US5816155A - Sheet guiding device for printing presses - Google Patents

Sheet guiding device for printing presses Download PDF

Info

Publication number
US5816155A
US5816155A US08/857,133 US85713397A US5816155A US 5816155 A US5816155 A US 5816155A US 85713397 A US85713397 A US 85713397A US 5816155 A US5816155 A US 5816155A
Authority
US
United States
Prior art keywords
guide surface
nozzles
air
sheet
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/857,133
Inventor
Gunter Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7752817&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US5816155(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Priority to US08/857,133 priority Critical patent/US5816155A/en
Assigned to HEIDELBERGER DRUCKMASCHINEN AG reassignment HEIDELBERGER DRUCKMASCHINEN AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STEPHAN, GUENTER
Priority to US09/096,978 priority patent/US6378425B1/en
Application granted granted Critical
Publication of US5816155A publication Critical patent/US5816155A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F25/00Devices for pressing sheets or webs against cylinders, e.g. for smoothing purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/02Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles
    • B65H29/04Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles the grippers being carried by endless chains or bands
    • B65H29/041Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles the grippers being carried by endless chains or bands and introducing into a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/02Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles
    • B65H29/06Delivering or advancing articles from machines; Advancing articles to or into piles by mechanical grippers engaging the leading edge only of the articles the grippers being carried by rotating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/08Feeding articles separated from piles; Feeding articles to machines by grippers, e.g. suction grippers
    • B65H5/12Revolving grippers, e.g. mounted on arms, frames or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/36Article guides or smoothers, e.g. movable in operation
    • B65H5/38Article guides or smoothers, e.g. movable in operation immovable in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/10Means using fluid made only for exhausting gaseous medium
    • B65H2406/11Means using fluid made only for exhausting gaseous medium producing fluidised bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/30Suction means

