US6365789B2 - Pulverulent sorbitol and its process of preparation - Google Patents

Pulverulent sorbitol and its process of preparation Download PDF

Info

Publication number
US6365789B2
US6365789B2 US09/843,305 US84330501A US6365789B2 US 6365789 B2 US6365789 B2 US 6365789B2 US 84330501 A US84330501 A US 84330501A US 6365789 B2 US6365789 B2 US 6365789B2
Authority
US
United States
Prior art keywords
sorbitol
pulverulent
accordance
granulation
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/843,305
Other versions
US20020016518A1 (en
Inventor
Franck Moraly
Erik Labergerie
José Lis
Philippe Lefevre
Frédéric Bouvier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9533882&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6365789(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Priority to US09/843,305 priority Critical patent/US6365789B2/en
Publication of US20020016518A1 publication Critical patent/US20020016518A1/en
Application granted granted Critical
Publication of US6365789B2 publication Critical patent/US6365789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/04Disaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • A23G3/346Finished or semi-finished products in the form of powders, paste or liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/34Sugar alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/26Hexahydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages

Definitions

  • a subject-matter of the present invention is a pulverulent sorbitol of low hygroscopicity and of high specific surface which furthermore exhibits a low relative density, a specific particle size and an excellent ability to flow.
  • the invention also relates to a pulverulent sorbitol, the technical properties of which for use in direct compression are improved, and to a process for its preparation.
  • Sorbitol is a hexitol mainly used in the fields of food and pharmaceutical applications as a sweetening agent but also for its reduced calorific value and its acariogenicity.
  • Pulverulent sorbitol just like other pulverulent polyols, such as xylitol or mannitol, is, for its part, commonly used as a pharmaceutical excipient, as a sweetener and texturizing agent in the food industry, and as an additive vehicle in industries of all types. However, it is a better excipient than xylitol and mannitol, in particular in compression, because of its specific ability to crystallize in the form of needle-shaped crystals which are directly compressible.
  • Patent Application FR 2,622,190 discloses a sorbitol powder comprising particles with a mean diameter of between 300 and 500 ⁇ m.
  • the high bulk density and the relatively low specific surface of the said particles of the order of 0.9 to 1.2 m 2 /g, are not in fact significantly modified by the manufacturing process employed, so that the pulverulent sorbitol thus obtained retains the same moisture absorption factor and the same solubility in water as the starting sorbitol powder.
  • Patent EP 32,288 discloses a ⁇ sorbitol polymorph, with a disintegrated and loose crystalline structure, which exhibits an improved hygroscopicity and satisfactory compressive properties.
  • these specific properties only relate to a particle size fraction of between 250 and 841 ⁇ m (i.e. 20/60 mesh), the specific surface of which is, in any case, less than 2 m 2 /g.
  • a hygroscopicity value determined according to a test A, of less than 2%, preferably of less than 1.7%
  • a specific surface determined according to the BET method, at least equal to 2 m 2 /g, preferably at least equal to 2.2 m 2 /g.
  • Its hygroscopicity determined according to the test A, is preferably between 0.5 and 1.6%, preferably between 0.9 and 1.4%.
  • the test A consists in drawing up the isothermal curve for water sorption at 20° C. which expresses the percentage of water uptake of a pulverulent product, dehydrated beforehand, which is placed in an atmosphere of variable relative humidity and at a temperature of 20° C. The determination of the hygroscopicity of the pulverulent product will then be the percentage of water uptake at 60% equilibrium relative humidity (or 60% E.R.H.).
  • the specific surface is determined over the entire particle size distribution of the pulverulent sorbitol by virtue of a Quantachrome specific surface analyzer based on a test of absorption of nitrogen on the surface of the product subjected to analysis, the technique described in the BET article, Surface Area by Nitrogen Absorption, by S. Brunauer et al. (Journal of the American Chemical Society, 60, 309, 1938), being followed.
  • a pulverulent sorbitol can jointly exhibit a specific surface at least equal to 2 m 2 /g, preferably at least equal to 2.2 m 2 /g, and a hygroscopicity of less than 2%, preferably of less than 1.7%. This is because it is very conventionally accepted that the hygroscopicity of a pulverulent product increases with its specific surface, i.e. its surface exposed to the environment comprising water vapour.
  • the pulverulent sorbitol in accordance with the invention exhibits a high specific surface characteristic of a granulated product with, nevertheless, a low hygroscopicity characteristic of a product crystallized in a stable crystalline form.
  • the sorbitol sold by the company Merck under the name Sorbitol grade L exhibits a hygroscopicity of 2.4% at 60% ERH according to the test A, for a specific surface according to the BET method of 1.55 m 2 /g
  • the sorbitol sold by the Applicant Company under the trade name Neosorb® P 60 W exhibits a hygroscopicity, under the same measuring conditions, with a value of 1.53% for a specific surface of less than 1 m 2 /g.
  • the pulverulent sorbitol in accordance with the invention exhibits a strikingly lower hygroscopicity than that which is conventionally described for commercial pulverulent sorbitols exhibiting the highest specific surfaces.
  • the result of this is that the pulverulent sorbitol in accordance with the invention has much better properties, in particular as additive vehicle, than a standard pulverulent sorbitol. These properties are due, at least in part, to the particularly high specific surface of this product.
  • the Applicant Company therefore regards as novel a pulverulent sorbitol, characterized in that it exhibits a specific surface, according to the BET method, of greater than 2.5 m 2 /g, preferably of between 2.6 and 4 m 2 /g, and more preferably still of between 2.6 and 3.5 m 2 /g.
  • the pulverulent sorbitol in accordance with the invention can also be characterized by its bulk density, its direct compression properties and its friability.
  • the bulk density is determined by the use of a device sold by the company Hosokawa under the trade name Powder Tester, the recommended method for measuring a bulk density being applied.
  • the pulverulent sorbitol in accordance with the invention exhibits a low bulk density, that is to say of between 0.35 and 0.65 g/ml, preferably of between 0.4 and 0.6 g/ml.
  • the compressibility of the pulverulent sorbitol is determined according to the following test B described in Patent EP 220,103, of which the Applicant Company is the proprietor.
  • This test B consists in measuring the force, expressed in newtons, which is representative of the compressibility of the pulverulent sorbitol studied.
  • This force therefore expresses, in this instance, the resistance to crushing of a tablet which is cylindrical with convex faces (radius of curvature of 14 mm), with a diameter of 13 mm, with a thickness of 6 mm and with a weight of 0.647 g, i.e. with a bulk density of 1.1 g/ml.
  • the compressibility of the pulverulent sorbitol in accordance with the invention is determined at a value generally of between 100 and 150 N, more particularly at a value of between 120 and 140 N.
  • the friability of the pulverulent sorbitol in accordance with the invention is, for its part, determined according to a test C described in Patent EP 645,096, of which the Applicant Company is the proprietor. It exhibits a value generally of between 10 and 50%, preferably of between 20 and 40%.
  • the mechanical strength of the tablets obtained with the said pulverulent sorbitol is indeed particularly high, in comparison with that of the tablets obtained with the commercial products.
  • the sorbitol powder grades sold by the company DHW Rodleben with a relative density equal to 0.6 g/ml, exhibit a compressibility, determined according to the test B, in the region of 100 N.
  • the low relative density of the pulverulent sorbitol in accordance with the invention and its feature of high mechanical strength make it possible to advantageously reduce the material employed in the manufacture of the tablets or lozenges, thereby significantly decreasing the production costs.
  • the pulverulent sorbitol in accordance with the invention does not conform to the rule according to which, the lower the bulk density of a pulverulent sorbitol, the higher its friability.
  • the pulverulent sorbitol in accordance with the invention can also be characterized by its mean diameter, its uniformity of particle size distribution and its ability to flow, these properties being particularly suitable for the said compressive applications.
  • the pulverulent sorbitol according to the invention generally exhibits a mean diameter of between 150 and 250 ⁇ m and a particle size distribution of between 60 and 500 ⁇ m. These values are determined on a Coulter® Laser LS particle sizer.
  • the pulverulent sorbitol in accordance with the invention exhibits an excellent flow grade generally of at least 70, preferably of between 70 and 90, and more preferably of between 70 and 80. This value is slightly greater than those of the sorbitol powders of the prior art obtained by granulation. This is all the more remarkable since, with respect to these prior products, the pulverulent sorbitol in accordance with the invention exhibits a finer particle size.
