US5998840A - Semiconductor-on-insulator field effect transistors with reduced floating body parasitics - Google Patents

Semiconductor-on-insulator field effect transistors with reduced floating body parasitics Download PDF

Info

Publication number
US5998840A
US5998840A US09/148,689 US14868998A US5998840A US 5998840 A US5998840 A US 5998840A US 14868998 A US14868998 A US 14868998A US 5998840 A US5998840 A US 5998840A
Authority
US
United States
Prior art keywords
region
field effect
effect transistor
source
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/148,689
Inventor
Il-Kwon Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, IL-KWON
Application granted granted Critical
Publication of US5998840A publication Critical patent/US5998840A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/91Controlling charging state at semiconductor-insulator interface

Definitions

  • the present invention relates to semiconductor devices and methods of forming same, and more particularly to semiconductor-on-insulator (SOI) field effect transistors (FETs) and methods of forming semiconductor-on-insulator field effect transistors.
  • SOI semiconductor-on-insulator
  • FETs field effect transistors
  • Field effect transistors such as MOSFETs fabricated in silicon-on-insulator (SOI) substrates may be susceptible to relatively low source-to-drain breakdown voltages due to floating body effects.
  • excess holes in nMOSFETs may be generated by impact ionization and may accumulate near the source/body junction therein. A sufficient number of holes may accumulate and forward bias the body with respect to the source and thereby lower the threshold voltage of the MOSFET through the body-bias effect.
  • a "kick" effect in the I-V characteristics may be present because of additional current flow.
  • a P+ side contact 20 is formed to provide a current path for impact ionization current. Unfortunately, the inclusion of this P+ side contact 20 increases the unit cell size of an SOI MOSFET and complicates the fabrication process.
  • SOI field effect transistors FETs which comprise an electrically insulating substrate, a semiconductor region on the electrically insulating substrate, a field effect transistor having source, drain and channel regions in the semiconductor region and a metal silicide region between the electrically insulating substrate and the semiconductor region.
  • the metal silicide region (e.g., TiSi 2 ) forms non-rectifying junctions with the source and channel regions of the field effect transistor so that holes accumulated in the channel region (upon impact ionization) can be readily transported to the source region (and contact thereto) via the metal silicide region and recombination of the holes with electrons in the source region can be carried out with high efficiency.
  • the metal silicide region ohmically contacts the source and channel regions, but does not form a junction with the drain region of the field effect transistor.
  • the semiconductor region may also include a chemically-mechanically polished surface thereon and the field effect transistor may comprise an insulated gate electrode on the chemically-mechanically polished surface.
  • a field oxide isolation region is preferably provided between the electrically insulating substrate and the channel region of the field effect transistor, and the metal suicide region is self-aligned to the field oxide isolation region.
  • a preferred method of forming a semiconductor-on-insulator field effect transistor comprises the steps of forming a metal silicide layer on a first face of a semiconductor substrate and forming an electrically insulating layer on the metal silicide layer, opposite the first face. A step is then performed to form a field effect transistor having source, drain and channel regions in the semiconductor substrate so that the source and channel regions form non-rectifying junctions with the metal silicide layer.
  • the step of forming a metal silicide layer may be preceded by the step of forming a field oxide isolation region on a first portion of the first face of the semiconductor substrate.
  • the step of forming a metal silicide layer may also comprise the steps of forming a refractory metal layer in contact with a second portion of the first face of the semiconductor substrate and on the field oxide isolation region and then annealing the refractory metal layer to convert a portion of the refractory metal layer to a refractory metal silicide layer. The portion of the refractory metal layer extending opposite the field oxide isolation region is then removed.
  • the step to form the field effect transistor may also be preceded by the steps of bonding a semiconductor wafer to the electrically insulating layer and polishing a second face of the semiconductor substrate.
  • FIG. 1 is a cross-sectional view of a semiconductor-on-insulator field effect transistor according to an embodiment of the present invention.
  • FIGS. 2A-2E are cross-sectional views of intermediate structures which illustrate a preferred method of forming the transistor of FIG. 1, according to an embodiment of the present invention.
  • the transistor of FIG. 1 includes a semiconductor substrate 20 having an electrically insulating layer 18 thereon.
  • a monocrystalline silicon layer 10 is also provided and an N-channel metal-oxide-semiconductor field effect transistor (MOSFET) is formed in the silicon layer 10.
  • MOSFET metal-oxide-semiconductor field effect transistor
  • This MOSFET includes a P-type channel region 27, N-type source and drain regions 24a and 24b which are relatively lightly doped regions (e.g., LDD regions) and N+ source and drain regions 26a and 26b.
  • An insulated gate electrode is also provided on the silicon layer 10, opposite the channel region 27.
  • This insulated gate electrode may include a gate oxide insulating layer 21, a polysilicon gate electrode 22 and sidewall spacers 25.
  • a field oxide isolation region 12 may also be provided between the electrically insulating layer 18 and the channel and drain regions.
  • a refractory metal silicide layer 16 e.g., TiSi 2 is provided between the electrically insulating layer 18 and the channel and source regions, as illustrated.
  • the metal silicide layer 16 forms non-rectifying junctions with the source regions 24a and 26a and the channel region 27 of the MOSFET, so that holes accumulated in the channel region 27 (upon impact ionization) can be readily transported to the N+ source region 26a and contact thereto (not shown) via the metal silicide layer 16 and recombination of the holes with electrons in the N+ source region 26a can be carried out with high efficiency.
  • the metal silicide layer 16 ohmically contacts the source and channel regions, but does not form a junction with the drain region of the MOSFET. As described more fully hereinbelow with respect to FIGS. 2A-2E, the metal silicide layer 16 may be self-aligned to the field oxide isolation region 12.
  • a field oxide isolation region 12 is selectively formed adjacent a first portion of a first face of a semiconductor substrate 10 (e.g., monocrystalline silicon substrate).
  • This field oxide isolation region 12 may be formed using a conventional local oxidation of silicon (LOCOS) technique.
  • LOC local oxidation of silicon
  • a refractory metal layer 14 comprising a material such as titanium (Ti) is then deposited on a second portion of the first face of the semiconductor substrate 12 and on the field oxide isolation region 12, as illustrated.
  • An annealing step is then performed to convert the portion of the refractory metal layer 14 in contact with the semiconductor substrate 12 to a refractory metal silicide region (e.g., TiSi 2 ).
  • a refractory metal silicide region e.g., TiSi 2
  • silicon atoms from the semiconductor substrate diffuse and react with the refractory metal atoms to form a metal silicide region, however, the portion of the metal layer 14 in contact with the field oxide isolation region 12 typically remains unreacted because an available source of free silicon atoms is typically not present in the field oxide isolation region 12.
  • the unreacted portion of the refractory metal layer 14 is then removed using a conventional etching technique, to define a refractory metal silicide region 16 which is self-aligned to the field oxide isolation region 12.
  • an electrically insulating layer 18, such as a low temperature oxide (LTO) layer is formed on the refractory metal silicide region 16 and on the field oxide isolation region 12.
  • LTO low temperature oxide
  • a polishing step may also be performed to planarize the electrically insulating layer 18.
  • a reverse wafer bonding technique is performed to bond a semiconductor wafer 20 to the electrically insulating layer 18.
  • An annealing step may also be performed at low temperature to inhibit degradation of the refractory metal silicide region 16.
  • a chemical-mechanical polishing (CMP) step is then performed to thin the semiconductor substrate 10 to a desired thickness (to form a silicon layer 10) and planarize a second surface thereon.
  • the silicon layer 10 may be doped with P-type dopants by performing a blanket ion implant into the polished second surface of the silicon layer 10.
  • a gate oxide layer 21 and polysilicon conductive layer 22 are formed in sequence on the second surface of the silicon layer 10.
  • the gate oxide layer and polysilicon conductive layer are then patterned to define an insulated gate electrode.
  • the gate electrode 22 may be used as a mask during the step of implanting N-type dopants into the silicon layer 10.
  • a relatively short duration annealing step may also be performed to drive-in and diffuse the implanted dopants and define lightly doped source and drain regions 24a and 24b, respectively.
  • Electrically insulating spacers 25 may then be formed on the exposed sidewalls of the gate electrode 22, using conventional techniques.
  • N-type dopants are again implanted (e.g., at a higher dose level) into the silicon layer 10 to define more highly doped source and drain regions 26a and 26b which are self-aligned to the insulating spacers 25.
  • the refractory metal silicide layer 16 provides a highly conductive current path so that holes (generated by impact ionization) accumulated in the channel region 27 can be swept to the N+ source region 26a.
  • an ohmic contact is formed between the silicide layer 16 and the source regions 24a, 26a and a part of the channel region 27. Because any potential barrier formed between the silicide layer 16 and the channel region 27 is lower than the P-N junction barrier between the channel region 27 and the lightly doped source region 24a, holes accumulated in the channel region 27 may be readily swept to the N+ source region 26a via the silicide layer 16. Therefore, the rate of recombination of the accumulated holes with electrons in the source region 26a can be carried out with high efficiency.

