US6799805B2 - Single beam aircraft passenger seat - Google Patents

Single beam aircraft passenger seat Download PDF

Info

Publication number
US6799805B2
US6799805B2 US10/305,798 US30579802A US6799805B2 US 6799805 B2 US6799805 B2 US 6799805B2 US 30579802 A US30579802 A US 30579802A US 6799805 B2 US6799805 B2 US 6799805B2
Authority
US
United States
Prior art keywords
seat
passenger
extending
laterally
aft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/305,798
Other versions
US20040100137A1 (en
Inventor
Glenn A. Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BE Aerospace Inc
Original Assignee
BE Aerospace Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BE Aerospace Inc filed Critical BE Aerospace Inc
Priority to US10/305,875 priority Critical patent/US6899397B2/en
Priority to US10/305,798 priority patent/US6799805B2/en
Priority claimed from US10/305,875 external-priority patent/US6899397B2/en
Assigned to BE AEROSPACE, INC. reassignment BE AEROSPACE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, GLENN A.
Publication of US20040100137A1 publication Critical patent/US20040100137A1/en
Application granted granted Critical
Publication of US6799805B2 publication Critical patent/US6799805B2/en
Priority to US11/141,621 priority patent/US7252340B2/en
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: BE AEROSPACE, INC.
Assigned to BE AEROSPACE, INC. reassignment BE AEROSPACE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JP MORGAN CHASE BANK, N.A.
Assigned to B/E AEROSPACE, INC. reassignment B/E AEROSPACE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JP MORGAN CHASE BANK, N.A.
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: B/E AEROSPACE, INC.
Assigned to B/E AEROSPACE, INC. reassignment B/E AEROSPACE, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JP Morgan Chase Bank, N.A
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0696Means for fastening seats to floors, e.g. to floor rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/0015Arrangements for entertainment or communications, e.g. radio, television
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/0015Arrangements for entertainment or communications, e.g. radio, television
    • B64D11/00151Permanently mounted seat back monitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0638Arrangements of seats, or adaptations or details specially adapted for aircraft seats with foldable tables, trays or cup holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0639Arrangements of seats, or adaptations or details specially adapted for aircraft seats with features for adjustment or converting of seats
    • B64D11/064Adjustable inclination or position of seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0639Arrangements of seats, or adaptations or details specially adapted for aircraft seats with features for adjustment or converting of seats
    • B64D11/0643Adjustable foot or leg rests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D11/06Arrangements of seats, or adaptations or details specially adapted for aircraft seats
    • B64D11/0649Seats characterised by special features for reducing weight

