between the second end and the support of a corresponding reciprocating member and inclined at an acute angle relative to an axis extending from the second end of the corresponding reciprocating member to the support of the same corresponding reciprocating member to orient the user to face the pivot axis, each said platform having a first end proximate the first end of the corresponding reciprocating member and a second end distal the first end of the corresponding platform, first and second arm linkage assemblies, each said arm linkage assembly pivotally attached at one end proximate the rear support of a reciprocating member and pivotally connected proximal the other end of said arm linkage assembly to said frame,
wherein during operation of the apparatus as each platform moves rearwardly away from the pivot axis the first end of each platform rises above the second end of the same corresponding platform.
6. An apparatus for exercising comprising:
a frame having a base portion adapted to be supported by a floor;
first and second reciprocating members, each reciprocating member having a rear support and a front end;
a coupler supported by said frame defining a pivot axis and having crank members, each said crank member adapted to revolve about the pivot axis at one end and adapted to displace a reciprocating member from the other end of the crank member so that a portion of each reciprocating member proximate the rear support of each reciprocating member moves in a substantially reciprocating motion while the one end of each crank member revolves about the pivot axis; and
first and second platforms for orienting the bottom of the feet of the user so that each foot of the user follows a substantially elliptical path during operation of the apparatus, each said platform positioned generally between the rear support and the front end of a corresponding reciprocating member and inclined at an acute angle relative to an axis extending from the rear support of the corresponding reciprocating member to the front end of the same corresponding reciprocating member to orient the user to face the pivot axis, each said platform having a heel end and a toe end, first and second arm linkage assemblies, each said arm linkage assembly pivotally attached at one end proximate the rear support of a reciprocating member and pivotally connected proximal the other end of said arm linkage assembly to said frame,
wherein during operation of the apparatus as each platform moves rearwardly away from the pivot axis the heel end of each platform is generally above the toe end of the same corresponding platform.
US08/602,952 1995-01-25 1996-02-16 Stationary exercise apparatus Expired - Lifetime US5683333A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/602,952 US5683333A (en) 1995-01-25 1996-02-16 Stationary exercise apparatus
US08/615,103 US5690589A (en) 1995-01-25 1996-03-14 Stationary exercise apparatus
US08/841,123 US5743834A (en) 1995-01-25 1997-04-29 Stationary exercise apparatus with adjustable crank
US08/956,503 US5938567A (en) 1995-01-25 1997-10-23 Stationary exercise apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/377,846 US5573480A (en) 1995-01-25 1995-01-25 Stationary exercise apparatus
US08/602,952 US5683333A (en) 1995-01-25 1996-02-16 Stationary exercise apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/377,846 Continuation US5573480A (en) 1995-01-25 1995-01-25 Stationary exercise apparatus

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US08/615,103 Continuation-In-Part US5690589A (en) 1995-01-25 1996-03-14 Stationary exercise apparatus
US08/841,123 Continuation-In-Part US5743834A (en) 1995-01-25 1997-04-29 Stationary exercise apparatus with adjustable crank
US08/956,503 Continuation US5938567A (en) 1995-01-25 1997-10-23 Stationary exercise apparatus

Publications (1)

Publication Number Publication Date
US5683333A true US5683333A (en) 1997-11-04

Family

ID=23490739

Family Applications (5)

Application Number Title Priority Date Filing Date
US08/377,846 Expired - Lifetime US5573480A (en) 1995-01-25 1995-01-25 Stationary exercise apparatus
US08/602,952 Expired - Lifetime US5683333A (en) 1995-01-25 1996-02-16 Stationary exercise apparatus
US08/665,398 Expired - Lifetime US5924962A (en) 1995-01-25 1996-06-18 Stationary exercise apparatus
US08/956,503 Expired - Lifetime US5938567A (en) 1995-01-25 1997-10-23 Stationary exercise apparatus
US09/438,509 Expired - Lifetime USRE38803E1 (en) 1995-01-25 1999-11-12 Stationary exercise apparatus having a preferred foot platform path

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/377,846 Expired - Lifetime US5573480A (en) 1995-01-25 1995-01-25 Stationary exercise apparatus

Family Applications After (3)

Application Number Title Priority Date Filing Date
US08/665,398 Expired - Lifetime US5924962A (en) 1995-01-25 1996-06-18 Stationary exercise apparatus
US08/956,503 Expired - Lifetime US5938567A (en) 1995-01-25 1997-10-23 Stationary exercise apparatus
US09/438,509 Expired - Lifetime USRE38803E1 (en) 1995-01-25 1999-11-12 Stationary exercise apparatus having a preferred foot platform path

Country Status (1)

