US6289590B1 - Method of forming a bearing - Google Patents

Method of forming a bearing Download PDF

Info

Publication number
US6289590B1
US6289590B1 US09/297,791 US29779199A US6289590B1 US 6289590 B1 US6289590 B1 US 6289590B1 US 29779199 A US29779199 A US 29779199A US 6289590 B1 US6289590 B1 US 6289590B1
Authority
US
United States
Prior art keywords
mush
polytetrafluoroethylene
lubricant
bearing
particulate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/297,791
Inventor
Julie Ann McDonald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GGB Inc
Original Assignee
Dana Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10802493&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6289590(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dana Inc filed Critical Dana Inc
Assigned to DANA CORPORATION reassignment DANA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCDONALD, JULIE ANN
Priority to US09/904,438 priority Critical patent/US20020018605A1/en
Application granted granted Critical
Publication of US6289590B1 publication Critical patent/US6289590B1/en
Assigned to GLACIER GARLOCK BEARINGS, INC. reassignment GLACIER GARLOCK BEARINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GIB HOLDINGS INC.
Assigned to GIB HOLDINGS INC. reassignment GIB HOLDINGS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANA CORPORATION
Assigned to BANK OF AMERICA, N.A., AS AGENT reassignment BANK OF AMERICA, N.A., AS AGENT SECURITY AGREEMENT Assignors: GLACIER GARLOCK BEARINGS, INC.
Assigned to BANK OF AMERICA, N.A., AS AGENT reassignment BANK OF AMERICA, N.A., AS AGENT SECURITY AGREEMENT Assignors: CORROSION CONTROL CORPORATION, GGB, INC.
Anticipated expiration legal-status Critical
Assigned to GGB, INC. (N/K/A GGB U.S. HOLDCO LLC) reassignment GGB, INC. (N/K/A GGB U.S. HOLDCO LLC) TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS AGENT
Assigned to GGB, INC. (F/K/A GLACIER GARLOCK BEARINGS INC., N/K/A GGB U.S. HOLDCO LLC) reassignment GGB, INC. (F/K/A GLACIER GARLOCK BEARINGS INC., N/K/A GGB U.S. HOLDCO LLC) TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS Assignors: BANK OF AMERICA, N.A., AS AGENT
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/908Nylon or polytetrafluorethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49707Bearing surface treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49709Specific metallic composition

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • Rotary Pumps (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

A method of forming a bearing includes adding at least one particulate material to an aqueous dispersion of polytetrafluoroethylene, mixing the constituents to allow the polytetrafluoroethylene to coagulate to form a mush, spreading the mush on to a support, and curing the mush to form a bearing lining layer on the support. The method is characterized in that the partiulate material is in the form of an aqueous colloidal dispersion including small particles and in that the small particles of the particulate material itself cause coagulation of the polytetrafluoroethylene without need for an additional separate coagulant material.

