US5705603A - Polyetheramines with polymers of α, β-unsaturated dicarboxylic acids - Google Patents

Polyetheramines with polymers of α, β-unsaturated dicarboxylic acids Download PDF

Info

Publication number
US5705603A
US5705603A US08/493,623 US49362395A US5705603A US 5705603 A US5705603 A US 5705603A US 49362395 A US49362395 A US 49362395A US 5705603 A US5705603 A US 5705603A
Authority
US
United States
Prior art keywords
alkyl
hydrogen
mol
formula
structural units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/493,623
Inventor
Matthias Krull
Michael Feustel
Erdmann Mielcke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Assigned to HOECHST AG reassignment HOECHST AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FEUSTEL, MICHAEL, KRULL, MATTHIAS, MIELCKE, ERDMANN
Application granted granted Critical
Publication of US5705603A publication Critical patent/US5705603A/en
Assigned to CLARIANT GMBH reassignment CLARIANT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOECHST AKTIENGESELLSCHAFT
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters

Definitions

  • Mineral oils and mineral oil distillates such as diesel fuel or heating oil, contain as a rule a proportion of dissolved n-paraffins which crystallize out when the temperature decreases and may thus lead to a deterioration in the flow properties of these oils or distillates.
  • this may lead to deposits on the wall during transport through pipelines and in particular cases (for example on shutdown of a pipeline) even to complete blockage.
  • precipitates of paraffins may lead to complications in the storage and further processing of the mineral oils.
  • blockages of the filters in diesel engines and furnaces may occur as a result of the crystallization.
  • paraffin dispersants prevent sedimentation of the crystals and hence the formation of a paraffin-rich layer on the bottom of the storage container.
  • the unpublished European Patent Application No. 94100009.3 relates to terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower, unsaturated alcohols and to their use as paraffin inhibitors for paraffin-containing mineral oil products.
  • EP-A-0 154 177 describes reaction products of copolymers based on maleic anhydride and ⁇ , ⁇ -unsaturated compounds with primary monoalkylamines and/or aliphatic alcohols. These copolymers are suitable in particular as paraffin inhibitors for paraffin-containing mineral oil products, for example crude oils and distillation residues from mineral oil processing.
  • EP-A-0 436 151 discloses reaction products of copolymers based on maleic anhydride and ⁇ , ⁇ -unsaturated compounds with dialkylamines. These copolymers are added to mineral oil middle distillates in amounts of from 50 to 1000 ppm. Such mineral oil middle distillates already contain, as a rule, flow improvers, such as ethylene/vinyl ester copolymers.
  • EP-A-0 283 293 discloses copolymers derived from the polymerization of an aliphatic olefin with maleic anhydride, where the copolymer must have both an ester group and an amido group, each of which contains an alkyl group having at least 10 carbon atoms, and copolymers from the reaction of a secondary amine with a polymer which contains anhydride groups, equal amounts of amides and amine salts being prepared from the anhydride groups.
  • EP-A-0 523 672 relates to copolymers of ethylenically unsaturated carboxylic esters with polyoxyalkylene ethers of lower, unsaturated alcohols and their use in paraffin-containing oils, such as crude oils, residue oils and oil distillates.
  • EP-A-0 405 893 discloses a lubricant containing an ethylene/olefin copolymer grafted with maleic anhydride and reacted with alkyleneamine or oxyalkyleneamine having at least two primary amino groups and an alkenylsuccinic anhydride.
  • U.S. Pat. No. 4,632,769 relates to an ethylene/olefin copolymer grafted with maleic anhydride and reacted with alkyleneamine or oxyalkyleneamine having at least two amino groups and its use as a viscosity index improver in lubricating oils and as an additive in fuel oils.
  • WO 8700857 and WO 8700856 disclose reaction products of alkenylsuccinic anhydrides with polyetheramines as thickeners which are stable to shearing and intended for water-based lubricants and hydraulic fluids.
  • EP-A-310 875 describes the use of polyetheramines as fuel additives for gasoline engines for cleaning valves and carburettors.
  • paraffin-inhibiting and paraffin-dispersing effect of the known cold flow improvers is insufficient, particularly in middle distillates, so that in some cases large paraffin crystals may form on cooling and, owing to their higher density, may settle out in the course of time and lead to a paraffin-rich layer on the bottom and a low-paraffin upper layer.
  • the invention relates to reaction products of polyetheramines with polymers containing dicarboxylic anhydride groups, which contain 20-80, preferably 40-60, mol % of bivalent structural units A and/or C and, if required, B ##STR4## in which R 1 and R 2 , independently of one another, are hydrogen or methyl,
  • a and b are equal to zero or one and a+b is equal to one
  • Y is X or NRR 3 ,
  • X is --OH, --O--C 1-30 -alkyl, NR 3 R 4 or --O.sup. ⁇ N.sup. ⁇ R 3 R 4 ,
  • R 3 and R 4 independently of one another, are hydrogen, C 6 -C 40 -alkyl or R,
  • R is ##STR5## with the proviso that at least 1 mol % of the anhydride groups bonded to the polymer has been reacted with a polyetheramine,
  • Z is C 2 -C 4 -alkyl
  • n is a number from 1 to 1000
  • R 5 is hydrogen, C 1 -C 30 -alkyl, C 5 -C 12 -cycloalkyl or C 6 -C 30 -aryl and
  • R 6 is hydrogen or C 1 -C 4 -alkyl, preferably methyl
  • R 8 is C 1 -C 60 -alkyl or C 6 -C 18 -aryl.
  • alkyl, cycloalkyl and aryl radicals may be unsubstituted or substituted.
  • Suitable substituents are, for example, (C 1 -C 6 )-alkyl, halogens, such as fluorine, chlorine, bromine and iodine, preferably chlorine, and (C 1 -C 6 )-alkoxy.
  • alkyl is in general a straight-chain or branched hydrocarbon radical having 1-30, preferably 10-24, carbon atoms.
  • the following may be mentioned individually: n-butyl, tert-butyl, n-hexyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, dodecenyl, tetrapropenyl, tetradecenyl, pentapropenyl, hexadecenyl, octadecenyl and eicosanyl or mixtures, such as coconut fatty alkyl, tallow fatty alkyl and behenyl.
  • cycloalkyl is in general a cyclic aliphatic radical having 5-20 carbon atoms.
  • Preferred cycloalkyl radicals are cyclopentyl and cyclohexyl.
  • reaction products according to the invention contain the bivalent structural units A, C and D and, if required, B.
  • the structural units A, B and C are derived from ⁇ , ⁇ -unsaturated dicarboxylic anhydrides of the general formulae E and/or F ##STR7## such as maleic anhydride, itaconic anhydride or citraconic anhydride, preferably maleic anhydride.
  • the structural units D are derived from the ⁇ , ⁇ -unsaturated olefins of the general formula G. ##STR8##
  • ⁇ , ⁇ -unsaturated olefins may be mentioned by way of example:
  • styrene ⁇ -methylstyrene, dimethylstyrene, ⁇ -ethylstyrene, diethylstyrene, isopropylstyrene, tert-butylstyrene, diisobutylene and ⁇ -olefins, such as decene, dodecene, tetradecene, pentadecene, hexadecene, octadecene, C 20 - ⁇ -olefin, C 24 - ⁇ -olefin, C 30 - ⁇ -olefin, tripropenyl, tetrapropenyl, pentapropenyl and mixtures thereof.
  • ⁇ -Olefins having 10 to 24 carbon atoms and styrene are preferred, and ⁇ -olefins having 12 to 20 carbon atoms are particularly preferred.
  • radicals NRR 3 (structural unit A) and NR (structural unit C) are derived from polyetheramines of the general formula (H) or from alkanolamines of the formula (I) ##STR9## in which the radicals Z, R 3 , R 5 and R 6 and n have the abovementioned meanings and R 9 and R 10 are identical or different and are hydrogen, C 1 -C 22 -alkyl, C 2 -C 22 -alkenyl or Z--OH, with the proviso that at least one radical R 9 or R 10 is Z--OH.
  • alkanolamines The following may be mentioned as examples of alkanolamines:
  • the radical X is derived from the reaction products of the dicarboxylic anhydride groups with alcohols of the formula HO--(C 1 -C 30 )-alkyl and/or amines of the formula ENR 3 R 4 .
  • n-hexylamine n-octylamine, n-tetradecylamine, n-hexadecylamine, n-stearylamine and N,N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
  • the index n indicates the degree of alkoxylation, i.e. the number of oxyalkyl groups which undergo addition per mol.
  • Alternating polymers of maleic anhydride (MA) and ⁇ , ⁇ -unsaturated olefins are known per se (Houben-Weyl, E20 (1987), page 1239 et seq.).
  • the polymers can be prepared for example, as described in U.S. Pat. No. 4,526,950, by copolymerization of MA and olefins, if necessary in the presence of inert solvents, in the presence of free radical chain initiators.
  • the polyetheramines used are known. They can be prepared, for example, by reductive amination of polyglycols. Furthermore, polyetheramines having a primary amino group can be prepared by an addition reaction of polyglycols with acrylonitrile and subsequent catalytic hydrogenation. Moreover, polyetheramines are obtainable by reaction of polyethers with phosgene or thionyl chloride and subsequent amination to give the polyetheramine.
  • the polyetheramines used according to the invention are commercially available (for example) under the name ®Jeffamine (Texaco). Their molecular weight is up to 2000 g/mol and the ethylene oxide/propylene oxide ratio is from 1:10 to 6:1.
  • the invention also relates to a process for the preparation of the reaction products according to the invention, wherein monomers of the general formulae E and/or F are first polymerized with a monomer of the general formula G and then reacted with a polyetheramine of the formula H and/or an amine of the formula I.
  • the polymerization is carried out by known, batchwise or continuous polymerization methods, such as mass, suspension, precipitation or solution polymerization, and initiation with suitable free radical chain initiators, for example hydroperoxides, peroxides or azo compounds, such as dilauroyl peroxide, dibenzoyl peroxide, tert-butyl perpivalate, tert-butyl permaleate, tert-butyl perbenzoate, dicumyl peroxide, tert-butyl cumyl peroxide, di-tert-butyl peroxide, cumyl hydroperoxide, tert-butyl hydroperoxide, 2,2'-azobis(2-methylpropanonitrile), 2,2'-azobis(2-methylbutyronitrile) and mixtures with one another.
  • these initiators are used in amounts of from 0.1 to 20% by weight, preferably from 0.2 to 10% by weight, based on the monomers.
  • the polymerization is carried out as a rule at temperatures of 40°-400° C., preferably 80°-250° C., pressure expediently being used when ⁇ , ⁇ -unsaturated olefins or solvents having boiling points below the polymerization temperature are used.
  • the polymerization is usually carried out in the absence of air, for example under nitrogen, since oxygen interferes with the polymerization.
  • it is expedient to ensure that the half-life of the initiator or of the initiator system at the chosen polymerization temperature is less than 3 hours.
  • regulators are, for example, organic mercapto compounds, such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and tert-dodecyl mercaptan, which are generally used in amounts of from 0.1% by weight to 10% by weight.
  • organic mercapto compounds such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and tert-dodecyl mercaptan, which are generally used in amounts of
  • Apparatuses suitable for the polymerization are, for example, conventional stirred vessels having, for example, anchor stirrers, paddle stirrers, impeller stirrers or multistage impulse countercurrent agitators and, for the continuous preparation, stirred vessel cascades, tube reactors or static mixers.
  • Preferred process for the preparation of the polymers is solution polymerization. It is carried out in solvents in which the monomers and the resulting polymer are soluble. Suitable solvents for this purpose are all those which meet these requirements and which do not react with the monomers and with the resulting polymers.
  • organic, preferably aromatic and/or aliphatic, solvents such as cumene, toluene, xylene, ethylbenzene, decane, pentadecane or commercial solvent mixtures, such as ®Solvent Naphtha, ®Shellsol AB or ®Solvesso 150, ®Solvesso 200, ®Solvesso 250, ®EXXSOL, ®ISOPAR and ®Shellsol D types.
  • solvents such as cumene, toluene, xylene, ethylbenzene, decane, pentadecane or commercial solvent mixtures, such as ®Solvent Naphtha, ®Shellsol AB or ®Solvesso 150, ®Solvesso 200, ®Solvesso 250, ®EXXSOL, ®ISOPAR and ®Shellsol D types.
  • all monomers may be initially introduced and may be polymerized by adding a free radical chain initiator and with the supply of heat. Expediently, however, the solvent and some of the monomers (for example about 5-20% by weight) are initially taken and the remainder of the monomer mixture is metered in with the initiator and, if required, coinitiator and regulator.