Country Link
US (5) US5573480A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820524A (en) * 1997-10-29 1998-10-13 Chen; Meng Tsung Walking type exerciser
US5868650A (en) * 1998-01-05 1999-02-09 Wu; Hsin-Shu Stationary exercise device
USD408477S (en) * 1998-04-09 1999-04-20 Precor Incorporated Stationary exercise device
US5913751A (en) * 1997-10-09 1999-06-22 Eschenbach; Paul William Walker exercise apparatus with arm exercise
US6019710A (en) * 1998-01-06 2000-02-01 Icon Health & Fitness, Inc. Exercising device with elliptical movement
US6146313A (en) * 1995-12-07 2000-11-14 Precor Incorporated Cross training exercise device
US6165107A (en) * 1999-03-18 2000-12-26 Illinois Tool Works Inc. Flexibly coordinated motion elliptical exerciser
US6171217B1 (en) 1999-02-09 2001-01-09 Gordon L. Cutler Convertible elliptical and recumbent cycle
US6238321B1 (en) 1999-10-14 2001-05-29 Illinois Tool Works, Inc. Exercise device
US6575877B2 (en) 1998-07-23 2003-06-10 Unisen, Inc. Exercise trainer with interconnected grounded movement
US6626802B1 (en) 1999-12-22 2003-09-30 Robert E. Rodgers, Jr. Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
US6689019B2 (en) 2001-03-30 2004-02-10 Nautilus, Inc. Exercise machine
US20040058784A1 (en) * 2001-07-11 2004-03-25 Roberts Robert E. Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
US20040077463A1 (en) * 2002-02-26 2004-04-22 Rodgers Robert E. Stationary exercise apparatus with pivoting foot platforms
US6752744B2 (en) 1999-10-14 2004-06-22 Precor Incorporated Exercise device
US6802797B2 (en) * 1995-06-30 2004-10-12 Joseph D. Maresh Four bar exercise machine
WO2004108225A1 (en) 2003-06-06 2004-12-16 Rodgers Robert E Jr Variable stride exercise apparatus
US20050009668A1 (en) * 2003-07-10 2005-01-13 Greg Savettiere Elliptical/treadmill exercise apparatus
US6908416B2 (en) 1998-07-23 2005-06-21 Unisen, Inc. Exercise and therapeutic trainer
US6939271B1 (en) 1995-12-07 2005-09-06 Precor Incorporated Crosstraining exercise device
US20050202939A1 (en) * 2003-06-23 2005-09-15 Nautilus, Inc. Variable stride exercise device
US20060003868A1 (en) * 2003-06-23 2006-01-05 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US7025710B2 (en) 1998-07-23 2006-04-11 Unisen, Inc. Elliptical exercise device and arm linkage
US20060100066A1 (en) * 1995-06-30 2006-05-11 Maresh Joseph D Exercise methods and apparatus
US20060116247A1 (en) * 2004-12-01 2006-06-01 Precor, Inc. Total body elliptical exercise equipment with upper body monitoring
US7163492B1 (en) 2004-07-15 2007-01-16 Sotiriades Aleko D Physical therapy walking exercise apparatus
US20070117683A1 (en) * 2005-11-22 2007-05-24 Icon Health & Fitness, Inc. Exercising apparatus with varying length arms
US7270626B2 (en) 2004-01-23 2007-09-18 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon direction of foot support rotation
US7361122B2 (en) 2004-02-18 2008-04-22 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon speed of foot support
US20080207410A1 (en) * 2004-12-17 2008-08-28 Enrico Tacconi Device for Rehabilitation of the Limbs and of the Trunk
US7448986B1 (en) 2004-02-18 2008-11-11 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon the heart rate of a person exercising on the exercise equipment
US20080280731A1 (en) * 2007-05-08 2008-11-13 Icon Health & Fitness, Inc. Elliptical exercise machine with adjustable foot motion
US7462134B2 (en) 2003-06-23 2008-12-09 Nautilus, Inc. Variable stride exercise device
US20090011904A1 (en) * 2007-07-06 2009-01-08 Jin Chen Chuang Elliptical exercise device
US20090131227A1 (en) * 2007-11-16 2009-05-21 Stevenson Mark D Exercise Apparatus with Coupled Motion Mechanism
US20090156367A1 (en) * 2007-12-14 2009-06-18 Z-Man Fishing Products, Inc. Hand exerciser
US20090176626A1 (en) * 2003-02-28 2009-07-09 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US7618350B2 (en) 2007-06-04 2009-11-17 Icon Ip, Inc. Elliptical exercise machine with adjustable ramp
US7658698B2 (en) 2006-08-02 2010-02-09 Icon Ip, Inc. Variable stride exercise device with ramp
US7666120B2 (en) 2007-11-16 2010-02-23 Brunswick Corporation Exercise apparatus with three dimensional motion
US7717828B2 (en) 2006-08-02 2010-05-18 Icon Ip, Inc. Exercise device with pivoting assembly
US7736279B2 (en) 2007-02-20 2010-06-15 Icon Ip, Inc. One-step foldable elliptical exercise machine
US7740563B2 (en) 2004-08-11 2010-06-22 Icon Ip, Inc. Elliptical exercise machine with integrated anaerobic exercise system
US7766797B2 (en) 2004-08-11 2010-08-03 Icon Ip, Inc. Breakaway or folding elliptical exercise machine
US8419598B2 (en) 2005-02-09 2013-04-16 Precor Incorporated Adjustable total body cross-training exercise device
US9352187B2 (en) 2003-02-28 2016-05-31 Nautilus, Inc. Dual deck exercise device
US9440107B2 (en) 2003-02-28 2016-09-13 Nautilus, Inc. Exercise device with treadles
WO2017040207A1 (en) 2015-08-28 2017-03-09 Icon Health & Fitness, Inc. Pedal path of a stepping machine
WO2017040206A1 (en) 2015-08-28 2017-03-09 Icon Health & Fitness, Inc. Pedal path of a stepping machine