Description

FIELD OF THE INVENTION
This invention is concerned with a method of forming a bearing of the type which comprises a support on which a bearing lining layer is formed. The bearing then presents a plain surface against which a moving member, eg a rotating shaft, can move.
BACKGROUND OF THE INVENTION
A conventional method (see for example GB 2 279 998 A) of forming a bearing comprises mixing. polytetrafluoroethylene (PTFE) in an aqueous dispersion with a filler, and optionally strengthening fibres and/or other fillers, adding a lubricant to assist in spreading, and adding an aqueous solution of aluminium nitrate or another salt to cause the PTFE to coagulate to form a “mush”. The mush is spread on to a support, eg a sintered bronze layer on a steel backing, and is heated to cure the mush to thereby form it into a bearing lining layer on the support. The bearing lining bearings produced by this method are susceptible to cavitation erosion, ie the tendency for lubrication oil used with the bearing to cause cavities in the lining material. Furthermore, this method has the disadvantage that it involves the use of a significant quantity of lubricant which includes a volatile solvent (toluene is commonly used as the lubricant).
SUMMARY OF THE INVENTION
It is an object of the-present invention to provide a method of forming a bearing which results in a bearing with improved cavitation erosion resistance and wear resistance
The invention provides a method of forming a bearing comprising adding an aqueous colloidal dispersion of at least one particulate material to an aqueous dispersion of polytetrafluoroethylene, the method also comprising mixing the dispersions for a period sufficient to allow the polytetrafluoroethylene to coagulate to form a mush, spreading the mush on to a support, and curing the mush to form a bearing lining layer on the support.
In a method according to the invention, the aqueous colloidal dispersion contains small particles which cause the PTFE to coagulate without the addition of aluminium nitrate or another salt. It is believed that the small particles act as seeds around which the PTFE coagulates. Furthermore, it is found that the bearing lining material containing small particles has greater cavitation erosion resistance. In addition, it is found that the method can be carried out using no lubricant or significantly less lubricant than the conventional method (eg less than 1% by volume as opposed to about 10%) and non-volatile lubricants, such as polyol-based lubricants, can be used.
In a method according to the invention, the particles of the particulate material preferably have their median dimension between 1 nanometer and 100 nanometers. Most preferably, the median dimension is between 5 nanometers and 30 nanometers. The particulate material may be selected from the group consisting of metals, metal oxides, metal sulphides, metal fluorides, metal carbonates, metal phosphates and silica. Possibilities include oxides of aluminium, tin, titanium, iron, zinc, copper and lead, metals such as iron, tin, nickel chromium, copper and zinc, sulphides of cadmium, iron, lead, copper and zinc, cadmium carbonate, calcium fluoride, and phosphates of aluminium, cobalt and iron.
In order to increase the strength or other properties, of the bearing lining material, additional fillers may be included in the aqueous dispersion of polytetrafluoroethylene, eg non-colloidal calcium fluoride, fibres of glass or aramid, or lead.
The invention also provides a bearing formed by a method according to the invention, comprising a support which comprises a sintered bronze support, the bearing also comprising a lining layer which is impregnated into the support and stands proud thereof, the lining layer comprising polytetrafluoroethylene in which particulate material is dispersed, characterised in that the particulate material has a median particle dimension of between 1 nanometer and 100 nanometers. The particulate material is preferably alumina.
There now follows a detailed description of an illustrative example in accordance with the invention.
In the illustrative example, one liter of an aqueous dispersion of PTFE was mixed with 20 ml of a pigment for 5 minutes in a Kenwood mixer. To this dispersion, 20 ml of a non-volatile polyol-based lubricant was added and the mixture was mixed for a further two minutes. Then, 300 ml of an alumina colloid (20% w/v) was added and mixed for 15 minutes. The alumina colloid contained alumina particles having a median dimension of 20 nanometers. Coagulation of the PTFE occurred during this 15 minute period. The resultant polymer “mush” was then left to stand for 30 minutes before being applied to a support which was formed of sintered bronze mounted on a steel backing. The mush composition was: PTFE 86.1% v/v, alumina 7.2% v/v, and lubricant 6.7% v/v.
The mush was rolled on to the sintered bronze support using a twin rolling mill thereby impregnating the mush into the porosity of the sintered support. The rolling continued until the mush stood proud of the support by 25 to 30 microns. The mush was then cured at 360° C. for 4.5 minutes.
Samples made by the illustrative example were tested under lubricated conditions (strut oil) in a cavitation erosion test rig for 60 minutes. The samples were flat and 40 mm×40 mm. The cavitation erosion damage was induced using a vibrating amplifying horn operating at an amplitude of 15 microns and a 1 mm separation. At the end of the test, it was found that the samples did not have the bronze sinter exposed at all, ie the lining layer had not been completely removed anywhere. The test-was repeated using samples made by the conventional method referred to above. In all cases, at least 10% of the lining layer had been removed exposing the sintered support layer and, in some cases, as much as 50% was exposed.
DETAILED DESCRIPTION OF THE INVENTION
A sample of the bearing made by the illustrative example was tested for wear resistance under non-lubricated conditions using a Halley test rig. In this test, a stainless steel roller was rotated against a flat sample for 24 hours. The volume of material removed from the sample was recorded as 0.22 mm3 and also a final width of the wear scar formed by the roller was measured. The results showed that both the volume of material removed (0.53 mm3) and the wear scar width were higher for bearings made by the conventional method described above.
The dynamic coefficient of friction measured under dry conditions for the samples made by the illustrative example was found to be 0.09 as opposed to the 0.1 measured for pure PTFE.
In a variation of the illustrative method, the lubricant was omitted entirely and the quantity of alumina colloid was reduced to 150 ml. It was still found to be possible to make satisfactory bearings. In another variation still with 150 ml of alumina colloid, the quantity of lubricant was 0.5 to 2 ml (still the polyol-based lubricant). The bearings were satisfactory and spreadability of the mush was improved.