Definitions

  • Aircraft passenger seats are typically constructed from modular components, the size, weight and construction of which are dictated by many considerations, including fuselage dimensions, aesthetic and safety considerations. Many of these requirements are imposed by law or regulation.
  • the lower seat chassis is constructed of leg modules, while the upper seat is constructed of section assembly modules. In prior art seating systems the leg modules and section assembly modules are connected by mounting both to a pair of parallel beams that extend laterally from one side of the seat or seat assembly to the other.
  • the location of the upper seat section modules is controlled by the aircraft fuselage lines, statutory aisle requirements and carrier preferences within these parameters.
  • the location of the leg modules is governed by the positions of the floor tracks that extend along the length of the fuselage and to which the seats are secured by track fittings on the bottom of the leg modules.
  • the position of the floor tracks is generally fixed and permanent.
  • the seat beams are structural elements that are carefully designed and tested to withstand specified loads.
  • Prior art designs require a pair of parallel beams to provide the necessary structural integrity. These beams add weight to the overall seat design, increase required inventory of parts, increase design and assembly expense, and take up space under the seat that could otherwise be used for more foot and leg room, or stowage of carry on baggage.
  • the present invention relates to a passenger seat that has improved comfort, enhanced space, simplified design, and lighter weight. This is accomplished by a single, curved beam member that permits construction of an ergonomically advanced seat.
  • a passenger seat comprising at least one leg assembly having fore and aft attachment elements for attachment to a supporting surface, a single laterally-extending beam carried by the leg assembly in vertically spaced-apart relation to the fore and aft attachment elements, and first and second laterally spaced-apart seat frames positioned on respective opposite sides of the leg assembly and mounted on the beam for being supported thereby.
  • the beam is tubular.
  • the beam comprises a hollow tube having an oval cross-section.
  • the beam defines a concave curved shape wherein the beam at a connection point to the leg assembly is closer to the supporting surface than at the respective mounting points of the first and second seat frames.
  • a passenger seat comprising a first and second laterally spaced-apart seat frames, and a single laterally-extending beam positioned between and carried by the first and second seat frames for supporting the first and second seat frames in vertically spaced-apart relation to a supporting surface.
  • the passenger seat is adapted to be connected to and carried adjacent a passenger seat including a first and second laterally spaced-apart seat frames.
  • a single laterally-extending beam is positioned between and carried by the first and second seat frames for supporting the first and second seat frames in vertically spaced-apart relation to a supporting surface.
  • At least one leg assembly having fore and aft attachment elements is attached to a supporting surface.
  • a passenger seat assembly comprises at least two laterally spaced-apart leg assemblies, each the leg assembly having fore and aft attachment elements for attachment to a supporting surface.
  • a single laterally-extending beam is carried by the first and second leg assemblies in vertically spaced-apart relation to the for and aft attachment elements.
  • a plurality of laterally spaced-apart seat frames are positioned on opposite sides of respective leg assemblies and mounted on the beam for being supported thereby.
  • At least first and second laterally-positioned passenger seats, including respective seat backs and seat bottoms, are attached to and supported by the seat frames.
  • each seat frame collectively carry and support first, second and third laterally positioned passenger seats.
  • Four arm rest assemblies are carried by respective ones of the four seat frames.
  • Each of the seat frames include an arm rest mounted for pivotal movement about a pivot member between a use position with an upper support surface in a horizontal position for supporting a forearm of a passenger seated in the seat and a stowed position wherein the upper support surface of the arm rest is perpendicular to the use position.
  • the arm rest pivot member is mounted on the seat frame at a point forward of a plane defined by the seat back carried by the seat and above a point defined by the seat bottom for allowing the knee of an aft-seated passenger to occupy space behind the pivot member of the arm rest.
  • the single beam defines a concave curved shape wherein the beam at a point intermediate any one of the four seat frames is closer to the supporting surface than at the respective mounting points of the beam to any one of the four seat frames.
  • the at least two laterally spaced-apart leg assemblies are each positioned intermediate two respective seat frames.
  • the single beam is tubular.
  • FIG. 1 is a perspective view of a three-seat assembly according to a preferred embodiment of the invention
  • FIG. 2 is a side elevation of the seat assembly shown in FIG. 1, with interior components shown;
  • FIG. 3 is a side elevation similar to FIG. 2 with the leg rest extended;
  • FIG. 4 is a perspective view of a unitary seating element according to a preferred embodiment of the invention.
  • FIG. 5 is a right side elevation of an alternative embodiment of the present invention.
  • FIG. 6 is a rear perspective view showing the seat arm rest and its relationship to knee room available to an aft-seated passenger, in partial assembly with seating elements removed for clarity;
  • FIG. 7 is a elevation of the rear of a seat back that may be used on a seat according the present invention.
  • FIG. 8 is a left side elevation of the seat shown in FIG. 5;
  • FIG. 9 is a rear view of a three-seat assembly according to one embodiment of the invention.
  • FIG. 10 is a rear view of a three-seat assembly according to one embodiment of the invention.
  • FIG. 1 a three-seat seat set according to the present invention is illustrated in FIG. 1 and shown generally at reference numeral 10 and comprises individual joined seats 10 A, 10 B, 10 C that are movable from an upright to a recline position without encroaching on an aft-seated passenger.
  • This type of seating is conventionally referred to as “coach” or “main cabin” seating as distinct from larger and more complex first class or business class seating.
  • the seat set 10 includes a seat base 11 .
  • the seat base 11 includes a pair of leg assemblies 12 and 13 for being attached to a supporting surface by means of conventional track fittings such as disclosed in applicant's U.S. Pat. Nos.
  • the beam 18 represents a radical departure from conventional seat design, where a pair of parallel fore-and aft beams provide support to the entire seat structure.
  • the beam 18 is oval in cross-section and downwardly curved laterally across the front of each of the seats 10 A, 10 B, 10 C. This combination of the oval cross-section and the curve provides sufficient strength to support the entire on the leg assemblies 12 and 13 , thus eliminating the need for a second beam.