Abstract

SOI FETs include an electrically insulating substrate, a semiconductor region on the electrically insulating substrate, a field effect transistor having source, drain and channel regions in the semiconductor region and a metal silicide region between the electrically insulating substrate and the semiconductor region. The metal silicide region (e.g., TiSi2) forms non-rectifying junctions with the source and channel regions of the field effect transistor so that holes accumulated in the channel region (upon impact ionization) can be readily transported to the source region (and contact thereto) via the metal silicide layer and recombination of the holes with electrons in the source region can be carried out with high efficiency. The metal silicide region ohmically contacts the source and channel regions, but does not form a junction with the drain region of said field effect transistor.

Description

FIELD OF THE INVENTION
The present invention relates to semiconductor devices and methods of forming same, and more particularly to semiconductor-on-insulator (SOI) field effect transistors (FETs) and methods of forming semiconductor-on-insulator field effect transistors.
BACKGROUND OF THE INVENTION
Field effect transistors such as MOSFETs fabricated in silicon-on-insulator (SOI) substrates may be susceptible to relatively low source-to-drain breakdown voltages due to floating body effects. In addition, excess holes in nMOSFETs may be generated by impact ionization and may accumulate near the source/body junction therein. A sufficient number of holes may accumulate and forward bias the body with respect to the source and thereby lower the threshold voltage of the MOSFET through the body-bias effect. Furthermore, a "kick" effect in the I-V characteristics may be present because of additional current flow.
Attempts have been made to utilize low barrier body contacts underneath the source region of an SOI transistor to collect current generated by impact ionization. One such attempt is disclosed in U.S. Pat. No. 5,489,792 to Hu. et al. entitled "Silicon-On-Insulator Transistors Having Improved Current Characteristics and Reduced Electrostatic Discharge Susceptibility". In particular, the '792 patent discloses an SOI MOSFET having a P-type channel region and a low barrier P-type body contact region 18 between an N+ source region 16 and a buried silicon dioxide layer 12. Here, the low barrier P-type body contact region 18 forms a P-N junction with the N+ source region 16. Because this P-N junction inhibits conduction directly through the source region, a P+ side contact 20 is formed to provide a current path for impact ionization current. Unfortunately, the inclusion of this P+ side contact 20 increases the unit cell size of an SOI MOSFET and complicates the fabrication process.
Thus, notwithstanding the above-described SOI MOSFET, there continues to be a need for improved SOI-based transistors having reduced susceptibility to parasitic floating body effects and methods of forming same.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide improved semiconductor-on-insulator field effect transistors and methods of forming same.
It is another object of the present invention to provide semiconductor-on-insulator field effect transistors having reduced susceptibility to floating body effects and methods of forming same.
These and other objects, advantages and features of the present invention are provided by semiconductor-on-insulator (SOI) field effect transistors (FETs) which comprise an electrically insulating substrate, a semiconductor region on the electrically insulating substrate, a field effect transistor having source, drain and channel regions in the semiconductor region and a metal silicide region between the electrically insulating substrate and the semiconductor region. The metal silicide region (e.g., TiSi2) forms non-rectifying junctions with the source and channel regions of the field effect transistor so that holes accumulated in the channel region (upon impact ionization) can be readily transported to the source region (and contact thereto) via the metal silicide region and recombination of the holes with electrons in the source region can be carried out with high efficiency.
According to a preferred embodiment of the present invention, the metal silicide region ohmically contacts the source and channel regions, but does not form a junction with the drain region of the field effect transistor. The semiconductor region may also include a chemically-mechanically polished surface thereon and the field effect transistor may comprise an insulated gate electrode on the chemically-mechanically polished surface. According to a preferred aspect of the present invention, a field oxide isolation region is preferably provided between the electrically insulating substrate and the channel region of the field effect transistor, and the metal suicide region is self-aligned to the field oxide isolation region.
According to another embodiment of the present invention, a preferred method of forming a semiconductor-on-insulator field effect transistor comprises the steps of forming a metal silicide layer on a first face of a semiconductor substrate and forming an electrically insulating layer on the metal silicide layer, opposite the first face. A step is then performed to form a field effect transistor having source, drain and channel regions in the semiconductor substrate so that the source and channel regions form non-rectifying junctions with the metal silicide layer. The step of forming a metal silicide layer may be preceded by the step of forming a field oxide isolation region on a first portion of the first face of the semiconductor substrate. The step of forming a metal silicide layer may also comprise the steps of forming a refractory metal layer in contact with a second portion of the first face of the semiconductor substrate and on the field oxide isolation region and then annealing the refractory metal layer to convert a portion of the refractory metal layer to a refractory metal silicide layer. The portion of the refractory metal layer extending opposite the field oxide isolation region is then removed. The step to form the field effect transistor may also be preceded by the steps of bonding a semiconductor wafer to the electrically insulating layer and polishing a second face of the semiconductor substrate.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view of a semiconductor-on-insulator field effect transistor according to an embodiment of the present invention.