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056670A (en) 1994-05-25 2000-05-02 Unisen, Inc. Power controlled exercising machine and method for controlling the same
US5743834A (en) * 1995-01-25 1998-04-28 Rodgers, Jr.; Robert E. Stationary exercise apparatus with adjustable crank
US5593372A (en) * 1995-01-25 1997-01-14 Ccs, Llc Stationary exercise apparatus having a preferred foot platform path
US5573480A (en) * 1995-01-25 1996-11-12 Ccs, Llc Stationary exercise apparatus
US5540637A (en) * 1995-01-25 1996-07-30 Ccs, Llc Stationary exercise apparatus having a preferred foot platform orientation
US5518473A (en) * 1995-03-20 1996-05-21 Miller; Larry Exercise device
US5725457A (en) 1995-09-28 1998-03-10 Maresh; Joseph Douglas Six bar exercise machine
US6527677B2 (en) 1995-09-28 2003-03-04 Joseph D. Maresh Elliptical motion exercise machine
US5941800A (en) * 1996-03-29 1999-08-24 Total Motion, Inc. Rehabilitation exercise machine
US6099439A (en) * 1996-06-17 2000-08-08 Brunswick Corporation Cross training exercise apparatus
US5899833A (en) * 1996-06-17 1999-05-04 Brunswick Corporation Orbital stepping exercise apparatus
US5947872A (en) * 1996-06-17 1999-09-07 Brunswick Corporation Cross training exercise apparatus
US5735773A (en) * 1996-08-05 1998-04-07 Vittone; Larry W. Cross-training exercise apparatus
US5788610A (en) * 1996-09-09 1998-08-04 Eschenbach; Paul William Elliptical exercise machine with arm exercise
US6436007B1 (en) * 1996-09-09 2002-08-20 Paul William Eschenbach Elliptical exercise machine with adjustment
US6142915A (en) * 1996-09-09 2000-11-07 Eschenbach; Paul William Standup exercise apparatus with pedal articulation
US6080086A (en) * 1997-03-14 2000-06-27 Maresh; Joseph D. Elliptical motion exercise methods and apparatus
US5792026A (en) * 1997-03-14 1998-08-11 Maresh; Joseph D. Exercise method and apparatus
US5908373A (en) * 1997-04-09 1999-06-01 Pitre; John Full body exercise apparatus
US5857941A (en) * 1997-04-15 1999-01-12 Maresh; Joseph D. Exercise methods and apparatus
US5848954A (en) 1997-04-15 1998-12-15 Stearns; Kenneth W. Exercise methods and apparatus
US5879271A (en) * 1997-04-15 1999-03-09 Stearns; Kenneth W. Exercise method and apparatus
US6340340B1 (en) 1997-04-15 2002-01-22 Kenneth W. Stearns Exercise method and apparatus
US6629909B1 (en) 1997-04-24 2003-10-07 Kenneth W. Stearns Elliptical exercise methods and apparatus
US6171215B1 (en) 1997-04-24 2001-01-09 Kenneth W. Stearns Exercise methods and apparatus
US5882281A (en) * 1997-04-24 1999-03-16 Stearns; Kenneth W. Exercise methods and apparatus
US5803871A (en) * 1997-04-24 1998-09-08 Stearns; Kenneth W. Exercise methods and apparatus
US5893820A (en) 1997-04-24 1999-04-13 Maresh; Joseph D. Exercise methods and apparatus
US7169090B1 (en) 1997-04-24 2007-01-30 Maresh Joseph D Exercise methods and apparatus
US6248046B1 (en) 1997-07-07 2001-06-19 Joseph D. Maresh Elliptical motion exercise methods and apparatus
US5769760A (en) * 1997-07-22 1998-06-23 Lin; Michael Stationary exercise device
US6036622A (en) * 1997-10-10 2000-03-14 Gordon; Joel D. Exercise device
US5921894A (en) * 1997-10-21 1999-07-13 Eschenbach; Paul William Compact elliptical exercise apparatus
US5916064A (en) * 1997-11-10 1999-06-29 Eschenbach; Paul William Compact exercise apparatus
US5910072A (en) * 1997-12-03 1999-06-08 Stairmaster Sports/Medical Products, Inc. Exercise apparatus
US5916065A (en) * 1998-02-10 1999-06-29 Stamina Products, Inc. Multiple leg movement exercise apparatus
US5836854A (en) * 1998-02-10 1998-11-17 Kuo; Hai Pin Roaming excerciser
USD406289S (en) * 1998-02-20 1999-03-02 Sunny Hwang Stepping exerciser
US6146314A (en) * 1998-05-15 2000-11-14 Stamina Products, Inc. Pedal-type exerciser
US6398695B2 (en) 1998-09-24 2002-06-04 Larry Miller Elliptical exercise device
EP1139967A4 (en) * 1998-11-17 2003-08-06 Altimate Medical Inc Disabled user lift system
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
DE10128714A1 (en) * 2001-06-13 2002-12-19 Adamek Karl W Sports/training appliance with frame and articulated movement elements with pedals, mounted on buoyancy aids
US6855093B2 (en) 2001-07-12 2005-02-15 Brunswick Corporation Stairclimber apparatus pedal mechanism
US6966880B2 (en) * 2001-10-16 2005-11-22 Agilent Technologies, Inc. Universal diagnostic platform
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US6837829B2 (en) * 2003-05-20 2005-01-04 Paul William Eschenbach Climber crosstrainer exercise apparatus
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US20050209057A1 (en) * 2004-03-09 2005-09-22 Leao Wang Oval-tracked exercise apparatus for simulating hand-movement
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7544152B2 (en) * 2004-07-30 2009-06-09 Unisen, Inc. Linkage based exercise machine