  • Each seat 10 A, 10 B, 10 C thus includes a pair of the shared, laterally spaced-apart seat frames 14 , 15 , 16 and 17 , each of which has a curved shape generally corresponding to the profile of an anatomically-appropriate generally horizontal seat bottom and generally vertical seat back, and includes an extension to the floor.
  • Arm rests 22 , 23 , 24 and 25 are pivotally-mounted on respective seat frames 14 , 15 , 16 and 17 .
  • seat 10 A exemplary of each of the seats 10 A, 10 B, 10 C, has a curved, semi-rigid diaphragm support 30 carried by seat frames 14 , 15 in alignment with the curved shape of the seat frames 14 , 15 and mounted for movement relative to the seat frames 14 , 15 between a first, upright position, FIG. 2, and a second, reclined position, FIG. 3 .
  • the diaphragm support 30 is preferably made of a controlled flex material, such as a laminated composite carbon fiber resin. This material is well-known as a lightweight, durable and relatively inert material particularly suitable for aircraft use. Other materials having similar characteristics may also be used, including various polymers, particularly including nonflammable polymers.
  • the support 30 is molded into the desired shape using conventional carbon fiber molding and fabrication techniques, and forms a seat back 30 A and a seat bottom 30 B.
  • the diaphragm support 30 is mounted on the seat frames 14 , 15 by means of sets of cooperating rollers between which the diaphragm support 30 is captured. As is best shown in FIG. 4, rollers 31 A, 31 B and 32 A, 32 B and 33 A, 33 B and 34 A, 34 B are carried by the seat frames 14 , 15 and engage the front and back sides of the diaphragm support 30 to provide roller surfaces against which the diaphragm support 30 rides.
  • the forward portion of the seat bottom is supported by rollers 35 , 36 and 37 , 38 , also carried by the seat frames 14 , 15 .
  • the foot rest 40 is pivotally-mounted on pivot pins 41 , 42 for movement between a retracted position, FIGS. 2 and 4, and an extended position, FIG. 3 .
  • the foot rest 40 is extended and retracted by a conventional gas strut.
  • the diaphragm support 30 is covered by a diaphragm 48 in the form of a fabric seat suspension material such as a material made by DuPont and sold under the trademark DYMETROL 200, or a unidirectional fabric sold under the trademark CRYSTAL FLEX, or any other suitable fabric.
  • the material 48 is stretched onto the diaphragm support 30 under tension and provides a seating surface.
  • passenger recline is achieved by translation of the diaphragm support 30 downwardly relative to the seat frames 14 , 15 .
  • the rollers 31 A, 31 B, 32 A, 32 B, 33 A, 33 B, 34 A, 34 B, 35 , 36 , 37 and 38 permit the diaphragm support 30 to translate within a narrow range of motion.
  • the weight of the passenger is sufficient to cause the diaphragm support 30 to slide downwardly.
  • the diaphragm support 30 is locked into position as desired by a piston and cylinder assembly, not shown, positioned under the seat 10 A, such as a MECHLOCK linear locking device manufactured by P. L. Porter Controls, Inc. Leg pressure is used to raise and lock the seat in a desired position.
  • the seats 10 A, 10 B, 10 C are trimmed with a protective and decorative shell 39 , within which the structural components and operative elements of the seat are enclosed and protected.
  • a meal tray 45 is mounted on a pivot 46 for movement between a horizontal use position and a vertical stowed position in a recess 47 in the shell 39 .
  • the above-described seat design has the effect of causing the passenger to recline by rotating the passenger about a pivot point in the area of the hips.
  • the passenger's back moves downwardly and the legs move upwardly, maintaining the same relative body position. This provides a more comfortable recline position without the tendency of the passenger to merely slide forward on the seat bottom when the seat back is reclined.
  • Curved stretchers 50 , 51 , 52 extend between opposite sides of the diaphragm support 30 and maintain the width of the diaphragm 30 and thus the tension on the diaphragm 48 .
  • FIGS. 5 and 8 A alternative embodiment of the seat 10 A is shown in FIGS. 5 and 8 at reference number 60 .
  • the view demonstrates features that result from moving the arm rest pivot forwardly and the absence of the aft beam present in prior art seats.
  • the pivot of the arm rest 23 is now at a point directly under the elbow of the passenger, and does not extend rearwardly into the plane of the seat back. Without the requirement to provide space between adjacent seat backs for the stowed arm rest to reside, the seat back can be made wider, and the area where the arm rest pivot would normally be positioned can be made available for other uses.
  • the seat back 30 A includes two concave, inwardly-dished areas 62 , 63 that reside forwardly of the knee areas of the aft-seated passenger.
  • FIG. 7 a view of the rear side of a seat back 70 according to one embodiment of the invention is shown.
  • the rear of the seat above the meal tray 45 is provided with a audio/video system that includes a video screen 72 .
  • all of the audio/video controls, the flight attendant call button, reading light, and seat adjustment controls are positioned on the seat back 70 around the video screen 72 in a desired arrangement at reference numerals 73 - 78 . This position is much more accessible than controls that are now often positioned on the inside face of the arm rest where they are hard to see and operate.
  • Control cables are routed from seat 10 A and overhead-positioned features such as lighting to a forward-positioned seat back by a wiring chase positioned on the deck of the aircraft, through the bulkheads. Certain functions may be controlled by a wireless system.
  • This design illustrates further advantages obtained by maintaining the seat back in a stationary position.
  • the video screen 72 does not move and thus does not require a mechanism to pivot the screen 72 to compensate for movement of the seat back. All of the controls on the seat back 39 are easy to see and reach by the passenger.
  • FIGS. 9 and 10 two further embodiments of seat sets according to the invention are shown at 80 and 100 , respectively.
  • Seat set 80 includes three seats 80 A, 80 B, 80 C mounted on a single curved tubular beam 81 , as described above, carried by two leg assemblies 82 , 83 .
  • the seats 80 A, 80 B, 80 C are also supported by seat frames 84 , 85 , 86 , 87 that carry a baggage guard rail 88 .
  • Forward-pivoted arm rests 89 , 90 , 91 and 92 are carried by the seat frames 84 , 85 , 86 , 87 .
  • Concave, inwardly-dished areas 93 A, 93 B, 94 A, 94 B, and 95 A, 95 B, as described above, in the seat back provide additional knee room to the passenger seated aft of the seats 80 A, 80 B, 80 C.
  • Each of the seats 80 A, 80 B, 80 C have a meal tray 97 .
  • Seat set 100 includes three seats 100 A, 10 B, 100 C mounted on a single curved tubular beam 101 , as described above, carried by two leg assemblies 102 , 103 .
  • the seats 100 A, 100 B, 100 C are also supported by seat frames 104 , 105 , 106 , 107 that carry a baggage guard rail 110 .
  • Forward-pivoted arm rests 109 , 110 , 111 and 112 are carried by the seat frames 104 , 105 , 106 , 107 .
  • Concave, inwardly-dished areas 113 A, 113 B, 114 A, 114 B, and 115 A, 115 B, as described above, in the seat back provide additional knee room to the passenger seated aft of the seats 100 A, 100 B, 100 C.
  • Each of the seats 100 A, 100 B, 100 C have a meal tray 117 .