FIGS. 2A-2E are cross-sectional views of intermediate structures which illustrate a preferred method of forming the transistor of FIG. 1, according to an embodiment of the present invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It will also be understood that when a layer is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. In addition, the terms "first conductivity type" and "second conductivity type" refer to opposite conductivity types and each embodiment disclosed herein includes its complementary embodiment. Like numbers refer to like elements throughout.
Referring now to FIG. 1 a preferred semiconductor-on-insulator (SOI) field effect transistor (FET) according to an embodiment of the present invention will be described. In particular, the transistor of FIG. 1 includes a semiconductor substrate 20 having an electrically insulating layer 18 thereon. A monocrystalline silicon layer 10 is also provided and an N-channel metal-oxide-semiconductor field effect transistor (MOSFET) is formed in the silicon layer 10. This MOSFET includes a P-type channel region 27, N-type source and drain regions 24a and 24b which are relatively lightly doped regions (e.g., LDD regions) and N+ source and drain regions 26a and 26b. An insulated gate electrode is also provided on the silicon layer 10, opposite the channel region 27. This insulated gate electrode may include a gate oxide insulating layer 21, a polysilicon gate electrode 22 and sidewall spacers 25. A field oxide isolation region 12 may also be provided between the electrically insulating layer 18 and the channel and drain regions. Moreover, according to a preferred aspect of the present invention, a refractory metal silicide layer 16 (e.g., TiSi2) is provided between the electrically insulating layer 18 and the channel and source regions, as illustrated. In particular, the metal silicide layer 16 forms non-rectifying junctions with the source regions 24a and 26a and the channel region 27 of the MOSFET, so that holes accumulated in the channel region 27 (upon impact ionization) can be readily transported to the N+ source region 26a and contact thereto (not shown) via the metal silicide layer 16 and recombination of the holes with electrons in the N+ source region 26a can be carried out with high efficiency. Here, the metal silicide layer 16 ohmically contacts the source and channel regions, but does not form a junction with the drain region of the MOSFET. As described more fully hereinbelow with respect to FIGS. 2A-2E, the metal silicide layer 16 may be self-aligned to the field oxide isolation region 12.
Referring now to FIGS. 2A-2E, preferred methods of forming the SOI MOSFET of FIG. 1 will be described. As illustrated by FIG. 2A, a field oxide isolation region 12 is selectively formed adjacent a first portion of a first face of a semiconductor substrate 10 (e.g., monocrystalline silicon substrate). This field oxide isolation region 12 may be formed using a conventional local oxidation of silicon (LOCOS) technique. A refractory metal layer 14 comprising a material such as titanium (Ti) is then deposited on a second portion of the first face of the semiconductor substrate 12 and on the field oxide isolation region 12, as illustrated. An annealing step is then performed to convert the portion of the refractory metal layer 14 in contact with the semiconductor substrate 12 to a refractory metal silicide region (e.g., TiSi2). During this annealing step, silicon atoms from the semiconductor substrate diffuse and react with the refractory metal atoms to form a metal silicide region, however, the portion of the metal layer 14 in contact with the field oxide isolation region 12 typically remains unreacted because an available source of free silicon atoms is typically not present in the field oxide isolation region 12.
Next, as illustrated by FIG. 2B, the unreacted portion of the refractory metal layer 14 is then removed using a conventional etching technique, to define a refractory metal silicide region 16 which is self-aligned to the field oxide isolation region 12. Next, an electrically insulating layer 18, such as a low temperature oxide (LTO) layer, is formed on the refractory metal silicide region 16 and on the field oxide isolation region 12. A polishing step may also be performed to planarize the electrically insulating layer 18. Next, as illustrated by FIG. 2C, a reverse wafer bonding technique is performed to bond a semiconductor wafer 20 to the electrically insulating layer 18. An annealing step may also be performed at low temperature to inhibit degradation of the refractory metal silicide region 16. A chemical-mechanical polishing (CMP) step is then performed to thin the semiconductor substrate 10 to a desired thickness (to form a silicon layer 10) and planarize a second surface thereon.
Referring now to FIG. 2D, the silicon layer 10 may be doped with P-type dopants by performing a blanket ion implant into the polished second surface of the silicon layer 10. Next, a gate oxide layer 21 and polysilicon conductive layer 22 are formed in sequence on the second surface of the silicon layer 10. The gate oxide layer and polysilicon conductive layer are then patterned to define an insulated gate electrode. Next, as illustrated by FIG. 2E, the gate electrode 22 may be used as a mask during the step of implanting N-type dopants into the silicon layer 10. A relatively short duration annealing step may also be performed to drive-in and diffuse the implanted dopants and define lightly doped source and drain regions 24a and 24b, respectively. Electrically insulating spacers 25 may then be formed on the exposed sidewalls of the gate electrode 22, using conventional techniques. Next, N-type dopants are again implanted (e.g., at a higher dose level) into the silicon layer 10 to define more highly doped source and drain regions 26a and 26b which are self-aligned to the insulating spacers 25.
As determined by the inventor herein, the refractory metal silicide layer 16 provides a highly conductive current path so that holes (generated by impact ionization) accumulated in the channel region 27 can be swept to the N+ source region 26a. Here, an ohmic contact is formed between the silicide layer 16 and the source regions 24a, 26a and a part of the channel region 27. Because any potential barrier formed between the silicide layer 16 and the channel region 27 is lower than the P-N junction barrier between the channel region 27 and the lightly doped source region 24a, holes accumulated in the channel region 27 may be readily swept to the N+ source region 26a via the silicide layer 16. Therefore, the rate of recombination of the accumulated holes with electrons in the source region 26a can be carried out with high efficiency.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (12)