  • the solvent and the ⁇ , ⁇ -unsaturated olefin of the formula G are also initially introduced into the polymerization reactor and, after the polymerization temperature has been reached, the anhydride-containing monomer of the formulae E and/or F, if necessary dissolved in solvent, and the initiator and, if required, coinitiator and regulator are metered in.
  • the concentration of the monomers to be polymerized is from 20 to 95% by weight, preferably from 50 to 90% by weight.
  • the copolymer obtained in the polymerization, described above, of ⁇ , ⁇ -unsaturated dicarboxylic anhydride and ⁇ , ⁇ -unsaturated olefin can be isolated by evaporating the solvent.
  • a solvent in which the subsequent reaction with polyetheramine and/or alkanolamine can take place is preferably chosen for the polymerization.
  • the use of the corresponding dicarboxylic acids cannot be excluded.
  • reaction products according to the invention by reaction of the polymers described above with polyetheramine of the formula H and/or amine of the formula I is carried out at temperatures of from 50° to 250° C., preferably from 60° to 200° C. While amides are preferably formed at temperatures below 100° C., imides are preferably formed from primary amines at higher temperatures.
  • the polyetheramine and/or amine is used in amounts of from about 0.01 to 2 mol per mol of polymerized dicarboxylic anhydride. The use of larger amounts is possible but has no advantage.
  • amidoammonium salts are obtained at low reaction temperatures (30°-120° C.).
  • the formation of a second amido group requires temperatures above 120° C., longer residence times and removal of water. If amounts smaller than 1 mol of the secondary amine are used, complete conversion to the monoamide does not take place.
  • hemiamides, imides and/or diamides are formed, depending on the reaction conditions. If less than an equimolar amount, based on the dicarboxylic anhydride groups, of polyetheramine is added, remaining acid groups may be esterified by reaction with alcohols or amidated by reaction with primary or secondary amines of the formula (I). In the case of the formation of hemiamies, the remaining acid group may be esterified with a fatty alcohol or neutralized with an amine.
  • the polymer containing structural units derived from an ⁇ , ⁇ -unsaturated dicarboxamide and an ⁇ , ⁇ -unsaturated olefin, if necessary dissolved in an inert solvent, is initially introduced and the polyetheramine is metered in.
  • Suitable solvents are organic, preferably aromatic, solvents, such as toluene, xylene and high-boiling solvent mixtures, such as ®Shellsol AB.
  • a further possibility for the preparation of the reaction products according to the invention is to use an alkanolamine of the formula I instead of the polyetheramines in the preparation process described above and to subject it to subsequent oxyalkylation.
  • reaction temperature is from 50° to 100° C. (amide formation). In the case of primary amines, the reaction is carried out at temperatures above 100° C. (imide formation).
  • the oxyalkylation is usually carried out at temperatures of from 70° to 170° C. with catalysis by bases, such as NaOH or NaOCH 3 , by supplying gaseous alkylene oxide, such as ethylene oxide (EO) and/or propylene oxide (PO).
  • bases such as NaOH or NaOCH 3
  • gaseous alkylene oxide such as ethylene oxide (EO) and/or propylene oxide (PO).
  • EO ethylene oxide
  • PO propylene oxide
  • reaction products according to the invention by reaction of the monomers of the formulae E and/or F with polyetheramine of the formula H and subsequent polymerization with monomers of the formula G.
  • the monomers of the formulae E and/or F are initially introduced together with the polyetheramine of the formula H in a suitable solvent and heated to a temperature below 100° C.
  • the hemiamide is then polymerized as described above. Polymerization is preferably effected in solution.
  • reaction products according to the invention as mixtures with ethylene/vinyl ester copolymers, have an excellent action as paraffin dispersants in paraffin-containing middle distillates and lead to a further reduction of the CFPP (Cold Filter Plugging Point).
  • the paraffins contained in the middle distillates may be straight-chain or branched alkanes having about 10-50 carbon atoms.
  • these mixtures comprise from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the reaction products according to the invention and from 1 to 10,000 ppm, preferably from 50 to 1000 ppm, of ethylene/vinyl ester copolymers.
  • copolymers which have further suitable structural units are also suitable.
  • the copolymers according to the invention and ethylene/vinyl ester copolymers may also be added as individual substances to the middle distillates which already contain one of these components.
  • Suitable vinyl ester monomers are C 1 -C 20 -alkyl vinyl esters, preferably C 1 -C 12 -alkyl vinyl esters, e.g. vinyl acetate, vinyl propionate, vinyl neononanoate and vinyl neodecanoate, and vinyl esters of saturated C 10 -C 24 -fatty acids.
  • Further suitable ethylene monomers are esters of unsaturated carboxylic acids, preferably the C 1 -C 24 -alkyl esters of acrylic acid, methacrylic acid and fumaric acid, and diisobutylene.
  • ethylene/vinyl ester copolymers or tarpolymers
  • DE-B-11 47 799 ethylene/vinyl acetate
  • DE-A-32 47 753 ethylene/alkenecarboxylates, vinyl carboxylares/vinyl ketones
  • Preferred ethylene/vinyl ester copolymers are those which contain essentially 80-51% by weight of ethylene and 20-49% by weight of vinyl acetate or vinyl propionate.
  • Preferred ethylene/vinyl ester terpolymers contain, in addition to 79-40% by weight of ethylene, 20-35% by weight, preferably 1-15% by weight of vinyl acetate or vinyl propionate and 1-25% by weight, preferably 1-15% by weight of diisobutylene, vinyl neononanoate or vinyl neodecanoate.
  • Suitable quaternary ammonium salts have the general formula
  • radicals R 11 are identical or different and are C 1 -C 30 -alkyl, preferably C 1 -C 22 -alkyl, C 1 -C 30 -alkenyl, preferably C 1 -C 22 -alkenyl, benzyl or a radical of the formula --(CH 2 --CH 2 --O) n --R 12 , in which R 12 is hydrogen or a fatty acid radical of the formula C(O)--R 13 , in which R 13 is C 6 -C 40 -alkyl or C 6 -C 40 -alkenyl, n is a number from 1 to 30 and X is halogen, preferably chlorine, or methosulfate.
  • the mixtures of the reaction products according to the invention, ethylene/vinyl ester copolymers and quaternary ammonium salts usually comprise from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the reaction products according to the invention, from 10 to 10,000 ppm, preferably from 50 to 1000 ppm, of ethylene/vinyl ester copolymers and from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the quaternary ammonium salts.
  • reaction products according to the invention and the mixtures described above improve the low-temperature behavior of these oils and thus result in improved flow behavior compared with the prior art.
  • the CFPP and the paraffin dispersing are improved.
  • the cold flow behavior is measured by the CFPP test according to EN 116 (European Standard).
  • the paraffin dispersing in middle distillates can be detected by storage of the additive-containing oil samples in a refrigerator at temperatures of from -13° to -20° C. (procedure according to M. Feustel et al., Erdol, Kohle, Erdgas & Petrochemie Mineral oil, coal, natural gas and petroleum chemistry!, Vol. 43, page 396, FIG. 2 (1990)) with subsequent visual assessment of the sedimentation behavior and separation of the oil sample into an upper and lower phase according to the CFPP value (EN 116).
  • the polyetheramines used are commercial products from Texaco (®Jeffamine) of the general formula CH 3 O-- CH 2 CH(R)O! n --CH 2 CH(CH 3 )--NH 2 having the following specifications: (if R is H, the square bracket means EO; if R is CH 3 , the square bracket means PO)
  • ®Shellsol AB and ®Solvent Naphtha are commercial solvents (mixture of aromatics having a boiling range of 185°-210° C.) from Shell or Veba Oel.
  • the reactions are carried out in 4-necked round-bottomed flasks equipped with a stirrer, a reflux condenser, an internal thermometer, an electric heating bath and, if required, a gas inlet tube.
  • the K values were determined according to Ubbelohde by means of a 1% strength by weight solution in toluene at 25° C.
  • the solids contents were determined by drying, at 120° C. under reduced pressure (200 mbar) for 16 hours, the solutions obtained from the reactions.
  • the resulting, yellow solution has a solids content of 49%, and the brittle, slightly yellow-coloured, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.78%.
  • the K value is 17.
  • the resulting solution has a solids content of 48%, and the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.72%.
  • a solution of 31 g of a maleic anhydride/C 14/16 - ⁇ -olefin copolymer (containing 95 mmol of anhydride groups) in 110 g of ®Solvent Naphtha and 3 g (5 mmol) of ®Jeffamine M-600 are stirred for two hours at 140° C. and, after the addition of a mixture of 33 g (90 mmol) of dicoconut fatty amine and 43 g (90 mmol) of ditallow fatty amine, for a further 2 hours at 90° C.
  • the resulting solution has a solids content of 49% and an acid number of 22 mg KOH/g.
  • the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.58%.
  • a solution of 22 g of maleic anhydride/C 14/16 - ⁇ -olefin copolymer (containing 70 mmol of anhydride groups) in 100 g of ®Solvent Naphtha is stirred with a mixture of 14 g (15 mmol) of ®Jeffamine M-1000 and 63 g (126 mmol) of ditallow fatty amine for four hours at 90° C.
  • the resulting solution has a solids content of 50% and an acid number of 20 mg KOH/g.
  • the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.58%.
  • a solution of 24 g of a maleic anhydride/C 20/22 - ⁇ -olefin copolymer (containing 50 mmol of anhydride groups) in 100 g of ®Solvent Naphtha and 50 g (50 mmol) of ®Jeffamine M-1000 are stirred for three hours at 90° C. and then neutralized with 25 g (50 mmol) of ditallow fatty amine.
  • the resulting solution has a solids content of 52% and an acid number of 13 mg KOH/g.
  • the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.37%.
  • the resulting orange-colored solution has a solids content of 53% and an acid number of 34 mg KOH/g.
  • the brittle, waxy reaction product obtained after drying contains no titratable basic nitrogen.
  • An IR band at 1730 cm -1 shows the presence of ester groups; bands at 1700 cm -1 (shoulder) and 1770 cm -1 indicate the presence of imido groups.
  • a 50% strength by weight solution of 40 g (0.08 mol) of ditallow fatty amine in ®Solvent Naphtha is added to 117 g of the polymer solution according to Example 4 and the mixture is stirred for 1 hour at 60° C.
  • the resulting reddish, low-viscosity polymer solution has a solids content of 46% by weight.
  • the brittle, reddish, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.69%.
  • the resulting low-viscosity polymer solution has a solids content of 51% by weight.
  • the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.67%.
  • the acid number is 11 mg KOH/g.
  • the resulting polymer solution has a solids content of 44% by weight. It contains no basic nitrogen; IR bands at 1700 and 1770 cm -1 indicate the presence of imido groups.
  • the K value of the polymer (1% strength in toluene; according to Ubbelohde) is 14.
  • a mixture of 17 g (0.02 mol) of the polyetherimide according to Example 11, 70 g (0.19 mol) of N-octadecylmaleimide and 74 g (0.29 mol) of 1-octadecene is heated to 160° C. while passing through nitrogen. At this temperature, an initiator solution comprising 1.8 g of di-tert-butyl peroxide in 44 g of ®Solvent Naphtha is added. After the exothermic reaction has ceased, stirring is continued for one hour at 160° C.
  • the resulting solution has a solids content of 58%.
  • the brittle, waxy reaction product obtained after drying has a K value of 16.
  • 363 g of a solution of 218 g of a maleic anhydride C 20/22 -copolymer (containing 0.45 mol of anhydride groups) in 145 g of ®Solvent Naphtha are added to a solution of 27.4 g (0.45 mol) of ethanolamine in 109.5 g of ®Solvent Naphtha at 90° C. in the course of one hour. Thereafter, the mixture is heated to 160° C. and resulting water of reaction is distilled off while passing through a gentle stream of nitrogen in the course of 1.5 hours.
  • the acid number of the resulting 54% strength by weight polymer solution is 3 mg KOH/g; no titratable basic nitrogen is present.
  • the IR spectrum shows an intensive band at 1690 cm -1 , which is characteristic of imides.
  • FI(A) Ethylene/vinyl acetate/vinyl versatate copolymer (containing about 31% of vinyl acetate), melt viscosity (V 140 ) about 110 mPa.s
  • FI(B) Ethylene/vinyl acetate copolymer (containing about 32% of vinyl acetate), average molecular weight about 1500