Claims (9)

What is claimed is:
1. A method of forming a bearing comprising adding at least one particulate material to an aqueous dispersion of polytetrafluoroethylene, mixing the constituents to allow the polytetrafluoroethylene to coagulate to form a mush, spreading the mush on to a support, and curing the mush to form a bearing lining layer on the support, the method being characterized in that said particulate material is in the form of an aqueous colloidal dispersion comprising small particles and in that the small particles of the particulate material itself cause coagulation of the polytetrafluoroethylene without need for an additional separate coagulant material.
2. A method according to claim 1, characterized in that the particles of the particulate material have their median dimension between 1 nanometer and 100 nanometers.
3. A method according to claim 2, characterized in that the median dimension is between 5 nanometers and 30 nanometers.
4. A method according to claim 1, characterized in that additional fillers are included in the aqueous dispersion of polytetrafluoroethylene.
5. A method according to claim 4 wherein the additional fillers are selected from at lease one of the group comprising: non-colloidal calcium fluoride; fibers of glass or aramid; and lead.
6. A method according to claim 1 wherein a lubricant is added to the mixture.
7. A method according to claim 6 wherein the lubricant is less than 1% by volume.
8. A method according to claim 6 wherein the lubricant is non-volatile.
9. A method according to claim 6 wherein the lubricant is a polyol-based lubricant.
US09/297,791 1996-11-06 1997-10-15 Method of forming a bearing Expired - Lifetime US6289590B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/904,438 US20020018605A1 (en) 1996-11-06 2001-07-12 Forming a bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9623052 1996-11-06
GB9623052A GB2319067B (en) 1996-11-06 1996-11-06 Forming a bearing
PCT/GB1997/002846 WO1998020264A1 (en) 1996-11-06 1997-10-15 Forming a bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/002846 A-371-Of-International WO1998020264A1 (en) 1996-11-06 1997-10-15 Forming a bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/904,438 Division US20020018605A1 (en) 1996-11-06 2001-07-12 Forming a bearing

Publications (1)

Publication Number Publication Date
US6289590B1 true US6289590B1 (en) 2001-09-18

Family

ID=10802493

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/297,791 Expired - Lifetime US6289590B1 (en) 1996-11-06 1997-10-15 Method of forming a bearing
US09/904,438 Abandoned US20020018605A1 (en) 1996-11-06 2001-07-12 Forming a bearing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/904,438 Abandoned US20020018605A1 (en) 1996-11-06 2001-07-12 Forming a bearing

Country Status (8)

Country Link
US (2) US6289590B1 (en)
EP (1) EP0932772B2 (en)
JP (1) JP2001508526A (en)
AT (1) ATE257223T1 (en)
BR (1) BR9712742A (en)
DE (1) DE69727066T3 (en)
GB (1) GB2319067B (en)
WO (1) WO1998020264A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164151A1 (en) * 2006-01-13 2007-07-19 Luce William E Aircraft shock strut and improved bearings therefor
US20070234839A1 (en) * 2006-03-22 2007-10-11 Saint-Gobain Performance Plastics Corporation Bearing assemblies
US20110108422A1 (en) * 2008-04-03 2011-05-12 The Regents Of The University Of California Ex vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles and biomarkers
US20110135232A1 (en) * 2009-11-10 2011-06-09 Saint-Gobain Performance Plastics Corporation Closed end bearing cup
US8491194B2 (en) 2007-10-01 2013-07-23 Saint-Gobain Performance Plastics Corporation Bearings
US8603791B2 (en) 2012-04-16 2013-12-10 Biological Dynamics, Inc. Nucleic acid sample preparation
US8969469B2 (en) 2010-11-18 2015-03-03 3M Innovative Properties Company Method of coagulating an amorphous fluoropolymer latex
US10232369B2 (en) 2016-03-24 2019-03-19 Biological Dynamics, Inc. Disposable fluidic cartridge and components
US10818379B2 (en) 2017-05-08 2020-10-27 Biological Dynamics, Inc. Methods and systems for analyte information processing
US11731132B2 (en) 2017-12-19 2023-08-22 Biological Dynamics, Inc. Methods and devices for detection of multiple analytes from a biological sample
US11883833B2 (en) 2018-04-02 2024-01-30 Biological Dynamics, Inc. Dielectric materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9817249D0 (en) * 1998-08-07 1998-10-07 Glacier Vandervell Ltd Bearing material
DE102006003906A1 (en) * 2006-01-27 2007-08-02 Schaeffler Kg Coating to improve the lubrication, wear resistance or adhesion in a contacting bearing in a machine comprises a base material and a nano-material
DE102006003908A1 (en) * 2006-01-27 2007-08-02 Schaeffler Kg Sliding bearing body comprises a metallic base body and a metal-containing sliding layer arranged on the predetermined surfaces of the base body and having a nano-material
JP2008069196A (en) * 2006-09-12 2008-03-27 Daido Metal Co Ltd Sliding member
DE102017107959A1 (en) * 2017-04-12 2018-10-18 Ks Gleitlager Gmbh Sliding material based on PTFE polymer with the tribological properties of improving fillers