  • the pulverulent sorbitol in accordance with the invention is relatively pure, that is to say that it exhibits a high sorbitol content generally of greater than 95% and more particularly of greater than 98% by weight.
  • This high content is also expressed by a high melting point, determined by microcalorimetric analysis (DSC), of between 98 and 99.5° C., more particularly of between 98.9 and 99.2° C., which is among the highest values ever measured for sorbitol powders used in direct compression.
  • DSC microcalorimetric analysis
  • the physicochemical characteristics cited above for the pulverulent sorbitol in accordance with the invention explain its excellent ability to flow. These characteristics relate in particular to its sorbitol content, its centred particle size and its low hygroscopicity but also to the characteristic shape of its particles. As regards the latter point, observation under a scanning electron microscope at low magnification (magnitude 50) reveals that the pulverulent sorbitol in accordance with the invention is generally composed of particles with variable shapes exhibiting few sharp edges which are predominantly composed of microparticles agglomerated to one another.
  • the said particles exhibit, at their surface, numerous fine needles of ⁇ sorbitol without specific orientation, which is characteristic of copious surface recrystallization, and wide regions with a more molten appearance, the relative size of which can be attributed to the alternative forms of the processes employed in their manufacture.
  • the pulverulent sorbitol in accordance with the invention is therefore easily distinguished from a pulverulent sorbitol obtained by simple atomization, which is composed of essentially spherical particles, or from a sorbitol obtained by extrusion, which comprises angular particles in the form of clusters of fine needles oriented in the same direction.
  • the pulverulent sorbitol in accordance with the invention is capable of being obtained by carrying out a stage of granulation of a sorbitol powder by the wet route using a binder and then a stage of maturing by drying the granulated sorbitol thus obtained.
  • the Applicant Company has found that it is advisable to choose, as starting sorbitol, a sorbitol powder which can be obtained by granulation, by atomization, by extrusion or by crystallization from water or from another solvent, such as alcohol.
  • the particle size of the said starting sorbitol powder does not constitute per se a limiting factor in producing a pulverulent sorbitol in accordance with the invention.
  • the binder for its part, is composed of water or of a sorbitol syrup with a solids content at most equal to 100%, preferably of between 10 and 80%.
  • the Applicant Company has found that the granulation of a sorbitol powder by the wet route using a binder makes it possible to prepare, with a high yield, a product in accordance with the invention with regard to its hygroscopicity, its specific surface, its relative density, its particle size and its ability to flow. This is because the processes described previously do not make it possible to obtain all the desired characteristics.
  • a continuous mixer-granulator of vertical Flexomix type sold by the company Hosokawa Schugi or of horizontal CB type sold by the company Lödige into which mixer-granulator is continuously introduced, via a weight metering device, the starting sorbitol powder to be granulated and into which mixer-granulator is continuously introduced, via a volumetric metering device, the binder (water or the sorbitol solution).
  • the granulation can also be carried out in an atomization tower or in a fluidized bed granulator.
  • the choice is made of the use of a Hosokawa Schugi continuous mixer-granulator of vertical Flexomix type.
  • the starting sorbitol powder and the binder are very intimately mixed in the mixer-granulator, which is equipped with a shaft with knives arranged as blades and with a system for spraying liquids via injection nozzles.
  • the satisfactory dispersion of the constituents and the agglomeration of the particles of the starting sorbitol powder are achieved by high speed stirring, i.e. stirring with a value at least equal to 1500 rpm, preferably at least equal to 3000 rpm.
  • the granules formed are discharged continuously onto a dryer. Discharging is preferably carried out by gravity in the case of the said vertical granulator and by thrusting, via the axis of the rotary knives, if the horizontal granulator is used.
  • This second stage of drying at the outlet of the mixer-granulator makes it possible to remove the water originating from the binder and to crystallize the dry matter originating from the binder, in the case where a sorbitol solution has been employed, so that crystallization takes place after the prior stage of granulation.
  • the dryer can be, for example, a fluidized bed dryer or a maturing rotary drum.
  • the pulverulent sorbitol in accordance with the invention is obtained after cooling and optionally sieving. In this case, the fine particles can be directly recycled at the start of granulation and the coarse particles can be milled and recycled at the start of sieving or at the start of granulation.
  • a pulverulent sorbitol in accordance with the invention, the choice is made to carry out the granulation of the sorbitol powder by the wet route in an atomization tower. Crystalline sorbitol is then introduced into the said atomization tower and water or a sorbitol syrup with a solids content at most equal to 100%, preferably of between 10 and 80% by weight, is added as binder.
  • the choice is therefore advantageously made to adjust the temperature of the feed air to a value of between 140 and 145° C., the temperature of the mists to a value of between 70 and 75° C. and the temperature of the static bed to a value of between 70 and 80° C.
  • the pulverulent sorbitol in accordance with the invention can advantageously be employed, because of the quality of its functional properties mentioned above, in the ⁇ tablets to be sucked>> application.
  • the tablets prepared from the said sorbitol exhibit, in addition to a high compressibility which is reflected by high hardness for a low relative density, a ⁇ smooth in the mouth>> texture.
  • the latter organoleptic property is particularly appreciated in the manufacture of lozenges or tablets, as a ⁇ rough>> characteristic for tablets is regarded as a non-pleasurable feature by experts in this field.
  • a Schugi vertical Flexomix mixer-granulator is fed continuously via a powder metering device, at a throughput of 500 kg/h, with a sorbitol powder manufactured by granulation.
  • the mixer-granulator is fed continuously with water at 60° C. and at a throughput of 40 l/h via a spray nozzle.
  • the rotating shaft with knives is adjusted beforehand to a speed of 3000 rpm.
  • the wet granulated powder at the outlet of the mixer-granulator falls continuously, by gravity, into a Schugi fluidized bed dryer with two compartments.
  • the granulated product is dried by air at 120° C. and then it is cooled by air at 20° C. in the second compartment.
  • the dried and cooled granulated product is subsequently sieved continuously on a rotary screen equipped with two metal cloths of 120 and 600 ⁇ m.
  • the starting sorbitol powder A and the pulverulent sorbitol B thus obtained in accordance with the invention exhibit the characteristics combined in the following Table I.
  • a Schugi vertical Flexomix mixer-granulator is fed continuously via a powder metering device with the starting sorbitol powder A under the same conditions as in Example 1 but the said mixer-granulator is fed, at a throughput of 40 l/h and a temperature of 60° C., via a spray nozzle, with a sorbitol solution with a solids content of 70% as binder.
  • the pulverulent sorbitols C and D in accordance with the invention obtained respectively with a temperature of the heating air of 120° C. and 75° C., exhibit the characteristics combined in the following Table II.
  • the process is carried out in the same way as in Example 1 but with a starting sorbitol powder with a finer particle size.
  • the starting sorbitol powder E and the pulverulent sorbitol F in accordance with the invention exhibit the characteristics combined in the following Table III.
  • the process is carried out with the same starting sorbitol powder E as was employed in Example 3.
  • An MSD atomization tower with an evaporation capacity of 350 kg/h is 10 fed with the sorbitol powder E at the rate of 410 kg/h.
  • the granulation with water is carried out by spraying water at the rate of 80 l/h via a nozzle at a pressure of 45 bar.
  • the drying air enters at 136° C. and leaves at 78° C. and the temperature of the mists is determined at 142° C., the static bed at the bottom of the tower being cooled by air at 70° C.
  • the product passes onto a vibrated fluid bed where it is cooled by air in 3 temperature regions fixed respectively at 35° C., 20° C. and 20° C.
  • the pulverulent sorbitols in accordance with the invention all possess, in contrast to the products of the prior art, excellent functional properties which make them suitable for use without disadvantage as nonhygroscopic excipients and vehicles for additives, in particular in the food and pharmaceutical industries.
  • sorbitol for each pulverulent sorbitol, in this case a sorbitol sold by the company Merck under the name Sorbitol grade L and a sorbitol in accordance with the invention prepared according to Example 1, a series of convex tablets with a diameter of 13 mm is prepared, which tablets are obtained on a Frogerais AM reciprocating press, after mixing at the time of tableting with 0.7% of magnesium stearate.
  • the tablets manufactured with the pulverulent sorbitol in accordance with the invention differ from the tablets manufactured with the other sorbitol in that they simultaneously exhibit a high compressibility (high hardness for a low relative density) and a ⁇ smooth in the mouth>> texture.