Abstract

The invention relates to reaction products of polyetheramines with polymers containing dicarboxylic anhydride groups, which contain 20-80, preferably 40-60, mol % of bivalent structural units A and/or C and, if required, B ##STR1## in which R1 and R2, independently of one another, are hydrogen or methyl,
a and b are equal to zero or one and a+b is equal to one,
Y is X or NRR3,
X is --OH, --O--C1-30 -alkyl, NR3 R4 or --O.sup.⊖ N.sup.⊕ R3 R4,
R3 and R4, independently of one another, are hydrogen, C6 -C40 -alkyl or R,
R is ##STR2## with the proviso that at least 1 mol % of the anhydride groups bonded to the polymer have reacted with a polyetheramine,
Z is C2 -C4 -alkyl,
n is a number from 1 to 1000,
R5 is hydrogen, C1 -C30 -alkyl, C5 -C12 -cycloalkyl or C6 -C30 -aryl and
R6 is hydrogen or C1 -C4 -alkyl, preferably methyl, and
80-20 mol %, preferably 60-40 mol % of bivalent structural units D ##STR3## in which R7 is hydrogen or C1 -C4 -alkyl and
R8 is C1 -C60 -alkyl or C6 -C18 -aryl.

Description

DESCRIPTION
Reaction products of polyetheramines with polymers of α,β-unsaturated dicarboxylic acids
Mineral oils and mineral oil distillates, such as diesel fuel or heating oil, contain as a rule a proportion of dissolved n-paraffins which crystallize out when the temperature decreases and may thus lead to a deterioration in the flow properties of these oils or distillates. In the case of mineral oils, this may lead to deposits on the wall during transport through pipelines and in particular cases (for example on shutdown of a pipeline) even to complete blockage. Furthermore, precipitates of paraffins may lead to complications in the storage and further processing of the mineral oils. In the case of mineral oil distillates, blockages of the filters in diesel engines and furnaces may occur as a result of the crystallization.
In addition to the traditional methods for overcoming these paraffin problems (thermally, mechanically or by means of solvents), which are based merely on removal of the precipitates already formed, recent years have seen the development of a number of chemical additives (cold flow improvers, paraffin inhibitors) which interact physically with the precipitated paraffin crystals and thus modify their shape, size and adhesion properties. The additives act as additional crystal nuclei and partially crystallize out with the paraffins, resulting in a larger number of small paraffin crystals of modified crystal shape. Oils into which additives have been introduced can still be pumped and processed at temperatures which are frequently more than 20° C. lower than in the case of oils which have not been treated with additives.
A further effect of the cold flow improvers is explained by dispersing of the crystals. Thus, paraffin dispersants prevent sedimentation of the crystals and hence the formation of a paraffin-rich layer on the bottom of the storage container.
The unpublished European Patent Application No. 94100009.3 relates to terpolymers based on α,β-unsaturated dicarboxylic anhydrides, α,β-unsaturated compounds and polyoxyalkylene ethers of lower, unsaturated alcohols and to their use as paraffin inhibitors for paraffin-containing mineral oil products.
EP-A-0 154 177 describes reaction products of copolymers based on maleic anhydride and α,β-unsaturated compounds with primary monoalkylamines and/or aliphatic alcohols. These copolymers are suitable in particular as paraffin inhibitors for paraffin-containing mineral oil products, for example crude oils and distillation residues from mineral oil processing.
EP-A-0 436 151 discloses reaction products of copolymers based on maleic anhydride and α,β-unsaturated compounds with dialkylamines. These copolymers are added to mineral oil middle distillates in amounts of from 50 to 1000 ppm. Such mineral oil middle distillates already contain, as a rule, flow improvers, such as ethylene/vinyl ester copolymers.
EP-A-0 283 293 discloses copolymers derived from the polymerization of an aliphatic olefin with maleic anhydride, where the copolymer must have both an ester group and an amido group, each of which contains an alkyl group having at least 10 carbon atoms, and copolymers from the reaction of a secondary amine with a polymer which contains anhydride groups, equal amounts of amides and amine salts being prepared from the anhydride groups.
EP-A-0 523 672 relates to copolymers of ethylenically unsaturated carboxylic esters with polyoxyalkylene ethers of lower, unsaturated alcohols and their use in paraffin-containing oils, such as crude oils, residue oils and oil distillates.
EP-A-0 405 893 discloses a lubricant containing an ethylene/olefin copolymer grafted with maleic anhydride and reacted with alkyleneamine or oxyalkyleneamine having at least two primary amino groups and an alkenylsuccinic anhydride.
U.S. Pat. No. 4,632,769 relates to an ethylene/olefin copolymer grafted with maleic anhydride and reacted with alkyleneamine or oxyalkyleneamine having at least two amino groups and its use as a viscosity index improver in lubricating oils and as an additive in fuel oils.
WO 8700857 and WO 8700856 disclose reaction products of alkenylsuccinic anhydrides with polyetheramines as thickeners which are stable to shearing and intended for water-based lubricants and hydraulic fluids.
EP-A-310 875 describes the use of polyetheramines as fuel additives for gasoline engines for cleaning valves and carburettors.
However, the paraffin-inhibiting and paraffin-dispersing effect of the known cold flow improvers is insufficient, particularly in middle distillates, so that in some cases large paraffin crystals may form on cooling and, owing to their higher density, may settle out in the course of time and lead to a paraffin-rich layer on the bottom and a low-paraffin upper layer.
It has now been found that the paraffin crystals precipitated on cooling remain dispersed as a result of the addition of reaction products of polyetheramines with polymers containing dicarboxylic anhydride groups to mineral oil distillates to which flow improvers based on ethylene/vinyl ester copolymers have been added.
This uniform dispersing results in a homogeneously cloudy phase in which the CFPPs (Cold Filter Plugging Points) of the upper and lower phase are approximately equal, said CFPPs being decisive for the operability.
The invention relates to reaction products of polyetheramines with polymers containing dicarboxylic anhydride groups, which contain 20-80, preferably 40-60, mol % of bivalent structural units A and/or C and, if required, B ##STR4## in which R1 and R2, independently of one another, are hydrogen or methyl,
a and b are equal to zero or one and a+b is equal to one,
Y is X or NRR3,
X is --OH, --O--C1-30 -alkyl, NR3 R4 or --O.sup.⊖ N.sup.⊕ R3 R4,
R3 and R4, independently of one another, are hydrogen, C6 -C40 -alkyl or R,
R is ##STR5## with the proviso that at least 1 mol % of the anhydride groups bonded to the polymer has been reacted with a polyetheramine,
Z is C2 -C4 -alkyl,
n is a number from 1 to 1000,
R5 is hydrogen, C1 -C30 -alkyl, C5 -C12 -cycloalkyl or C6 -C30 -aryl and
R6 is hydrogen or C1 -C4 -alkyl, preferably methyl, and
80-20 mol %, preferably 60-40 mol % of bivalent structural units D ##STR6## in which R7 is hydrogen or C1 -C4 -alkyl and
R8 is C1 -C60 -alkyl or C6 -C18 -aryl.
The abovementioned alkyl, cycloalkyl and aryl radicals may be unsubstituted or substituted. Suitable substituents are, for example, (C1 -C6)-alkyl, halogens, such as fluorine, chlorine, bromine and iodine, preferably chlorine, and (C1 -C6)-alkoxy.
According to the invention, alkyl is in general a straight-chain or branched hydrocarbon radical having 1-30, preferably 10-24, carbon atoms. The following may be mentioned individually: n-butyl, tert-butyl, n-hexyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, dodecenyl, tetrapropenyl, tetradecenyl, pentapropenyl, hexadecenyl, octadecenyl and eicosanyl or mixtures, such as coconut fatty alkyl, tallow fatty alkyl and behenyl.
According to the invention, cycloalkyl is in general a cyclic aliphatic radical having 5-20 carbon atoms. Preferred cycloalkyl radicals are cyclopentyl and cyclohexyl.
The reaction products according to the invention contain the bivalent structural units A, C and D and, if required, B.
Specifically, the structural units A, B and C are derived from α,β-unsaturated dicarboxylic anhydrides of the general formulae E and/or F ##STR7## such as maleic anhydride, itaconic anhydride or citraconic anhydride, preferably maleic anhydride.
The structural units D are derived from the α,β-unsaturated olefins of the general formula G. ##STR8##
The following α,β-unsaturated olefins may be mentioned by way of example:
styrene, α-methylstyrene, dimethylstyrene, α-ethylstyrene, diethylstyrene, isopropylstyrene, tert-butylstyrene, diisobutylene and α-olefins, such as decene, dodecene, tetradecene, pentadecene, hexadecene, octadecene, C20 -α-olefin, C24 -α-olefin, C30 -α-olefin, tripropenyl, tetrapropenyl, pentapropenyl and mixtures thereof. α-Olefins having 10 to 24 carbon atoms and styrene are preferred, and α-olefins having 12 to 20 carbon atoms are particularly preferred.
The radicals NRR3 (structural unit A) and NR (structural unit C) are derived from polyetheramines of the general formula (H) or from alkanolamines of the formula (I) ##STR9## in which the radicals Z, R3, R5 and R6 and n have the abovementioned meanings and R9 and R10 are identical or different and are hydrogen, C1 -C22 -alkyl, C2 -C22 -alkenyl or Z--OH, with the proviso that at least one radical R9 or R10 is Z--OH.
The following may be mentioned as examples of alkanolamines:
monoethanolamine, diethanolamine, N-methylethanolamine, 3-aminopropanol, isopropanol, diglycolamine, 2-amino-2-methylpropanol and mixtures thereof.
The radical X is derived from the reaction products of the dicarboxylic anhydride groups with alcohols of the formula HO--(C1 -C30)-alkyl and/or amines of the formula ENR3 R4.
The following may be mentioned as examples of primary amines:
n-hexylamine, n-octylamine, n-tetradecylamine, n-hexadecylamine, n-stearylamine and N,N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
The following may be mentioned as examples of secondary amines:
didecylamine, ditetradecylamine, distearylamine, dicoconut fatty amine, ditallow fatty amine and mixtures thereof.
The following may be mentioned as examples of alcohols:
methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, octanol, tetradecanol, hexa-decanol, octadecanol, tallow fatty alcohol, behenyl alcohol and mixtures thereof.
In the case of the monomers of the formula H, the index n indicates the degree of alkoxylation, i.e. the number of oxyalkyl groups which undergo addition per mol.
Alternating polymers of maleic anhydride (MA) and α,β-unsaturated olefins are known per se (Houben-Weyl, E20 (1987), page 1239 et seq.). The polymers can be prepared for example, as described in U.S. Pat. No. 4,526,950, by copolymerization of MA and olefins, if necessary in the presence of inert solvents, in the presence of free radical chain initiators.
The polyetheramines used are known. They can be prepared, for example, by reductive amination of polyglycols. Furthermore, polyetheramines having a primary amino group can be prepared by an addition reaction of polyglycols with acrylonitrile and subsequent catalytic hydrogenation. Moreover, polyetheramines are obtainable by reaction of polyethers with phosgene or thionyl chloride and subsequent amination to give the polyetheramine. The polyetheramines used according to the invention are commercially available (for example) under the name ®Jeffamine (Texaco). Their molecular weight is up to 2000 g/mol and the ethylene oxide/propylene oxide ratio is from 1:10 to 6:1.
The invention also relates to a process for the preparation of the reaction products according to the invention, wherein monomers of the general formulae E and/or F are first polymerized with a monomer of the general formula G and then reacted with a polyetheramine of the formula H and/or an amine of the formula I.
The polymerization is carried out by known, batchwise or continuous polymerization methods, such as mass, suspension, precipitation or solution polymerization, and initiation with suitable free radical chain initiators, for example hydroperoxides, peroxides or azo compounds, such as dilauroyl peroxide, dibenzoyl peroxide, tert-butyl perpivalate, tert-butyl permaleate, tert-butyl perbenzoate, dicumyl peroxide, tert-butyl cumyl peroxide, di-tert-butyl peroxide, cumyl hydroperoxide, tert-butyl hydroperoxide, 2,2'-azobis(2-methylpropanonitrile), 2,2'-azobis(2-methylbutyronitrile) and mixtures with one another. In general, these initiators are used in amounts of from 0.1 to 20% by weight, preferably from 0.2 to 10% by weight, based on the monomers.
The polymerization is carried out as a rule at temperatures of 40°-400° C., preferably 80°-250° C., pressure expediently being used when α,β-unsaturated olefins or solvents having boiling points below the polymerization temperature are used. The polymerization is usually carried out in the absence of air, for example under nitrogen, since oxygen interferes with the polymerization. In choosing the initiator or the initiator system, it is expedient to ensure that the half-life of the initiator or of the initiator system at the chosen polymerization temperature is less than 3 hours.
In order to obtain low molecular weight polymers, it is often expedient to work in the presence of regulators known per se. Suitable regulators are, for example, organic mercapto compounds, such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and tert-dodecyl mercaptan, which are generally used in amounts of from 0.1% by weight to 10% by weight.
Apparatuses suitable for the polymerization are, for example, conventional stirred vessels having, for example, anchor stirrers, paddle stirrers, impeller stirrers or multistage impulse countercurrent agitators and, for the continuous preparation, stirred vessel cascades, tube reactors or static mixers.