Abstract

A passenger seat, including at least one leg assembly having fore and aft attachment elements for attachment to a supporting surface and a single laterally-extending beam carried by the leg assembly in vertically spaced-apart relation to the fore and aft attachment elements, and first and second laterally spaced-apart seat frames positioned on respective opposite sides of the leg assembly and mounted on the beam for being supported thereby.

Description

TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
This invention relates to an aircraft seat, particularly an aircraft passenger seat, with a single seat beam. Aircraft passenger seats are typically constructed from modular components, the size, weight and construction of which are dictated by many considerations, including fuselage dimensions, aesthetic and safety considerations. Many of these requirements are imposed by law or regulation. The lower seat chassis is constructed of leg modules, while the upper seat is constructed of section assembly modules. In prior art seating systems the leg modules and section assembly modules are connected by mounting both to a pair of parallel beams that extend laterally from one side of the seat or seat assembly to the other.
The location of the upper seat section modules is controlled by the aircraft fuselage lines, statutory aisle requirements and carrier preferences within these parameters. The location of the leg modules is governed by the positions of the floor tracks that extend along the length of the fuselage and to which the seats are secured by track fittings on the bottom of the leg modules. The position of the floor tracks is generally fixed and permanent.
Within these requirements manufacturers of aircraft are constantly refining seat designs to achieve more comfort and utility within carrier-imposed restraints on cost, weight, maintenance down-time, and safety. The seat beams are structural elements that are carefully designed and tested to withstand specified loads. Prior art designs require a pair of parallel beams to provide the necessary structural integrity. These beams add weight to the overall seat design, increase required inventory of parts, increase design and assembly expense, and take up space under the seat that could otherwise be used for more foot and leg room, or stowage of carry on baggage.
The present invention relates to a passenger seat that has improved comfort, enhanced space, simplified design, and lighter weight. This is accomplished by a single, curved beam member that permits construction of an ergonomically advanced seat.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to provide a passenger seat frame assembly that includes a minimum number of modular elements.
It is another object of the invention to provide a passenger seat that has a single laterally-extending structural beam supporting the seat.
It is another object of the invention to provide a passenger seat that has a single curved beam supporting the seat.
It is another object of the invention to provide a passenger seat that has a single beam positioned to allow greater underseat room for use by the passenger seated in the seat and a passenger seated aft of the seat.
These and other objects of the present invention are achieved in the preferred embodiments disclosed below by providing a passenger seat, comprising at least one leg assembly having fore and aft attachment elements for attachment to a supporting surface, a single laterally-extending beam carried by the leg assembly in vertically spaced-apart relation to the fore and aft attachment elements, and first and second laterally spaced-apart seat frames positioned on respective opposite sides of the leg assembly and mounted on the beam for being supported thereby.
According to one preferred embodiment of the invention, the beam is tubular.
According to another preferred embodiment of the invention, the beam comprises a hollow tube having an oval cross-section.
According to yet another preferred embodiment of the invention, the beam defines a concave curved shape wherein the beam at a connection point to the leg assembly is closer to the supporting surface than at the respective mounting points of the first and second seat frames.
According to yet another preferred embodiment of the invention, a passenger seat is provided, comprising a first and second laterally spaced-apart seat frames, and a single laterally-extending beam positioned between and carried by the first and second seat frames for supporting the first and second seat frames in vertically spaced-apart relation to a supporting surface. The passenger seat is adapted to be connected to and carried adjacent a passenger seat including a first and second laterally spaced-apart seat frames. A single laterally-extending beam is positioned between and carried by the first and second seat frames for supporting the first and second seat frames in vertically spaced-apart relation to a supporting surface. At least one leg assembly having fore and aft attachment elements is attached to a supporting surface.
According to yet another preferred embodiment of the invention, a passenger seat assembly comprises at least two laterally spaced-apart leg assemblies, each the leg assembly having fore and aft attachment elements for attachment to a supporting surface. A single laterally-extending beam is carried by the first and second leg assemblies in vertically spaced-apart relation to the for and aft attachment elements. A plurality of laterally spaced-apart seat frames are positioned on opposite sides of respective leg assemblies and mounted on the beam for being supported thereby. At least first and second laterally-positioned passenger seats, including respective seat backs and seat bottoms, are attached to and supported by the seat frames.
According to yet another preferred embodiment of the invention, four seat frames collectively carry and support first, second and third laterally positioned passenger seats. Four arm rest assemblies are carried by respective ones of the four seat frames. Each of the seat frames include an arm rest mounted for pivotal movement about a pivot member between a use position with an upper support surface in a horizontal position for supporting a forearm of a passenger seated in the seat and a stowed position wherein the upper support surface of the arm rest is perpendicular to the use position.
According to one preferred embodiment of the invention, the arm rest pivot member is mounted on the seat frame at a point forward of a plane defined by the seat back carried by the seat and above a point defined by the seat bottom for allowing the knee of an aft-seated passenger to occupy space behind the pivot member of the arm rest.
According to yet another preferred embodiment of the invention, the single beam defines a concave curved shape wherein the beam at a point intermediate any one of the four seat frames is closer to the supporting surface than at the respective mounting points of the beam to any one of the four seat frames.
According to yet another preferred embodiment of the invention, the at least two laterally spaced-apart leg assemblies are each positioned intermediate two respective seat frames.
According to yet another preferred embodiment of the invention, the single beam is tubular.
BRIEF DESCRIPTION OF THE DRAWINGS
Some of the objects of the invention have been set forth above. Other objects and advantages of the invention will appear as the invention proceeds when taken in conjunction with the following drawings, in which:
FIG. 1 is a perspective view of a three-seat assembly according to a preferred embodiment of the invention;
FIG. 2 is a side elevation of the seat assembly shown in FIG. 1, with interior components shown;
FIG. 3 is a side elevation similar to FIG. 2 with the leg rest extended;
FIG. 4 is a perspective view of a unitary seating element according to a preferred embodiment of the invention;
FIG. 5 is a right side elevation of an alternative embodiment of the present invention;
FIG. 6 is a rear perspective view showing the seat arm rest and its relationship to knee room available to an aft-seated passenger, in partial assembly with seating elements removed for clarity;
FIG. 7 is a elevation of the rear of a seat back that may be used on a seat according the present invention;
FIG. 8 is a left side elevation of the seat shown in FIG. 5;
FIG. 9 is a rear view of a three-seat assembly according to one embodiment of the invention; and
FIG. 10 is a rear view of a three-seat assembly according to one embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT AND BEST MODE
Referring now specifically to the drawings, a three-seat seat set according to the present invention is illustrated in FIG. 1 and shown generally at reference numeral 10 and comprises individual joined seats 10A, 10B, 10C that are movable from an upright to a recline position without encroaching on an aft-seated passenger. This type of seating is conventionally referred to as “coach” or “main cabin” seating as distinct from larger and more complex first class or business class seating. As will be seen below, the features of this invention are also applicable to first and business class seating. The seat set 10 includes a seat base 11. The seat base 11 includes a pair of leg assemblies 12 and 13 for being attached to a supporting surface by means of conventional track fittings such as disclosed in applicant's U.S. Pat. Nos. 4,776,533; 5,169,091 and 5,871,318. Four seat frames 14, 15, 16 and 17 are connected by single laterally-extending beam 18. A baggage guard rail 19 prevents baggage stowed under the seats 10A, 10B, 10C from sliding forward into the leg area of the passengers.