US7670266B2 (en) * 2004-07-30 2010-03-02 Unisen, Inc. Articulating linkage exercise machine
CA2523067C (en) * 2004-10-12 2013-03-12 Altimate Medical, Inc. Modular standing frame
US20080167165A1 (en) * 2004-11-15 2008-07-10 Johnson Health Tech. Co., Ltd. Elliptical exercise machine
US7175568B2 (en) * 2005-07-14 2007-02-13 Paul William Eschenbach Elliptical exercise apparatus with articulating track
US7666122B2 (en) * 2005-07-18 2010-02-23 Unisen, Inc. Elliptical exercise machine
US7645215B2 (en) * 2005-08-11 2010-01-12 Gordon Joel D Exercise device
US7267638B2 (en) * 2005-10-31 2007-09-11 Leao Wang Pace-adjusting mechanism of an elliptical cross trainer
US7654936B2 (en) * 2005-11-04 2010-02-02 Johnson Health Tech. Stationary exercise apparatus
US9808667B2 (en) * 2005-11-04 2017-11-07 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
CN100467090C (en) * 2005-11-04 2009-03-11 乔山健康科技股份有限公司 Ellipse machine capable of adjusting slope of footplate locus
US7722505B2 (en) 2005-11-04 2010-05-25 Johnson Health Tech. Stationary exercise apparatus
US10814160B2 (en) * 2005-11-04 2020-10-27 Johnson Health Tech. Co., Ltd. Stationary exercise apparatus
US7455628B1 (en) 2006-01-21 2008-11-25 Stearns Kenneth W Elliptical exercise methods and apparatus
US7455625B2 (en) * 2006-05-09 2008-11-25 Stearns Kenneth W Elliptical exercise methods and apparatus
US7976435B2 (en) * 2006-05-15 2011-07-12 Johnson Health Tech Co., Ltd. Stationary exercise apparatus
CN101327366B (en) * 2007-06-22 2010-11-24 乔山健康科技股份有限公司 Elliptical trainer with adjustable pedal track
US8109861B2 (en) * 2006-08-10 2012-02-07 Exerciting, Llc Exercise device with varied gait movements
US7749137B2 (en) * 2006-11-16 2010-07-06 Nautilus, Inc. Variable stride exercise device
US7438671B2 (en) * 2006-12-29 2008-10-21 Leao Wang Manual pace-adjusting mechanism of an elliptical cross trainer
US20080227603A1 (en) * 2007-03-12 2008-09-18 Leao Wang Telescopic pace-adjusting mechanism of an elliptical cross trainer
US7727120B2 (en) * 2007-06-21 2010-06-01 Appareils D'exercice Bodyguard Inc. Elliptical exerciser
US20090062080A1 (en) * 2007-08-31 2009-03-05 Guy James K Stowable arms
US8123664B2 (en) 2008-01-22 2012-02-28 Invacare Corp. Seat
US8104835B2 (en) * 2008-07-08 2012-01-31 Invacare Corp. Standing frame with supine mode
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
DE102009022560B4 (en) * 2009-05-25 2011-02-17 Reha Technologies Gmbh Device for the therapeutic treatment and / or training of the lower extremities of a human
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7985165B1 (en) * 2010-05-12 2011-07-26 Strength Master Fitness Tech. Co., Ltd. Elliptical exercise machine
US8062188B1 (en) * 2010-05-12 2011-11-22 Strength Master Fitness Tech Co., Ltd. Elliptical exercise machine
TW201427748A (en) 2013-01-07 2014-07-16 Dyaco Int Inc Exercise device having hand elliptic trajectory
TW201427749A (en) 2013-01-07 2014-07-16 Dyaco Int Inc Exercise device with leg elliptical orbit
TW201431586A (en) 2013-02-04 2014-08-16 Dyaco Int Inc Elliptical trainer
US9050498B2 (en) 2013-03-04 2015-06-09 Brunswick Corporation Exercise assemblies having foot pedal members that are movable along user defined paths
US9114275B2 (en) 2013-03-04 2015-08-25 Brunswick Corporation Exercise assemblies having crank members with limited rotation
US9138614B2 (en) 2013-03-04 2015-09-22 Brunswick Corporation Exercise assemblies having linear motion synchronizing mechanism
EP2969066B1 (en) 2013-03-15 2017-10-04 Nautilus, Inc. Exercise machine
US9199115B2 (en) 2013-03-15 2015-12-01 Nautilus, Inc. Exercise machine
US9950209B2 (en) 2013-03-15 2018-04-24 Nautilus, Inc. Exercise machine
CA2860427C (en) 2013-08-29 2020-02-25 Octane Fitness, Llc Lower body mimetic exercise device with fully or partially autonomous right and left leg links and ergonomically positioned pivot points
USD742977S1 (en) 2013-08-29 2015-11-10 Octane Fitness, Llc Stationary exercise machine
US9610475B1 (en) 2014-11-11 2017-04-04 Brunswick Corporation Linear motion synchronizing mechanism and exercise assemblies having linear motion synchronizing mechanism
US9682277B2 (en) 2014-12-10 2017-06-20 Fit-Novation, Inc. Exercise device
USD792530S1 (en) 2015-09-28 2017-07-18 Nautilus, Inc. Elliptical exercise machine
US10046197B2 (en) 2015-11-19 2018-08-14 Fitnovation, Inc. Exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US11123598B2 (en) 2016-07-05 2021-09-21 Abelbeck Partners, Llc Exercise device
US10625114B2 (en) 2016-11-01 2020-04-21 Icon Health & Fitness, Inc. Elliptical and stationary bicycle apparatus including row functionality
US10561891B2 (en) 2017-05-26 2020-02-18 Nautilus, Inc. Exercise machine
US10946238B1 (en) * 2018-07-23 2021-03-16 Life Fitness, Llc Exercise machines having adjustable elliptical striding motion