Preferred process for the preparation of the polymers is solution polymerization. It is carried out in solvents in which the monomers and the resulting polymer are soluble. Suitable solvents for this purpose are all those which meet these requirements and which do not react with the monomers and with the resulting polymers. These are, for example, organic, preferably aromatic and/or aliphatic, solvents, such as cumene, toluene, xylene, ethylbenzene, decane, pentadecane or commercial solvent mixtures, such as ®Solvent Naphtha, ®Shellsol AB or ®Solvesso 150, ®Solvesso 200, ®Solvesso 250, ®EXXSOL, ®ISOPAR and ®Shellsol D types.
In the preparation, all monomers may be initially introduced and may be polymerized by adding a free radical chain initiator and with the supply of heat. Expediently, however, the solvent and some of the monomers (for example about 5-20% by weight) are initially taken and the remainder of the monomer mixture is metered in with the initiator and, if required, coinitiator and regulator.
In another preferred procedure, the solvent and the α,β-unsaturated olefin of the formula G are also initially introduced into the polymerization reactor and, after the polymerization temperature has been reached, the anhydride-containing monomer of the formulae E and/or F, if necessary dissolved in solvent, and the initiator and, if required, coinitiator and regulator are metered in.
The concentration of the monomers to be polymerized is from 20 to 95% by weight, preferably from 50 to 90% by weight.
The copolymer obtained in the polymerization, described above, of α,β-unsaturated dicarboxylic anhydride and α,β-unsaturated olefin can be isolated by evaporating the solvent. However, a solvent in which the subsequent reaction with polyetheramine and/or alkanolamine can take place is preferably chosen for the polymerization. As a rule, it is advantageous to use the anhydrides of the dicarboxylic acids and not the free acids for the polymerization, since these react more readily with olefins and can then be reacted selectively with polyetheramines and/or alkanolamines. However, the use of the corresponding dicarboxylic acids cannot be excluded.
After polymerization, the reaction with polyetheramines of the general formula H and/or amaines of the formula I is carried out.
The preparation of the reaction products according to the invention by reaction of the polymers described above with polyetheramine of the formula H and/or amine of the formula I is carried out at temperatures of from 50° to 250° C., preferably from 60° to 200° C. While amides are preferably formed at temperatures below 100° C., imides are preferably formed from primary amines at higher temperatures.
The polyetheramine and/or amine is used in amounts of from about 0.01 to 2 mol per mol of polymerized dicarboxylic anhydride. The use of larger amounts is possible but has no advantage.
If 2 mol of a secondary amine of the formulae H and/or I are used, amidoammonium salts are obtained at low reaction temperatures (30°-120° C.). The formation of a second amido group requires temperatures above 120° C., longer residence times and removal of water. If amounts smaller than 1 mol of the secondary amine are used, complete conversion to the monoamide does not take place.
Hence, hemiamides, imides and/or diamides are formed, depending on the reaction conditions. If less than an equimolar amount, based on the dicarboxylic anhydride groups, of polyetheramine is added, remaining acid groups may be esterified by reaction with alcohols or amidated by reaction with primary or secondary amines of the formula (I). In the case of the formation of hemiamies, the remaining acid group may be esterified with a fatty alcohol or neutralized with an amine.
Preferably, the polymer containing structural units derived from an α,β-unsaturated dicarboxamide and an α,β-unsaturated olefin, if necessary dissolved in an inert solvent, is initially introduced and the polyetheramine is metered in. However, it is also possible for all starting materials to be mixed at room temperature and caused to react by increasing the temperature. Suitable solvents are organic, preferably aromatic, solvents, such as toluene, xylene and high-boiling solvent mixtures, such as ®Shellsol AB.
A further possibility for the preparation of the reaction products according to the invention is to use an alkanolamine of the formula I instead of the polyetheramines in the preparation process described above and to subject it to subsequent oxyalkylation.
From 0.01 to 2 mol, preferably from 0.01 to 1 mol, of alkanolamine are used per mol of anhydride. The reaction temperature is from 50° to 100° C. (amide formation). In the case of primary amines, the reaction is carried out at temperatures above 100° C. (imide formation).
The oxyalkylation is usually carried out at temperatures of from 70° to 170° C. with catalysis by bases, such as NaOH or NaOCH3, by supplying gaseous alkylene oxide, such as ethylene oxide (EO) and/or propylene oxide (PO). Usually from 1 to 500, preferably from 1 to 100, mol of alkylene oxide are added per mol of hydroxyl group.
In a further variant, it is possible to prepare the reaction products according to the invention by reaction of the monomers of the formulae E and/or F with polyetheramine of the formula H and subsequent polymerization with monomers of the formula G. For this purpose, the monomers of the formulae E and/or F are initially introduced together with the polyetheramine of the formula H in a suitable solvent and heated to a temperature below 100° C. The hemiamide is then polymerized as described above. Polymerization is preferably effected in solution.
It has been found that the reaction products according to the invention, as mixtures with ethylene/vinyl ester copolymers, have an excellent action as paraffin dispersants in paraffin-containing middle distillates and lead to a further reduction of the CFPP (Cold Filter Plugging Point). The paraffins contained in the middle distillates may be straight-chain or branched alkanes having about 10-50 carbon atoms. Usually, these mixtures comprise from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the reaction products according to the invention and from 1 to 10,000 ppm, preferably from 50 to 1000 ppm, of ethylene/vinyl ester copolymers. In addition to these ethylene/vinyl ester copolymers, copolymers which have further suitable structural units are also suitable. The copolymers according to the invention and ethylene/vinyl ester copolymers may also be added as individual substances to the middle distillates which already contain one of these components.
Suitable vinyl ester monomers are C1 -C20 -alkyl vinyl esters, preferably C1 -C12 -alkyl vinyl esters, e.g. vinyl acetate, vinyl propionate, vinyl neononanoate and vinyl neodecanoate, and vinyl esters of saturated C10 -C24 -fatty acids. Further suitable ethylene monomers are esters of unsaturated carboxylic acids, preferably the C1 -C24 -alkyl esters of acrylic acid, methacrylic acid and fumaric acid, and diisobutylene.
Such ethylene/vinyl ester copolymers (or tarpolymers) are described in detail in the patent literature. For example, DE-B-11 47 799 (ethylene/vinyl acetate), DE-A-32 47 753 (ethylene/alkenecarboxylates, vinyl carboxylares/vinyl ketones), U.S. Pat. No. 4,015,063 (ethylene, dimethylvinylcarbinol, fatty acid vinyl esters), EP-A-203 554 (ethylene/diisobutylene/vinyl acetate), EP-A-309 897 (ethylene/vinyl methoxyacetate) and DE-A-40 42 206 (ethylene/vinyl acetate/vinyl neononanoate or neodecanoate) may be mentioned.
Preferred ethylene/vinyl ester copolymers are those which contain essentially 80-51% by weight of ethylene and 20-49% by weight of vinyl acetate or vinyl propionate.
Preferred ethylene/vinyl ester terpolymers contain, in addition to 79-40% by weight of ethylene, 20-35% by weight, preferably 1-15% by weight of vinyl acetate or vinyl propionate and 1-25% by weight, preferably 1-15% by weight of diisobutylene, vinyl neononanoate or vinyl neodecanoate.
Furthermore, it has been found that mixtures of the reaction products according to the invention, the ethylene/vinyl ester copolymers described above and certain quaternary ammonium salts have an excellent action as paraffin dispersants in middle distillates.
Suitable quaternary ammonium salts have the general formula
.sup.⊕ N(R.sup.11).sub.4 X.sup.⊖
in which the radicals R11 are identical or different and are C1 -C30 -alkyl, preferably C1 -C22 -alkyl, C1 -C30 -alkenyl, preferably C1 -C22 -alkenyl, benzyl or a radical of the formula --(CH2 --CH2 --O)n --R12, in which R12 is hydrogen or a fatty acid radical of the formula C(O)--R13, in which R13 is C6 -C40 -alkyl or C6 -C40 -alkenyl, n is a number from 1 to 30 and X is halogen, preferably chlorine, or methosulfate.
The following may be mentioned as examples of such quaternary ammonium salts: dihexadecyldimethylammonium chloride, distearyldimethylammoniumchloride, quaternization products of esters of di- and triethanolamine with long-chain fatty acids (lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid and fatty acid mixtures, such as coconut fatty acid, tallow fatty acid, hydrogenated tallow fatty acid, tall oil fatty acid), such as N-methyltriethanolammonium distearyl ester chloride, N-methyltriethanolammonium distearyl ester methosulfate, N,N-dimethyldiethanolammonium distearyl ester chloride, N-methyltriethanolammonium dioleyl ester chloride, N-methyltriethanolammonium trilauryl ester methosulfate, N-methyltriethanolammonium tristearyl ester methosulfate and mixtures thereof.
The mixtures of the reaction products according to the invention, ethylene/vinyl ester copolymers and quaternary ammonium salts usually comprise from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the reaction products according to the invention, from 10 to 10,000 ppm, preferably from 50 to 1000 ppm, of ethylene/vinyl ester copolymers and from 10 to 1000 ppm, preferably from 50 to 500 ppm, of the quaternary ammonium salts.
The reaction products according to the invention and the mixtures described above improve the low-temperature behavior of these oils and thus result in improved flow behavior compared with the prior art. In particular, the CFPP and the paraffin dispersing are improved.
The cold flow behavior is measured by the CFPP test according to EN 116 (European Standard).
The paraffin dispersing in middle distillates can be detected by storage of the additive-containing oil samples in a refrigerator at temperatures of from -13° to -20° C. (procedure according to M. Feustel et al., Erdol, Kohle, Erdgas & Petrochemie Mineral oil, coal, natural gas and petroleum chemistry!, Vol. 43, page 396, FIG. 2 (1990)) with subsequent visual assessment of the sedimentation behavior and separation of the oil sample into an upper and lower phase according to the CFPP value (EN 116).
EXAMPLES
The polyetheramines used are commercial products from Texaco (®Jeffamine) of the general formula CH3 O-- CH2 CH(R)O!n --CH2 CH(CH3)--NH2 having the following specifications: (if R is H, the square bracket means EO; if R is CH3, the square bracket means PO)
______________________________________                                    
Polyetheramine     EO/PO   MW                                             
______________________________________                                    
® Jeffamine M-600                                                     
                   1:9      600                                           
® Jeffamine M-715                                                     
                   13:2     715                                           
® Jeffamine M-1000                                                    
                   19:3    1000                                           
® Jeffamine M-2005                                                    
                    3:32   2000                                           
® Jeffamine M-2070                                                    
                   32:10   2000                                           
______________________________________                                    
®Shellsol AB and ®Solvent Naphtha are commercial solvents (mixture of aromatics having a boiling range of 185°-210° C.) from Shell or Veba Oel.
The reactions are carried out in 4-necked round-bottomed flasks equipped with a stirrer, a reflux condenser, an internal thermometer, an electric heating bath and, if required, a gas inlet tube.
The K values were determined according to Ubbelohde by means of a 1% strength by weight solution in toluene at 25° C.
The solids contents were determined by drying, at 120° C. under reduced pressure (200 mbar) for 16 hours, the solutions obtained from the reactions.
Example 1
Reaction product of a C14/16 -α-olefin/maleic anhydride copolymer containing 5 mol % (based on amount of maleic anhydride) of ®Jeffamine M-1000 and 0.9 mol equivalent of dicoconut fatty amine
83.6 g of a 29.4% strength by weight maleic anhydride/C14/16 -α-olefin copolymer solution in ®Shellsol AB (containing 132 mmol of anhydride groups) is stirred with 6.6 g (6.6 mmol) of ®Jeffamine M-1000 for two hours at 140° C. After cooling to 90° C., 46.8 g (120 mmol) of dicoconut fatty amine are added and stirring is continued for 3 hours at this temperature.
The resulting, yellow solution has a solids content of 49%, and the brittle, slightly yellow-coloured, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.78%. The K value is 17.
Example 2
Reaction product of a C14/16 -α-olefin/maleic anhydride copolymer containing 5 mol %, based on amount of maleic anhydride, of ®Jeffamine M-715 and 1.9 mol equivalents of dicoconut fatty amine
141 g of a 22% strength solution of a maleic anhydride/C14/16 -α-olefin copolymer (containing 95 mmol of anhydride groups) in ®Solvent Naphtha and 3.4 g (5 mmol) of ®Jeffamine M-715 are stirred for two hours at 140° C. and, after the addition of 69 g (180 mmol) of dicoconut fatty amine, for a further 2 hours at 90° C.
The resulting solution has a solids content of 48%, and the brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.72%.
Example 3
Reaction product of C14/16 -α-olefin/maleic anhydride copolymer containing 5 mol %, based on amount of maleic anhydride, ®Jeffamine M-600 and 1.9 mol equivalents of a mixture of dicoconut fatty amine and ditallow fatty amine (1:1)