The beam 18 represents a radical departure from conventional seat design, where a pair of parallel fore-and aft beams provide support to the entire seat structure. The beam 18 is oval in cross-section and downwardly curved laterally across the front of each of the seats 10A, 10B, 10C. This combination of the oval cross-section and the curve provides sufficient strength to support the entire on the leg assemblies 12 and 13, thus eliminating the need for a second beam.
Each seat 10A, 10B, 10C thus includes a pair of the shared, laterally spaced- apart seat frames 14, 15, 16 and 17, each of which has a curved shape generally corresponding to the profile of an anatomically-appropriate generally horizontal seat bottom and generally vertical seat back, and includes an extension to the floor. Arm rests 22, 23, 24 and 25 are pivotally-mounted on respective seat frames 14, 15, 16 and 17.
Referring now to FIGS. 2, 3 and 4, seat 10A, exemplary of each of the seats 10A, 10B, 10C, has a curved, semi-rigid diaphragm support 30 carried by seat frames 14, 15 in alignment with the curved shape of the seat frames 14, 15 and mounted for movement relative to the seat frames 14, 15 between a first, upright position, FIG. 2, and a second, reclined position, FIG. 3. The diaphragm support 30 is preferably made of a controlled flex material, such as a laminated composite carbon fiber resin. This material is well-known as a lightweight, durable and relatively inert material particularly suitable for aircraft use. Other materials having similar characteristics may also be used, including various polymers, particularly including nonflammable polymers. The support 30 is molded into the desired shape using conventional carbon fiber molding and fabrication techniques, and forms a seat back 30A and a seat bottom 30B.
The diaphragm support 30 is mounted on the seat frames 14, 15 by means of sets of cooperating rollers between which the diaphragm support 30 is captured. As is best shown in FIG. 4, rollers 31A, 31B and 32A, 32B and 33A, 33B and 34A, 34B are carried by the seat frames 14, 15 and engage the front and back sides of the diaphragm support 30 to provide roller surfaces against which the diaphragm support 30 rides. The forward portion of the seat bottom is supported by rollers 35, 36 and 37, 38, also carried by the seat frames 14, 15. The foot rest 40 is pivotally-mounted on pivot pins 41, 42 for movement between a retracted position, FIGS. 2 and 4, and an extended position, FIG. 3. The foot rest 40 is extended and retracted by a conventional gas strut.
The diaphragm support 30 is covered by a diaphragm 48 in the form of a fabric seat suspension material such as a material made by DuPont and sold under the trademark DYMETROL 200, or a unidirectional fabric sold under the trademark CRYSTAL FLEX, or any other suitable fabric. The material 48 is stretched onto the diaphragm support 30 under tension and provides a seating surface.
As is shown by comparing FIGS. 2 and 3, passenger recline is achieved by translation of the diaphragm support 30 downwardly relative to the seat frames 14, 15. The rollers 31A, 31B, 32A, 32B, 33A, 33B, 34A, 34B, 35, 36, 37 and 38 permit the diaphragm support 30 to translate within a narrow range of motion. The weight of the passenger is sufficient to cause the diaphragm support 30 to slide downwardly. The diaphragm support 30 is locked into position as desired by a piston and cylinder assembly, not shown, positioned under the seat 10A, such as a MECHLOCK linear locking device manufactured by P. L. Porter Controls, Inc. Leg pressure is used to raise and lock the seat in a desired position.
The seats 10A, 10B, 10C are trimmed with a protective and decorative shell 39, within which the structural components and operative elements of the seat are enclosed and protected. A meal tray 45 is mounted on a pivot 46 for movement between a horizontal use position and a vertical stowed position in a recess 47 in the shell 39.
The above-described seat design has the effect of causing the passenger to recline by rotating the passenger about a pivot point in the area of the hips. The passenger's back moves downwardly and the legs move upwardly, maintaining the same relative body position. This provides a more comfortable recline position without the tendency of the passenger to merely slide forward on the seat bottom when the seat back is reclined.
Curved stretchers 50, 51, 52 extend between opposite sides of the diaphragm support 30 and maintain the width of the diaphragm 30 and thus the tension on the diaphragm 48.
A alternative embodiment of the seat 10A is shown in FIGS. 5 and 8 at reference number 60.
Referring now to FIG. 6, the view demonstrates features that result from moving the arm rest pivot forwardly and the absence of the aft beam present in prior art seats. As is shown, the pivot of the arm rest 23 is now at a point directly under the elbow of the passenger, and does not extend rearwardly into the plane of the seat back. Without the requirement to provide space between adjacent seat backs for the stowed arm rest to reside, the seat back can be made wider, and the area where the arm rest pivot would normally be positioned can be made available for other uses. As shown in FIG. 6, the seat back 30A includes two concave, inwardly-dished areas 62, 63 that reside forwardly of the knee areas of the aft-seated passenger. These areas provide greater knee clearance for all passengers and particularly for taller passengers whose knees are typically within several inches of the seat back, it not actually touching. This, in combination with the above-described seat back design features that avoid aft movement of the seat back 30A when the passenger reclines the seat, provides an ergonomic design that provides greater comfort for both the forward and the aft-seated passengers.
Referring now to FIG. 7, a view of the rear side of a seat back 70 according to one embodiment of the invention is shown. In this particular embodiment, the rear of the seat above the meal tray 45 is provided with a audio/video system that includes a video screen 72. In addition, all of the audio/video controls, the flight attendant call button, reading light, and seat adjustment controls are positioned on the seat back 70 around the video screen 72 in a desired arrangement at reference numerals 73-78. This position is much more accessible than controls that are now often positioned on the inside face of the arm rest where they are hard to see and operate.
Of course, any desired combination of controls can be positioned as shown, with other controls in their conventional positions. Control cables are routed from seat 10A and overhead-positioned features such as lighting to a forward-positioned seat back by a wiring chase positioned on the deck of the aircraft, through the bulkheads. Certain functions may be controlled by a wireless system.
This design illustrates further advantages obtained by maintaining the seat back in a stationary position. The video screen 72 does not move and thus does not require a mechanism to pivot the screen 72 to compensate for movement of the seat back. All of the controls on the seat back 39 are easy to see and reach by the passenger.
Referring now to FIGS. 9 and 10, two further embodiments of seat sets according to the invention are shown at 80 and 100, respectively.
Seat set 80 includes three seats 80A, 80B, 80C mounted on a single curved tubular beam 81, as described above, carried by two leg assemblies 82, 83. The seats 80A, 80B, 80C are also supported by seat frames 84, 85, 86, 87 that carry a baggage guard rail 88. Forward-pivoted arm rests 89, 90, 91 and 92 are carried by the seat frames 84, 85, 86, 87. Concave, inwardly-dished areas 93A, 93B, 94A, 94B, and 95A, 95B, as described above, in the seat back provide additional knee room to the passenger seated aft of the seats 80A, 80B, 80C. Each of the seats 80A, 80B, 80C have a meal tray 97.
Seat set 100 includes three seats 100A, 10B, 100C mounted on a single curved tubular beam 101, as described above, carried by two leg assemblies 102, 103. The seats 100A, 100B, 100C are also supported by seat frames 104, 105, 106, 107 that carry a baggage guard rail 110. Forward-pivoted arm rests 109, 110, 111 and 112 are carried by the seat frames 104, 105, 106, 107. Concave, inwardly-dished areas 113A, 113B, 114A, 114B, and 115A, 115B, as described above, in the seat back provide additional knee room to the passenger seated aft of the seats 100A, 100B, 100C. Each of the seats 100A, 100B, 100C have a meal tray 117.
A passenger seat is described above. Various details of the invention may be changed without departing from its scope. Furthermore, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation—the invention being defined by the claims.