That which is claimed is:
1. A semiconductor-on-insulator field effect transistor, comprising:
an electrically insulating substrate;
a semiconductor region on said electrically insulating substrate;
a field effect transistor having source, drain and channel regions in said semiconductor region; and
a metal silicide region between said electrically insulating substrate and said semiconductor region and forming a junction with the source and channel regions of said field effect transistor.
2. The transistor of claim 1, wherein said metal silicide region ohmically contacts the source and channel regions, but does not form a junction with the drain region of said field effect transistor.
3. The transistor of claim 1, wherein said semiconductor region comprises a semiconductor region having a chemically-mechanically polished surface thereon; and wherein said field effect transistor comprises an insulated gate electrode on the chemically-mechanically polished surface.
4. The transistor of claim 2, wherein said metal silicide region comprises titanium disilicide.
5. The transistor of claim 2, further comprising a field oxide isolation region between said electrically insulating substrate and the channel region of said field effect transistor.
6. The transistor of claim 5, wherein said metal silicide region is self-aligned to said field oxide isolation region.
7. A silicon-on-insulator field effect transistor, comprising:
an electrically insulating substrate;
a silicon layer on said electrically insulating substrate;
a field effect transistor having source, drain and channel regions in said silicon layer; and
an electrically conductive layer between said electrically insulating substrate and said silicon layer and forming respective non-rectifying junctions with the source and channel regions of said field effect transistor.
8. The transistor of claim 7, wherein said electrically conductive layer comprises a refractory metal silicide and ohmically contacts the source and channel regions, but does not form a junction with the drain region of said field effect transistor.
9. The transistor of claim 7, wherein said semiconductor region comprises a semiconductor region having a chemically-mechanically polished surface thereon; and wherein said field effect transistor comprises an insulated gate electrode on the chemically-mechanically polished surface.
10. The transistor of claim 8, wherein said electrically conductive layer comprises titanium disilicide.
11. The transistor of claim 8, further comprising a field oxide isolation region between said electrically insulating substrate and the drain and channel regions of said field effect transistor.
12. The transistor of claim 11, wherein said electrically conductive layer is self-aligned to said field oxide isolation region.
US09/148,689 1997-09-04 1998-09-04 Semiconductor-on-insulator field effect transistors with reduced floating body parasitics Expired - Lifetime US5998840A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR97-45863 1997-09-04
KR1019970045863A KR100248507B1 (en) 1997-09-04 1997-09-04 A silicon-on-insulator transistors and fabricating method of the same