A solution of 31 g of a maleic anhydride/C14/16 -α-olefin copolymer (containing 95 mmol of anhydride groups) in 110 g of ®Solvent Naphtha and 3 g (5 mmol) of ®Jeffamine M-600 are stirred for two hours at 140° C. and, after the addition of a mixture of 33 g (90 mmol) of dicoconut fatty amine and 43 g (90 mmol) of ditallow fatty amine, for a further 2 hours at 90° C.
The resulting solution has a solids content of 49% and an acid number of 22 mg KOH/g. The brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.58%.
Example 4
Reaction of a maleic anhydride/C14/16 -α-olefin copolymer with a mixture of ®Jeffamine M-1000 and ditallow fatty amine
A solution of 22 g of maleic anhydride/C14/16 -α-olefin copolymer (containing 70 mmol of anhydride groups) in 100 g of ®Solvent Naphtha is stirred with a mixture of 14 g (15 mmol) of ®Jeffamine M-1000 and 63 g (126 mmol) of ditallow fatty amine for four hours at 90° C.
The resulting solution has a solids content of 50% and an acid number of 20 mg KOH/g. The brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.58%.
Example 5
Reaction of a maleic anhydride/C20/22 -α-olefin copolymer with one equivalent of ®Jeffamine M-1000 and one equivalent of ditallow fatty amine
A solution of 24 g of a maleic anhydride/C20/22 -α-olefin copolymer (containing 50 mmol of anhydride groups) in 100 g of ®Solvent Naphtha and 50 g (50 mmol) of ®Jeffamine M-1000 are stirred for three hours at 90° C. and then neutralized with 25 g (50 mmol) of ditallow fatty amine.
The resulting solution has a solids content of 52% and an acid number of 13 mg KOH/g. The brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.37%.
Example 6
Reaction of a maleic anhydride/C18 -α-olefin copolymer with ®Jeffamine M-715 and behenyl alcohol.
A solution of 48 g of maleic anhydride/C18 -α-olefin copolymer (containing 0.13 mol of anhydride groups) in 96 g of ®Solvent Naphtha is stirred with 9.3 g (13 mmol) of ®Jeffamine M-715 and 32 g (1000 mmol) of behenyl alcohol (®Stenol A, Henkel) for three hours at 120° C.
The resulting orange-colored solution has a solids content of 53% and an acid number of 34 mg KOH/g. The brittle, waxy reaction product obtained after drying contains no titratable basic nitrogen. An IR band at 1730 cm-1 shows the presence of ester groups; bands at 1700 cm-1 (shoulder) and 1770 cm-1 indicate the presence of imido groups.
Example 7
Neutralization of the polymer solution according to Example 4 with ditallow fatty amine
A 50% strength by weight solution of 40 g (0.08 mol) of ditallow fatty amine in ®Solvent Naphtha is added to 117 g of the polymer solution according to Example 4 and the mixture is stirred for 1 hour at 60° C.
Example 8
Reaction of a maleic anhydride/vinyl neodecanoate copolymer with ®Jeffamine M-715 and ditallow fatty amine
123 g (containing 76 mmol of anhydride groups) of a 19% strength by weight solution of a maleic anhydride/vinyl decanoate copolymer in ®Solvent Naphtha are stirred with a mixture of 5.5 g (7.7 mmol) of ®Jeffamine M-715 and 72 g (145 mmol) of ditallow fatty amine for 3 hours at 90° C.
The resulting reddish, low-viscosity polymer solution has a solids content of 46% by weight. The brittle, reddish, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.69%.
Example 9
Reaction of a maleic anhydride/styrene copolymer with ®Jeffamine M-1000 and ditallow fatty amine
30 g (30 mmol) of ®Jeffamine M-1000 and 134 g (270 mmol) of ditallow fatty amine are added to a suspension of 30 g (containing 150 mmol of anhydride groups) of a maleic anhydride/styrene copolymer in 194 g of ®Solvent Naphtha and the mixture is stirred for 3 hours at 160° C. As the reaction progresses, the suspension becomes a clear solution.
The resulting low-viscosity polymer solution has a solids content of 51% by weight. The brittle, waxy reaction product obtained after drying has a titratable basic nitrogen content of 0.67%. The acid number is 11 mg KOH/g.
Example 10
Preparation of a maleic acid hemiamide with ®Jeffamine M-600
29.4 g (0.3 mol) of maleic anhydride and 180 g (0.3 mol) of ®Jeffamine M-600 (9 PO, I EO; MW about 600 g/mol) in 209 g of toluene are refluxed for 4 hours. After the solvent has been stripped off under reduced pressure, a yellow oil results. The product has a basic nitrogen content of 0.23% and an acid number of 67.4 mg KOH/g (hemiamide).
Example 11
Preparation of an imide from maleic anhydride and ®Jeffamine M-715
27 g (0.275 mol) of maleic anhydride and 179 g (0.25 mol) of ®Jeffamine M-715 are stirred for 6 hours at 180° C. with the addition of 0.4 g of hypophosphorous acid and while passing through a gentle stream of nitrogen. The resulting product has a acid number of 26 mg KOH/g; IR bands at 1700 and 1770 cm-1 indicate the formation of a carboximide.
Example 12
Preparation of a copolymer of a C14/16 -α-olefin and maleic acid hemiamide according to Example 10
a) An initiator solution comprising 2 g of di-tert-butyl peroxide in 8 g of ®Solvent Naphtha and
b) 110 g (0.2 mol) of maleic acid polyether monoamide according to Example 10 are metered simultaneously and continuously over a period of 2 hours into a solution of 27 g (0.14 mol) of tetradecene and 31 g (0.14 mol) of hexadecene in 159 g of ®Solvent Naphtha while passing through nitrogen at 160° C. from two metering funnels. Stirring is continued for one hour at 160° C.
The resulting polymer solution has a solids content of 44% by weight. It contains no basic nitrogen; IR bands at 1700 and 1770 cm-1 indicate the presence of imido groups. The K value of the polymer (1% strength in toluene; according to Ubbelohde) is 14.
Example 13
Terpolymer of C18 -α-olefin, C18 -maleimide and maleic acid polyetherimide according to Example 11
A mixture of 17 g (0.02 mol) of the polyetherimide according to Example 11, 70 g (0.19 mol) of N-octadecylmaleimide and 74 g (0.29 mol) of 1-octadecene is heated to 160° C. while passing through nitrogen. At this temperature, an initiator solution comprising 1.8 g of di-tert-butyl peroxide in 44 g of ®Solvent Naphtha is added. After the exothermic reaction has ceased, stirring is continued for one hour at 160° C.
The resulting solution has a solids content of 58%. The brittle, waxy reaction product obtained after drying has a K value of 16.
Example 14
Reaction of a copolymer of a C20/22 -α-olefin and maleic anhydride with monoethanolamine and subsequent oxyethylation
1st stage:
363 g of a solution of 218 g of a maleic anhydride C20/22 -copolymer (containing 0.45 mol of anhydride groups) in 145 g of ®Solvent Naphtha are added to a solution of 27.4 g (0.45 mol) of ethanolamine in 109.5 g of ®Solvent Naphtha at 90° C. in the course of one hour. Thereafter, the mixture is heated to 160° C. and resulting water of reaction is distilled off while passing through a gentle stream of nitrogen in the course of 1.5 hours.
The acid number of the resulting 54% strength by weight polymer solution is 3 mg KOH/g; no titratable basic nitrogen is present. The IR spectrum shows an intensive band at 1690 cm-1, which is characteristic of imides.
2nd stage:
0.58 g of sodium methylate is added to 213 g of the above polymer solution (containing 0.2 mol of hydroxyl groups) at 60° C. in an autoclave provided with a stirrer. The resulting methanol is distilled off in the course of one hour under reduced pressure.
44 g (1 mol) of ethylene oxide is then metered in over 30 minutes at from 95° to 110° C. and at a pressure of not more than 3.6 bar. Stirring is continued for one hour at 100° C. and, after cooling to 60° C., residual ethylene oxide is stripped off under reduced pressure.
A 61% strength, reddish brown polymer solution having a K value of 15 results. The reaction product is isolated as described above.
Use Examples:
______________________________________                                    
             Middle   Middle   Middle                                     
             distillate 1                                                 
                      distillate 2                                        
                               distillate 3                               
______________________________________                                    
Cloud point CP -8 -       8        -8                                     
(°C.)                                                              
CFPP (°C.)                                                         
               -10        -8       -12                                    
Density/20° C./(g/ml)                                              
               0.837      0.822    0.853                                  
Initial boiling point                                                     
               183        173      168                                    
(°C.)                                                              
20% boiling point (°C.)                                            
               225        221      216                                    
90% boiling point (°C.)                                            
               338        333      315                                    
Final boiling point                                                       
               361        358      345                                    
(°C.)                                                              
______________________________________                                    
Key: Flow improvers
FI(A)=Ethylene/vinyl acetate/vinyl versatate copolymer (containing about 31% of vinyl acetate), melt viscosity (V140) about 110 mPa.s
FI(B)=Ethylene/vinyl acetate copolymer (containing about 32% of vinyl acetate), average molecular weight about 1500
QAS: N-Methyltriethanolammonium distearyl ester methosulfate
Key: Dispersant
PD1=Example 2
PD2=Example 1
PD3=Example 4
PD4=Example 3
PD5=Example 1
PD6=Example 7
PD7=Example 8
PD8=Example 9
PD9=Example 12
                                  TABLE 1                                 
__________________________________________________________________________
Middle distillate I                                                       
                                    Lower phase                           
                                          Upper phase                     
   Conc.  Conc.                                                           
              QAS Paraffin sediment                                       
                          Paraffin in                                     
                                    CP CFPP                               
                                          CP CFPP                         
FI (ppm)                                                                  
       PD (ppm)                                                           
              (ppm)                                                       
                  (% by volume)                                           
                          oil phase                                       
                               Dispersing                                 
                                    °C.                            
                                       °C.                         
                                          °C.                      
                                             °C.                   
__________________________________________________________________________
-- --  -- --  --  35      K    S    -3  -9                                
                                          -13                             
                                             -11                          
FI(A)                                                                     
   350 -- --  --  21      K    S    -5 -10                                
                                          -12                             
                                             -13                          
FI(A)                                                                     
   500 -- --  --  27      K    S    -4 -17                                
                                          -13                             
                                             -12                          
FI(A)                                                                     
   350 PD1                                                                
          100 --  10      T-K  S-D  -6 -21                                
                                          -11                             
                                             -19                          
FI(A)                                                                     
   350 PD1                                                                
          100 50  2       T    D    -9 -28                                
                                          -10                             
                                             -28                          
FI(A)                                                                     
   350 PD3                                                                
          100 --  14      T-K  S    -5 -18                                
                                          -11                             
                                             -19                          
FI(A)                                                                     
   350 PD3                                                                
          100 50  5       T    D    -8 -26                                
                                           -9                             
                                             -25                          
FI(A)                                                                     
   350 PD4                                                                
          100 --  8       T-K  S-D  -7 -21                                
                                          -11                             
                                             -22                          
FI(A)                                                                     
   350 PD4                                                                
          100 50  3       T    D    -8 -27                                
                                          -10                             