Abstract

The invention relates to a pulverulent sorbitol, characterized in that it exhibits a hygroscopicity value, determined according to a test A, of less than 2%, preferably of less than 1.7%, and a specific surface, determined according to the BET method, at least equal to 2 m2/g, preferably at least equal to 2.2 m2/g, and also relates to its process of preparation. The invention also relates to compositions intended in particular for the food and pharmaceutical fields and to the use of the said pulverulent sorbitol in the preparation of tablets exhibiting a <<smooth in the mouth>> texture.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a Divisional of U.S. patent application Ser. No. 09/457,536, filed Dec. 9, 1999, the disclosure of which is being incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
A subject-matter of the present invention is a pulverulent sorbitol of low hygroscopicity and of high specific surface which furthermore exhibits a low relative density, a specific particle size and an excellent ability to flow.
The invention also relates to a pulverulent sorbitol, the technical properties of which for use in direct compression are improved, and to a process for its preparation.
2. Description of the Prior Art
Sorbitol is a hexitol mainly used in the fields of food and pharmaceutical applications as a sweetening agent but also for its reduced calorific value and its acariogenicity.
Pulverulent sorbitol, just like other pulverulent polyols, such as xylitol or mannitol, is, for its part, commonly used as a pharmaceutical excipient, as a sweetener and texturizing agent in the food industry, and as an additive vehicle in industries of all types. However, it is a better excipient than xylitol and mannitol, in particular in compression, because of its specific ability to crystallize in the form of needle-shaped crystals which are directly compressible.
Generally, in order to have available a crystalline sorbitol of high compressive strength, every effort is made to manufacture a sorbitol of γ crystalline form (the α and β forms are particularly unstable) by processing a supersaturated solution of sorbitol, the γ form of which represents at least 90%. However, even when it is crystallized in this, most stable, γ form, the pulverulent sorbitol obtained conventionally exhibits a number of disadvantages, including that of being very hygroscopic.
This high hygroscopicity has the effect of rendering the flow of pulverulent sorbitol difficult, indeed even impossible, as soon as water uptake has occurred. Its use in direct compression is then found to be limited by this, requiring, for example, serious difficulties to be overcome in filling presses in the manufacture of lozenges or tablets.
In order to avoid this flow problem of pulverulent sorbitol, the preparation has been recommended of a sorbitol of low relative density and of coarser particle size, as disclosed in Patent FR 1,506,334.
However, it is established that the lower the bulk density of a pulverulent sorbitol, the greater the friability of the latter, that is to say the greater its sensitivity to a detrimental change in its particle size by mechanical action. In addition, the dissolution times of this pulverulent product of coarse particle size are generally too long and therefore unsuitable.
Finally, while the ability to flow is partially improved by the use of particles of such a particle size, the residual hygroscopic nature, which is still too high, in all cases renders the use of this pulverulent sorbitol out of the question when it is used in combination with ingredients or additives which are very sensitive to water.
It is also established that the ability to fix significant amounts of additive is a direct function of the specific surface of the said particles. The absorption capabilities of pulverulent sorbitol thus increase in proportion as its specific surface increases. However, it is known that the specific surface of the dense crystals of commercial γ sorbitol is very low. Thus, for a particle size of between 500 and 1000 μm, it is very low, i.e. at most equal to 0.7 m2/g.
With the aim of preparing a pulverulent sorbitol exhibiting an improved particle size and a good ability to flow and satisfying the desired conditions of compressibility and friability, Patent Application FR 2,622,190 discloses a sorbitol powder comprising particles with a mean diameter of between 300 and 500 μm. However, the high bulk density and the relatively low specific surface of the said particles, of the order of 0.9 to 1.2 m2/g, are not in fact significantly modified by the manufacturing process employed, so that the pulverulent sorbitol thus obtained retains the same moisture absorption factor and the same solubility in water as the starting sorbitol powder.
Patent EP 32,288 discloses a γ sorbitol polymorph, with a disintegrated and loose crystalline structure, which exhibits an improved hygroscopicity and satisfactory compressive properties. However, these specific properties only relate to a particle size fraction of between 250 and 841 μm (i.e. 20/60 mesh), the specific surface of which is, in any case, less than 2 m2/g.
It emerges, from everything which precedes, that there exists an unsatisfied need to have available a pulverulent sorbitol which simultaneously exhibits the advantages, generally incompatible, of low hygroscopicity, on the one hand, and of high specific surface, on the other hand, or of low bulk density, on the one hand, and of low friability, on the other hand, for a relatively low particle size.
There is therefore a need for a novel pulverulent sorbitol capable of reconciling all of the aforementioned objectives.
DETAILED DESCRIPTION OF THE INVENTION
The pulverulent sorbitol in accordance with the invention is thus first of all characterized in that it exhibits:
a hygroscopicity value, determined according to a test A, of less than 2%, preferably of less than 1.7%,
a specific surface, determined according to the BET method, at least equal to 2 m2/g, preferably at least equal to 2.2 m2/g.
Its hygroscopicity, determined according to the test A, is preferably between 0.5 and 1.6%, preferably between 0.9 and 1.4%.
The test A consists in drawing up the isothermal curve for water sorption at 20° C. which expresses the percentage of water uptake of a pulverulent product, dehydrated beforehand, which is placed in an atmosphere of variable relative humidity and at a temperature of 20° C. The determination of the hygroscopicity of the pulverulent product will then be the percentage of water uptake at 60% equilibrium relative humidity (or 60% E.R.H.).
The specific surface is determined over the entire particle size distribution of the pulverulent sorbitol by virtue of a Quantachrome specific surface analyzer based on a test of absorption of nitrogen on the surface of the product subjected to analysis, the technique described in the BET article, Surface Area by Nitrogen Absorption, by S. Brunauer et al. (Journal of the American Chemical Society, 60, 309, 1938), being followed.
It is particularly surprising that a pulverulent sorbitol can jointly exhibit a specific surface at least equal to 2 m2/g, preferably at least equal to 2.2 m2/g, and a hygroscopicity of less than 2%, preferably of less than 1.7%. This is because it is very conventionally accepted that the hygroscopicity of a pulverulent product increases with its specific surface, i.e. its surface exposed to the environment comprising water vapour.