Publications (1)

Publication Number Publication Date
US5998840A true US5998840A (en) 1999-12-07

Family

ID=19520891

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/148,689 Expired - Lifetime US5998840A (en) 1997-09-04 1998-09-04 Semiconductor-on-insulator field effect transistors with reduced floating body parasitics
US09/432,029 Expired - Fee Related US6159778A (en) 1997-09-04 1999-10-29 Methods of forming semiconductor-on-insulator field effect transistors with reduced floating body parasitics

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/432,029 Expired - Fee Related US6159778A (en) 1997-09-04 1999-10-29 Methods of forming semiconductor-on-insulator field effect transistors with reduced floating body parasitics

Country Status (2)

Country Link
US (2) US5998840A (en)
KR (1) KR100248507B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166420A (en) * 2000-03-16 2000-12-26 International Business Machines Corporation Method and structure of high and low K buried oxide for SoI technology
US6373103B1 (en) 2000-03-31 2002-04-16 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact using additional drain-side spacer, and method
US6441435B1 (en) 2001-01-31 2002-08-27 Advanced Micro Devices, Inc. SOI device with wrap-around contact to underside of body, and method of making
US6441434B1 (en) 2000-03-31 2002-08-27 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact and method
US6452232B1 (en) * 1998-12-03 2002-09-17 Sharp Kabushiki Kaisha Semiconductor device having SOI structure and manufacturing method thereof
US6479867B2 (en) * 2000-12-19 2002-11-12 Hitachi, Ltd. Thin film transistor
US6525381B1 (en) 2000-03-31 2003-02-25 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact using shallow-doped source, and method
US6538284B1 (en) 2001-02-02 2003-03-25 Advanced Micro Devices, Inc. SOI device with body recombination region, and method
US20090022003A1 (en) * 2007-07-20 2009-01-22 Song Ki-Whan Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
US20090097332A1 (en) * 2007-10-10 2009-04-16 Samsung Electronics Co., Ltd. Semiconductor memory device
US20090175098A1 (en) * 2008-01-03 2009-07-09 Samsung Electronics Co., Ltd. Semiconductor memory device including floating body transistor memory cell array and method of operating the same
US20090278194A1 (en) * 2008-05-06 2009-11-12 Nam-Kyun Tak Capacitorless one-transistor semiconductor memory device having improved data retention abilities and operation characteristics
US20100149886A1 (en) * 2008-12-17 2010-06-17 Samsung Electronics Co., Ltd. Semiconductor memory device and method for operating the same
US20100159650A1 (en) * 2008-12-18 2010-06-24 Song Ho-Ju Methods of fabricating semiconductor device having capacitorless one-transistor memory cell
WO2024021337A1 (en) * 2022-07-26 2024-02-01 苏州大学 Field effect transistor device having blocking region

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774436B1 (en) * 2001-07-05 2004-08-10 Advanced Micro Devices, Inc. SOI MOSFET with asymmetrical source/body and drain/body junctions
JP2004311903A (en) * 2003-04-10 2004-11-04 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method
KR100485910B1 (en) * 2003-06-20 2005-04-29 삼성전자주식회사 Mos fet for high voltage and method for fabricating the same
US8110470B2 (en) * 2009-08-31 2012-02-07 Globalfoundries Singapore Pte. Ltd. Asymmetrical transistor device and method of fabrication