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219439A (en) * 1879-09-09 Improvement in passive-motion walking-machines
US2603486A (en) * 1948-07-23 1952-07-15 Joseph Borroughs Push and pull exerciser
US3316898A (en) * 1964-10-23 1967-05-02 James W Brown Rehabilitation and exercise apparatus
US3432164A (en) * 1967-02-14 1969-03-11 Hugh A Deeks Exercising machine
US3759511A (en) * 1971-03-29 1973-09-18 K Gustafson Adjustable friction type exercising device
US4053173A (en) * 1976-03-23 1977-10-11 Chase Sr Douglas Bicycle
US4188030A (en) * 1976-10-18 1980-02-12 Repco Limited Cycle exerciser
DE2919484A1 (en) * 1979-05-15 1980-11-20 Luco Technic Gmbh DEVICE FOR WALL CLEANING BY PRESSURE GAS OR STEAM
US4379566A (en) * 1981-01-26 1983-04-12 Creative Motion Industries, Inc. Operator powered vehicle
US4456276A (en) * 1981-04-15 1984-06-26 Peter Bortolin Bicycle assembly
US4509742A (en) * 1983-06-06 1985-04-09 Cones Charles F Exercise bicycle
US4555109A (en) * 1983-09-14 1985-11-26 Hartmann Joseph C Exercising machine
US4561318A (en) * 1981-10-05 1985-12-31 Schirrmacher Douglas R Lever power system
US4645201A (en) * 1982-11-30 1987-02-24 Tekron Licensing B.V. Exercise machine
US4645200A (en) * 1985-05-28 1987-02-24 Hix William R Isometric exercising device
US4679786A (en) * 1986-02-25 1987-07-14 Rodgers Robert E Universal exercise machine
US4720093A (en) * 1984-06-18 1988-01-19 Del Mar Avionics Stress test exercise device
US4869494A (en) * 1989-03-22 1989-09-26 Lambert Sr Theodore E Exercise apparatus for the handicapped
US4900013A (en) * 1988-01-27 1990-02-13 Rodgers Jr Robert E Exercise apparatus
US4949993A (en) * 1989-07-31 1990-08-21 Laguna Tectrix, Inc. Exercise apparatus having high durability mechanism for user energy transmission
US4949954A (en) * 1989-05-04 1990-08-21 Hix William R Jointed bicycle-simulation device for isometric exercise
US4989857A (en) * 1990-06-12 1991-02-05 Kuo Hai Pin Stairclimber with a safety speed changing device
US5039087A (en) * 1990-05-11 1991-08-13 Kuo Hai Pin Power stairclimber
US5039088A (en) * 1990-04-26 1991-08-13 Shifferaw Tessema D Exercise machine
US5131895A (en) * 1988-01-27 1992-07-21 Rogers Jr Robert E Exercise apparatus
US5135447A (en) * 1988-10-21 1992-08-04 Life Fitness Exercise apparatus for simulating stair climbing
US5186697A (en) * 1989-01-31 1993-02-16 Rennex Brian G Bi-directional stair/treadmill/reciprocating-pedal exerciser
US5242343A (en) * 1992-09-30 1993-09-07 Larry Miller Stationary exercise device
US5295928A (en) * 1989-01-31 1994-03-22 Rennex Brian G Bi-directional stair/treadmill/reciprocating-pedal exerciser
US5299993A (en) * 1992-12-01 1994-04-05 Pacific Fitness Corporation Articulated lower body exerciser
US5401226A (en) * 1992-10-29 1995-03-28 Stearns Technologies, Inc. Exercise device
US5423729A (en) * 1994-08-01 1995-06-13 Eschenbach; Paul W. Collapsible exercise machine with arm exercise