Claims (9)

I claim:
1. A passenger seat, comprising:
(a) at least one leg assembly having fore and aft attachment elements for attachment to a supporting surface, each of said leg assemblies comprising:
(i) a longitudinally-extending lower member having forward and aft ends which carry said fore and aft attachment elements respectively;
(ii) a first upwardly-extending member attached to said forward end of said lower member and having upper and lower ends; and
(iii) a second upwardly-extending member attached to said aft end of said lower member and having upper and lower ends, wherein the upper ends of said first and second upwardly-extending members are joined to each other to define a beam mounting point;
(b) a single laterally-extending beam carried by the leg assembly in vertically spaced-apart relation to the fore and aft attachment elements, said beam being attached to said leg assembly at said beam mounting point; and
(c) first and second laterally spaced-apart seat frames positioned on respective opposite sides of the leg assembly and mounted on the beam for being supported thereby, wherein each of said seat frames extends rearwardly from said laterally-extending beam, such that substantially all loads from a passenger seated in said seat are transferred to said leg assembly through said laterally-extending beam and wherein said beam defines a concave curved shape at a location where said beam is connected to the leg assembly.
2. A passenger seat according to claim 1, wherein said beam is tubular.
3. A passenger seat according to claim 1, wherein said beam comprises a hollow tube having on oval cross-section.
4. A passenger seat assembly, comprising:
(a) at least two laterally spaced-apart leg assemblies, each said leg assembly having fore and aft attachment elements for attachment to a supporting surface, each of said leg assemblies comprising:
(i) a longitudinally-extending lower member having forward and aft ends which carry said fore and aft attachment elements respectively;
(II) a first upwardly-extending member attached to said forward end of said lower member and having upper and lower ends; and
(ii) a second upwardly-extending member attached to said aft end of said lower member and having upper and lower ends; wherein the upper ends of said first and second upwardly-extending members are joined to each other to define a beam mounting point;
(b) a single laterally-extending beam carried by the first and second leg assemblies in vertically spaced-apart relation to the for and aft attachment elements, said beam being attached to said leg assemblies to said beam mounting points;
(c) a plurality of laterally spaced-apart seat frames positioned on opposite sides of respective leg assemblies and mounted on the beam for being supported thereby; wherein said beam defines a concave curved shape at a location where said beam is connected to the leg assembly and
(d) at least first and second laterally-positioned passenger seats, including respective seat backs and seat bottoms, attached to and supported by the seat frames, wherein each of said seat frames extends rearwardly from said laterally-extending beam, such that substantially all loads from a passenger seated in said seats are transferred to said leg assemblies through said laterally-extending beam.
5. A passenger seat according to claim 4, and including:
(a) four seat frames collectively carrying and supporting first, second and third laterally positioned passenger seats; and
(b) four arm rest assemblies carried by respective ones of the four seat frames, each of the seat frames including an arm rest mounted for pivotal movement about a pivot member between:
(i) a use position with an upper support surface in a horizontal position for supporting a forearm of a passenger seated in the seat;
(ii) a stowed position wherein the upper support surface of the arm rest is perpendicular to the use position.
6. A passenger seat according to claim 5, wherein the arm rest pivot member is mounted on the seat frame at a point sufficiently forward of a plane defined by the seat back carried by the seat and above a point defined by the seat bottom so as to allow for allowing the knee of an aft-seated passenger to occupy space behind the pivot member of the arm rest and between two adjacent seat backs.
7. A passenger seat according to claim 5, wherein the single beam defines a concave curved shape wherein the beam at a point intermediate any one of the four seat frames is closer to the supporting surface then at the respective mounting points of the beam to any one of the four seat frames.
8. A passenger seat according to claim 7, wherein the at least two laterally spaced-apart leg assemblies are each positioned intermediate two respective seat frames.
9. A passenger seat according to claim 7, wherein the single beam is tubular.
US10/305,798 2002-11-27 2002-11-27 Single beam aircraft passenger seat Expired - Lifetime US6799805B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/305,875 US6899397B2 (en) 2002-11-27 2002-11-27 Aircraft passenger seat with forward arm rest pivot
US10/305,798 US6799805B2 (en) 2002-11-27 2002-11-27 Single beam aircraft passenger seat
US11/141,621 US7252340B2 (en) 2002-11-27 2005-05-31 Aircraft passenger seat with forward arm rest pivot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/305,875 US6899397B2 (en) 2002-11-27 2002-11-27 Aircraft passenger seat with forward arm rest pivot
US10/305,798 US6799805B2 (en) 2002-11-27 2002-11-27 Single beam aircraft passenger seat

Publications (2)

Publication Number Publication Date
US20040100137A1 US20040100137A1 (en) 2004-05-27
US6799805B2 true US6799805B2 (en) 2004-10-05

Family

ID=42941833

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/305,798 Expired - Lifetime US6799805B2 (en) 2002-11-27 2002-11-27 Single beam aircraft passenger seat

Country Status (1)

Country Link
US (1) US6799805B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040212243A1 (en) * 2003-04-28 2004-10-28 Johnson Glenn A. Curved beam aircraft passenger seat
US20050127740A1 (en) * 2003-12-15 2005-06-16 Be Aerospace, Inc. Vehicle seating with integral passenger seat restraints
US20050168042A1 (en) * 2003-10-06 2005-08-04 B/E Aerospace, Inc. Reclining chair
US20060091707A1 (en) * 2004-11-02 2006-05-04 Timco Aviation Services, Inc. Convertible aircraft passenger seat
US20060103193A1 (en) * 2004-08-04 2006-05-18 Recaro Aircraft Seating Gmbh & Co. Kg System for adjusting the position of at least one seat component of a passenger seat and associated common control unit
US7232096B1 (en) * 2004-10-26 2007-06-19 Ahad Sam J Positive lock seat device
US20070228794A1 (en) * 2006-03-30 2007-10-04 Be Aerospace, Inc. Aircraft passenger seat
US7410127B1 (en) 2004-07-01 2008-08-12 Timco Aviation Services, Inc. Seat track anti-rattle locking device
US20090091168A1 (en) * 2007-09-18 2009-04-09 Oliver Kretschmer Seat, in particular for a pram
US8047613B1 (en) * 2008-11-19 2011-11-01 Timco Aviation Services, Inc. Cushion-less aircraft seat
US8292224B1 (en) 2009-01-15 2012-10-23 Timco Aviation Services, Inc. Quick install aircraft track fitting device
US8534759B2 (en) 2010-09-24 2013-09-17 Be Aerospace, Inc. Passenger seat armrest recline mechanism
US20160023769A1 (en) * 2013-04-05 2016-01-28 Singapore Technologies Aerospace Ltd Seat leg assembly for a passenger seat, frame for a passenger seat and passenger seat
US20160039523A1 (en) * 2013-04-05 2016-02-11 Recaro Aircraft Seating Gmbh & Co. Kg Seating device
US9669734B2 (en) 2015-08-27 2017-06-06 Tesla, Inc. Monopost for free-standing vehicle seat
US9688164B2 (en) 2015-08-25 2017-06-27 Tesla, Inc. Movable vehicle seat with monopost