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396933A (en) * 1971-06-18 1983-08-02 International Business Machines Corporation Dielectrically isolated semiconductor devices
US4814287A (en) * 1983-09-28 1989-03-21 Matsushita Electric Industrial Co. Ltd. Method of manufacturing a semiconductor integrated circuit device
US4974041A (en) * 1986-08-25 1990-11-27 Hughes Aircraft Company Integrated circuit structure with multiple common planes and method of forming the same
US5055898A (en) * 1991-04-30 1991-10-08 International Business Machines Corporation DRAM memory cell having a horizontal SOI transfer device disposed over a buried storage node and fabrication methods therefor
US5145802A (en) * 1991-11-12 1992-09-08 United Technologies Corporation Method of making SOI circuit with buried connectors
US5185280A (en) * 1991-01-29 1993-02-09 Texas Instruments Incorporated Method of fabricating a soi transistor with pocket implant and body-to-source (bts) contact
US5215931A (en) * 1989-06-13 1993-06-01 Texas Instruments Incorporated Method of making extended body contact for semiconductor over insulator transistor
US5278102A (en) * 1990-08-18 1994-01-11 Fujitsu Limited SOI device and a fabrication process thereof
US5296086A (en) * 1991-07-25 1994-03-22 Rohm Co., Ltd. Method for manufacturing semiconductor device having grown layer on insulating layer
US5308779A (en) * 1991-03-28 1994-05-03 Honeywell Inc. Method of making high mobility integrated drivers for active matrix displays
US5317181A (en) * 1992-09-10 1994-05-31 United Technologies Corporation Alternative body contact for fully-depleted silicon-on-insulator transistors
US5326991A (en) * 1991-09-24 1994-07-05 Rohm Co., Ltd. Semiconductor device having silicon carbide grown layer on insulating layer and MOS device
US5405795A (en) * 1994-06-29 1995-04-11 International Business Machines Corporation Method of forming a SOI transistor having a self-aligned body contact
US5437762A (en) * 1991-10-16 1995-08-01 Siemens Aktiengesellschaft Method and apparatus for semiconductor memory
US5440161A (en) * 1993-07-27 1995-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an SOI structure and a manufacturing method thereof
US5449642A (en) * 1994-04-14 1995-09-12 Duke University Method of forming metal-disilicide layers and contacts
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5474952A (en) * 1989-10-11 1995-12-12 Nippondenso Co., Ltd. Process for producing a semiconductor device
US5489792A (en) * 1994-04-07 1996-02-06 Regents Of The University Of California Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility
US5573961A (en) * 1995-11-09 1996-11-12 Taiwan Semiconductor Manufacturing Company Ltd. Method of making a body contact for a MOSFET device fabricated in an SOI layer
US5578865A (en) * 1992-01-22 1996-11-26 Kopin Corporation Reduction of parasitic effects in floating body mosfets
US5578509A (en) * 1993-04-23 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5591650A (en) * 1995-06-08 1997-01-07 Taiwan Semiconductor Manufacturing Company Ltd. Method of making a body contacted SOI MOSFET
US5597739A (en) * 1994-01-19 1997-01-28 Sony Corporation MOS transistor and method for making the same
US5612230A (en) * 1991-04-16 1997-03-18 Canon Kabushiki Kaisha Process for manufacturing a semiconductor device by applying a non-single-crystalline material on a sidewall inside of an opening portion for growing a single-crystalline semiconductor body
US5633182A (en) * 1991-12-02 1997-05-27 Canon Kabushiki Kaisha Method of manufacturing an image display device with reduced cell gap variation
US5637514A (en) * 1995-10-18 1997-06-10 Micron Technology, Inc. Method of forming a field effect transistor
US5650340A (en) * 1994-08-18 1997-07-22 Sun Microsystems, Inc. Method of making asymmetric low power MOS devices
US5670389A (en) * 1996-01-11 1997-09-23 Motorola, Inc. Semiconductor-on-insulator device having a laterally-graded channel region and method of making
US5681761A (en) * 1995-12-28 1997-10-28 Philips Electronics North America Corporation Microwave power SOI-MOSFET with high conductivity metal gate
US5741736A (en) * 1995-05-04 1998-04-21 Motorola Inc. Process for forming a transistor with a nonuniformly doped channel
US5744372A (en) * 1995-04-12 1998-04-28 National Semiconductor Corporation Fabrication of complementary field-effect transistors each having multi-part channel
US5926699A (en) * 1990-10-16 1999-07-20 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layer substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382840B2 (en) * 1997-05-23 2003-03-04 シャープ株式会社 Method for manufacturing semiconductor device
KR100246602B1 (en) * 1997-07-31 2000-03-15 정선종 A mosfet and method for fabricating the same