In point of fact, the pulverulent sorbitol in accordance with the invention exhibits a high specific surface characteristic of a granulated product with, nevertheless, a low hygroscopicity characteristic of a product crystallized in a stable crystalline form.
By way of examples, the sorbitol sold by the company Merck under the name Sorbitol grade L exhibits a hygroscopicity of 2.4% at 60% ERH according to the test A, for a specific surface according to the BET method of 1.55 m2/g, and the sorbitol sold by the Applicant Company under the trade name Neosorb® P 60 W exhibits a hygroscopicity, under the same measuring conditions, with a value of 1.53% for a specific surface of less than 1 m2/g.
Surprisingly and unexpectedly, and in contrast to what was expected, the pulverulent sorbitol in accordance with the invention exhibits a strikingly lower hygroscopicity than that which is conventionally described for commercial pulverulent sorbitols exhibiting the highest specific surfaces. The result of this is that the pulverulent sorbitol in accordance with the invention has much better properties, in particular as additive vehicle, than a standard pulverulent sorbitol. These properties are due, at least in part, to the particularly high specific surface of this product.
The Applicant Company therefore regards as novel a pulverulent sorbitol, characterized in that it exhibits a specific surface, according to the BET method, of greater than 2.5 m2/g, preferably of between 2.6 and 4 m2/g, and more preferably still of between 2.6 and 3.5 m2/g.
The pulverulent sorbitol in accordance with the invention can also be characterized by its bulk density, its direct compression properties and its friability.
The bulk density is determined by the use of a device sold by the company Hosokawa under the trade name Powder Tester, the recommended method for measuring a bulk density being applied.
Under these conditions, the pulverulent sorbitol in accordance with the invention exhibits a low bulk density, that is to say of between 0.35 and 0.65 g/ml, preferably of between 0.4 and 0.6 g/ml.
The compressibility of the pulverulent sorbitol is determined according to the following test B described in Patent EP 220,103, of which the Applicant Company is the proprietor. This test B consists in measuring the force, expressed in newtons, which is representative of the compressibility of the pulverulent sorbitol studied. This force therefore expresses, in this instance, the resistance to crushing of a tablet which is cylindrical with convex faces (radius of curvature of 14 mm), with a diameter of 13 mm, with a thickness of 6 mm and with a weight of 0.647 g, i.e. with a bulk density of 1.1 g/ml.
The compressibility of the pulverulent sorbitol in accordance with the invention is determined at a value generally of between 100 and 150 N, more particularly at a value of between 120 and 140 N.
The friability of the pulverulent sorbitol in accordance with the invention is, for its part, determined according to a test C described in Patent EP 645,096, of which the Applicant Company is the proprietor. It exhibits a value generally of between 10 and 50%, preferably of between 20 and 40%.
This friability value is all the more remarkable since the pulverulent sorbitol in accordance with the invention exhibits a low relative density. This is because it is conventionally accepted that a pulverulent sorbitol will decrease in friability in proportion as its relative density and its compressibility increase.
Because of this high compressibility, the mechanical strength of the tablets obtained with the said pulverulent sorbitol is indeed particularly high, in comparison with that of the tablets obtained with the commercial products. By way of example, the sorbitol powder grades sold by the company DHW Rodleben, with a relative density equal to 0.6 g/ml, exhibit a compressibility, determined according to the test B, in the region of 100 N.
The low relative density of the pulverulent sorbitol in accordance with the invention and its feature of high mechanical strength make it possible to advantageously reduce the material employed in the manufacture of the tablets or lozenges, thereby significantly decreasing the production costs.
As regards the friability, surprisingly and unexpectedly, and in contrast to what is commonly accepted, the pulverulent sorbitol in accordance with the invention does not conform to the rule according to which, the lower the bulk density of a pulverulent sorbitol, the higher its friability.
These improved properties of compressibility and of friability, combined with the features of low hygroscopicity and of high specific surface, have in particular the consequence of rendering the pulverulent sorbitol in accordance with the invention particularly well suited to food, pharmaceutical or other applications requiring the fixing of significant amounts of additives. Its adsorption capabilities, which are markedly greater than those of the conventionally known compressible sorbitols, therefore allow it, furthermore, to act as a vehicle for additives which are particularly soluble in water, such as vitamins, colorants or powerful sweeteners.
Furthermore, the pulverulent sorbitol in accordance with the invention can also be characterized by its mean diameter, its uniformity of particle size distribution and its ability to flow, these properties being particularly suitable for the said compressive applications. Thus, the pulverulent sorbitol according to the invention generally exhibits a mean diameter of between 150 and 250 μm and a particle size distribution of between 60 and 500 μm. These values are determined on a Coulter® Laser LS particle sizer.
Furthermore, it should be emphasized that the not insignificant advantages of the use of the pulverulent sorbitol in accordance with the invention which are cited above constitute a combination of properties which the products of the prior art never simultaneously possess. Mention may be made, among these advantages, of its ability to flow.
This ability to flow is evaluated by using the Powder Tester device sold by the company Hosokawa. This device makes it possible to measure, under standardized and reproducible conditions, the ability to flow of a powder and to calculate a flow grade, also known as the Carr index.
The pulverulent sorbitol in accordance with the invention exhibits an excellent flow grade generally of at least 70, preferably of between 70 and 90, and more preferably of between 70 and 80. This value is slightly greater than those of the sorbitol powders of the prior art obtained by granulation. This is all the more remarkable since, with respect to these prior products, the pulverulent sorbitol in accordance with the invention exhibits a finer particle size.
From the view point of its chemical composition, the pulverulent sorbitol in accordance with the invention is relatively pure, that is to say that it exhibits a high sorbitol content generally of greater than 95% and more particularly of greater than 98% by weight.
This high content is also expressed by a high melting point, determined by microcalorimetric analysis (DSC), of between 98 and 99.5° C., more particularly of between 98.9 and 99.2° C., which is among the highest values ever measured for sorbitol powders used in direct compression.