Definitions

  • the invention relates to a sheet guiding device for printing presses having guide surface members for guiding sheets, nozzles to which blast air or suction air is applicable being provided in the guide surface members.
  • a sheet guiding device of this general type has become known heretofore from the published German Patent Document DE 34 11 029 C2.
  • this known sheet guiding device an attempt has been made to achieve a reliable floating or suspended guidance of the sheets by having nozzles, which are in the form of bores disposed in the guide surface members perpendicularly thereto, constituting a predetermined part of the surface area of the respective guide surface members.
  • a disadvantageous feature of this conventional sheet guiding device is that the nozzles are directed perpendicularly to the sheet which is to be guided. For example, blast air emerging from the nozzles strikes the sheet, must be deflected thereby with an application of forces, and then flows radially away 360° on all sides from the nozzle blast-air outlet location.
  • the volumes of air flowing away from the nozzles extend in a direction opposite to that of the like air volumes of the adjacent nozzles.
  • These mutually oppositely directed volumes meet violently and generate around the nozzles regions having turbulence fields wherein the nozzle air swirls and the kinetic energy of the nozzle air is dissipated.
  • a sheet guiding device for a printing press having a guide surface member for guiding sheets, comprising blast air or suction nozzles provided in the guide surface member, the guide surface member being formed, as viewed in a sheet transport direction, successively of an entry region, a guide zone and an exit region, the nozzles provided in at least one of the entry and the exit regions of the guide surface member being suppliable selectively with suction or blast air in accordance with a type of printing material or stock to be processed, and the nozzles provided in the guide zone disposed between the entry region and the exit region of the guide surface member being suppliable with blast air, at least some of the nozzles being disposed so as to emit blast air substantially tangentially to a guide surface of the guide surface member.
  • At least some of the nozzles provided in the entry region are selectively suppliable with the blast or suction air.
  • At least some of the nozzles provided in the exit region are selectively suppliable with the blast or suction air.
  • the device includes adjustable-speed fans for supplying air to the nozzles.
  • the device includes axial fans for supplying air to the nozzles, the axial fans being reversible with respect to the direction of rotation thereof.
  • the device includes air supply chests for supplying air to respective locations of the printing press, and respective fans assigned to the air supply chests, the air supply chests, respectively, having a size adapted to air requirement at the respective location.
  • the guide surface of the guide surface member is occupied by an array of the nozzles having a distribution varying in density to suit the respective air requirement.
  • the distribution density of the nozzles is greatest in the middle of a travel path for the sheet and decreases towards an edge of the sheet travel path.
  • the nozzles are slit nozzles directed to the outside of the sheet travel path.
  • the respective nozzles are switchable between a suction-air mode and a blast mode by remote control.
  • the nozzles in the entry region of the guide surface member are switchable to the suction-air mode when the printing material being processed is light-weight.
  • the nozzles in the exit region of the guide surface member are switchable to the suction-air mode when the printing material being processed is light-weight.
  • the respective nozzles are switchable to suction-air mode for sucking a respective sheet in a region of the guide surface located substantially centrally to a sheet guide path in one of the entry region and the exit region of the guide surface member.
  • An advantage of the invention is that, in the preferred operating mode, which is the blowing or blast air mode, due to the tangential air flow, the printing press is capable of guiding, reliably and without smearing, all types of printing materials or stock to be processed. This is accomplished by guiding the sheets on an air flow which, due to the tangential, similarly directed blowing of the nozzles is combined from a multiplicity of individual flows into one main flow having a uniform flow direction. This flowing air cushion,--because of its evenness and uniformity, is capable of guiding the sheet without touching the sheet guide members or baffles, thus without smearing, even after both sides of the sheets have been freshly printed.
  • the invention provides that, with one-sided printing, a readjustment or conversion of the sheet guidance be possible whereby, at problematic locations in the sheet travel, a suction mode takes place wherein the unprinted sides of the sheets of paper can come into contact with metal.
  • the regions or sections of the printing press which can be acted upon by or are subjectible to suction are preferably located on all the sheet-guiding drums, because disruptions in sheet travel readily occur in regions thereof affected by centrifugal force. Examples thereof are the supply drum adjacent to the feeder, the transfer drums disposed between the printing units, and the delivery drum with which the delivery system takes over or accepts the sheets from the last printing unit. If additional transfer drums are built into the press, guide surface members should also be provided therewith as well so that, in problematic regions, they can be acted upon by suction. It is also possible to provide regions which can be acted upon by suction in the delivery system as well, for example, forward or in front of the sheet brake.
  • the exit regions of the guide surface members of the sheet-guiding drums preceding the impression cylinders are constructed so that they can be acted upon by suction.
  • These drums may be transfer drums which are disposed between the impression cylinders of the various printing units.
  • more than one sheet transport drum may be disposed between the impression cylinders.
  • the sheet transport drum before or upstream of the first impression cylinder is a supply drum, which takes the sheet from the feeder and transports it further onto the impression cylinder. It is also possible, however, for a further transport drum to be provided in this region.
  • Clean sheet guidance is especially important in the case of sheet-guiding drums preceding the impression cylinders, because the placement of the sheet on the impression cylinders and, hence, the quality of the printing depend upon clean sheet guidance. Due to the action of suction air in these regions, the sheet, upon the transfer thereof to the impression cylinder, experiences an additional advantageous automatic stabilization, which tautens the sheet and thus serves to apply the sheet smoothly to the impression cylinder. This result in a considerable simplification of the adaptation of the printing press to the particular type of printing material or stock, especially when contact-sensitive undersides of sheets are involved.
  • the entry regions of the guide surface members of the sheet-guiding drums can also be selectively acted upon by suction air. This is advantageous in the event of a stoppage of a printing press, for example, due to an emergency stop or a slow forward rotation of the press in the typing mode.
  • a press stoppage or slow forward rotation if the end of the sheet is located in the entry region of the guide surface member of a sheet-guiding drum, then as a rule the rear or trailing end of the sheet faces upwardly, and the press stoppage or a very slow forward rotation can cause the end of the sheet to drop downwardly, resulting in a creasing of the sheet.
  • Printing presses heretofore known in the prior art must first reject such sheets in the typing mode, or else the sheets must be removed before printing can be resumed.
  • the end of the sheet is reliably held and, after a press stop or a slow further rotation of the printing press, it is possible to continue printing immediately, because the ends of the sheets do not drop downwardly.
  • a further feature of the invention provides for the air supply to be effected via axial fans having a selectively reversible direction of rotation. This ensures the accomplishment, in a very simple manner, of a switchover of the desired sections or locations of the printing press.
  • the air supply to the nozzles is preferably accomplished via adjustable-speed fans.
  • the floating or suspension guidance can be adjusted, while in the suction mode, it is possible to adjust on the guide surface members the frictional force of the sheet adapted to the particular paper involved.
  • the suction mode the possibility exists of removing just enough air by suction so that contact between the sheet and the guide member or baffle does not yet occur.
  • a further feature provides that the guide surface members be arrayed with a varying number of nozzles or a varying density thereof per unit area to suit or match the particular air requirement. For example, it is thus possible for the entry and exit regions of the guide surface members to be provided with a greater density of nozzles per unit area or a higher degree of occupancy by nozzles in the respective area, while the guide zones located between those regions have a lower nozzle density or degree of occupancy per unit area. It is also possible for the nozzle density or degree of areal occupancy to be provided greatest in the middle of the sheet travel path and to decrease toward the edge thereof. This is especially expedient if the nozzles are slit nozzles directed towards the outside of the sheet travel path. Then, the corresponding air flow is generated in the middle of the sheet travel path and need merely be maintained towards the edge; that is, as many nozzles as in the middle of the sheet travel path are no longer needed.
  • all the sections of the printing press which can be acted upon by air are adjusted by remote control.
  • the switch-over to the suction mode by remote control is especially time-saving when the press is to be converted from perfecter or second-side printing to one-side printing or to the use of problematic types of paper. This can be performed very simply by means of electronic triggering of the axial fans or other fans.
  • FIG. 1 is a diagrammatic side elevational view of a printing press provided with the sheet guiding device according to the invention