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396933A (en) * 1971-06-18 1983-08-02 International Business Machines Corporation Dielectrically isolated semiconductor devices
US4814287A (en) * 1983-09-28 1989-03-21 Matsushita Electric Industrial Co. Ltd. Method of manufacturing a semiconductor integrated circuit device
US4974041A (en) * 1986-08-25 1990-11-27 Hughes Aircraft Company Integrated circuit structure with multiple common planes and method of forming the same
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5215931A (en) * 1989-06-13 1993-06-01 Texas Instruments Incorporated Method of making extended body contact for semiconductor over insulator transistor
US5474952A (en) * 1989-10-11 1995-12-12 Nippondenso Co., Ltd. Process for producing a semiconductor device
US5278102A (en) * 1990-08-18 1994-01-11 Fujitsu Limited SOI device and a fabrication process thereof
US5926699A (en) * 1990-10-16 1999-07-20 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layer substrate
US5185280A (en) * 1991-01-29 1993-02-09 Texas Instruments Incorporated Method of fabricating a soi transistor with pocket implant and body-to-source (bts) contact
US5308779A (en) * 1991-03-28 1994-05-03 Honeywell Inc. Method of making high mobility integrated drivers for active matrix displays
US5612230A (en) * 1991-04-16 1997-03-18 Canon Kabushiki Kaisha Process for manufacturing a semiconductor device by applying a non-single-crystalline material on a sidewall inside of an opening portion for growing a single-crystalline semiconductor body
US5055898A (en) * 1991-04-30 1991-10-08 International Business Machines Corporation DRAM memory cell having a horizontal SOI transfer device disposed over a buried storage node and fabrication methods therefor
US5296086A (en) * 1991-07-25 1994-03-22 Rohm Co., Ltd. Method for manufacturing semiconductor device having grown layer on insulating layer
US5326991A (en) * 1991-09-24 1994-07-05 Rohm Co., Ltd. Semiconductor device having silicon carbide grown layer on insulating layer and MOS device
US5518953A (en) * 1991-09-24 1996-05-21 Rohm Co., Ltd. Method for manufacturing semiconductor device having grown layer on insulating layer
US5437762A (en) * 1991-10-16 1995-08-01 Siemens Aktiengesellschaft Method and apparatus for semiconductor memory
US5145802A (en) * 1991-11-12 1992-09-08 United Technologies Corporation Method of making SOI circuit with buried connectors
US5633182A (en) * 1991-12-02 1997-05-27 Canon Kabushiki Kaisha Method of manufacturing an image display device with reduced cell gap variation
US5578865A (en) * 1992-01-22 1996-11-26 Kopin Corporation Reduction of parasitic effects in floating body mosfets
US5317181A (en) * 1992-09-10 1994-05-31 United Technologies Corporation Alternative body contact for fully-depleted silicon-on-insulator transistors
US5578509A (en) * 1993-04-23 1996-11-26 Mitsubishi Denki Kabushiki Kaisha Method of making a field effect transistor
US5440161A (en) * 1993-07-27 1995-08-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an SOI structure and a manufacturing method thereof
US5597739A (en) * 1994-01-19 1997-01-28 Sony Corporation MOS transistor and method for making the same
US5489792A (en) * 1994-04-07 1996-02-06 Regents Of The University Of California Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility
US5449642A (en) * 1994-04-14 1995-09-12 Duke University Method of forming metal-disilicide layers and contacts
US5405795A (en) * 1994-06-29 1995-04-11 International Business Machines Corporation Method of forming a SOI transistor having a self-aligned body contact
US5650340A (en) * 1994-08-18 1997-07-22 Sun Microsystems, Inc. Method of making asymmetric low power MOS devices
US5744372A (en) * 1995-04-12 1998-04-28 National Semiconductor Corporation Fabrication of complementary field-effect transistors each having multi-part channel
US5741736A (en) * 1995-05-04 1998-04-21 Motorola Inc. Process for forming a transistor with a nonuniformly doped channel
US5591650A (en) * 1995-06-08 1997-01-07 Taiwan Semiconductor Manufacturing Company Ltd. Method of making a body contacted SOI MOSFET
US5637514A (en) * 1995-10-18 1997-06-10 Micron Technology, Inc. Method of forming a field effect transistor
US5573961A (en) * 1995-11-09 1996-11-12 Taiwan Semiconductor Manufacturing Company Ltd. Method of making a body contact for a MOSFET device fabricated in an SOI layer
US5681761A (en) * 1995-12-28 1997-10-28 Philips Electronics North America Corporation Microwave power SOI-MOSFET with high conductivity metal gate
US5670389A (en) * 1996-01-11 1997-09-23 Motorola, Inc. Semiconductor-on-insulator device having a laterally-graded channel region and method of making