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750350A (en) * 1953-05-12 1956-06-12 Du Pont Dispersion polymerization process for tetrafluoroethylene
US3088941A (en) * 1960-03-11 1963-05-07 Du Pont Process for the preparation of improved polytetrafluoroethylene extrusion powder
GB1163423A (en) 1965-11-24 1969-09-04 Ici Ltd Shaped Articles from Fluorine-Containing Polymers
US3607878A (en) * 1965-06-18 1971-09-21 Electro Chimie Metal Method of polymerization of tetrafluorethylene
US3896071A (en) * 1972-10-27 1975-07-22 Du Pont Storage stable aqueous dispersion of tetrafluorethylene polymer
US4038230A (en) * 1970-11-19 1977-07-26 Allied Chemical Corporation Aqueous dispersion of particulate spheroidal polytetrafluoroethylene
US4038244A (en) * 1973-03-05 1977-07-26 Imperial Chemical Industries Limited Fluorocarbon polymer
US4104225A (en) * 1971-11-26 1978-08-01 Imperial Chemical Industries Limited Method of making a coating composition containing a fluorocarbon polymer resin and an aluminum containing binder
GB2166142A (en) 1984-10-22 1986-04-30 Ae Plc Ptfe composition for use in plain bearings
US4674164A (en) * 1978-05-15 1987-06-23 Incom International Inc. Bearings with felted teflon liners and method for making same
US4685184A (en) * 1984-09-21 1987-08-11 Mcgill Manufacturing Company, Inc. Self-lubricated track-roller bearing and method of constructing the same
US4732818A (en) * 1984-04-30 1988-03-22 Federal-Mogul Corporation Composite bearing material with polymer filled metal matrix interlayer of distinct metal particle sizes and method of making same
EP0412238A1 (en) 1989-08-07 1991-02-13 Státni vyzkumny ustav materiálu Composite material for sliding purposes and process for its preparation
GB2274844A (en) 1993-02-09 1994-08-10 T & N Technology Ltd Plain bearing material
GB2279998A (en) 1993-07-14 1995-01-18 T & N Technology Ltd Plain bearing
US5688836A (en) * 1992-07-30 1997-11-18 Daikin Industries, Ltd. Polytetrafluoroethylene porous material and process for production of the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115325A (en) 1980-02-15 1981-09-10 Daikin Ind Ltd Preparation of fine polytetrafluoroethylene powder containing filler
DE3420002A1 (en) 1984-05-29 1985-12-05 Bayer Ag, 5090 Leverkusen POLYMER POWDER COMPOSITIONS CONTAINING TETRAFLUORETHYLENE POLYMER
GB2172296B (en) 1985-03-15 1988-07-06 Ae Plc Plain bearing material incorporating polytetrafluoroethylene and plain bearings incorporating such a material
JPS6344680A (en) * 1986-08-13 1988-02-25 Toray Ind Inc Bearing part of heat fixing unit
JPS6445497A (en) * 1987-04-28 1989-02-17 Asahi Glass Co Ltd Sliding resin composition
JPH04140509A (en) * 1990-09-28 1992-05-14 Nippon Seiko Kk Dynamic pressure fluid bearing
JPH05332365A (en) * 1992-05-25 1993-12-14 Senju Metal Ind Co Ltd Dry bearing and manufacture thereof
JPH06228331A (en) * 1993-01-29 1994-08-16 Ntn Corp Composite sliding member
JPH0811803B2 (en) * 1994-01-31 1996-02-07 エヌデーシー株式会社 Method for manufacturing multi-layer bearing
JP2704846B2 (en) * 1994-10-20 1998-01-26 千住金属工業株式会社 Bearing material
JPH08217941A (en) * 1995-02-14 1996-08-27 Kubota Corp Sliding member
DE19507045C2 (en) 1995-03-01 1998-10-15 Glyco Metall Werke Process for producing a composite material for plain bearings with a plastic sliding layer and a paste suitable for this
DE19614105B4 (en) 1996-04-10 2005-08-25 Federal-Mogul Wiesbaden Gmbh & Co. Kg Sliding layer material for composite bearing, laminated composite material and shock absorber rod guide element