  • FIG. 2 is an enlarged fragmentary view of FIG. 1 showing a guide surface according to the invention for a transfer drum of the printing press;
  • FIG. 3 is a developed top plan view of a sheet guiding device formed of air supply boxes in accordance with the invention.
  • FIGS. 4, 5 and 6 are different arrangements of axial fans in the air supply boxes
  • FIG. 7 is a nozzle array in the air supply boxes
  • FIGS. 8 and 8a are respective cross-sectional and plan views of a slit nozzle in accordance with the invention.
  • FIG. 9 is a view similar to that of FIG. 3 showing a guide surface wherein sucking of the sheet occurs in sections disposed centrally to the longitudinal axis of the sheet.
  • FIG. 1 there is shown therein diagrammatically a printing press with an exemplary embodiment of a sheet guiding device according to the invention.
  • a printing press with an exemplary embodiment of a sheet guiding device according to the invention.
  • Each printing unit 20, 20' has an impression cylinder 8, 8', a rubber blanket cylinder 9, 9', and a plate cylinder 10, 10', as well as non-illustrated inking units.
  • a transfer drum 6 assures the further passage of the sheets 4 to be printed. If a printing press has several printing units, transfer drums 6 are always disposed between each two printing units.
  • a sheet travel path 17 is shown with accompanying arrows 24 indicating the sheet travel direction.
  • the sheets 4 are removed from a feed pile 19 and forwarded, by means of a conventional non-illustrated feeder device, to a feeder drum 5 having non-illustrated grippers with which it transfers the sheets 4 to an impression cylinder 8 for printing. From the impression cylinder 8, the sheet 4 is accepted by grippers 26 (FIG. 2) of the transfer drum 6 and delivered to a further impression cylinder 8', so that a further printing operation can be performed on the sheet 4.
  • the impression cylinder 8' transfers the sheet 4 to a delivery drum 7 of a delivery system 21.
  • the delivery drum 7 is a transfer drum for gripper bars which are disposed on a delivery chain 22 and which transport the accepted sheets 4 to the end of the delivery system 21, whereat the sheets 4 are deposited on a delivery pile 23.
  • guide surface members or deflectors 1 having a number of preferably slitlike nozzles 2 are disposed in the sections 3. These nozzles are not shown in FIG. 1 but can be seen, for example, at the transfer drum 6 in FIG. 2.
  • the nozzles 2 are constructed so that at least some thereof feed blast air substantially tangentially to the surface of the guide surface member 1 in the region formed between the sheet 4 and the guide surface member 1.
  • the air flow and the surface of the guide surface member 1 define an angle therebetween which may, for example, be between 0.1° and 30°.
  • the arrangement of the nozzles 2 and the direction in which they blow are also preferably selected so that the air flows of adjacent nozzles groups are superimposed into a total flow having substantially parallel flow lines.
  • the guide surface member 1 at the transfer drum 6 has a total of four nozzle regions 11, 12, 40 and 42, divided by partitions 44, 46 and 48, and acted upon with air by a respective axial fan 15.
  • the nozzle regions 11, 12, 40 and 42 are formed of a plurality of nozzles 2, which are disposed behind one another as seen in the viewing direction of FIG. 2.
  • the arrows 25 indicate the possible directions in which the respective axial fans 15 blow.
  • the sheet 4 which has been accepted or taken over by the transfer drum 6 from the impression cylinder 8 by means of a row of grippers 26 is transported onwardly to the impression cylinder 8'.
  • the sheet 4 When the sheet guiding device is in the blowing or blast mode, the sheet 4 experiences a floating or suspension guidance wherein it is guided between the transfer drum 6 and the guide surface member 1 without contacting the surface of the guide surface member 1.
  • a floating guidance is necessary in perfector printing, for example, because neither side of the sheet 4 must be allowed to become smeared at the transfer drum 6 or at the guide surface members 1.
  • the press is being operated in first-form or recto printing mode, however, the underside of the sheet 4 is unprinted, and floating guidance is unnecessary.
  • guidance of the sheets 4 along the guide surface members 1 may be selected, so as to achieve the aforementioned shortening of the reset or make-ready time.
  • the axial fans 15 are switched to the suction mode in the entry region 11 and exit region 12 of a respective corresponding guide surface member 1.
  • the sheet 4 can thereby slide along the guide surface members 1 in the regions 11 and 12, and friction forces can arise between the sheet 4 and the guide surface of the guide surface members 1.
  • the sheet 4 is consequently held in the entry region 11 so that when the press is in a slow operating mode or is stopped, the sheet will not drop downwardly at the rear or trailing end thereof, so that the sheet 4 does not become creased thereby.
  • the suction mode in the exit region 12 also leads to a tautening or stretching of the sheet 4, so that labile or soft papers, especially those with a low weight per unit of surface area, such as Bible paper, for example, can be surrendered, i.e., transferred, to the impression cylinder 8 even at maximum speed without producing waviness or trapped air bubbles. In this way, even problematic papers can be printed with high quality and at maximum speed, while minimal machine reset times are maintained.
  • Guidance of the sheet 4 along the guide surfaces of the guide surface members 1 in the exit region 12 can also be helpful even with less problematic papers, for example, if the printing press is running correspondingly fast and, thereby, great centrifugal forces are exerted upon the sheet 4 which can drive it outwardly and consequently cause a fluttering of the sheet 4.
  • the holding or retention forces generated by the aforedescribed guidance in both the air blowing and the suction mode and exerted upon the sheet 4 along the guide surfaces of the guide surface members 1 can serve to apply the sheet 4 cleanly to the impression cylinder 8'.
  • axial fans 15 are also disposed at the feeder drum 5 in the entry region 11 and the exit region 13, respectively, of the respective guide surface members 1, and can apply suction air to the nozzles 2 so as to permit taut sheet guidance there as well, and thereby ensuring that the sheet 4 lies properly on the impression cylinder 8.
  • An axial fan 15 is also provided at the delivery drum 7 and assures that an end of a sheet in this region is reliably guided and cannot fall downwardly if the press should stop, which could consequently cause a creasing of the sheet 4 and render it unuseable.
  • additional axial fans 15 for sheet guidance can be disposed in the section 3 of the delivery system 21 and can serve, respectively, to feed the sheet 4 reliably to the delivery pile 23, and to assure that the sheets are acted upon with blown or blast air above the delivery pile 23 in such a manner that they are deposited quickly on the delivery pile 23.
  • FIG. 3 shows a guide surface member 1 having nozzles 2 which are acted upon with air by means of air supply boxes or chests 16 and 16'.
  • the guide surface member 1 is shown in a plan view in FIG. 3, with the partitions 44, 46 and 48 represented by broken lines or in phantom providing for a subdivision thereof into the various air supply boxes or chests 16 and 16'.
  • the density per unit of surface area of the nozzles 2 which are embodied as slit nozzles 18 is preferably varied.
  • two air supply boxes or chests 16 are provided, which have a relatively high density of nozzles 2 per unit of surface area.
  • a guide zone 14 having an areal density of nozzles 2 which is greater in a middle region thereof than at the edges thereof.
  • This guide zone 14 corresponds to the nozzle regions 40 and 42, wherein an application of blown or blast air is adequate for any operating mode of the printing press.
  • the guide zone 14 is followed in the sheet travel direction 24 by the exit region 12 which has a higher density of nozzles and wherein relatively strong holding or retention forces must act upon the sheet 4 in the suction-air operating mode.
  • FIG. 4 shows how axial fans 15 can be associated with the air supply chests 16 and 16' shown in FIG. 3. It is also possible, however, to arrange the air supply chests 16 and 16' and the axial fans 15 in the manner shown in FIG. 5. This arrangement is substantially equivalent to the arrangement of air supply chests with the partitions 44, 46 and 48 shown in FIG. 2.
  • blower chest 16 is provided in the entry region 11 and in the exit region 12, and a large blower chest 16'" is provided in the guide zone 14, as shown in FIG. 6.
  • the nozzle array is formed accordingly and is represented in FIG. 7.
  • FIG. 8 shows the preferred embodiment of the nozzles 2 which has already been indicated in FIG. 3.
  • the direction of blowing is directed outwardly as represented by arrows 50, which tautens the sheet 4 transversely or crosswise to the travel direction thereof.
  • arrows 50 which tautens the sheet 4 transversely or crosswise to the travel direction thereof.
  • two strong, outwardly directed air flows to be formed in the middle and move towards the side of the sheet 4, those air flows, as they travel towards the outside, being maintainable by means of a lesser number of nozzles 2, 18.
  • nozzle regions 52 and 54 having nozzles which are switchable between the blowing or blast mode and the suction mode in accordance with the type of printing material or stock to be processed, are provided in the entry region 11 and/or in the exit region 12 of the guide surface member 1.
  • the other nozzles of the guide surface member 1 in this embodiment of the invention are preferably operated in the blowing or blast mode.
  • Each of the nozzle regions 52 and 54 preferably has a respective fan 15 associated therewith, and these regions 52 and 54 are preferably disposed centrally to the sheet travel path 17 and have a width which is less than that of the smallest sheet format or size processable by the printing press.
  • the exemplary embodiments merely illustrate possibilities for constructing the sheet guiding device of the invention; other constructions with different nozzle arrays and, if necessary or desirable, other blowing or blast directions are also conceivable within the scope of the invention.
  • a central air supply with blown or blast air and suction air or different types of fans may also be used.