Without wishing to be bound by any one theory, it may be thought that the physicochemical characteristics cited above for the pulverulent sorbitol in accordance with the invention explain its excellent ability to flow. These characteristics relate in particular to its sorbitol content, its centred particle size and its low hygroscopicity but also to the characteristic shape of its particles. As regards the latter point, observation under a scanning electron microscope at low magnification (magnitude 50) reveals that the pulverulent sorbitol in accordance with the invention is generally composed of particles with variable shapes exhibiting few sharp edges which are predominantly composed of microparticles agglomerated to one another. At higher magnification (magnitude 1500), the said particles exhibit, at their surface, numerous fine needles of γ sorbitol without specific orientation, which is characteristic of copious surface recrystallization, and wide regions with a more molten appearance, the relative size of which can be attributed to the alternative forms of the processes employed in their manufacture.
The latter characteristics can contribute to explaining the excellent ability to flow of the pulverulent sorbitol in accordance with the invention and make it possible, in all cases, to also distinguish it from the commercial pulverulent sorbitols.
To the knowledge of the Applicant Company, these specific shapes have never been described for a pulverulent sorbitol. The pulverulent sorbitol in accordance with the invention is therefore easily distinguished from a pulverulent sorbitol obtained by simple atomization, which is composed of essentially spherical particles, or from a sorbitol obtained by extrusion, which comprises angular particles in the form of clusters of fine needles oriented in the same direction.
The pulverulent sorbitol in accordance with the invention is capable of being obtained by carrying out a stage of granulation of a sorbitol powder by the wet route using a binder and then a stage of maturing by drying the granulated sorbitol thus obtained. In order to obtain a pulverulent sorbitol in accordance with the invention having the stated functional characteristics, the Applicant Company has found that it is advisable to choose, as starting sorbitol, a sorbitol powder which can be obtained by granulation, by atomization, by extrusion or by crystallization from water or from another solvent, such as alcohol. The particle size of the said starting sorbitol powder does not constitute per se a limiting factor in producing a pulverulent sorbitol in accordance with the invention.
The binder, for its part, is composed of water or of a sorbitol syrup with a solids content at most equal to 100%, preferably of between 10 and 80%.
Surprisingly and unexpectedly, the Applicant Company has found that the granulation of a sorbitol powder by the wet route using a binder makes it possible to prepare, with a high yield, a product in accordance with the invention with regard to its hygroscopicity, its specific surface, its relative density, its particle size and its ability to flow. This is because the processes described previously do not make it possible to obtain all the desired characteristics.
In order to carry out the granulation, use may be made, for example, of a continuous mixer-granulator of vertical Flexomix type sold by the company Hosokawa Schugi or of horizontal CB type sold by the company Lödige, into which mixer-granulator is continuously introduced, via a weight metering device, the starting sorbitol powder to be granulated and into which mixer-granulator is continuously introduced, via a volumetric metering device, the binder (water or the sorbitol solution). The granulation can also be carried out in an atomization tower or in a fluidized bed granulator.
According to a first preferred embodiment of the process for the preparation of a pulverulent sorbitol in accordance with the invention, the choice is made of the use of a Hosokawa Schugi continuous mixer-granulator of vertical Flexomix type. The starting sorbitol powder and the binder are very intimately mixed in the mixer-granulator, which is equipped with a shaft with knives arranged as blades and with a system for spraying liquids via injection nozzles.
In a preferred form of the process, the satisfactory dispersion of the constituents and the agglomeration of the particles of the starting sorbitol powder are achieved by high speed stirring, i.e. stirring with a value at least equal to 1500 rpm, preferably at least equal to 3000 rpm. At the outlet of the mixer-granulator, the granules formed are discharged continuously onto a dryer. Discharging is preferably carried out by gravity in the case of the said vertical granulator and by thrusting, via the axis of the rotary knives, if the horizontal granulator is used.
This second stage of drying at the outlet of the mixer-granulator makes it possible to remove the water originating from the binder and to crystallize the dry matter originating from the binder, in the case where a sorbitol solution has been employed, so that crystallization takes place after the prior stage of granulation. The dryer can be, for example, a fluidized bed dryer or a maturing rotary drum. The pulverulent sorbitol in accordance with the invention is obtained after cooling and optionally sieving. In this case, the fine particles can be directly recycled at the start of granulation and the coarse particles can be milled and recycled at the start of sieving or at the start of granulation.
In a second preferred embodiment of the process for the preparation of a pulverulent sorbitol in accordance with the invention, the choice is made to carry out the granulation of the sorbitol powder by the wet route in an atomization tower. Crystalline sorbitol is then introduced into the said atomization tower and water or a sorbitol syrup with a solids content at most equal to 100%, preferably of between 10 and 80% by weight, is added as binder.
The choice is made to feed an MSD (Multi-Stage Dryer) atomization tower, with a water evaporation capacity of the order of 350 kg/h, with sorbitol powder at a throughput of between 400 and 600 kg/h, the granulation taking place with water as binder, as will be exemplified below.
In the light of the melting points of the various crystalline forms of sorbitol, the Applicant Company has found that it is necessary to carefully monitor the operating temperatures of the atomization tower.
The choice is therefore advantageously made to adjust the temperature of the feed air to a value of between 140 and 145° C., the temperature of the mists to a value of between 70 and 75° C. and the temperature of the static bed to a value of between 70 and 80° C.
The pulverulent sorbitol in accordance with the invention can advantageously be employed, because of the quality of its functional properties mentioned above, in the <<tablets to be sucked>> application.
This is because the tablets prepared from the said sorbitol exhibit, in addition to a high compressibility which is reflected by high hardness for a low relative density, a <<smooth in the mouth>> texture. The latter organoleptic property is particularly appreciated in the manufacture of lozenges or tablets, as a <<rough>> characteristic for tablets is regarded as a non-pleasurable feature by experts in this field.
Other characteristics and advantages of the invention will become apparent on reading the examples which follow. However, they are given here only by way of illustration and without implied limitation.
EXAMPLE 1
A Schugi vertical Flexomix mixer-granulator is fed continuously via a powder metering device, at a throughput of 500 kg/h, with a sorbitol powder manufactured by granulation.