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185622A (en) * 1979-03-21 1980-01-29 Swenson Oscar J Foot and leg exerciser
DE2919494C2 (en) * 1979-05-15 1982-12-30 Christian 7120 Bietigheim-Bissingen Baer Training device with two cranks supported by a stand
US5279529A (en) 1992-04-16 1994-01-18 Eschenbach Paul W Programmed pedal platform exercise apparatus
US5527246A (en) * 1995-01-25 1996-06-18 Rodgers, Jr.; Robert E. Mobile exercise apparatus
US5573480A (en) * 1995-01-25 1996-11-12 Ccs, Llc Stationary exercise apparatus
US5540637A (en) * 1995-01-25 1996-07-30 Ccs, Llc Stationary exercise apparatus having a preferred foot platform orientation
US5518473A (en) * 1995-03-20 1996-05-21 Miller; Larry Exercise device

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US219439A (en) * 1879-09-09 Improvement in passive-motion walking-machines
US2603486A (en) * 1948-07-23 1952-07-15 Joseph Borroughs Push and pull exerciser
US3316898A (en) * 1964-10-23 1967-05-02 James W Brown Rehabilitation and exercise apparatus
US3432164A (en) * 1967-02-14 1969-03-11 Hugh A Deeks Exercising machine
US3759511A (en) * 1971-03-29 1973-09-18 K Gustafson Adjustable friction type exercising device
US4053173A (en) * 1976-03-23 1977-10-11 Chase Sr Douglas Bicycle
US4188030A (en) * 1976-10-18 1980-02-12 Repco Limited Cycle exerciser
DE2919484A1 (en) * 1979-05-15 1980-11-20 Luco Technic Gmbh DEVICE FOR WALL CLEANING BY PRESSURE GAS OR STEAM
US4379566A (en) * 1981-01-26 1983-04-12 Creative Motion Industries, Inc. Operator powered vehicle
US4456276A (en) * 1981-04-15 1984-06-26 Peter Bortolin Bicycle assembly
US4561318A (en) * 1981-10-05 1985-12-31 Schirrmacher Douglas R Lever power system
US4645201A (en) * 1982-11-30 1987-02-24 Tekron Licensing B.V. Exercise machine
US4509742A (en) * 1983-06-06 1985-04-09 Cones Charles F Exercise bicycle
US4555109A (en) * 1983-09-14 1985-11-26 Hartmann Joseph C Exercising machine
US4720093A (en) * 1984-06-18 1988-01-19 Del Mar Avionics Stress test exercise device
US4645200A (en) * 1985-05-28 1987-02-24 Hix William R Isometric exercising device
US4679786A (en) * 1986-02-25 1987-07-14 Rodgers Robert E Universal exercise machine
US4900013A (en) * 1988-01-27 1990-02-13 Rodgers Jr Robert E Exercise apparatus
US5131895A (en) * 1988-01-27 1992-07-21 Rogers Jr Robert E Exercise apparatus
US5135447A (en) * 1988-10-21 1992-08-04 Life Fitness Exercise apparatus for simulating stair climbing
US5295928A (en) * 1989-01-31 1994-03-22 Rennex Brian G Bi-directional stair/treadmill/reciprocating-pedal exerciser
US5186697A (en) * 1989-01-31 1993-02-16 Rennex Brian G Bi-directional stair/treadmill/reciprocating-pedal exerciser
US4869494A (en) * 1989-03-22 1989-09-26 Lambert Sr Theodore E Exercise apparatus for the handicapped
US4949954A (en) * 1989-05-04 1990-08-21 Hix William R Jointed bicycle-simulation device for isometric exercise
US4949993A (en) * 1989-07-31 1990-08-21 Laguna Tectrix, Inc. Exercise apparatus having high durability mechanism for user energy transmission
US5039088A (en) * 1990-04-26 1991-08-13 Shifferaw Tessema D Exercise machine
US5039087A (en) * 1990-05-11 1991-08-13 Kuo Hai Pin Power stairclimber
US4989857A (en) * 1990-06-12 1991-02-05 Kuo Hai Pin Stairclimber with a safety speed changing device
US5242343A (en) * 1992-09-30 1993-09-07 Larry Miller Stationary exercise device
US5383829A (en) * 1992-09-30 1995-01-24 Miller; Larry Stationary exercise device
US5383829C1 (en) * 1992-09-30 2002-03-05 Larry Miller Stationary exercise device
US5401226A (en) * 1992-10-29 1995-03-28 Stearns Technologies, Inc. Exercise device
US5299993A (en) * 1992-12-01 1994-04-05 Pacific Fitness Corporation Articulated lower body exerciser
US5423729A (en) * 1994-08-01 1995-06-13 Eschenbach; Paul W. Collapsible exercise machine with arm exercise