Abstract

Sheet guiding device for a printing press having a guide surface member for guiding sheets includes blast air or suction nozzles provided in the guide surface member, the guide surface member being formed, as viewed in a sheet transport direction, successively of an entry region, a guide zone and an exit region, the nozzles provided in at least one of the entry and the exit regions of the guide surface member being suppliable selectively with suction or blast air in accordance with a type of printing material or stock to be processed, and the nozzles provided in the guide zone disposed between the entry region and the exit region of the guide surface member being suppliable with blast air, at least some of the nozzles being disposed so as to emit blast air substantially tangentially to a guide surface of the guide surface member.

Description

this is a continuation-in-part of application Ser. No. 08/595,103, filed Feb. 1, 1996, now abandoned.
BACKGROUND OF THE INVENTION Field of the Invention
The invention relates to a sheet guiding device for printing presses having guide surface members for guiding sheets, nozzles to which blast air or suction air is applicable being provided in the guide surface members.
A sheet guiding device of this general type has become known heretofore from the published German Patent Document DE 34 11 029 C2. In this known sheet guiding device, an attempt has been made to achieve a reliable floating or suspended guidance of the sheets by having nozzles, which are in the form of bores disposed in the guide surface members perpendicularly thereto, constituting a predetermined part of the surface area of the respective guide surface members. A disadvantageous feature of this conventional sheet guiding device is that the nozzles are directed perpendicularly to the sheet which is to be guided. For example, blast air emerging from the nozzles strikes the sheet, must be deflected thereby with an application of forces, and then flows radially away 360° on all sides from the nozzle blast-air outlet location. The pulsing forces resulting from the deflection cause the sheet to flutter. In order to guide a sheet stably by means of these unstable and turbulent free jets from the nozzles, it is necessary to adjust the pulsing force with very delicate sensitivity to the particular printing material or stock. The supply pressure of the blown-in air must be only minimal. In order to maintain the entire sheet guiding region free of smearing, however, a high volumetric flow is required and, in order to generate such a flow, a quite specific part of the surface area in the guide plane must be formed of the nozzle bores.
Furthermore, in the device of the aforementioned published German patent document, the volumes of air flowing away from the nozzles, after having been deflected by the respective sheets, extend in a direction opposite to that of the like air volumes of the adjacent nozzles. These mutually oppositely directed volumes meet violently and generate around the nozzles regions having turbulence fields wherein the nozzle air swirls and the kinetic energy of the nozzle air is dissipated.
Because of the heavy turbulence, sheet transport is disrupted in these zones. The sheets are caused to flutter and vibrate, and the trailing edge thereof, especially, performs whiplike motions. The possibility of guiding a sheet printed on both sides thereof without smearing it thus exists, if at all, only at a low press speed and with considerable expenditure of time for adjusting the intrinsically unstable free jets of blast air. In order to be able to operate a printing press, however, the nozzles are acted upon by suction, and only with friction do they generate a sheet guidance which permits higher speeds of the printing press. If a sheet printed on both sides is to be processed, regions which must remain unprinted are required on the reverse side thereof. In these regions, the sucking bores can become active. Therebetween, it is then possible by means of blast air to prevent smearing of the printed sheets, because the sheet holding forces, respectively, are generated only by the sucking regions.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a sheet guiding device for printing presses which avoids the disadvantages of the prior art and which assures reliable sheet travel for various kinds of printing material or stock, both in first-form and perfector or recto/verso printing, with minimal setup or make-ready times.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a sheet guiding device for a printing press having a guide surface member for guiding sheets, comprising blast air or suction nozzles provided in the guide surface member, the guide surface member being formed, as viewed in a sheet transport direction, successively of an entry region, a guide zone and an exit region, the nozzles provided in at least one of the entry and the exit regions of the guide surface member being suppliable selectively with suction or blast air in accordance with a type of printing material or stock to be processed, and the nozzles provided in the guide zone disposed between the entry region and the exit region of the guide surface member being suppliable with blast air, at least some of the nozzles being disposed so as to emit blast air substantially tangentially to a guide surface of the guide surface member.
In accordance with another feature of the invention, at least some of the nozzles provided in the entry region are selectively suppliable with the blast or suction air.
In accordance with a further feature of the invention, at least some of the nozzles provided in the exit region are selectively suppliable with the blast or suction air.
In accordance with an added feature of the invention, the device includes adjustable-speed fans for supplying air to the nozzles.
In accordance with an additional feature of the invention, the device includes axial fans for supplying air to the nozzles, the axial fans being reversible with respect to the direction of rotation thereof.
In accordance with yet another feature of the invention, the device includes air supply chests for supplying air to respective locations of the printing press, and respective fans assigned to the air supply chests, the air supply chests, respectively, having a size adapted to air requirement at the respective location.
In accordance with yet a further feature of the invention, the guide surface of the guide surface member is occupied by an array of the nozzles having a distribution varying in density to suit the respective air requirement.
In accordance with yet an added feature of the invention, the distribution density of the nozzles is greatest in the middle of a travel path for the sheet and decreases towards an edge of the sheet travel path.
In accordance with yet an additional feature of the invention, the nozzles are slit nozzles directed to the outside of the sheet travel path.
In accordance with another feature of the invention, the respective nozzles are switchable between a suction-air mode and a blast mode by remote control.
In accordance with a further feature of the invention, the nozzles in the entry region of the guide surface member are switchable to the suction-air mode when the printing material being processed is light-weight.
In accordance with an added feature of the invention, the nozzles in the exit region of the guide surface member are switchable to the suction-air mode when the printing material being processed is light-weight.
In accordance with a concomitant feature of the invention, the respective nozzles are switchable to suction-air mode for sucking a respective sheet in a region of the guide surface located substantially centrally to a sheet guide path in one of the entry region and the exit region of the guide surface member.
An advantage of the invention is that, in the preferred operating mode, which is the blowing or blast air mode, due to the tangential air flow, the printing press is capable of guiding, reliably and without smearing, all types of printing materials or stock to be processed. This is accomplished by guiding the sheets on an air flow which, due to the tangential, similarly directed blowing of the nozzles is combined from a multiplicity of individual flows into one main flow having a uniform flow direction. This flowing air cushion,--because of its evenness and uniformity, is capable of guiding the sheet without touching the sheet guide members or baffles, thus without smearing, even after both sides of the sheets have been freshly printed. In particular, this is possible at all machine speeds and when reset or make-ready times are short, because time-consuming adaptation of the air flow to the printing material or stock and to the speed of the printing press is only very seldom necessary. To place a printing press which is selectively operated for one-sided or recto/verso printing into a reliable production-run status as rapidly as possible, or in other words with minimal reset and adjustment times even at the highest machine speeds, when contact-sensitive undersides of sheets are to be processed, the invention provides that, with one-sided printing, a readjustment or conversion of the sheet guidance be possible whereby, at problematic locations in the sheet travel, a suction mode takes place wherein the unprinted sides of the sheets of paper can come into contact with metal. In this case, such contact with metal does no harm and in fact can significantly shorten the press reset or make-ready time. The sheets of paper are guided cleanly and smoothly along the sheet metal of the sheet guiding device in such a case. The paper sheets experience a braking force in the process, which tautens them, so that in this way as well, the sheets can be transferred to the next impression cylinder without any formation of creases or air cushions.
The regions or sections of the printing press which can be acted upon by or are subjectible to suction are preferably located on all the sheet-guiding drums, because disruptions in sheet travel readily occur in regions thereof affected by centrifugal force. Examples thereof are the supply drum adjacent to the feeder, the transfer drums disposed between the printing units, and the delivery drum with which the delivery system takes over or accepts the sheets from the last printing unit. If additional transfer drums are built into the press, guide surface members should also be provided therewith as well so that, in problematic regions, they can be acted upon by suction. It is also possible to provide regions which can be acted upon by suction in the delivery system as well, for example, forward or in front of the sheet brake.
Advantageously, the exit regions of the guide surface members of the sheet-guiding drums preceding the impression cylinders are constructed so that they can be acted upon by suction. These drums may be transfer drums which are disposed between the impression cylinders of the various printing units. However, it is also possible for more than one sheet transport drum to be disposed between the impression cylinders. The sheet transport drum before or upstream of the first impression cylinder is a supply drum, which takes the sheet from the feeder and transports it further onto the impression cylinder. It is also possible, however, for a further transport drum to be provided in this region. Clean sheet guidance is especially important in the case of sheet-guiding drums preceding the impression cylinders, because the placement of the sheet on the impression cylinders and, hence, the quality of the printing depend upon clean sheet guidance. Due to the action of suction air in these regions, the sheet, upon the transfer thereof to the impression cylinder, experiences an additional advantageous automatic stabilization, which tautens the sheet and thus serves to apply the sheet smoothly to the impression cylinder. This result in a considerable simplification of the adaptation of the printing press to the particular type of printing material or stock, especially when contact-sensitive undersides of sheets are involved.
The entry regions of the guide surface members of the sheet-guiding drums can also be selectively acted upon by suction air. This is advantageous in the event of a stoppage of a printing press, for example, due to an emergency stop or a slow forward rotation of the press in the typing mode. At the time of such a press stoppage or slow forward rotation, if the end of the sheet is located in the entry region of the guide surface member of a sheet-guiding drum, then as a rule the rear or trailing end of the sheet faces upwardly, and the press stoppage or a very slow forward rotation can cause the end of the sheet to drop downwardly, resulting in a creasing of the sheet. Printing presses heretofore known in the prior art must first reject such sheets in the typing mode, or else the sheets must be removed before printing can be resumed. By the imposition of suction air in the entry region of the guide surface members of the sheet-guiding drums, the end of the sheet is reliably held and, after a press stop or a slow further rotation of the printing press, it is possible to continue printing immediately, because the ends of the sheets do not drop downwardly.
A further feature of the invention provides for the air supply to be effected via axial fans having a selectively reversible direction of rotation. This ensures the accomplishment, in a very simple manner, of a switchover of the desired sections or locations of the printing press.
The air supply to the nozzles is preferably accomplished via adjustable-speed fans. In this manner, in the blowing or blast mode, the floating or suspension guidance can be adjusted, while in the suction mode, it is possible to adjust on the guide surface members the frictional force of the sheet adapted to the particular paper involved. Moreover, in the suction mode, the possibility exists of removing just enough air by suction so that contact between the sheet and the guide member or baffle does not yet occur.