Furthermore, the mixer-granulator is fed continuously with water at 60° C. and at a throughput of 40 l/h via a spray nozzle. The rotating shaft with knives is adjusted beforehand to a speed of 3000 rpm. The wet granulated powder at the outlet of the mixer-granulator falls continuously, by gravity, into a Schugi fluidized bed dryer with two compartments.
In the first compartment, the granulated product is dried by air at 120° C. and then it is cooled by air at 20° C. in the second compartment. The dried and cooled granulated product is subsequently sieved continuously on a rotary screen equipped with two metal cloths of 120 and 600 μm. The starting sorbitol powder A and the pulverulent sorbitol B thus obtained in accordance with the invention exhibit the characteristics combined in the following Table I.
TABLE I
Parameters A B
Sorbitol content (% by weight) 98.5 98.5
Water content (%) 0.5 0.4
Melting temperature (according to DSC; ° C.) 98.5 99.2
Heat of fusion (according to DSC; J/g) 168 171
Hygroscopicity (% at 60% ERH) 1.7 1.3
Specific surface (m2/g) 0.8 2.4
Bulk density (g/ml) 0.61 0.5
Mean diameter (μm) 100 155
Flow grade (value/100) 65 75
Compressibility (N) 60 120
Friability (%) 18 26
EXAMPLE 2
A Schugi vertical Flexomix mixer-granulator is fed continuously via a powder metering device with the starting sorbitol powder A under the same conditions as in Example 1 but the said mixer-granulator is fed, at a throughput of 40 l/h and a temperature of 60° C., via a spray nozzle, with a sorbitol solution with a solids content of 70% as binder.
The pulverulent sorbitols C and D in accordance with the invention, obtained respectively with a temperature of the heating air of 120° C. and 75° C., exhibit the characteristics combined in the following Table II.
TABLE II
Parameters C D
Sorbitol content (% by weight) 98.5 98.5
Water content (%) 0.45 0.55
Melting temperature (according to DSC; ° C.) 98.9 99.2
Heat of fusion (according to DSC; J/g) 172 175
Hygroscopicity (% at 60% ERH) 1.2 1.4
Specific surface (m2/g) 2.75 2.2
Bulk density (g/ml) 0.47 0.42
Mean diameter (μm) 192 193
Flow grade (value/100) 75 74
Compressibility (N) 120 130
Friability (%) 25 22
EXAMPLE 3
The process is carried out in the same way as in Example 1 but with a starting sorbitol powder with a finer particle size. The starting sorbitol powder E and the pulverulent sorbitol F in accordance with the invention exhibit the characteristics combined in the following Table III.
TABLE III
Parameters E F
Sorbitol content (% by weight) 98 98
Water content (%) 0.5 0.3
Melting temperature (according to DSC; ° C.) 97.5 99.2
Heat of fusion (according to DSC; J/g) 168 169
Hygroscopicity (% at 60% ERH) 1.9 1.1
Specific surface (m2/g) 0.9 3.25
Bulk density (g/ml) 0.5 0.48
Mean diameter (μm) 60 199
Flow grade (value/100) 60 78.5
Compressibility (N) 65 122
Friability (%) nd 32
EXAMPLE 4
The process is carried out with the same starting sorbitol powder E as was employed in Example 3. An MSD atomization tower with an evaporation capacity of 350 kg/h is 10 fed with the sorbitol powder E at the rate of 410 kg/h.
The granulation with water is carried out by spraying water at the rate of 80 l/h via a nozzle at a pressure of 45 bar.
The drying air enters at 136° C. and leaves at 78° C. and the temperature of the mists is determined at 142° C., the static bed at the bottom of the tower being cooled by air at 70° C.
At the outlet of the atomization tower, the product passes onto a vibrated fluid bed where it is cooled by air in 3 temperature regions fixed respectively at 35° C., 20° C. and 20° C.
The product G exhibits the characteristics combined in the following Table IV:
TABLE IV
Parameters E G
Sorbitol content (% by weight) 98 98
Water content (%) 0.5 0.25
Melting temperature (according to DSC; ° C.) 97.5 99
Heat of fusion (according to DSC; J/g) 168 169
Hygroscopicity (% at 60% ERH) 1.9 1
Specific surface (m2/g) 0.9 3.25
Bulk density (g/ml) 0.5 0.47
Mean diameter (μm) 60 200
Flow grade (value/100) 60 80
Compressibility (N) 65 125
Friability (%) nd 30
EXAMPLE 5
Products in accordance with the invention, prepared by applying the processes described in Examples 1 to 4, are compared, in the following Table V, with pulverulent sorbitols already known.
TABLE V
Products in Comparative products
accordance Neosorb Sorbitol
with P60W Sorbitol-L disclosed in
the invention Roquette Merck FR 2,622,190
Sorbitol content  98-100 94.5-97.8 97.7-98   97.2-98.2
(% by weight)
Water 0.35-0.45 0.5 0.6-0.8  <1
content (%)
Melting tempera- 98.9-99.2 94.5-98   94.8-95   94.5-96  
ture (DSC; ° C.)
Heat of fusion 165-175 165 155-165
(DSC; J/g)
Hygroscopicity 1.1 to 1.4 1.53 2.40
(% at 60% ERH)
Specific surface  2.2-3.25 <1 1.55   1-1.2
(m2/g)
Mean diameter 150-250 240-340 270-300 280-520
(μm)
Bulk density 0.4-0.6  0.4-0.65 0.45 0.54-0.6 
(g/ml)
Flow grade 70-80 75 78   
(value/100)
Compressibility 120-130 40 150     100
(N)
Friability (%) 20-35 20 50     45
The pulverulent sorbitols in accordance with the invention all possess, in contrast to the products of the prior art, excellent functional properties which make them suitable for use without disadvantage as nonhygroscopic excipients and vehicles for additives, in particular in the food and pharmaceutical industries.
EXAMPLE 6
The effect of the pulverulent sorbitol in accordance with the invention, relative to the sorbitol of the prior art, on the texture in the mouth of tablets prepared from the said sorbitols is evaluated by sensory analysis. This organoleptic test D is carried out in the following way.
For each pulverulent sorbitol, in this case a sorbitol sold by the company Merck under the name Sorbitol grade L and a sorbitol in accordance with the invention prepared according to Example 1, a series of convex tablets with a diameter of 13 mm is prepared, which tablets are obtained on a Frogerais AM reciprocating press, after mixing at the time of tableting with 0.7% of magnesium stearate.
Each series is then evaluated <<blind>> by an expert jury of 10 people. The latter are then to pronounce on the <<smooth in the mouth>> character of the said sucked tablets. By bringing together the evaluations obtained for each type of tablet manufactured from the sorbitol in accordance with the invention, it is possible to compare them with those prepared with the sorbitol of the prior art, according to the following grading:
grading <<−−−>>: <<smooth in the mouth>> texture not perceptible; on the contrary, pronounced rough character,
grading <<++>>: markedly perceptible <<smooth in the mouth>> texture but with a slight rough character feeling,
grading <<+++>>: perceptible <<smooth in the mouth>> texture, without any rough character feeling.
The results of these tests relating to the pleasurable character of the tablets prepared from the pulverulent sorbitols are collated in Table VI below as a function of the parameters of weight, of relative density and of hardness of the tablets used.
TABLE VI
Surface
Relative which
Weight density Hardness is
(mg) of (mg/ml) (N) of smooth
Type of sorbitol the of the the in the
used tablets tablets tablets mouth
Sorbitol L 652 1.154 >196 −−−
Merck
Pulverulent 651 1.152 161 ++
sorbitol in 686 1.214 >196 +++
accordance with the
invention
It is found that the tablets manufactured with the pulverulent sorbitol in accordance with the invention differ from the tablets manufactured with the other sorbitol in that they simultaneously exhibit a high compressibility (high hardness for a low relative density) and a <<smooth in the mouth>> texture.