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750350A (en) * 1953-05-12 1956-06-12 Du Pont Dispersion polymerization process for tetrafluoroethylene
US3088941A (en) * 1960-03-11 1963-05-07 Du Pont Process for the preparation of improved polytetrafluoroethylene extrusion powder
US3607878A (en) * 1965-06-18 1971-09-21 Electro Chimie Metal Method of polymerization of tetrafluorethylene
GB1163423A (en) 1965-11-24 1969-09-04 Ici Ltd Shaped Articles from Fluorine-Containing Polymers
US4038230A (en) * 1970-11-19 1977-07-26 Allied Chemical Corporation Aqueous dispersion of particulate spheroidal polytetrafluoroethylene
US4104225A (en) * 1971-11-26 1978-08-01 Imperial Chemical Industries Limited Method of making a coating composition containing a fluorocarbon polymer resin and an aluminum containing binder
US3896071A (en) * 1972-10-27 1975-07-22 Du Pont Storage stable aqueous dispersion of tetrafluorethylene polymer
US4038244A (en) * 1973-03-05 1977-07-26 Imperial Chemical Industries Limited Fluorocarbon polymer
US4674164A (en) * 1978-05-15 1987-06-23 Incom International Inc. Bearings with felted teflon liners and method for making same
US4732818A (en) * 1984-04-30 1988-03-22 Federal-Mogul Corporation Composite bearing material with polymer filled metal matrix interlayer of distinct metal particle sizes and method of making same
US4685184A (en) * 1984-09-21 1987-08-11 Mcgill Manufacturing Company, Inc. Self-lubricated track-roller bearing and method of constructing the same
GB2166142A (en) 1984-10-22 1986-04-30 Ae Plc Ptfe composition for use in plain bearings
US4865922A (en) * 1984-10-22 1989-09-12 Aeplc Plain bearing
EP0412238A1 (en) 1989-08-07 1991-02-13 Státni vyzkumny ustav materiálu Composite material for sliding purposes and process for its preparation
US5688836A (en) * 1992-07-30 1997-11-18 Daikin Industries, Ltd. Polytetrafluoroethylene porous material and process for production of the same
GB2274844A (en) 1993-02-09 1994-08-10 T & N Technology Ltd Plain bearing material
GB2279998A (en) 1993-07-14 1995-01-18 T & N Technology Ltd Plain bearing
US5911514A (en) * 1993-07-14 1999-06-15 T&N Technology Limited Plain bearing with polytetrafluoroethylene-based lining

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search report, PCT/GB97/02846.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164151A1 (en) * 2006-01-13 2007-07-19 Luce William E Aircraft shock strut and improved bearings therefor
US20070234839A1 (en) * 2006-03-22 2007-10-11 Saint-Gobain Performance Plastics Corporation Bearing assemblies
US8491194B2 (en) 2007-10-01 2013-07-23 Saint-Gobain Performance Plastics Corporation Bearings
US20110108422A1 (en) * 2008-04-03 2011-05-12 The Regents Of The University Of California Ex vivo multi-dimensional system for the separation and isolation of cells, vesicles, nanoparticles and biomarkers
US20110135232A1 (en) * 2009-11-10 2011-06-09 Saint-Gobain Performance Plastics Corporation Closed end bearing cup
US8408800B2 (en) 2009-11-10 2013-04-02 Saint-Gobain Performance Plastics Corporation Closed end bearing cup
US8969469B2 (en) 2010-11-18 2015-03-03 3M Innovative Properties Company Method of coagulating an amorphous fluoropolymer latex
US8603791B2 (en) 2012-04-16 2013-12-10 Biological Dynamics, Inc. Nucleic acid sample preparation
US10232369B2 (en) 2016-03-24 2019-03-19 Biological Dynamics, Inc. Disposable fluidic cartridge and components
US11534756B2 (en) 2016-03-24 2022-12-27 Biological Dynamics, Inc. Compact device for detection of nanoscale analytes
US10818379B2 (en) 2017-05-08 2020-10-27 Biological Dynamics, Inc. Methods and systems for analyte information processing
US11731132B2 (en) 2017-12-19 2023-08-22 Biological Dynamics, Inc. Methods and devices for detection of multiple analytes from a biological sample
US11883833B2 (en) 2018-04-02 2024-01-30 Biological Dynamics, Inc. Dielectric materials