                                             -27                          
FI(A)                                                                     
   350 PD7                                                                
          100 --  7       T    D    -7 -23                                
                                           -9                             
                                             -21                          
FI(A)                                                                     
   350 PD7                                                                
          100 50  3       T    D    -9 -28                                
                                           -9                             
                                             -29                          
__________________________________________________________________________
                                  TABLE 2                                 
__________________________________________________________________________
Middle distillate II                                                      
                                    Lower phase                           
                                          Upper phase                     
   Conc.  Conc.                                                           
              QAS Paraffin sediment                                       
                          Paraffin in                                     
                                    CP CFPP                               
                                          CP CFPP                         
FI (ppm)                                                                  
       PD (ppm)                                                           
              (ppm)                                                       
                  (% by volume)                                           
                          oil phase                                       
                               Dispersing                                 
                                    °C.                            
                                       °C.                         
                                          °C.                      
                                             °C.                   
__________________________________________________________________________
-- --  -- --  --  45      K    S    -3  -6                                
                                          -12                             
                                             -14                          
FI(A)                                                                     
   300 -- --  --  40      K    S    -7 -14                                
                                          -13                             
                                             -15                          
FI(A)                                                                     
   300 PD2                                                                
          100 --  11      K    S    -7 -24                                
                                          -11                             
                                             -19                          
FI(A)                                                                     
   300 PD2                                                                
          100  50 5       T    D    -7 -26                                
                                          -9 -25                          
FI(A)                                                                     
   300 PD2                                                                
          200 100 2       T    D    -8 -29                                
                                          -9 -28                          
FI(A)                                                                     
   300 PD3                                                                
          100  50 3       T    D    -8 -27                                
                                          -9 -28                          
FI(A)                                                                     
   300 PD3                                                                
          200 100 4       T    D    -8 -28                                
                                          -10                             
                                             -28                          
FI(A)                                                                     
   300 PD5                                                                
          100 --  9       LT   S-D  -6 -25                                
                                          -10                             
                                             -20                          
FI(A)                                                                     
   300 PD5                                                                
          100  50 3       T    D    -7 -28                                
                                          -9 -26                          
FI(A)                                                                     
   300 PD5                                                                
          200 100 0       T    D    -8 -28                                
                                          -8 -28                          
FI(A)                                                                     
   300 PD8                                                                
          100 --  10      T-K  S    -5 -23                                
                                          -11                             
                                             -23                          
FI(A)                                                                     
   300 PD8                                                                
          100  50 6       T-K  D    -6 -26                                
                                          -10                             
                                             -25                          
FI(A)                                                                     
   300 PD8                                                                
          100 --  4       T    D    -8 -29                                
                                          -10                             
                                             -29                          
FI(A)                                                                     
   300 PD9                                                                
          100 --  7       T    D    -7 -21                                
                                          -8 -20                          
FI(A)                                                                     
   300 PD9                                                                
          100  50 6       T    D    -7 -25                                
                                          -8 -24                          
FI(A)                                                                     
   300 PD9                                                                
          200 100 1       T    D    -8 -30                                
                                          -9 -28                          
__________________________________________________________________________
                                  TABLE 3                                 
__________________________________________________________________________
Middle distillate III                                                     
                                    Lower phase                           
                                          Upper phase                     
   Conc.  Conc.                                                           
              QAS Paraffin sediment                                       
                          Paraffin in                                     
                                    CP CFPP                               
                                          CP CFPP                         
FI (ppm)                                                                  
       PD (ppm)                                                           
              (ppm)                                                       
                  (% by volume)                                           
                          oil phase                                       
                               Dispersing                                 
                                    °C.                            
                                       °C.                         
                                          °C.                      
                                             °C.                   
__________________________________________________________________________
-- --  -- --  --  40      K    S    -4 -14                                
                                          -13                             
                                             -18                          
FI(B)                                                                     
   100 -- --  --  18      K    S    -5 -15                                
                                          -13                             
                                             -10                          
FI(B)                                                                     
   250 -- --  --  20      K    S    -6 -21                                
                                          -14                             
                                             -16                          
FI(B)                                                                     
   100 PD4                                                                
          100 --  12      LT   S    -5 -23                                
                                          -13                             
                                             -21                          
FI(B)                                                                     
   100 PD4                                                                
           80 40  5       LT   D    -7 -25                                
                                          -10                             
                                             -23                          
FI(B)                                                                     
   100 PD4                                                                
          100 50  1       T    D    -8 -27                                
                                           -9                             
                                             -26                          
FI(B)                                                                     
   100 PD5                                                                
          100 --  13      T-K  S    -5 -23                                
                                          -12                             
                                             -20                          
FI(B)                                                                     
   100 PD5                                                                
          100 50  6       T    D    -7 -28                                
                                          -11                             
                                             -24                          
FI(B)                                                                     
   100 PD6                                                                
          100 --  11      T-K  S    -6 -22                                
                                          -11                             
                                             -21                          
FI(B)                                                                     
   100 PD6                                                                
          100 50  3       T    D    -8 -26                                
                                          -10                             
                                             -25                          
FI(B)                                                                     
   100 PD7                                                                
          100 --  7       LT   D    -7 -24                                
                                          -91                             
                                             -21                          
FI(B)                                                                     
   100 PD7                                                                
          100 50  0       T    D    -9 -27                                
                                          -90                             
                                             -26                          
FI(B)                                                                     
   100 PD8                                                                
          100 --  8       LT   S    -6 -23                                
                                          -10                             
                                             -22                          
FI(B)                                                                     
   100 PD8                                                                
          100 50  2       T    D    -8 -25                                
                                           -9                             
                                             -25                          
__________________________________________________________________________
The meanings are as follows:
K=clear
T=cloudy
LT=slightly cloudy
S=sediment
D=dispersed