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Sanchez et al., "Drain-Engineered Hot-Electron-Resistant Device Structures: A Review", IEEE Transactions on Electron Devices, vol. 36, No. 6, Jun. 1989, pp. 1125-1132.
Sanchez et al., Drain Engineered Hot Electron Resistant Device Structures: A Review , IEEE Transactions on Electron Devices, vol. 36, No. 6, Jun. 1989, pp. 1125 1132. *
Song et al., "Optimization Study of Halo Doped MOSFETs", Solid-State Electronics, vol. 39, No. 6, 1996, pp. 923-927.
Song et al., Optimization Study of Halo Doped MOSFETs , Solid State Electronics, vol. 39, No. 6, 1996, pp. 923 927. *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452232B1 (en) * 1998-12-03 2002-09-17 Sharp Kabushiki Kaisha Semiconductor device having SOI structure and manufacturing method thereof
US6352905B1 (en) * 2000-03-16 2002-03-05 International Business Machines Corporation Method and structure of high and low K buried oxide for SOI technology
US6166420A (en) * 2000-03-16 2000-12-26 International Business Machines Corporation Method and structure of high and low K buried oxide for SoI technology
US6790750B1 (en) 2000-03-31 2004-09-14 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact and method
US6373103B1 (en) 2000-03-31 2002-04-16 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact using additional drain-side spacer, and method
US6441434B1 (en) 2000-03-31 2002-08-27 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact and method
US6525381B1 (en) 2000-03-31 2003-02-25 Advanced Micro Devices, Inc. Semiconductor-on-insulator body-source contact using shallow-doped source, and method
US6479867B2 (en) * 2000-12-19 2002-11-12 Hitachi, Ltd. Thin film transistor
US6441435B1 (en) 2001-01-31 2002-08-27 Advanced Micro Devices, Inc. SOI device with wrap-around contact to underside of body, and method of making
US6566176B1 (en) 2001-01-31 2003-05-20 Advanced Micro Devices, Inc. SOI device with wrap-around contact to underside of body, and method of making
US6538284B1 (en) 2001-02-02 2003-03-25 Advanced Micro Devices, Inc. SOI device with body recombination region, and method
US20090022003A1 (en) * 2007-07-20 2009-01-22 Song Ki-Whan Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
US7969808B2 (en) 2007-07-20 2011-06-28 Samsung Electronics Co., Ltd. Memory cell structures, memory arrays, memory devices, memory controllers, and memory systems, and methods of manufacturing and operating the same
US20090097332A1 (en) * 2007-10-10 2009-04-16 Samsung Electronics Co., Ltd. Semiconductor memory device
US7944759B2 (en) 2007-10-10 2011-05-17 Samsung Electronics Co., Ltd. Semiconductor memory device including floating body transistor
US7924644B2 (en) 2008-01-03 2011-04-12 Samsung Electronics Co., Ltd. Semiconductor memory device including floating body transistor memory cell array and method of operating the same
US20090175098A1 (en) * 2008-01-03 2009-07-09 Samsung Electronics Co., Ltd. Semiconductor memory device including floating body transistor memory cell array and method of operating the same
US20090278194A1 (en) * 2008-05-06 2009-11-12 Nam-Kyun Tak Capacitorless one-transistor semiconductor memory device having improved data retention abilities and operation characteristics
US8134202B2 (en) 2008-05-06 2012-03-13 Samsung Electronics Co., Ltd. Capacitorless one-transistor semiconductor memory device having improved data retention abilities and operation characteristics
US20100149886A1 (en) * 2008-12-17 2010-06-17 Samsung Electronics Co., Ltd. Semiconductor memory device and method for operating the same
US8054693B2 (en) 2008-12-17 2011-11-08 Samsung Electronics Co., Ltd. Capacitorless dynamic memory device capable of performing data read/restoration and method for operating the same
US20100159650A1 (en) * 2008-12-18 2010-06-24 Song Ho-Ju Methods of fabricating semiconductor device having capacitorless one-transistor memory cell
US8039325B2 (en) 2008-12-18 2011-10-18 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor device having capacitorless one-transistor memory cell
WO2024021337A1 (en) * 2022-07-26 2024-02-01 苏州大学 Field effect transistor device having blocking region

Also Published As

Publication number Publication date
KR100248507B1 (en) 2000-03-15
KR19990024638A (en) 1999-04-06
US6159778A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
US5998840A (en) Semiconductor-on-insulator field effect transistors with reduced floating body parasitics
US5982003A (en) Silicon-on-insulator transistors having improved current characteristics and reduced electrostatic discharge susceptibility
US6486513B1 (en) Semiconductor device
US6023088A (en) Semiconductor device formed on an insulator and having a damaged portion at the interface between the insulator and the active layer
KR100394543B1 (en) Method of forming soi transistor with body contact
US6524903B2 (en) Method of manufacturing a semiconductor device having two peaks in an impurity concentration distribution
US6130457A (en) Semiconductor-on-insulator devices having insulating layers therein with self-aligned openings
US6204138B1 (en) Method for fabricating a MOSFET device structure which facilitates mitigation of junction capacitance and floating body effects
US20020105039A1 (en) Damascene double-gate mosfet structure and its fabrication method
US6344675B1 (en) SOI-MOS field effect transistor with improved source/drain structure and method of forming the same
US6642579B2 (en) Method of reducing the extrinsic body resistance in a silicon-on-insulator body contacted MOSFET
EP0962988A2 (en) SOI semiconductor device and method for manufacturing the same
US7217602B2 (en) Semiconductor device employing SOI substrate and method of manufacturing the same
JP3103159B2 (en) Semiconductor device
US6605843B1 (en) Fully depleted SOI device with tungsten damascene contacts and method of forming same
US20090057784A1 (en) Extension tailored device
US6420767B1 (en) Capacitively coupled DTMOS on SOI
US6359298B1 (en) Capacitively coupled DTMOS on SOI for multiple devices
US6348714B1 (en) Soi structure with a body contact
JP2003060064A (en) Mosfet, semiconductor device and its fabricating method
JPH11354785A (en) Field effect transistor, semiconductor integrated circuit device comprising the same, and its manufacture
JP3369862B2 (en) Method for manufacturing semiconductor device
JP3708370B2 (en) Semiconductor device and manufacturing method thereof
US6933564B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3963462B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, IL-KWON;REEL/FRAME:009499/0077

Effective date: 19980903

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12