Also Published As

Publication number Publication date
DE69727066D1 (en) 2004-02-05
US20020018605A1 (en) 2002-02-14
BR9712742A (en) 1999-12-21
DE69727066T2 (en) 2004-07-15
WO1998020264A1 (en) 1998-05-14
EP0932772B2 (en) 2011-03-30
JP2001508526A (en) 2001-06-26
GB2319067B (en) 2000-06-28
EP0932772B1 (en) 2004-01-02
DE69727066T3 (en) 2011-11-17
EP0932772A1 (en) 1999-08-04
GB2319067A (en) 1998-05-13
ATE257223T1 (en) 2004-01-15
GB9623052D0 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US6289590B1 (en) Method of forming a bearing
EP3087142B1 (en) Self-lubricating thermoplastic layers containing ptfe additive having a polymodal molecular weight
Rapoport et al. Superior tribological properties of powder materials with solid lubricant nanoparticles
US5911514A (en) Plain bearing with polytetrafluoroethylene-based lining
US6106936A (en) Overlay material for plain bearing comprising filled fluorothermoplastic material
US8551569B2 (en) Method for producing a metal base material provided with a sliding layer, and the use thereof
AU750986B2 (en) Bearing material
DE19808540B4 (en) Sliding layer material and layer composite material
US5217814A (en) Sintered sliding material
JP2002506176A (en) Flat bearing
JPS63111312A (en) Double layer bearing and manufacture thereof
KR19990022692A (en) Use of iron oxides as additives to prevent wear and cavitation in the plastic sliding layer of composite bearings for oil lubricated applications
US8420580B2 (en) Sliding resin composition
JPS62501294A (en) Improved composite self-lubricating bearing
Rapoport et al. Load bearing capacity of bronze, iron and iron–nickel powder composites containing fullerene-like WS2 nanoparticles
JPH03115494A (en) Composite material for sliding and method for its manufacture
JPH0238636B2 (en)
US6296392B1 (en) Plain bearing structure
JPS6331005B2 (en)
Heshmat Wear reduction systems for coal-fueled diesel engines II. Experimental results and hydrodynamic model of powder lubrication
JP2977941B2 (en) Manufacturing method of low friction coefficient sintered bearing
JPS6138243B2 (en)
Rapoport et al. Surface Treatment/Tribology: Tribology of Powdered Materials Impregnated with Fullerine-Like Solid Lubricants
JPS62227003A (en) Double-layered bearing
Wisniewska-Weinert et al. Nanotechnology Workshop: Precision Cold Forging of Powder Components with Nanoparticles Impregnation

Legal Events

Date Code Title Description
AS Assignment

Owner name: DANA CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCDONALD, JULIE ANN;REEL/FRAME:010799/0994

Effective date: 19990518

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: GLACIER GARLOCK BEARINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GIB HOLDINGS INC.;REEL/FRAME:012581/0231

Effective date: 20011026

AS Assignment

Owner name: GIB HOLDINGS INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DANA CORPORATION;REEL/FRAME:012631/0492

Effective date: 20010901

CC Certificate of correction
AS Assignment

Owner name: BANK OF AMERICA, N.A., AS AGENT, GEORGIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:GLACIER GARLOCK BEARINGS, INC.;REEL/FRAME:013269/0866

Effective date: 20020531

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS AGENT, GEORGIA

Free format text: SECURITY AGREEMENT;ASSIGNORS:CORROSION CONTROL CORPORATION;GGB, INC.;REEL/FRAME:026114/0477

Effective date: 20110331

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: GGB, INC. (F/K/A GLACIER GARLOCK BEARINGS INC., N/K/A GGB U.S. HOLDCO LLC), NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS AGENT;REEL/FRAME:061882/0313

Effective date: 20221104

Owner name: GGB, INC. (N/K/A GGB U.S. HOLDCO LLC), NEW JERSEY

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS AGENT;REEL/FRAME:061882/0289

Effective date: 20221104