Claims (6)

What is claimed is:
1. A process for the preparation of a pulverulent sorbitol, the crystalline form of which is the γ form, having a sorbitol content higher than 95%, which exhibits:
a hygroscopicity value, determined according to a test A, of less than 2%, said test A consisting in drawing the isothermal curve for water sorption at 20° C., the hygroscopicity value being the percentage of water uptake at 60% equilibrium relative humidity,
a specific surface, determined according to the BET method, at least equal to 2 m2/g, said process comprising a stage of granulation of a sorbitol powder by the wet route using a binder and a stage of maturing by drying the granulated sorbitol thus obtained.
2. The process according to claim 1, wherein the granulation stage is carried out in a continuous mixer-granulator.
3. The process according to claim 1, wherein the granulation stage is carried out in an atomization tower.
4. A process for the preparation of a pulverulent sorbitol, the crystalline form of which is the γ form, having a sorbitol content higher than 95%, which exhibits a specific surface according to the BET method of greater than 2.5 m2/g, said process comprising a stage of granulation of a sorbitol powder by the wet route using a binder and a stage of maturing by drying the granulated sorbitol thus obtained.
5. The process according to claim 4, wherein the granulation stage is carried out in a continuous mixer-granulator.
6. The process according to claim 4, wherein the granulation stage is carried out in an atomization tower.
US09/843,305 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation Expired - Lifetime US6365789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/843,305 US6365789B2 (en) 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FRFR9815681 1998-12-11
FR9815681A FR2787110B1 (en) 1998-12-11 1998-12-11 SORBITOL PULVERULENT AND PROCESS FOR THE PREPARATION THEREOF
FR9815681 1998-12-11
US09/457,536 US6274778B1 (en) 1998-12-11 1999-12-09 Pulverulent sorbitol and its process of preparation
US09/843,305 US6365789B2 (en) 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/457,536 Division US6274778B1 (en) 1998-12-11 1999-12-09 Pulverulent sorbitol and its process of preparation

Publications (2)

Publication Number Publication Date
US20020016518A1 US20020016518A1 (en) 2002-02-07
US6365789B2 true US6365789B2 (en) 2002-04-02

Family

ID=9533882

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/457,536 Expired - Lifetime US6274778B1 (en) 1998-12-11 1999-12-09 Pulverulent sorbitol and its process of preparation
US09/843,305 Expired - Lifetime US6365789B2 (en) 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation
US09/843,304 Expired - Lifetime US6387402B1 (en) 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/457,536 Expired - Lifetime US6274778B1 (en) 1998-12-11 1999-12-09 Pulverulent sorbitol and its process of preparation

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/843,304 Expired - Lifetime US6387402B1 (en) 1998-12-11 2001-04-25 Pulverulent sorbitol and its process of preparation

Country Status (14)

Country Link
US (3) US6274778B1 (en)
EP (1) EP1008602B8 (en)
JP (1) JP2000175653A (en)
KR (1) KR100788520B1 (en)
CN (1) CN1141282C (en)
AT (1) ATE238323T1 (en)
BR (1) BR9905826A (en)
CA (1) CA2290805C (en)
DE (1) DE69907119T3 (en)
DK (1) DK1008602T3 (en)
ES (1) ES2196743T5 (en)
FR (1) FR2787110B1 (en)
ID (1) ID24667A (en)
PT (1) PT1008602E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893654B2 (en) 1998-09-03 2005-05-17 Jsr, Llc Two-stage transmucosal medicine delivery system for symptom relief
US20070014887A1 (en) * 1998-09-03 2007-01-18 Cherukuri Subraman R Medicated chewing gum delivery system for nicotine
EP1778612A1 (en) * 2004-06-17 2007-05-02 Cargill, Incorporated Steam agglomeration of polyols
US20080020050A1 (en) * 2006-07-21 2008-01-24 Chau Tommy L Medicinal delivery system, and related methods

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1313586B1 (en) * 1999-07-30 2002-09-09 Vomm Chemipharma Srl METHOD OF CRYSTALLIZATION OF SORBITOL AND CRYSTALLIZED SORBITOL WHAT IS OBTAINED.
US20040056375A1 (en) * 2002-07-19 2004-03-25 Gary Bubb Method and apparatus for making miniature tablets
WO2006004732A1 (en) * 2004-06-29 2006-01-12 Mars, Incorporated Aqueous edible paint composition, method of preparation and kit
FR2890313A1 (en) * 2005-09-07 2007-03-09 Roquette Freres Granulated sorbitol with high sorbitol content, useful as a sweetening/texturing agent, excipient and support e.g. in food and pharmaceutical fields, comprises gamma form sorbitol crystals and a specific water uptake
FR2904224B1 (en) 2006-07-28 2008-10-10 Roquette Freres SORBITOL GRANULE AND PROCESS FOR PREPARING SAME
EP1970053A1 (en) * 2007-03-14 2008-09-17 Boehringer Ingelheim Pharma GmbH & Co. KG Pharmaceutical composition
ES2422281T3 (en) 2009-04-09 2013-09-10 E Pharma Trento Spa Granules for the formulation of orodispersible tablets
FR2999058B1 (en) * 2012-12-12 2015-03-27 Roquette Freres PROCESS FOR MANUFACTURING AN IMPROVED HARD CHEWING-GUM BY IMPLEMENTING AN ANTI-MOTOR AGENT AND CHEWING-GUM SO OBTAINED
FR3003135B1 (en) * 2013-03-12 2020-10-02 Syral Belgium Nv PROCESS FOR IMPROVING THE ORGANOLEPTIC PROPERTIES OF SUGAR-FREE CHEWING GUM BASED ON SORBITOL
BE1021954B1 (en) * 2014-06-05 2016-01-28 Syral Belgium Nv COMPOSITION OF SORBITOL WITH LOW FRIABILITY
FR3023128B1 (en) 2014-07-01 2017-11-10 Roquette Freres NEW SWEETENING COMPOSITION
CN109438188A (en) * 2018-11-16 2019-03-08 浙江华康药业股份有限公司 A kind of granulated sorbitol and preparation method thereof
IT202000024775A1 (en) 2020-10-20 2022-04-20 Perfetti Van Melle Spa CONFECTIONERY PRODUCT