Claims (6)

We claim:
1. A reaction product of a polyetheramine with a polymer comprising dicarboxylic acid anhydride groups, which contains 20-80 mol % of bivalent structural units A or C or a mixture of A and C and, optionally, structural units B ##STR10## in which R1 and R2, independently of one another, are hydrogen or methyl,
a and b are equal to zero or one and a+b is equal to one,
Y is X or NRR3
X is --OH, --O--(C1 -C30 -alkyl), NR3 R4 or --O.sup.⊖ N.sup.⊕ R3 R4,
R3 and R4, independently of one another, are hydrogen, C6 -C40 -alkyl or R,
R is ##STR11## with the proviso that at at least 1 mol % of the anhydride groups bonded to the polymer have react with a polyetheramine of the formula (H) ##STR12## in which R3 is hydrogen, C6 -C40 -alkyl or R,
R is a group of the formula
--Z--(O--CH--CH.sub.2).sub.n O--R.sup.5
R.sup.6
Z is C2 -C4 -alkyl,
n is a number from 1 to 1000,
R5 is C1 -C30 -alkyl, C5 -C12 -cycloalkyl or C8 -C30 -aryl and
R6 is hydrogen or C1 -C4 -alkyl,
Z is C2 -C4 -alkyl,
n is a number from 1 to 1000,
R5 is C1 -C30 -alkyl, C5 -C12 -cycloalkyl or C6 -C30 -aryl and
R6 is hydrogen or C1 -C4 -alkyl, and
8- 20mol % of bivalent structural units D ##STR13## in which R7 is hydrogen or C1 -C4 -alkyl and
R8 is C1 -C60 -alkyl or C6 -C18 -aryl.
2. A process for the preparation of the reaction products as claimed in claim 1, which comprises polymerizing monomers of the formulae E or F or a mixture of formulae E or F with the monomers of the formula G, ##STR14## in which R1 and R2, independently of one another, are hydrogen or methyl, ##STR15## in which R7 is hydrogen or C1 -C4 -alkyl and R8 is C1 -C60 -alkyl or C6 -C18 -aryl, and then reacting the product formed with polyetheramines of the formula H or a mixture of formula H with an alkanolamine of the formula I, ##STR16## in which R3 is hydrogen, C6 -C40 -alkyl or R, R is a group of the formula ##STR17## Z is C2 -C4 -alkyl, n is a number from 1 to 1000,
R5 is C1 -C30 -alkyl, C5 -C12 -cycloalkyl or C8 -C30 -aryl and
R6 is hydrogen or C1 -C4 -alkyl, ##STR18## in which R9 and R10, independently of one another, are hydrogen, C2 -C22 -alkenyl, C1 -C22 -alkyl or Z--OH, with the proviso that at least one radical R9 or R10 is Z--OH and with the proviso that at least 1 mol % of the anhydride groups bonded to the polymer are reacted with a polyetheramine.
3. The process as claimed in claim 2, wherein the reaction of the polymer with the polyetheramines of the formula (H) or with the alkanolamines of the formula (I) or a mixture of formulae (H) and (I) is carried out at temperatures of from 50° to 250° C.
4. The process as claimed in claim 2, wherein the polymerization is carried out in a solvent in which the monomers of the formulae E, F, G, H or I or a mixture thereof, and the reaction products as claimed in claim 1 are soluble.
5. The reaction product as claimed in claim 1, wherein said dicarboxylic anhydride groups contain 40 to 60 mol % of bivalent structural units A or C or a mixture of A and C, and optionally, structural units B and 60 to 40 mol % of bivalent structural units D.
6. The reaction product as claimed in claim 5, wherein R6 is methyl.
US08/493,623 1994-06-24 1995-06-22 Polyetheramines with polymers of α, β-unsaturated dicarboxylic acids Expired - Fee Related US5705603A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4422159.2 1994-06-24
DE4422159A DE4422159A1 (en) 1994-06-24 1994-06-24 Reaction products of polyetheramines with polymers alpha, beta-unsaturated dicarboxylic acids

Publications (1)

Publication Number Publication Date
US5705603A true US5705603A (en) 1998-01-06

Family

ID=6521431

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/493,623 Expired - Fee Related US5705603A (en) 1994-06-24 1995-06-22 Polyetheramines with polymers of α, β-unsaturated dicarboxylic acids

Country Status (8)

Country Link
US (1) US5705603A (en)
EP (1) EP0688796B1 (en)
JP (1) JPH0881563A (en)
KR (1) KR960000961A (en)
AT (1) ATE170879T1 (en)
DE (2) DE4422159A1 (en)
FI (1) FI953135A (en)
NO (1) NO952539L (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998530A (en) * 1997-01-07 1999-12-07 Clariant Gmbh Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
US6010989A (en) * 1997-09-08 2000-01-04 Clariant Gmbh Additive for improving the flow properties of mineral oils and mineral oil distillates
US6461393B1 (en) 2000-03-16 2002-10-08 Clariant Gmbh Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils
US6475250B2 (en) 2000-01-11 2002-11-05 Clariant Gmbh Multifunctional additive for fuel oils
US6652610B2 (en) 2000-01-11 2003-11-25 Clariant Gmbh Multifunctional additive for fuel oils
US20040006912A1 (en) * 2002-07-09 2004-01-15 Clariant Gmbh Oxidation-stabilized oily liquids based on vegetable or animal oils
US20040010072A1 (en) * 2002-07-09 2004-01-15 Clariant Gmbh Cold flow improvers for fuel oils of vegetable or animal origin
US20040010965A1 (en) * 2002-07-09 2004-01-22 Clariant Gmbh Oxidation-stabilized lubricant additives for highly desulfurized fuel oils
US20040060478A1 (en) * 2001-02-10 2004-04-01 Joachim Weber Acid pigment dispersants and pigment preparations
US7067599B2 (en) * 1998-12-02 2006-06-27 Infineum International Ltd. Fuel oil additives and compositions
WO2008122606A2 (en) * 2007-04-04 2008-10-16 Lubrizol Limited Dispersant composition
US20110046274A1 (en) * 2008-04-30 2011-02-24 Clariant Finance (Bvi) Limited Pigment Disperser And Easily Dispersed Solid Pigment Preparations
EP3126475A4 (en) * 2014-04-01 2017-11-22 Hydro-Québec Polymers and the use thereof as lubricating agents in the production of alkali metal films
CN110573546A (en) * 2017-06-28 2019-12-13 亨斯迈石油化学有限责任公司 Tetrahydrofurfuryl alcohol-initiated polyetheramines and their use
US10550304B2 (en) 2013-08-01 2020-02-04 M-I Drilling Fluids Uk Limited Quaternary ammonium compounds and gas hydrate inhibitor compositions
US10654979B2 (en) 2017-08-18 2020-05-19 Becton, Dickinson And Company Amphiphilic graft copolymers
WO2020172001A1 (en) * 2019-02-21 2020-08-27 Huntsman Petrochemical Llc Multifunctional additive compounds
US10947467B2 (en) 2016-12-15 2021-03-16 Basf Se Polymers as additives for fuels
CN113185670A (en) * 2021-04-28 2021-07-30 广州市白云化工实业有限公司 Organic silicon modified acrylate, silane modified polyether adhesive and preparation method thereof
US20220364002A1 (en) * 2021-04-21 2022-11-17 Ecolab Usa Inc. Asphaltene and paraffin dispersant compositions and uses thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783630A (en) * 1993-07-13 1998-07-21 Huntsman Petrochemical Corporation Polyether amine modification of polypropylene
US5959032A (en) * 1993-07-13 1999-09-28 Huntsman Petrochemical Corporation Polyether amine modification of polypropylene
DK1061089T3 (en) 1999-06-15 2004-07-12 Sika Schweiz Ag Cement-dispersing polymers with multiple purposes for concrete with high flowability and high strength
US6193767B1 (en) * 1999-09-28 2001-02-27 The Lubrizol Corporation Fuel additives and fuel compositions comprising said fuel additives
FR2802940B1 (en) * 1999-12-28 2003-11-07 Elf Antar France COMPOSITION OF MULTIFUNCTIONAL ADDITIVES FOR COLD OPERABILITY OF MEDIUM DISTILLATES
NL1018764C1 (en) * 2001-08-15 2003-02-18 Dsm Nv Aqueous solution, dispersion or suspension of a polymer containing imide monomer units and having a glass transition temperature less than or equal to 10 C.
KR100405365B1 (en) * 2001-09-17 2003-11-12 기아자동차주식회사 Method for operating windshield wiper
DE10155774B4 (en) 2001-11-14 2020-07-02 Clariant Produkte (Deutschland) Gmbh Additives for low sulfur mineral oil distillates, comprising an ester of alkoxylated glycerin and a polar nitrogen-containing paraffin dispersant
DE502004008662D1 (en) * 2003-10-22 2009-01-22 Innospec Leuna Gmbh Compositions of mineral oil and an additive mixture
DE102004014080A1 (en) * 2004-03-23 2005-10-13 Peter Dr. Wilharm Nucleating agent based on hyperbranched polymer, used in paraffinic oil or biofuel to reduce cold filter plugging point, has long-chain linear alkyl-terminated ester, carbonate, (thio)ether, amide, urethane, urea or aminopropionyl groups
DE102006062439A1 (en) 2006-12-27 2008-07-03 Byk-Chemie Gmbh Comb polymers made by reacting styrene-maleic anhydride copolymer with prim. amino-terminated polyalkylene oxide, used as wetting agents and dispersants, e.g. for production of pigment paste
DE102007032185A1 (en) 2007-07-11 2009-01-15 Clariant International Limited Pigment preparation, useful for pigmenting natural and synthetic material, e.g. paints, printing inks and dispersion, comprises a pigment and conversion products of polyether amine with dicarboxylic acid anhydride groups containing polymer
DE102010049642A1 (en) 2010-07-21 2012-01-26 Byk-Chemie Gmbh Composition, preferably pigment preparation useful in cosmetic preparations, comprises at least a dispersion medium, preferably water, at least a pigment and at least a comb polymer
WO2013101596A1 (en) * 2011-12-29 2013-07-04 Chevron Oronite Company Llc Functionalized olefin copolymers with monoamine terminated polyether and lubricating oil compositions
CA2998194C (en) * 2016-03-08 2023-11-07 Huntsman Petrochemical Llc Agricultural pesticide formulations comprising a dispersant
US20180171258A1 (en) * 2016-12-16 2018-06-21 Afton Chemical Corporation Multi-Functional Olefin Copolymers and Lubricating Compositions Containing Same
EP3885424A1 (en) 2020-03-24 2021-09-29 Clariant International Ltd Compositions and methods for dispersing paraffins in low-sulfur fuel oils
EP3950787A1 (en) 2020-08-04 2022-02-09 CliQ SwissTech (Netherlands) B.V. Quaternized comb polymers

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313191A (en) * 1961-11-13 1962-12-28 Exxon Research Engineering Co Oils derived from hydrocarbons having improved tolerance to water
BE641724A (en) * 1963-07-16 1964-04-16
US3216941A (en) * 1963-03-28 1965-11-09 California Research Corp Alkylene glycol amine reaction product
US3520852A (en) * 1967-10-19 1970-07-21 Sinclair Research Inc Process of preparing polyimides of styrene-maleic anhydride polymers
FR2592387A1 (en) * 1985-12-30 1987-07-03 Inst Francais Du Petrole Additive compositions intended especially to improve the cold filterability properties of petroleum middle distillates
FR2613371A1 (en) * 1987-04-01 1988-10-07 Inst Francais Du Petrole NITROGEN COPOLYMERS, THEIR PREPARATION AND THEIR USE AS ADDITIVES FOR IMPROVING FLOW PROPERTIES OF MEDIUM HYDROCARBON DISTILLATES
EP0324547A2 (en) * 1988-01-07 1989-07-19 Hoechst Celanese Corporation Surface or electrically active copolymers of poly(4-substituted styrene/n-substituted maleimide)
EP0401627A2 (en) * 1989-06-07 1990-12-12 Bayer Ag Copolymers with hydroxy groups, process for their preparation and their usage as binder
US5034018A (en) * 1987-11-30 1991-07-23 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines (PT-731)
WO1993008243A1 (en) * 1991-10-22 1993-04-29 Exxon Chemical Patents Inc. Oil and fuel oil compositions
US5229020A (en) * 1989-05-30 1993-07-20 Exxon Chemical Patents Inc. Branched amido-amine dispersant additives
US5238466A (en) * 1986-10-07 1993-08-24 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines
EP0561722A1 (en) * 1992-03-17 1993-09-22 Bio Merieux Water-soluble compounds from polymers and copolymers of maleic anhydride, and use of these compounds as carriers for biological molecules
EP0606055A2 (en) * 1993-01-06 1994-07-13 Hoechst Aktiengesellschaft Terpolymers based on alpha, beta unsaturated dicarboxilic acid anhydryds, alpha, beta unsaturated compounds and polyoxyalkylene ether of lower unsaturated alcohols
EP0634424A1 (en) * 1993-07-13 1995-01-18 Huntsman Corporation Polyether amine modification of polypropylene