It is possible to have the desired air act upon relatively large nozzles individually by means of fans, or an air supply can be provided wherein individual regions or portions of the air supply are made effective via air supply chests or boxes. In this regard, at least one subdivision of the guide surface members into regions which are acted upon selectively with blowing or suction air, and regions of the guide surface members which are preferably acted upon only in the blowing air mode is required. Naturally, a further subdivision is also possible, depending upon how strong the action of the air in a certain region of a guide surface member should be. The advantage of the air supply chests or boxes is that many nozzles can be supplied by means of one air supply element. For a relatively large number of nozzles, for example, correspondingly strong axial fans can be used. Due to the subdivision, it is nevertheless possible to supply air variably to the individual regions of the guide surface members. It is therefore proposed that an axial fan be assigned to each blower chest, and that the size of the air supply chests be adapted to the air requirement of the respective region.
A further feature provides that the guide surface members be arrayed with a varying number of nozzles or a varying density thereof per unit area to suit or match the particular air requirement. For example, it is thus possible for the entry and exit regions of the guide surface members to be provided with a greater density of nozzles per unit area or a higher degree of occupancy by nozzles in the respective area, while the guide zones located between those regions have a lower nozzle density or degree of occupancy per unit area. It is also possible for the nozzle density or degree of areal occupancy to be provided greatest in the middle of the sheet travel path and to decrease toward the edge thereof. This is especially expedient if the nozzles are slit nozzles directed towards the outside of the sheet travel path. Then, the corresponding air flow is generated in the middle of the sheet travel path and need merely be maintained towards the edge; that is, as many nozzles as in the middle of the sheet travel path are no longer needed.
Advantageously, all the sections of the printing press which can be acted upon by air are adjusted by remote control. The switch-over to the suction mode by remote control is especially time-saving when the press is to be converted from perfecter or second-side printing to one-side printing or to the use of problematic types of paper. This can be performed very simply by means of electronic triggering of the axial fans or other fans.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a sheet guiding device for printing presses, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a diagrammatic side elevational view of a printing press provided with the sheet guiding device according to the invention;
FIG. 2 is an enlarged fragmentary view of FIG. 1 showing a guide surface according to the invention for a transfer drum of the printing press;
FIG. 3 is a developed top plan view of a sheet guiding device formed of air supply boxes in accordance with the invention;
FIGS. 4, 5 and 6 are different arrangements of axial fans in the air supply boxes;
FIG. 7 is a nozzle array in the air supply boxes;
FIGS. 8 and 8a are respective cross-sectional and plan views of a slit nozzle in accordance with the invention; and
FIG. 9 is a view similar to that of FIG. 3 showing a guide surface wherein sucking of the sheet occurs in sections disposed centrally to the longitudinal axis of the sheet.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawings and, first, particularly to FIG. 1 thereof, there is shown therein diagrammatically a printing press with an exemplary embodiment of a sheet guiding device according to the invention. In the interest of simplicity, only two printing units 20 and 20' of the printing press are shown; generally, such a printing press has four printing units or more, however. Each printing unit 20, 20' has an impression cylinder 8, 8', a rubber blanket cylinder 9, 9', and a plate cylinder 10, 10', as well as non-illustrated inking units. Between the printing units 20 and 20', a transfer drum 6 assures the further passage of the sheets 4 to be printed. If a printing press has several printing units, transfer drums 6 are always disposed between each two printing units. Naturally, it is also possible for a plurality of sheet feeding drums to be provided instead of the single transfer drum 6. In the illustrated printing press, a sheet travel path 17 is shown with accompanying arrows 24 indicating the sheet travel direction. The sheets 4 are removed from a feed pile 19 and forwarded, by means of a conventional non-illustrated feeder device, to a feeder drum 5 having non-illustrated grippers with which it transfers the sheets 4 to an impression cylinder 8 for printing. From the impression cylinder 8, the sheet 4 is accepted by grippers 26 (FIG. 2) of the transfer drum 6 and delivered to a further impression cylinder 8', so that a further printing operation can be performed on the sheet 4. In the illustrated printing press, the impression cylinder 8' transfers the sheet 4 to a delivery drum 7 of a delivery system 21. The delivery drum 7 is a transfer drum for gripper bars which are disposed on a delivery chain 22 and which transport the accepted sheets 4 to the end of the delivery system 21, whereat the sheets 4 are deposited on a delivery pile 23.
Additional sheet guidance is required in sections 3 of the printing press so that the sheets 4 will be transported cleanly and, above all, transferred to the impression cylinders 8 and 8' so as to lie smoothly thereon. In this regard, guide surface members or deflectors 1 having a number of preferably slitlike nozzles 2 are disposed in the sections 3. These nozzles are not shown in FIG. 1 but can be seen, for example, at the transfer drum 6 in FIG. 2. The nozzles 2 are constructed so that at least some thereof feed blast air substantially tangentially to the surface of the guide surface member 1 in the region formed between the sheet 4 and the guide surface member 1. The air flow and the surface of the guide surface member 1 define an angle therebetween which may, for example, be between 0.1° and 30°. The arrangement of the nozzles 2 and the direction in which they blow are also preferably selected so that the air flows of adjacent nozzles groups are superimposed into a total flow having substantially parallel flow lines. The guide surface member 1 at the transfer drum 6 has a total of four nozzle regions 11, 12, 40 and 42, divided by partitions 44, 46 and 48, and acted upon with air by a respective axial fan 15. The nozzle regions 11, 12, 40 and 42 are formed of a plurality of nozzles 2, which are disposed behind one another as seen in the viewing direction of FIG. 2. The arrows 25 indicate the possible directions in which the respective axial fans 15 blow. The sheet 4 which has been accepted or taken over by the transfer drum 6 from the impression cylinder 8 by means of a row of grippers 26 is transported onwardly to the impression cylinder 8'.
When the sheet guiding device is in the blowing or blast mode, the sheet 4 experiences a floating or suspension guidance wherein it is guided between the transfer drum 6 and the guide surface member 1 without contacting the surface of the guide surface member 1. Such a floating guidance is necessary in perfector printing, for example, because neither side of the sheet 4 must be allowed to become smeared at the transfer drum 6 or at the guide surface members 1.
If the press is being operated in first-form or recto printing mode, however, the underside of the sheet 4 is unprinted, and floating guidance is unnecessary. Thus, in critical sections 3 of the printing press, guidance of the sheets 4 along the guide surface members 1 may be selected, so as to achieve the aforementioned shortening of the reset or make-ready time. To that end, the axial fans 15 are switched to the suction mode in the entry region 11 and exit region 12 of a respective corresponding guide surface member 1. The sheet 4 can thereby slide along the guide surface members 1 in the regions 11 and 12, and friction forces can arise between the sheet 4 and the guide surface of the guide surface members 1. The sheet 4 is consequently held in the entry region 11 so that when the press is in a slow operating mode or is stopped, the sheet will not drop downwardly at the rear or trailing end thereof, so that the sheet 4 does not become creased thereby. The suction mode in the exit region 12 also leads to a tautening or stretching of the sheet 4, so that labile or soft papers, especially those with a low weight per unit of surface area, such as Bible paper, for example, can be surrendered, i.e., transferred, to the impression cylinder 8 even at maximum speed without producing waviness or trapped air bubbles. In this way, even problematic papers can be printed with high quality and at maximum speed, while minimal machine reset times are maintained. Guidance of the sheet 4 along the guide surfaces of the guide surface members 1 in the exit region 12 can also be helpful even with less problematic papers, for example, if the printing press is running correspondingly fast and, thereby, great centrifugal forces are exerted upon the sheet 4 which can drive it outwardly and consequently cause a fluttering of the sheet 4. In this case as well, the holding or retention forces generated by the aforedescribed guidance in both the air blowing and the suction mode and exerted upon the sheet 4 along the guide surfaces of the guide surface members 1 can serve to apply the sheet 4 cleanly to the impression cylinder 8'.
It is believed to be apparent from FIG. 1 that axial fans 15 are also disposed at the feeder drum 5 in the entry region 11 and the exit region 13, respectively, of the respective guide surface members 1, and can apply suction air to the nozzles 2 so as to permit taut sheet guidance there as well, and thereby ensuring that the sheet 4 lies properly on the impression cylinder 8. An axial fan 15 is also provided at the delivery drum 7 and assures that an end of a sheet in this region is reliably guided and cannot fall downwardly if the press should stop, which could consequently cause a creasing of the sheet 4 and render it unuseable. Further apparent is how additional axial fans 15 for sheet guidance can be disposed in the section 3 of the delivery system 21 and can serve, respectively, to feed the sheet 4 reliably to the delivery pile 23, and to assure that the sheets are acted upon with blown or blast air above the delivery pile 23 in such a manner that they are deposited quickly on the delivery pile 23.
FIG. 3 shows a guide surface member 1 having nozzles 2 which are acted upon with air by means of air supply boxes or chests 16 and 16'. The guide surface member 1 is shown in a plan view in FIG. 3, with the partitions 44, 46 and 48 represented by broken lines or in phantom providing for a subdivision thereof into the various air supply boxes or chests 16 and 16'. The density per unit of surface area of the nozzles 2 which are embodied as slit nozzles 18 is preferably varied. In the entry region 11, for example, two air supply boxes or chests 16 are provided, which have a relatively high density of nozzles 2 per unit of surface area. They are followed by a guide zone 14 having an areal density of nozzles 2 which is greater in a middle region thereof than at the edges thereof. This guide zone 14, for example, corresponds to the nozzle regions 40 and 42, wherein an application of blown or blast air is adequate for any operating mode of the printing press. The guide zone 14 is followed in the sheet travel direction 24 by the exit region 12 which has a higher density of nozzles and wherein relatively strong holding or retention forces must act upon the sheet 4 in the suction-air operating mode.
FIG. 4 shows how axial fans 15 can be associated with the air supply chests 16 and 16' shown in FIG. 3. It is also possible, however, to arrange the air supply chests 16 and 16' and the axial fans 15 in the manner shown in FIG. 5. This arrangement is substantially equivalent to the arrangement of air supply chests with the partitions 44, 46 and 48 shown in FIG. 2.
If a lesser amount of air is required, one of the subdivisions can be dispensed with, so that only one blower chest 16", respectively, is provided in the entry region 11 and in the exit region 12, and a large blower chest 16'" is provided in the guide zone 14, as shown in FIG. 6. The nozzle array is formed accordingly and is represented in FIG. 7.
FIG. 8 shows the preferred embodiment of the nozzles 2 which has already been indicated in FIG. 3. This involves slit nozzles 18, which can be stamped in a relatively simple manner into the sheet metal of the guide surface members 1. In the arrangement shown in FIG. 3, the direction of blowing is directed outwardly as represented by arrows 50, which tautens the sheet 4 transversely or crosswise to the travel direction thereof. To that end, it is necessary for two strong, outwardly directed air flows to be formed in the middle and move towards the side of the sheet 4, those air flows, as they travel towards the outside, being maintainable by means of a lesser number of nozzles 2, 18.
In a preferred embodiment of the invention shown in FIG. 9, nozzle regions 52 and 54 having nozzles, which are switchable between the blowing or blast mode and the suction mode in accordance with the type of printing material or stock to be processed, are provided in the entry region 11 and/or in the exit region 12 of the guide surface member 1. The other nozzles of the guide surface member 1 in this embodiment of the invention are preferably operated in the blowing or blast mode. Each of the nozzle regions 52 and 54 preferably has a respective fan 15 associated therewith, and these regions 52 and 54 are preferably disposed centrally to the sheet travel path 17 and have a width which is less than that of the smallest sheet format or size processable by the printing press.
The exemplary embodiments merely illustrate possibilities for constructing the sheet guiding device of the invention; other constructions with different nozzle arrays and, if necessary or desirable, other blowing or blast directions are also conceivable within the scope of the invention. Instead of the axial fans 15, a central air supply with blown or blast air and suction air or different types of fans may also be used.