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308171A (en) * 1964-07-17 1967-03-07 Yokohama Seito Kabushiki Kaish Method for producing granular or powdery sorbitol from sorbitol solution
US3384546A (en) 1965-05-28 1968-05-21 Miles Lab Directly compressed low-density crystalline sorbitol pharmaceutical tablets
GB2046743A (en) 1979-03-16 1980-11-19 Roquette Freres Compressible sorbitol
US4252794A (en) * 1979-12-20 1981-02-24 Ici Americas Inc. Gamma-sorbitol polymorph
US4507511A (en) * 1982-12-07 1985-03-26 Merck Patent Gesellschaft Mit Beschrankter Haftung Sorbitol, process for its preparation, and use thereof
US4831129A (en) 1985-10-02 1989-05-16 Roquette Freres Directly compressible powdered maltitol and its process of preparation
US5573777A (en) * 1993-09-28 1996-11-12 Roquette Freres Pulverulent mannitol of moderate friability and process for its preparation
US5939091A (en) * 1997-05-20 1999-08-17 Warner Lambert Company Method for making fast-melt tablets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD252003B1 (en) * 1986-08-01 1990-06-20 Hydrierwerk Rodleben Veb METHOD FOR PRODUCING A DRY ORBITOL WITH IMPROVED APPLICATION-TECHNICAL PROPERTIES
US5112616A (en) * 1988-11-30 1992-05-12 Schering Corporation Fast dissolving buccal tablet
DE69022861T2 (en) 1989-01-24 1996-04-04 Spi Polyols Inc Cryoprotective crystalline sorbitol beads.
ATE210968T1 (en) * 1992-02-18 2002-01-15 Nippon Shinyaku Co Ltd METHOD FOR PRODUCING QUICK DISSOLVING TABLETS AND QUICK DISSOLVING TABLETS CONTAINING XYLITOL
US5595761A (en) * 1994-01-27 1997-01-21 The Board Of Regents Of The University Of Oklahoma Particulate support matrix for making a rapidly dissolving tablet
FR2766089B1 (en) * 1997-07-21 2000-06-02 Prographarm Lab IMPROVED MULTIPARTICULAR TABLET WITH RAPID DELIVERY

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308171A (en) * 1964-07-17 1967-03-07 Yokohama Seito Kabushiki Kaish Method for producing granular or powdery sorbitol from sorbitol solution
US3384546A (en) 1965-05-28 1968-05-21 Miles Lab Directly compressed low-density crystalline sorbitol pharmaceutical tablets
GB2046743A (en) 1979-03-16 1980-11-19 Roquette Freres Compressible sorbitol
US4252794A (en) * 1979-12-20 1981-02-24 Ici Americas Inc. Gamma-sorbitol polymorph
EP0032288A1 (en) 1979-12-20 1981-07-22 Ici Americas Inc. Improved gamma-sorbitol polymorph and uses thereof
US4507511A (en) * 1982-12-07 1985-03-26 Merck Patent Gesellschaft Mit Beschrankter Haftung Sorbitol, process for its preparation, and use thereof
US4605794A (en) * 1982-12-07 1986-08-12 Merck Patent Gesellschaft Mit Beschrankter Haftung Sorbitol, process for its preparation, and use thereof
US4831129A (en) 1985-10-02 1989-05-16 Roquette Freres Directly compressible powdered maltitol and its process of preparation
US5573777A (en) * 1993-09-28 1996-11-12 Roquette Freres Pulverulent mannitol of moderate friability and process for its preparation
US5939091A (en) * 1997-05-20 1999-08-17 Warner Lambert Company Method for making fast-melt tablets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Brunauer S., Journal of the American Chemical Society, 1938, 60, pp 309-319.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893654B2 (en) 1998-09-03 2005-05-17 Jsr, Llc Two-stage transmucosal medicine delivery system for symptom relief
US20050214229A1 (en) * 1998-09-03 2005-09-29 Jsr, Llc Two-stage transmucosal medicine delivery system for symptom relief
US20070014887A1 (en) * 1998-09-03 2007-01-18 Cherukuri Subraman R Medicated chewing gum delivery system for nicotine
EP1778612A1 (en) * 2004-06-17 2007-05-02 Cargill, Incorporated Steam agglomeration of polyols
US20080311240A1 (en) * 2004-06-17 2008-12-18 Cargill Incorporated Steam Agglomeration of Polyols
AU2005254167B2 (en) * 2004-06-17 2011-10-06 Cargill Inc. Steam agglomeration of polyols
US20080020050A1 (en) * 2006-07-21 2008-01-24 Chau Tommy L Medicinal delivery system, and related methods
US8642016B2 (en) 2006-07-21 2014-02-04 Jsrnti, Llc Medicinal delivery system, and related methods
US10799449B2 (en) 2006-07-21 2020-10-13 Jsrnti, Llc Medicinal delivery system and related methods

Also Published As

Publication number Publication date
DE69907119D1 (en) 2003-05-28
CN1141282C (en) 2004-03-10
EP1008602B1 (en) 2003-04-23
US20020016518A1 (en) 2002-02-07
DE69907119T3 (en) 2019-06-13
EP1008602B8 (en) 2019-02-27
DK1008602T3 (en) 2003-08-11
FR2787110B1 (en) 2001-02-16
ATE238323T1 (en) 2003-05-15
CA2290805C (en) 2010-05-25
ES2196743T5 (en) 2019-03-21
FR2787110A1 (en) 2000-06-16
EP1008602A1 (en) 2000-06-14
US6274778B1 (en) 2001-08-14
EP1008602B2 (en) 2018-11-21
JP2000175653A (en) 2000-06-27
CN1259508A (en) 2000-07-12
KR20000062194A (en) 2000-10-25
ES2196743T3 (en) 2003-12-16
US6387402B1 (en) 2002-05-14
PT1008602E (en) 2003-09-30
KR100788520B1 (en) 2007-12-24
ID24667A (en) 2000-07-27
BR9905826A (en) 2000-08-08
CA2290805A1 (en) 2000-06-11
DE69907119T2 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US6365789B2 (en) Pulverulent sorbitol and its process of preparation
JP3492428B2 (en) Powdered mannitol having moderate brittleness and method for producing the same
US5973212A (en) Erythritol compositions
CA2252609C (en) Polyol composition
US8101806B2 (en) Granulated sorbitol and process for its preparation
KR20180029035A (en) Mannitol granules for direct compression
KR101557162B1 (en) Granulated maltitol for direct compression and method of preparation thereof
US5139795A (en) Melt crystallized xylitol
MXPA96001193A (en) Composition of maltitol and process for supreparac
US20090007903A1 (en) Method for Producing a Powder Containing Xylitol Crystal Particles with Another Polyol
FI107732B (en) Crystallization of lactitol, a crystalline lactitol product and its use
JP6584434B2 (en) Sorbitol powder composition and chewing gum comprising said composition
US6527868B2 (en) Dextrose in powder form and a process for the preparation thereof
KR20120093156A (en) Method for the total or partial replacement of talc in chewing gum
KR20010057572A (en) Dextrose hydrate in powder form and a process for the preparation thereof
US6451122B1 (en) Dextrose in powder form and a process for the preparation thereof
FR2890315A1 (en) Granulated sorbitol with high sorbitol content, useful as a sweetening agent, texturing agent, excipient and support e.g. in food and pharmaceutical fields, comprises gamma form sorbitol crystals and a specific water uptake
FR2890313A1 (en) Granulated sorbitol with high sorbitol content, useful as a sweetening/texturing agent, excipient and support e.g. in food and pharmaceutical fields, comprises gamma form sorbitol crystals and a specific water uptake

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12