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060006704A1 (en) * 2003-12-15 2006-01-12 Be Aerospace, Inc. Vehicle seating with storage feature
US7195583B2 (en) * 2004-05-21 2007-03-27 Leib Roger K Posture and exercise seating
US20070035955A1 (en) * 2005-01-27 2007-02-15 Airbus Deutschland Gmbh Light for use for a passenger seat
US20070142607A1 (en) * 2005-12-15 2007-06-21 Bayer Materialscience Llc Weather resistant polyurethane elastomer
AU2010100759B4 (en) * 2006-03-03 2010-11-25 Styleride Pty Ltd A Bus or Coach Seat
GB0903907D0 (en) * 2009-03-06 2009-04-22 Robinson Dominic J Seat assembly
US9016627B2 (en) * 2009-10-02 2015-04-28 Panasonic Avionics Corporation System and method for providing an integrated user interface system at a seat
CN102822055B (en) * 2009-12-11 2015-07-29 新西兰航空公司 Seat, leg support mechanism and method of operation thereof
EP2528473B1 (en) 2010-01-29 2016-10-05 Zodiac Seats US LLC Seat back assembly
US8444225B2 (en) * 2010-02-02 2013-05-21 Be Aerospace, Inc. Deployable legrest
JP5771687B2 (en) * 2010-05-12 2015-09-02 シクマ エアロ シート Seat table with controlled and optimized route and seat structure with the same
US8777310B2 (en) 2010-06-23 2014-07-15 Zodiac Seats Us Llc Seat back assembly
ITRM20110624A1 (en) * 2011-05-26 2012-11-27 Optimares S P A SEAT FOR TRANSPORT VEHICLES, IN PARTICULAR FOR AIRPLANES.
WO2015153902A1 (en) * 2014-04-03 2015-10-08 Zodiac Seats Us Llc Integrated deployable leg rest for reclining passenger seats
DE102015107988A1 (en) * 2015-05-20 2016-11-24 Recaro Aircraft Seating Gmbh & Co. Kg Passenger seating device
WO2017137960A1 (en) 2016-02-13 2017-08-17 Ideabank Aps Bucket seat
WO2018089056A1 (en) * 2016-11-10 2018-05-17 Zodiac Seats Us Llc Noncircular base frame tube cross-sections
JP6421365B2 (en) * 2017-02-10 2018-11-14 本田技研工業株式会社 Vehicle seat control system, vehicle seat control method, and program

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982785A (en) * 1974-07-29 1976-09-28 Center For Design Research And Development Chair
US4229040A (en) * 1978-11-27 1980-10-21 Fairchild Industries, Inc. Seat support structure
US4776533A (en) 1987-03-20 1988-10-11 The Jepson Burns Corporation Aircraft seat track fitting assembly
US5169091A (en) 1991-07-12 1992-12-08 Beroth Michael T Track fastener apparatus and assembly
US5409186A (en) * 1993-03-05 1995-04-25 Eldec Corporation Unitary seat support with integrated electronics
US5553923A (en) * 1993-12-08 1996-09-10 Weber Aircraft, Inc. Base frame for an aircraft seat
US5558401A (en) * 1993-05-14 1996-09-24 Fabricacion Asientos Vehiculos Industriales, S.A. (Fainsa) Seats for buses and the like
US5575533A (en) * 1994-02-25 1996-11-19 Concept Analysis Corp. Blow molded seat frame with integral reinforcement
US5636898A (en) 1994-04-15 1997-06-10 Burns Aerospace Corporation Seat with recline linkage
US5775642A (en) 1994-04-15 1998-07-07 Be Aerospace, Inc. Convertible passenger seat assembly
US5871318A (en) 1997-11-12 1999-02-16 Be Aerospace, Inc. Quick-release track fastener
US5957407A (en) * 1996-08-14 1999-09-28 The Boeing Company Convertible seat systems for wide body aircraft
US6027167A (en) * 1996-02-29 2000-02-22 Blomdell; Peter Method to safely restrain occupants in a crashing vehicle and a seat constructed to perform said method
US6375265B1 (en) * 1999-09-02 2002-04-23 Huebner Reinhard Armrest for a vehicle seat
US6478256B1 (en) * 2001-11-21 2002-11-12 B E Aerospace, Inc. Passenger seat with seat back breakover assembly and method
US20030094840A1 (en) * 2001-11-21 2003-05-22 John Williamson Locking collar for passenger seat back recline assembly
US20030094542A1 (en) * 2001-11-21 2003-05-22 John Williamson Passenger seat, passenger seat leg module and method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982785A (en) * 1974-07-29 1976-09-28 Center For Design Research And Development Chair
US4229040A (en) * 1978-11-27 1980-10-21 Fairchild Industries, Inc. Seat support structure
US4776533A (en) 1987-03-20 1988-10-11 The Jepson Burns Corporation Aircraft seat track fitting assembly
US5169091A (en) 1991-07-12 1992-12-08 Beroth Michael T Track fastener apparatus and assembly
US5409186A (en) * 1993-03-05 1995-04-25 Eldec Corporation Unitary seat support with integrated electronics
US5558401A (en) * 1993-05-14 1996-09-24 Fabricacion Asientos Vehiculos Industriales, S.A. (Fainsa) Seats for buses and the like
US5553923A (en) * 1993-12-08 1996-09-10 Weber Aircraft, Inc. Base frame for an aircraft seat
US5575533A (en) * 1994-02-25 1996-11-19 Concept Analysis Corp. Blow molded seat frame with integral reinforcement
US5636898A (en) 1994-04-15 1997-06-10 Burns Aerospace Corporation Seat with recline linkage
US5775642A (en) 1994-04-15 1998-07-07 Be Aerospace, Inc. Convertible passenger seat assembly
US6027167A (en) * 1996-02-29 2000-02-22 Blomdell; Peter Method to safely restrain occupants in a crashing vehicle and a seat constructed to perform said method
US5957407A (en) * 1996-08-14 1999-09-28 The Boeing Company Convertible seat systems for wide body aircraft
US5871318A (en) 1997-11-12 1999-02-16 Be Aerospace, Inc. Quick-release track fastener
US6375265B1 (en) * 1999-09-02 2002-04-23 Huebner Reinhard Armrest for a vehicle seat
US6478256B1 (en) * 2001-11-21 2002-11-12 B E Aerospace, Inc. Passenger seat with seat back breakover assembly and method
US20030094840A1 (en) * 2001-11-21 2003-05-22 John Williamson Locking collar for passenger seat back recline assembly
US20030094542A1 (en) * 2001-11-21 2003-05-22 John Williamson Passenger seat, passenger seat leg module and method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066551B2 (en) * 2003-04-28 2006-06-27 Be Aerospace, Inc. Curved beam aircraft passenger seat
US7300112B2 (en) * 2003-04-28 2007-11-27 Be Aerospace, Inc. Frame assembly for passenger seat
US20040212243A1 (en) * 2003-04-28 2004-10-28 Johnson Glenn A. Curved beam aircraft passenger seat
US20060232117A1 (en) * 2003-04-28 2006-10-19 Be Aerospace, Inc. Frame assembly for passenger seat
US7195319B2 (en) 2003-10-06 2007-03-27 B/E Aerospace, Inc. Reclining chair
US7182403B2 (en) 2003-10-06 2007-02-27 B/E Aerospace, Inc. Reclining chair
US20060181118A1 (en) * 2003-10-06 2006-08-17 B/E Aerospace, Inc. Reclining chair
US20060208550A1 (en) * 2003-10-06 2006-09-21 B/E Aerospace, Inc. Reclining chair
US20060214482A1 (en) * 2003-10-06 2006-09-28 B/E Aerospace, Inc. Reclining chair
US20050168042A1 (en) * 2003-10-06 2005-08-04 B/E Aerospace, Inc. Reclining chair
US7159937B2 (en) 2003-10-06 2007-01-09 B/E Aerospace, Inc. Reclining chair
US7210740B2 (en) 2003-10-06 2007-05-01 B/E Aerospace, Inc. Reclining chair
US20050127740A1 (en) * 2003-12-15 2005-06-16 Be Aerospace, Inc. Vehicle seating with integral passenger seat restraints
US7410127B1 (en) 2004-07-01 2008-08-12 Timco Aviation Services, Inc. Seat track anti-rattle locking device
US8141946B2 (en) * 2004-08-04 2012-03-27 Recaro Aircraft Seating Gmbh & Co. Kg System for adjusting the position of at least one seat component of a passenger seat and associated common control unit
US20060103193A1 (en) * 2004-08-04 2006-05-18 Recaro Aircraft Seating Gmbh & Co. Kg System for adjusting the position of at least one seat component of a passenger seat and associated common control unit
US7232096B1 (en) * 2004-10-26 2007-06-19 Ahad Sam J Positive lock seat device
US7261369B2 (en) * 2004-11-02 2007-08-28 Timco Aviation Services Inc Convertible aircraft passenger seat
US20060091707A1 (en) * 2004-11-02 2006-05-04 Timco Aviation Services, Inc. Convertible aircraft passenger seat
US20070228794A1 (en) * 2006-03-30 2007-10-04 Be Aerospace, Inc. Aircraft passenger seat
US20090091168A1 (en) * 2007-09-18 2009-04-09 Oliver Kretschmer Seat, in particular for a pram
US8047613B1 (en) * 2008-11-19 2011-11-01 Timco Aviation Services, Inc. Cushion-less aircraft seat
US8596723B2 (en) 2008-11-19 2013-12-03 Timco Aviation Services, Inc. Cushion-less aircraft seat
US8596724B1 (en) 2008-11-19 2013-12-03 Timco Aviation Services, Inc. Cushion-less aircraft seat
US8292224B1 (en) 2009-01-15 2012-10-23 Timco Aviation Services, Inc. Quick install aircraft track fitting device
US8534759B2 (en) 2010-09-24 2013-09-17 Be Aerospace, Inc. Passenger seat armrest recline mechanism
US20160023769A1 (en) * 2013-04-05 2016-01-28 Singapore Technologies Aerospace Ltd Seat leg assembly for a passenger seat, frame for a passenger seat and passenger seat
US20160039523A1 (en) * 2013-04-05 2016-02-11 Recaro Aircraft Seating Gmbh & Co. Kg Seating device
US9718552B2 (en) * 2013-04-05 2017-08-01 Singapore Technologies Aerospace Ltd. Passenger seat frame
US9950796B2 (en) * 2013-04-05 2018-04-24 Recaro Aircraft Seating Gmbh & Co. Kg Seating device
US9688164B2 (en) 2015-08-25 2017-06-27 Tesla, Inc. Movable vehicle seat with monopost
US9669734B2 (en) 2015-08-27 2017-06-06 Tesla, Inc. Monopost for free-standing vehicle seat
US10315532B2 (en) 2015-08-27 2019-06-11 Tesla, Inc. Monopost for free-standing vehicle seat