Claims (10)

I claim:
1. A sheet guiding device for guiding sheets in a printing press, comprising:
a guide surface member having a guide surface;
said guide surface having blast air or suction slit nozzles formed therein, said nozzles directed crosswise to a sheet travel path;
said guide surface member being formed successively of an entry region, a guide zone and an exit region as viewed in a sheet transport direction;
air supply chests for supplying air to respective regions of said guide surface member, and respective fans assigned to said air supply chests, said air supply chests, respectively, having a size adapted for air requirements at said respective regions and said air supply chests acting selectively in individual regions;
said nozzles in said guide zone supplying blast air and said nozzles in said entry region and said exit region supplying blast air if the printing press is operating in a perfector mode for preventing the sheets from contacting said guide surface;
said nozzles in at least one of said entry and said exit regions supplying suction air if the press is operating in a recto printing mode for providing frictional forces between the sheets and said guide surface member; and
at least some of said nozzles emitting blast air substantially tangentially to said guide surface, said nozzles disposed on said guide surface in an array having a distribution varying in density and said distribution density of said nozzles is greatest in a middle of the travel path for the sheets and decreases towards an edge of the sheet travel path.
2. Device according to claim 1, wherein said nozzles in said entry and said exit regions are supplied with suction air when the printing material being processed requires a change in the frictional force between the sheets and said guide surface for reliably feeding the sheets.
3. Device according to claim 1, including a reversible fan connected to at least some of said nozzles provided in said entry region for selectivley supplying blast or suction air.
4. Device according to claim 1, including a reversible fan connected to at least some of the nozzles provided in said exit region for selectively supplying blast or suction air.
5. Device according to claim 1, including adjustable speed fans for supplying air to said nozzles to adjust for frictional forces said guide surface member exerts on the sheets.
6. Device according to claim 1, wherein the respective nozzles are switchable between a suction-air mode and a blast mode by remote control of a reversible fan.
7. Device according to claim wherein the nozzles in said entry region of the guide surface member are switchable to the suction-air mode by said reversible fan when the printing material being processed requires a change in the frictional force between the sheets and said guide surface for reliably feeding the sheets.
8. Device according to claim 6 wherein said nozzles in said exit region of said guide surface member are switchable to the suction-air mode by said reversible fan when the printing material being processed requires a change in the frictional force between the sheets and said guide surface for reliably feeding the sheets.
9. Device according to claim 1, wherein the respective nozzles are switchable to suction-air mode by a reversible fan for sucking a respective sheet in a region of said guide surface located substantially centrally to a sheet guide path in one of said entry region and said exit region.
10. Device according to claim 9, wherein the printing press is operable for processing a sheet with a width of a given minimal format and said substantially central region of said guide surface has a width smaller than the width of the given minimal format processable by the printing press.
US08/857,133 1995-02-01 1997-05-15 Sheet guiding device for printing presses Expired - Lifetime US5816155A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/857,133 US5816155A (en) 1995-02-01 1997-05-15 Sheet guiding device for printing presses
US09/096,978 US6378425B1 (en) 1995-02-01 1998-06-12 Sheet-guiding device for printing presses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19503110.5 1995-02-01
DE19503110A DE19503110B4 (en) 1995-02-01 1995-02-01 Sheet guiding device for printing machines
US59510396A 1996-02-01 1996-02-01
US08/857,133 US5816155A (en) 1995-02-01 1997-05-15 Sheet guiding device for printing presses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US59510396A Continuation 1995-02-01 1996-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/096,978 Continuation-In-Part US6378425B1 (en) 1995-02-01 1998-06-12 Sheet-guiding device for printing presses

Publications (1)

Publication Number Publication Date
US5816155A true US5816155A (en) 1998-10-06

Family

ID=7752817

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/857,133 Expired - Lifetime US5816155A (en) 1995-02-01 1997-05-15 Sheet guiding device for printing presses

Country Status (4)

Country Link
US (1) US5816155A (en)
EP (1) EP0725025B1 (en)
JP (3) JPH08244206A (en)
DE (3) DE19503110B4 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913268A (en) * 1998-02-17 1999-06-22 Xerox Corporation Pneumatic rollers and paper handling arrangements
US5931093A (en) * 1997-01-16 1999-08-03 Man Roland Druckmaschinen Ag Pneumatic sheet guiding device in a printing machine
US5979308A (en) * 1997-02-13 1999-11-09 Maschinenfabrik Geitz Ag Flat embossing machine with a foil loop store
US6135026A (en) * 1998-04-27 2000-10-24 Heidelberger Druckmaschinen Aktiengesellschaft Sheet guiding device in a sheet-fed printing press
EP1122064A2 (en) * 2000-02-07 2001-08-08 MAN Roland Druckmaschinen AG Method and device for sheet guide in a rotary press
US6273417B1 (en) 1999-03-29 2001-08-14 Heidelberger Druckmaschinen Ag Delivery for sheet processing printing machine
US6435088B2 (en) * 2000-02-08 2002-08-20 Mitsubishi Heavy Industries, Ltd. Sheet guide unit for sheet-fed press
US6457409B2 (en) * 2000-02-10 2002-10-01 Mitsubishi Heavy Industries, Ltd. Sheet guide unit for sheet-fed press
US6477951B2 (en) * 2000-02-10 2002-11-12 Mitsubishi Heavy Industries, Ltd. Sheet-fed press
US6585263B1 (en) 2000-02-02 2003-07-01 Heidelberger Druckmaschinen Ag Deceleration drum assembly containing air guides
US20030121440A1 (en) * 2001-10-24 2003-07-03 Koening & Bauer Apparatus for cooling material to be printed and printing units at sheet fed printing machines with cooled compressed air
US6622623B1 (en) * 1998-06-03 2003-09-23 Heidelberger Druckmaschinen Ag Method for conveying sheets in a printing machine and a device for carrying out the method
US20030189286A1 (en) * 2002-04-08 2003-10-09 You Shimizu Sheet guide apparatus
US6640706B1 (en) * 1999-10-28 2003-11-04 Heidelberger Druckmaschinen Ag Guiding device for an areal printing material
US6640707B2 (en) 2000-08-31 2003-11-04 Heidelberger Druckmaschinen Ag Device for guiding sheets in a sheet processing apparatus
US6662722B2 (en) * 2000-08-31 2003-12-16 Heidelberger Druckmaschinen Ag Machine for processing sheets having spring mounted throttled air nozzles
US6722277B2 (en) * 2000-11-15 2004-04-20 Heidelberger Druckmaschinen Ag Device for turning sheet material, printing unit, and multicolor rotary printing press
US6729233B2 (en) * 2000-12-06 2004-05-04 Man Roland Druckmaschinen Ag Sheet guide device in a rotary printing machine
US6802256B1 (en) * 1998-01-20 2004-10-12 Heidelberger Druckmaschinen Ag Method and device for preventing uncontrolled spread of powder in a printing machine
US20050070415A1 (en) * 2003-09-30 2005-03-31 Haasl Andrew L. Assembly for and method of preventing buildup of debris in a folding roll tucker assembly
US6934508B2 (en) 2001-03-19 2005-08-23 Navigaug Inc. System and method for obtaining comprehensive vehicle radio listener statistics
EP1666249A1 (en) * 2004-12-03 2006-06-07 MAN Roland Druckmaschinen AG Sheet guiding device for a sheet-processing machine, in particular a sheet printing machine
US20060181013A1 (en) * 2004-12-21 2006-08-17 Komori Corporation Sheet guide apparatus
US20070000400A1 (en) * 2005-06-16 2007-01-04 Komori Corporation Sheet guide apparatus
US20070013122A1 (en) * 2004-04-01 2007-01-18 Sony Chemical & Information Device Corporation Sunction device and method of conveying laminated sheet
US20090231377A1 (en) * 2008-03-17 2009-09-17 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US20090231407A1 (en) * 2008-03-17 2009-09-17 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US20090244237A1 (en) * 2008-03-31 2009-10-01 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US20090291215A1 (en) * 2008-05-23 2009-11-26 Toshiyuki Makuta Image forming method
US20090311426A1 (en) * 2008-05-23 2009-12-17 Yusuke Nakazawa Inkjet recording method and apparatus
CN102700243A (en) * 2011-03-28 2012-10-03 海德堡印刷机械股份公司 Device for conveying page
US20130027484A1 (en) * 2011-07-29 2013-01-31 Takashi Fukui Inkjet recording apparatus
US20150158315A1 (en) * 2012-08-22 2015-06-11 Fujifilm Corporation Print medium-conveying device and inkjet printing device
US9378714B1 (en) 2015-02-10 2016-06-28 Kevin L. Baldwin, Sr. Electronic drum
US11225097B2 (en) * 2018-12-20 2022-01-18 Kateeva, Inc. Inkjet printer with temperature controlled substrate support
US20220234848A1 (en) * 2021-01-22 2022-07-28 Ricoh Company, Ltd. Sheet stacking device and printing apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19810387C1 (en) * 1998-03-11 1999-07-29 Autz & Herrmann Maschf Sheet feeder, esp. for contactless feeding of printed paper sheets in or in connection with printing machines, e.g. in a drier
DE19829094C2 (en) * 1998-06-30 2002-10-24 Roland Man Druckmasch Guide device for sheet-shaped substrates in a printing machine
DE19857745A1 (en) * 1998-12-15 2000-06-29 Roland Man Druckmasch Sheet guiding device for a printing machine
DE19905095C2 (en) * 1999-02-09 2001-02-22 Roland Man Druckmasch Sheet guiding device for a printing machine
US6186489B1 (en) * 1999-04-06 2001-02-13 Heidelberger Druckmaschinen Ag Method and apparatus for constraining the open edge of a signature during transfer
DE10011979C5 (en) * 2000-03-11 2008-02-14 Man Roland Druckmaschinen Ag Device for sheet guiding in a printing machine
CN100434271C (en) * 2001-07-23 2008-11-19 三菱重工业株式会社 Single-sheet conveying printing machine
DE102004002660B4 (en) 2003-01-31 2013-06-13 Heidelberger Druckmaschinen Ag Method for operating a sheet-fed printing press and sheet-fed printing press for carrying out this method
WO2005047000A1 (en) * 2003-11-17 2005-05-26 Silverbrook Research Pty Ltd Blower box assembly for a printer
DE102004021730B4 (en) * 2004-04-30 2011-08-18 KOENIG & BAUER Aktiengesellschaft, 97080 Sheet guiding device in printing machines
DE102005014257A1 (en) * 2005-03-30 2006-10-05 Koenig & Bauer Ag Guiding device for supplying flat print substrates, has guiding surface with air blast openings for producing air cushion, where section of surface exhibits air blast openings that are perpendicular to surface on print substrate surface
JP5473210B2 (en) * 2006-11-06 2014-04-16 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト Method and apparatus for reversing a sheet while conveying the sheet through a printing machine
JP5202054B2 (en) * 2008-03-17 2013-06-05 リョービ株式会社 Sheet paper delivery device in a printing press
EP2927010B1 (en) * 2012-11-28 2018-03-21 Yamato Grand Co., Ltd. Printing method using offset printer
DE102014216286A1 (en) * 2014-08-15 2016-02-18 Koenig & Bauer Ag Device for guiding sheets in a sheet-fed rotary printing machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622058A (en) * 1966-11-23 1971-11-23 Vits Gmbh Maschf Contact-free holding of a web of sheet material guided in a floating manner
US3684081A (en) * 1970-09-14 1972-08-15 Masaharu Matsuo Sheet transfer device
US4029009A (en) * 1975-07-17 1977-06-14 Veb Polygraph Leipzig Kombinat Fur Polygraphische Maschinen Und Ausrustungen Printing machine construction
US4099463A (en) * 1977-04-13 1978-07-11 Veb Polygraph Leipzig Kombinat Fuer Polygraphische Maschinen Und Ausruestungen Support arrangement for guiding sheets through a printing machine
DE3411029A1 (en) * 1984-03-24 1985-10-03 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach DEVICE FOR GUIDING SHEETS PRINTED ON SIDE AND BOTH SIDES
US5243909A (en) * 1990-12-31 1993-09-14 Howard W. DeMoore Vacuum transfer apparatus for rotary sheet-fed printing presses
DE4209067A1 (en) * 1992-03-20 1993-09-23 Kba Planeta Ag Sheet guide mechanism for printing machines - has blow nozzles in middle of guide plate for air jets orthogonal to flexible surface structure.
US5419256A (en) * 1992-12-17 1995-05-30 Heidelberger Druckmaschinen Aktiengesellschaft Device for laterally aligning sheets being fed into a printing press and method for aligning the sheets
US5488905A (en) * 1995-04-10 1996-02-06 Howard W. DeMoore Air-dam for printing press vacuum transfer apparatus
US5497987A (en) * 1993-03-16 1996-03-12 Heidelberger Druckmaschinen Ag Sheet-guiding device
US5509352A (en) * 1994-09-23 1996-04-23 Ward Holding Company Paperboard processing machine with vacuum transfer system
US5546858A (en) * 1994-03-24 1996-08-20 Heidelberger Druckmaschinen Aktiengesellschaft Printing press