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060100066A1 (en) * 1995-06-30 2006-05-11 Maresh Joseph D Exercise methods and apparatus
US20060100065A1 (en) * 1995-06-30 2006-05-11 Maresh Joseph D Exercise methods and apparatus
US6802797B2 (en) * 1995-06-30 2004-10-12 Joseph D. Maresh Four bar exercise machine
US7344480B2 (en) 1995-06-30 2008-03-18 Maresh Joseph D Exercise methods and apparatus
US7137927B2 (en) 1995-06-30 2006-11-21 Maresh Joseph D Exercise methods and apparatus
US6146313A (en) * 1995-12-07 2000-11-14 Precor Incorporated Cross training exercise device
US6939271B1 (en) 1995-12-07 2005-09-06 Precor Incorporated Crosstraining exercise device
US5913751A (en) * 1997-10-09 1999-06-22 Eschenbach; Paul William Walker exercise apparatus with arm exercise
US5820524A (en) * 1997-10-29 1998-10-13 Chen; Meng Tsung Walking type exerciser
US5868650A (en) * 1998-01-05 1999-02-09 Wu; Hsin-Shu Stationary exercise device
US6019710A (en) * 1998-01-06 2000-02-01 Icon Health & Fitness, Inc. Exercising device with elliptical movement
USD408477S (en) * 1998-04-09 1999-04-20 Precor Incorporated Stationary exercise device
US6575877B2 (en) 1998-07-23 2003-06-10 Unisen, Inc. Exercise trainer with interconnected grounded movement
US7025710B2 (en) 1998-07-23 2006-04-11 Unisen, Inc. Elliptical exercise device and arm linkage
US7267637B2 (en) 1998-07-23 2007-09-11 Unisen, Inc. Exercise and therapeutic trainer
US6908416B2 (en) 1998-07-23 2005-06-21 Unisen, Inc. Exercise and therapeutic trainer
US6171217B1 (en) 1999-02-09 2001-01-09 Gordon L. Cutler Convertible elliptical and recumbent cycle
US6277055B1 (en) 1999-03-18 2001-08-21 Illinois Tool Works, Inc. Flexibly coordinated stationary exercise device
US6165107A (en) * 1999-03-18 2000-12-26 Illinois Tool Works Inc. Flexibly coordinated motion elliptical exerciser
US6752744B2 (en) 1999-10-14 2004-06-22 Precor Incorporated Exercise device
US6238321B1 (en) 1999-10-14 2001-05-29 Illinois Tool Works, Inc. Exercise device
US6626802B1 (en) 1999-12-22 2003-09-30 Robert E. Rodgers, Jr. Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
US6689019B2 (en) 2001-03-30 2004-02-10 Nautilus, Inc. Exercise machine
US7341542B2 (en) 2001-03-30 2008-03-11 Nautilus, Inc. Exercise machine
US20040058784A1 (en) * 2001-07-11 2004-03-25 Roberts Robert E. Stationary type of exercise apparatus that enables movement of the user's feet in a reciprocating motion
US20040077463A1 (en) * 2002-02-26 2004-04-22 Rodgers Robert E. Stationary exercise apparatus with pivoting foot platforms
US9352187B2 (en) 2003-02-28 2016-05-31 Nautilus, Inc. Dual deck exercise device
US8734299B2 (en) 2003-02-28 2014-05-27 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US8147385B2 (en) 2003-02-28 2012-04-03 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US7811209B2 (en) 2003-02-28 2010-10-12 Nautilus, Inc. Upper body exchange and flywheel enhanced dual deck treadmills
US9308415B2 (en) 2003-02-28 2016-04-12 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US20090176626A1 (en) * 2003-02-28 2009-07-09 Nautilus, Inc. Upper body exercise and flywheel enhanced dual deck treadmills
US9440107B2 (en) 2003-02-28 2016-09-13 Nautilus, Inc. Exercise device with treadles
WO2004108225A1 (en) 2003-06-06 2004-12-16 Rodgers Robert E Jr Variable stride exercise apparatus
US7736278B2 (en) 2003-06-23 2010-06-15 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US20050202939A1 (en) * 2003-06-23 2005-09-15 Nautilus, Inc. Variable stride exercise device
US7462134B2 (en) 2003-06-23 2008-12-09 Nautilus, Inc. Variable stride exercise device
US20060003868A1 (en) * 2003-06-23 2006-01-05 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US8062187B2 (en) 2003-06-23 2011-11-22 Nautilus, Inc. Releasable connection mechanism for variable stride exercise devices
US7785235B2 (en) 2003-06-23 2010-08-31 Nautilus, Inc. Variable stride exercise device
US7758473B2 (en) 2003-06-23 2010-07-20 Nautilus, Inc. Variable stride exercise device
US20050009668A1 (en) * 2003-07-10 2005-01-13 Greg Savettiere Elliptical/treadmill exercise apparatus
US20070232457A1 (en) * 2004-01-23 2007-10-04 Porth Timothy J Exercise Equipment With Automatic Adjustment Of Stride Length And/Or Stride Height Based Upon Direction Of Foot Support Rotation
US7270626B2 (en) 2004-01-23 2007-09-18 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon direction of foot support rotation
US7361122B2 (en) 2004-02-18 2008-04-22 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon speed of foot support
US7448986B1 (en) 2004-02-18 2008-11-11 Octane Fitness, Llc Exercise equipment with automatic adjustment of stride length and/or stride height based upon the heart rate of a person exercising on the exercise equipment
US7163492B1 (en) 2004-07-15 2007-01-16 Sotiriades Aleko D Physical therapy walking exercise apparatus
US7766797B2 (en) 2004-08-11 2010-08-03 Icon Ip, Inc. Breakaway or folding elliptical exercise machine
US7909740B2 (en) 2004-08-11 2011-03-22 Icon Ip, Inc. Elliptical exercise machine with integrated aerobic exercise system
US7775940B2 (en) 2004-08-11 2010-08-17 Icon Ip, Inc. Folding elliptical exercise machine
US7740563B2 (en) 2004-08-11 2010-06-22 Icon Ip, Inc. Elliptical exercise machine with integrated anaerobic exercise system
US20060116247A1 (en) * 2004-12-01 2006-06-01 Precor, Inc. Total body elliptical exercise equipment with upper body monitoring
US20080207410A1 (en) * 2004-12-17 2008-08-28 Enrico Tacconi Device for Rehabilitation of the Limbs and of the Trunk
US8419598B2 (en) 2005-02-09 2013-04-16 Precor Incorporated Adjustable total body cross-training exercise device
US20070117683A1 (en) * 2005-11-22 2007-05-24 Icon Health & Fitness, Inc. Exercising apparatus with varying length arms
US7717828B2 (en) 2006-08-02 2010-05-18 Icon Ip, Inc. Exercise device with pivoting assembly
US7658698B2 (en) 2006-08-02 2010-02-09 Icon Ip, Inc. Variable stride exercise device with ramp
US7736279B2 (en) 2007-02-20 2010-06-15 Icon Ip, Inc. One-step foldable elliptical exercise machine
US7674205B2 (en) 2007-05-08 2010-03-09 Icon Ip, Inc. Elliptical exercise machine with adjustable foot motion
US20080280731A1 (en) * 2007-05-08 2008-11-13 Icon Health & Fitness, Inc. Elliptical exercise machine with adjustable foot motion
US7618350B2 (en) 2007-06-04 2009-11-17 Icon Ip, Inc. Elliptical exercise machine with adjustable ramp
US7811206B2 (en) * 2007-07-06 2010-10-12 Jin Chen Chuang Elliptical exercise device
US20090011904A1 (en) * 2007-07-06 2009-01-08 Jin Chen Chuang Elliptical exercise device
US7666120B2 (en) 2007-11-16 2010-02-23 Brunswick Corporation Exercise apparatus with three dimensional motion
US20090131227A1 (en) * 2007-11-16 2009-05-21 Stevenson Mark D Exercise Apparatus with Coupled Motion Mechanism
US7625317B2 (en) * 2007-11-16 2009-12-01 Brunswick Corporation Exercise apparatus with coupled motion mechanism
US20090156367A1 (en) * 2007-12-14 2009-06-18 Z-Man Fishing Products, Inc. Hand exerciser
WO2017040207A1 (en) 2015-08-28 2017-03-09 Icon Health & Fitness, Inc. Pedal path of a stepping machine
WO2017040206A1 (en) 2015-08-28 2017-03-09 Icon Health & Fitness, Inc. Pedal path of a stepping machine
US10207147B2 (en) 2015-08-28 2019-02-19 Icon Health & Fitness, Inc. Pedal path of a stepping machine