Also Published As

Publication number Publication date
US20040100137A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US6799805B2 (en) Single beam aircraft passenger seat
US6669143B1 (en) Non-encroaching aircraft passenger seat
US7252340B2 (en) Aircraft passenger seat with forward arm rest pivot
US7458643B2 (en) Aircraft passenger seat with forward arm rest pivot
US20040099766A1 (en) Aircraft passenger seat with seat back control array
EP1116654B1 (en) Passenger sleeper seat
US6305644B1 (en) Aircraft cabin seat configuration with enhanced ingress/egress
US9266613B2 (en) Seating arrangement
EP0530923B1 (en) Aircraft seat assembly
US20160376007A1 (en) Aircraft Seat with Seating and Reclining Positions
US9854912B2 (en) Reclining chair with fully reclined bed position
US8579375B2 (en) Aircraft seat
US9499079B2 (en) Linearly deployable aircraft seat legrest
US20070228794A1 (en) Aircraft passenger seat
CN105916768A (en) Aircraft divan convertible into bed
US6802568B1 (en) Segmented beam aircraft passenger seat
US20070018494A1 (en) Combination footrest and baggage bar for aircraft passenger seat
CN109484653B (en) Sliding base assembly for an aircraft seat
US20230331389A1 (en) Configurable cabin attendant seat
US20220371737A1 (en) Vehicle suite seating arrangement
US20050151405A1 (en) Vehicle seating with protected living space
US11358723B2 (en) Seat assembly with independent seat bottom tilt
US20230249831A1 (en) Passenger seating assembly with swinging seatpan for increased passenger egress space
US20220119117A1 (en) Interior layout of an aircraft cabin and associated method
US11608177B2 (en) Aircraft passenger seat row with cabin attendant seat

Legal Events

Date Code Title Description
AS Assignment

Owner name: BE AEROSPACE, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOHNSON, GLENN A.;REEL/FRAME:014673/0907

Effective date: 20031103

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:BE AEROSPACE, INC.;REEL/FRAME:021393/0273

Effective date: 20080728

Owner name: JPMORGAN CHASE BANK, N.A.,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:BE AEROSPACE, INC.;REEL/FRAME:021393/0273

Effective date: 20080728

AS Assignment

Owner name: BE AEROSPACE, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A.;REEL/FRAME:021398/0978

Effective date: 20080728

Owner name: BE AEROSPACE, INC.,FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A.;REEL/FRAME:021398/0978

Effective date: 20080728

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: B/E AEROSPACE, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A.;REEL/FRAME:034805/0718

Effective date: 20141216

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:B/E AEROSPACE, INC.;REEL/FRAME:035176/0493

Effective date: 20141216

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: B/E AEROSPACE, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A;REEL/FRAME:049209/0619

Effective date: 20170413