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE555814C (en) * 1928-11-11 1932-07-29 Hamburger Fremdenblatt Brosche Multi-color rotary printing machine for sheets
DE1907083C3 (en) * 1969-02-13 1975-12-18 Vits-Maschinenbau Gmbh, 4018 Langenfeld Blow box for floating guidance and / or conveying of webs or sheets
DD125394A1 (en) * 1976-02-27 1977-04-20
DE2802610C2 (en) * 1978-01-21 1983-05-05 Vits-Maschinenbau Gmbh, 4018 Langenfeld Blow box for floating guidance and / or conveying of webs or sheets
DE2911685C2 (en) * 1979-03-24 1981-03-12 Vits-Maschinenbau Gmbh, 4018 Langenfeld Blow box for the floating guidance of material webs
DE3443704A1 (en) * 1984-11-30 1986-06-05 Roland Man Druckmasch DEVICE FOR GUIDING SHEETS PRINTED ON ONE OR TWO SIDES
DD241042A1 (en) * 1985-09-23 1986-11-26 Polygraph Leipzig ARC DIRECTION IN PRINTING MACHINES
DE8915626U1 (en) * 1989-11-06 1991-02-21 Vits, Hilmar, 5653 Leichlingen, De
DE4406844C2 (en) * 1994-03-03 1997-05-07 Koenig & Bauer Albert Ag Device for guiding freshly coated sheets
DE4447963B4 (en) * 1994-08-03 2005-12-29 Heidelberger Druckmaschinen Ag Device for non-contact guiding sheet material
DE29501537U1 (en) * 1995-02-01 1995-03-09 Heidelberger Druckmasch Ag Sheet guiding device with air supply boxes

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622058A (en) * 1966-11-23 1971-11-23 Vits Gmbh Maschf Contact-free holding of a web of sheet material guided in a floating manner
US3684081A (en) * 1970-09-14 1972-08-15 Masaharu Matsuo Sheet transfer device
US4029009A (en) * 1975-07-17 1977-06-14 Veb Polygraph Leipzig Kombinat Fur Polygraphische Maschinen Und Ausrustungen Printing machine construction
US4099463A (en) * 1977-04-13 1978-07-11 Veb Polygraph Leipzig Kombinat Fuer Polygraphische Maschinen Und Ausruestungen Support arrangement for guiding sheets through a printing machine
DE3411029A1 (en) * 1984-03-24 1985-10-03 M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach DEVICE FOR GUIDING SHEETS PRINTED ON SIDE AND BOTH SIDES
US4572071A (en) * 1984-03-24 1986-02-25 M.A.N.-Roland Druckmaschinen Aktiengesellschaft Device for guiding sheets printed on one or both sides
US5243909A (en) * 1990-12-31 1993-09-14 Howard W. DeMoore Vacuum transfer apparatus for rotary sheet-fed printing presses
DE4209067A1 (en) * 1992-03-20 1993-09-23 Kba Planeta Ag Sheet guide mechanism for printing machines - has blow nozzles in middle of guide plate for air jets orthogonal to flexible surface structure.
US5419256A (en) * 1992-12-17 1995-05-30 Heidelberger Druckmaschinen Aktiengesellschaft Device for laterally aligning sheets being fed into a printing press and method for aligning the sheets
US5497987A (en) * 1993-03-16 1996-03-12 Heidelberger Druckmaschinen Ag Sheet-guiding device
US5546858A (en) * 1994-03-24 1996-08-20 Heidelberger Druckmaschinen Aktiengesellschaft Printing press
US5509352A (en) * 1994-09-23 1996-04-23 Ward Holding Company Paperboard processing machine with vacuum transfer system
US5488905A (en) * 1995-04-10 1996-02-06 Howard W. DeMoore Air-dam for printing press vacuum transfer apparatus