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1313191A (en) * 1961-11-13 1962-12-28 Exxon Research Engineering Co Oils derived from hydrocarbons having improved tolerance to water
US3216941A (en) * 1963-03-28 1965-11-09 California Research Corp Alkylene glycol amine reaction product
BE641724A (en) * 1963-07-16 1964-04-16
US3317291A (en) * 1963-07-16 1967-05-02 Armour & Co Nonclogging fuel oil compositions
US3520852A (en) * 1967-10-19 1970-07-21 Sinclair Research Inc Process of preparing polyimides of styrene-maleic anhydride polymers
FR2592387A1 (en) * 1985-12-30 1987-07-03 Inst Francais Du Petrole Additive compositions intended especially to improve the cold filterability properties of petroleum middle distillates
US5238466A (en) * 1986-10-07 1993-08-24 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines
FR2613371A1 (en) * 1987-04-01 1988-10-07 Inst Francais Du Petrole NITROGEN COPOLYMERS, THEIR PREPARATION AND THEIR USE AS ADDITIVES FOR IMPROVING FLOW PROPERTIES OF MEDIUM HYDROCARBON DISTILLATES
US4900332A (en) * 1987-04-01 1990-02-13 Institut Francais Du Petrole Nitrogenous copolymers, their preparation and use as additives for improving the pour properties of hydrocarbon middle distillates
US5034018A (en) * 1987-11-30 1991-07-23 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines (PT-731)
EP0324547A2 (en) * 1988-01-07 1989-07-19 Hoechst Celanese Corporation Surface or electrically active copolymers of poly(4-substituted styrene/n-substituted maleimide)
US5229020A (en) * 1989-05-30 1993-07-20 Exxon Chemical Patents Inc. Branched amido-amine dispersant additives
EP0401627A2 (en) * 1989-06-07 1990-12-12 Bayer Ag Copolymers with hydroxy groups, process for their preparation and their usage as binder
US5064921A (en) * 1989-06-07 1991-11-12 Bayer Aktiengesellschaft Hydroxy functional copolymers, a process for the preparation and their use as binders or binder components
WO1993008243A1 (en) * 1991-10-22 1993-04-29 Exxon Chemical Patents Inc. Oil and fuel oil compositions
EP0561722A1 (en) * 1992-03-17 1993-09-22 Bio Merieux Water-soluble compounds from polymers and copolymers of maleic anhydride, and use of these compounds as carriers for biological molecules
US5439972A (en) * 1992-03-17 1995-08-08 Bio Merieux Water-soluble compounds derived from a homopolymer or copolymer of maleic anhydride, and applications of the said compounds to supporting biological molecules
EP0606055A2 (en) * 1993-01-06 1994-07-13 Hoechst Aktiengesellschaft Terpolymers based on alpha, beta unsaturated dicarboxilic acid anhydryds, alpha, beta unsaturated compounds and polyoxyalkylene ether of lower unsaturated alcohols
US5391632A (en) * 1993-01-06 1995-02-21 Hoechst Aktiengesellschaft Terpolymers based on α,β-unsaturated dicarboxylic anhydrides, α,β-unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols
EP0634424A1 (en) * 1993-07-13 1995-01-18 Huntsman Corporation Polyether amine modification of polypropylene

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998530A (en) * 1997-01-07 1999-12-07 Clariant Gmbh Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
US6010989A (en) * 1997-09-08 2000-01-04 Clariant Gmbh Additive for improving the flow properties of mineral oils and mineral oil distillates
US7067599B2 (en) * 1998-12-02 2006-06-27 Infineum International Ltd. Fuel oil additives and compositions
US6652610B2 (en) 2000-01-11 2003-11-25 Clariant Gmbh Multifunctional additive for fuel oils
US7435271B2 (en) 2000-01-11 2008-10-14 Clariant Produkte (Deutschland) Gmbh Multifunctional additive for fuel oils
US6475250B2 (en) 2000-01-11 2002-11-05 Clariant Gmbh Multifunctional additive for fuel oils
US20040060225A1 (en) * 2000-01-11 2004-04-01 Clariant Gmbh Multifunctional additive for fuel oils
US6461393B1 (en) 2000-03-16 2002-10-08 Clariant Gmbh Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils
US6918958B2 (en) 2001-02-10 2005-07-19 Clariant Gmbh Acid pigment dispersants and pigment preparations
US20040060478A1 (en) * 2001-02-10 2004-04-01 Joachim Weber Acid pigment dispersants and pigment preparations
US20040010965A1 (en) * 2002-07-09 2004-01-22 Clariant Gmbh Oxidation-stabilized lubricant additives for highly desulfurized fuel oils
US7041738B2 (en) 2002-07-09 2006-05-09 Clariant Gmbh Cold flow improvers for fuel oils of vegetable or animal origin
US20040010072A1 (en) * 2002-07-09 2004-01-15 Clariant Gmbh Cold flow improvers for fuel oils of vegetable or animal origin
US20060162241A1 (en) * 2002-07-09 2006-07-27 Clariant Gmbh Oxidation-stabilized lubricant additives for highly desulfurized fuel oils
US20040006912A1 (en) * 2002-07-09 2004-01-15 Clariant Gmbh Oxidation-stabilized oily liquids based on vegetable or animal oils
US7815696B2 (en) 2002-07-09 2010-10-19 Clariant Produkte (Deutschland) Gmbh Oxidation-stabilized lubricant additives for highly desulfurized fuel oils
US20080262252A1 (en) * 2002-07-09 2008-10-23 Clariant Gmbh Oxidation-stabilized oily liquids based on vegetable or animal oils
US20100130678A1 (en) * 2007-04-04 2010-05-27 Lubrizol Limited Dispersant Composition
WO2008122606A3 (en) * 2007-04-04 2009-01-08 Lubrizol Ltd Dispersant composition
WO2008122606A2 (en) * 2007-04-04 2008-10-16 Lubrizol Limited Dispersant composition
CN101641377B (en) * 2007-04-04 2012-12-12 路博润有限公司 Dispersant composition
US9416280B2 (en) 2007-04-04 2016-08-16 Lubrizol Limited Styrene-maleic anhydride based dispersant in a coating or ink
US20110046274A1 (en) * 2008-04-30 2011-02-24 Clariant Finance (Bvi) Limited Pigment Disperser And Easily Dispersed Solid Pigment Preparations
CN101827868B (en) * 2008-04-30 2012-06-27 科莱恩金融(Bvi)有限公司 Pigment disperser and easily dispersed solid pigment preparations
US8466219B2 (en) * 2008-04-30 2013-06-18 Clariant Finance (Bvi) Limited Pigment disperser and easily dispersed solid pigment preparations
US20130253104A1 (en) * 2008-04-30 2013-09-26 Clariant Finance (Bvi) Limited Pigment Disperser And Easily Dispersed Solid Pigment Preparations
US8680188B2 (en) * 2008-04-30 2014-03-25 Clariant Finance (Bvi) Limited Pigment disperser and easily dispersed solid pigment preparations
US10550304B2 (en) 2013-08-01 2020-02-04 M-I Drilling Fluids Uk Limited Quaternary ammonium compounds and gas hydrate inhibitor compositions
US10106758B2 (en) 2014-04-01 2018-10-23 Hydro-Quebec Polymers and the use thereof as lubricating agents in the production of alkali metal films
EP3126475A4 (en) * 2014-04-01 2017-11-22 Hydro-Québec Polymers and the use thereof as lubricating agents in the production of alkali metal films
US10711218B2 (en) 2014-04-01 2020-07-14 HYDRO-QUéBEC Polymers and the use thereof as lubricating agents in the production of alkali metal films
US11453835B2 (en) 2014-04-01 2022-09-27 Hydro-Quebec Polymers and the use thereof as lubricating agents in the production of alkali metal films
US10947467B2 (en) 2016-12-15 2021-03-16 Basf Se Polymers as additives for fuels
US11566196B2 (en) 2016-12-15 2023-01-31 Basf Se Polymers as additives for fuels
CN110573546A (en) * 2017-06-28 2019-12-13 亨斯迈石油化学有限责任公司 Tetrahydrofurfuryl alcohol-initiated polyetheramines and their use
US10654979B2 (en) 2017-08-18 2020-05-19 Becton, Dickinson And Company Amphiphilic graft copolymers
WO2020172001A1 (en) * 2019-02-21 2020-08-27 Huntsman Petrochemical Llc Multifunctional additive compounds
US20220364002A1 (en) * 2021-04-21 2022-11-17 Ecolab Usa Inc. Asphaltene and paraffin dispersant compositions and uses thereof
CN113185670A (en) * 2021-04-28 2021-07-30 广州市白云化工实业有限公司 Organic silicon modified acrylate, silane modified polyether adhesive and preparation method thereof

Also Published As

Publication number Publication date
JPH0881563A (en) 1996-03-26
FI953135A (en) 1995-12-25
FI953135A0 (en) 1995-06-22
EP0688796B1 (en) 1998-09-09
NO952539D0 (en) 1995-06-23
DE59503500D1 (en) 1998-10-15
NO952539L (en) 1995-12-27
EP0688796A1 (en) 1995-12-27
DE4422159A1 (en) 1996-01-04
KR960000961A (en) 1996-01-25
ATE170879T1 (en) 1998-09-15

Similar Documents

Publication Publication Date Title
US5705603A (en) Polyetheramines with polymers of α, β-unsaturated dicarboxylic acids
US5391632A (en) Terpolymers based on α,β-unsaturated dicarboxylic anhydrides, α,β-unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols
US5766273A (en) Polymer blends and their use as additives for mineral oil middle distillates
US7713316B2 (en) Fuel oils having improved cold flow properties
ES2272366T3 (en) COPOLYMER MIXTURES, AND ITS USE AS AN ADDITIVE FOR THE IMPROVEMENT OF COLD FLUIDITY PROPERTIES OF MEDIUM DISTILLED MATERIALS.
US20010013196A1 (en) Multifunctional additive for fuel oils
US7067599B2 (en) Fuel oil additives and compositions
US6458174B1 (en) Copolymers, and their use as additives for improving the cold-flow properties of middle distillates
US6071993A (en) Paraffin dispersants for crude oil middle distillates
CA2287660A1 (en) Polymer mixtures for improving the lubricity of middle distillates
CA2242428C (en) Copolymers based on ethylene and unsaturated carboxylic esters and their use as mineral oil additives
US6391071B1 (en) Use of hydroxyl-containing copolymers for the preparation of fuel oils having improved lubricity
US6461393B1 (en) Mixtures of carboxylic acids, their derivatives and hydroxyl-containing polymers and their use for improving the lubricating effect of oils
US20010034410A1 (en) Copolymer blends and their use as additives for improving the cold flow properties of middle distillates
JP4721306B2 (en) Flow improver for mineral oil
US6364918B1 (en) Hydroxyl-containing copolymers, and their use for the preparation of fuel oils having improved lubricity
CA2242517C (en) Fuel oils based on middle distillates and copolymers of ethylene and unsaturated carboxylic esters
US6846338B2 (en) Fuel oils based on middle distillates and copolymers of ethylene and unsaturated carboxylic esters
US5726266A (en) Copolymers based on diketenes, ethylenically unsaturated dicarboxylic acids or dicarboxylic acid derivatives and ethylenically unsaturated hydrocarbons
US6395852B1 (en) Flow enhancer for petroleum middle distillates
US20070130821A1 (en) Additive mixture as component of mineral oil compositions
US5767202A (en) Modified copolymers suitable as paraffin dispersants, their preparation and use and mineral oil middle distillates containing them

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOECHST AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRULL, MATTHIAS;FEUSTEL, MICHAEL;MIELCKE, ERDMANN;REEL/FRAME:007564/0026

Effective date: 19950602

AS Assignment

Owner name: CLARIANT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOECHST AKTIENGESELLSCHAFT;REEL/FRAME:009558/0062

Effective date: 19980917

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060106