Also Published As

Publication number Publication date
US5924962A (en) 1999-07-20
USRE38803E1 (en) 2005-09-27
US5573480A (en) 1996-11-12
US5938567A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US5683333A (en) Stationary exercise apparatus
US5738614A (en) Stationary exercise apparatus with retractable arm members
US5772558A (en) Stationary exercise apparatus
US5595553A (en) Stationary exercise apparatus
US5766113A (en) Stationary exercise apparatus having a preferred foot platform path
US5653662A (en) Stationary exercise apparatus
US5690589A (en) Stationary exercise apparatus
US5813949A (en) Stationary exercise apparatus having a preferred foot platform orientation
US5611758A (en) Recumbent exercise apparatus
US7824313B2 (en) Exercise device for cross training
US5755642A (en) Exercise device
US5823919A (en) Standup exercise machine with arm exercise
US5277677A (en) Stepping exercise machine
CA2211127C (en) Stationary exercise apparatus
US20020165069A1 (en) Anti thrombotic foot exerciser
US4595198A (en) Centrifugal brake for exercise machine
CA2434373C (en) Stationary exercise apparatus
EP2345460A1 (en) Saddle for exercise equipment and exercise equipment
MXPA98009797A (en) Stationary exercise apparatus
JPH0884786A (en) Tool, shoes, slipper and autocycle pedal for training of muscle

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CCS FITNESS, INC., COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CCS, LLC;REEL/FRAME:009257/0602

Effective date: 19980623

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: RODGERS JR., ROBERT E., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CCS FITNESS, INC.;REEL/FRAME:012631/0375

Effective date: 20020212

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: NAUTILUS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RODGERS JR., ROBERT E.;REEL/FRAME:018026/0801

Effective date: 20060706

AS Assignment

Owner name: CCS, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RODGERS, ROBERT E., JR.;REEL/FRAME:020031/0147

Effective date: 19951205

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, WA

Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNOR:NAUTILUS, INC.;REEL/FRAME:020098/0682

Effective date: 20071005

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT,WAS

Free format text: NOTICE OF GRANT OF SECURITY INTEREST;ASSIGNOR:NAUTILUS, INC.;REEL/FRAME:020098/0682

Effective date: 20071005

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BANK OF AMERICA, N.A., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:NAUTILUS, INC.;DASHAMERICA, INC.;REEL/FRAME:020525/0445

Effective date: 20080116

Owner name: BANK OF AMERICA, N.A.,CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:NAUTILUS, INC.;DASHAMERICA, INC.;REEL/FRAME:020525/0445

Effective date: 20080116

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: NAUTILUS, INC.,WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023882/0981

Effective date: 20091229

Owner name: DASHAMERICA, INC.,COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023882/0981

Effective date: 20091229

Owner name: NAUTILUS, INC.,WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023892/0032

Effective date: 20100126

Owner name: NAUTILUS, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023882/0981

Effective date: 20091229

Owner name: DASHAMERICA, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023882/0981

Effective date: 20091229

Owner name: NAUTILUS, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:023892/0032

Effective date: 20100126

AS Assignment

Owner name: BANK OF THE WEST,OREGON

Free format text: SECURITY AGREEMENT;ASSIGNOR:NAUTILUS, INC.;REEL/FRAME:024103/0691

Effective date: 20100305

Owner name: BANK OF THE WEST, OREGON

Free format text: SECURITY AGREEMENT;ASSIGNOR:NAUTILUS, INC.;REEL/FRAME:024103/0691

Effective date: 20100305

AS Assignment

Owner name: NAUTILUS, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF THE WEST;REEL/FRAME:037231/0613

Effective date: 20151130

AS Assignment

Owner name: BOWFLEX INC., WASHINGTON

Free format text: CHANGE OF NAME;ASSIGNOR:NAUTILUS, INC.;REEL/FRAME:065820/0610

Effective date: 20231017