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931093A (en) * 1997-01-16 1999-08-03 Man Roland Druckmaschinen Ag Pneumatic sheet guiding device in a printing machine
US5979308A (en) * 1997-02-13 1999-11-09 Maschinenfabrik Geitz Ag Flat embossing machine with a foil loop store
US6802256B1 (en) * 1998-01-20 2004-10-12 Heidelberger Druckmaschinen Ag Method and device for preventing uncontrolled spread of powder in a printing machine
US5913268A (en) * 1998-02-17 1999-06-22 Xerox Corporation Pneumatic rollers and paper handling arrangements
US6135026A (en) * 1998-04-27 2000-10-24 Heidelberger Druckmaschinen Aktiengesellschaft Sheet guiding device in a sheet-fed printing press
US6622623B1 (en) * 1998-06-03 2003-09-23 Heidelberger Druckmaschinen Ag Method for conveying sheets in a printing machine and a device for carrying out the method
US6273417B1 (en) 1999-03-29 2001-08-14 Heidelberger Druckmaschinen Ag Delivery for sheet processing printing machine
US6640706B1 (en) * 1999-10-28 2003-11-04 Heidelberger Druckmaschinen Ag Guiding device for an areal printing material
US6585263B1 (en) 2000-02-02 2003-07-01 Heidelberger Druckmaschinen Ag Deceleration drum assembly containing air guides
EP1122064A2 (en) * 2000-02-07 2001-08-08 MAN Roland Druckmaschinen AG Method and device for sheet guide in a rotary press
EP1122064B1 (en) * 2000-02-07 2008-02-27 MAN Roland Druckmaschinen AG Method and device for sheet guide in a rotary press
US6435088B2 (en) * 2000-02-08 2002-08-20 Mitsubishi Heavy Industries, Ltd. Sheet guide unit for sheet-fed press
US6477951B2 (en) * 2000-02-10 2002-11-12 Mitsubishi Heavy Industries, Ltd. Sheet-fed press
US6457409B2 (en) * 2000-02-10 2002-10-01 Mitsubishi Heavy Industries, Ltd. Sheet guide unit for sheet-fed press
US6662722B2 (en) * 2000-08-31 2003-12-16 Heidelberger Druckmaschinen Ag Machine for processing sheets having spring mounted throttled air nozzles
US6640707B2 (en) 2000-08-31 2003-11-04 Heidelberger Druckmaschinen Ag Device for guiding sheets in a sheet processing apparatus
US6722277B2 (en) * 2000-11-15 2004-04-20 Heidelberger Druckmaschinen Ag Device for turning sheet material, printing unit, and multicolor rotary printing press
US6729233B2 (en) * 2000-12-06 2004-05-04 Man Roland Druckmaschinen Ag Sheet guide device in a rotary printing machine
US6934508B2 (en) 2001-03-19 2005-08-23 Navigaug Inc. System and method for obtaining comprehensive vehicle radio listener statistics
US20050221774A1 (en) * 2001-03-19 2005-10-06 Ceresoli Carl D System and method for obtaining comprehensive vehicle radio listener statistics
US7359687B2 (en) 2001-03-19 2008-04-15 Navigauge, Inc. System and method for obtaining comprehensive vehicle radio listener statistics
US6983696B2 (en) * 2001-10-24 2006-01-10 Koenig & Bauer Ag Apparatus for cooling material to be printed and printing units at sheet fed printing machines with cooled compressed air
US20030121440A1 (en) * 2001-10-24 2003-07-03 Koening & Bauer Apparatus for cooling material to be printed and printing units at sheet fed printing machines with cooled compressed air
US20030189286A1 (en) * 2002-04-08 2003-10-09 You Shimizu Sheet guide apparatus
US6899327B2 (en) * 2002-04-08 2005-05-31 Komori Corporation Sheet guide apparatus
US20050070415A1 (en) * 2003-09-30 2005-03-31 Haasl Andrew L. Assembly for and method of preventing buildup of debris in a folding roll tucker assembly
US20070013122A1 (en) * 2004-04-01 2007-01-18 Sony Chemical & Information Device Corporation Sunction device and method of conveying laminated sheet
US7367560B2 (en) * 2004-04-01 2008-05-06 Sony Corporation Suction device and method of conveying laminated sheet
EP1666249A1 (en) * 2004-12-03 2006-06-07 MAN Roland Druckmaschinen AG Sheet guiding device for a sheet-processing machine, in particular a sheet printing machine
US7497437B2 (en) * 2004-12-21 2009-03-03 Komori Corporation Sheet guide apparatus
CN100567110C (en) * 2004-12-21 2009-12-09 小森公司 Sheet guide apparatus
US20060181013A1 (en) * 2004-12-21 2006-08-17 Komori Corporation Sheet guide apparatus
US7631599B2 (en) 2005-06-16 2009-12-15 Komori Corporation Sheet guide apparatus
CN100439102C (en) * 2005-06-16 2008-12-03 小森公司 Sheet guide apparatus
EP1733878A3 (en) * 2005-06-16 2007-04-18 Komori Corporation Sheet guide apparatus
US20070000400A1 (en) * 2005-06-16 2007-01-04 Komori Corporation Sheet guide apparatus
US20090231377A1 (en) * 2008-03-17 2009-09-17 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US20090231407A1 (en) * 2008-03-17 2009-09-17 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US8322843B2 (en) * 2008-03-17 2012-12-04 Fujifilm Corporation Inkjet recording apparatus and inkjet recording method
US8337008B2 (en) 2008-03-17 2012-12-25 Fujifilm Corporation Inkjet recording apparatus and inkjet recording method
US20090244237A1 (en) * 2008-03-31 2009-10-01 Yasuhiko Kachi Inkjet recording apparatus and inkjet recording method
US20090291215A1 (en) * 2008-05-23 2009-11-26 Toshiyuki Makuta Image forming method
US8414118B2 (en) 2008-05-23 2013-04-09 Fujifilm Corporation Image forming method
US20090311426A1 (en) * 2008-05-23 2009-12-17 Yusuke Nakazawa Inkjet recording method and apparatus
US8337953B2 (en) 2008-05-23 2012-12-25 Fujifilm Corporation Inkjet recording method and apparatus
CN102700243A (en) * 2011-03-28 2012-10-03 海德堡印刷机械股份公司 Device for conveying page
CN102700243B (en) * 2011-03-28 2016-04-06 海德堡印刷机械股份公司 For carrying the device of page
US20130027484A1 (en) * 2011-07-29 2013-01-31 Takashi Fukui Inkjet recording apparatus
US20150158315A1 (en) * 2012-08-22 2015-06-11 Fujifilm Corporation Print medium-conveying device and inkjet printing device
US9427986B2 (en) * 2012-08-22 2016-08-30 Fujifilm Corporation Print medium-conveying device and inkjet printing device
US9378714B1 (en) 2015-02-10 2016-06-28 Kevin L. Baldwin, Sr. Electronic drum
US9741324B2 (en) 2015-02-10 2017-08-22 Kevin L. Baldwin, Sr. Electronic drum
US11225097B2 (en) * 2018-12-20 2022-01-18 Kateeva, Inc. Inkjet printer with temperature controlled substrate support
US11660891B2 (en) 2018-12-20 2023-05-30 Kateeva, Inc. Inkjet printer with temperature controlled substrate support
US11932030B2 (en) 2018-12-20 2024-03-19 Kateeva, Inc. Inkjet printer with temperature controlled substrate support
US20220234848A1 (en) * 2021-01-22 2022-07-28 Ricoh Company, Ltd. Sheet stacking device and printing apparatus
US11760591B2 (en) * 2021-01-22 2023-09-19 Ricoh Company, Ltd. Sheet stacking device and printing apparatus

Also Published As

Publication number Publication date
EP0725025A3 (en) 1997-07-09
DE19503110A1 (en) 1996-08-08
JP3444487B2 (en) 2003-09-08
DE19503110B4 (en) 2009-01-29
DE59501845D1 (en) 1998-05-14
JP3025477B2 (en) 2000-03-27
DE19549589B4 (en) 2005-11-17
JPH11245380A (en) 1999-09-14
JP2000168047A (en) 2000-06-20
EP0725025A2 (en) 1996-08-07
JPH08244206A (en) 1996-09-24
EP0725025B1 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5816155A (en) Sheet guiding device for printing presses
US5687964A (en) Device for contactless guidance of sheetlike material
US9718286B2 (en) Sheet-transport drum and printing machine with a sheet-transport drum
JPH04226358A (en) Sheet guide apparatus used at delivery of sheet-feed rotary printing machine
US6378425B1 (en) Sheet-guiding device for printing presses
US6585263B1 (en) Deceleration drum assembly containing air guides
JPH1076634A (en) Pneumatic sheet-guide apparatus provided in printing machine
JP3676503B2 (en) Paper sheet braking method and apparatus in sheet discharge device of sheet-fed rotary printing press
US7000917B2 (en) Sheet-guiding device in a sheet-processing machine
US6527268B2 (en) Method and device for contact-free guidance of sheets
JPH11227161A (en) Sheet guiding device for printer
JP3703803B2 (en) Device for guiding the web material or sheet material while floating in the processing machine
US6477951B2 (en) Sheet-fed press
US5671918A (en) Sheet delivery for a sheet-processing machine
US6722277B2 (en) Device for turning sheet material, printing unit, and multicolor rotary printing press
GB2341850A (en) Sheet guiding arrangement
US6729233B2 (en) Sheet guide device in a rotary printing machine
US7219889B2 (en) Sheet-processing machine with a pneumatic sheet-guiding device
US6726203B1 (en) Sheet guide arrangement in a printing machine
JP2983977B2 (en) Sheet guides in the gripper area of printing presses
JP4410966B2 (en) Equipment for contactless holding of sheets
US6910416B2 (en) Suction guidance device for a single-drum turner
US6681696B2 (en) Turning or reversing device with a storage device for flat or sheet-like material
JPH0812152A (en) Paper discharge device for sheet-fed printer

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEIDELBERGER DRUCKMASCHINEN AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEPHAN, GUENTER;REEL/FRAME:009120/0053

Effective date: 19960213

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12