US6891732B2 - Multilayer circuit board and semiconductor device using the same - Google Patents

Multilayer circuit board and semiconductor device using the same Download PDF

Info

Publication number
US6891732B2
US6891732B2 US10/244,210 US24421002A US6891732B2 US 6891732 B2 US6891732 B2 US 6891732B2 US 24421002 A US24421002 A US 24421002A US 6891732 B2 US6891732 B2 US 6891732B2
Authority
US
United States
Prior art keywords
circuit board
multilayer circuit
core substrate
semiconductor element
heat spreader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/244,210
Other versions
US20030058630A1 (en
Inventor
Akihito Takano
Takahiro Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Assigned to SHINKO ELECTRIC INDUSTRIES, CO., LTD. reassignment SHINKO ELECTRIC INDUSTRIES, CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IIJIMA, TAKAHIRO, TAKANO, AKIHITO
Publication of US20030058630A1 publication Critical patent/US20030058630A1/en
Application granted granted Critical
Publication of US6891732B2 publication Critical patent/US6891732B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09554Via connected to metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4608Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated comprising an electrically conductive base or core

Definitions

  • the invention relates to a multilayer circuit board or a multilayer wiring board and a semiconductor device and, more particularly, to a multilayer circuit board having improved heat-dissipating properties and a semiconductor device using it.
  • multilayer circuit boards used for semiconductor devices there are products in which a metal substrate is used as a core substrate, and wiring layers are stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween.
  • the stacked wiring layers can be formed on either side of the core substrate by a build-up process.
  • a multilayer circuit board in which one wiring layer is electrically connected to another wiring layer by vias through the insulating layer, can be obtained by forming an insulating layer electrically insulating wiring layers from each other and having via holes for the interconnection of the wiring layers, forming a conductor layer on the surface of the insulating layer and the inside of the via holes by plating or the like, and then etching the conductor layer in a given pattern.
  • a semiconductor device is produced by mounting, on the multilayer circuit board thus formed, a semiconductor chip or chips and required circuit parts.
  • semiconductor elements have had increasingly improved performances, thereby increasing the amount of heat generated therefrom.
  • Conventional methods for dealing with an increased amount of heat generated from such a semiconductor element include a method of dissipating the generated heat by attaching a heat spreader (or heat sink) to the semiconductor element and using a fan.
  • a metal sheet with good heat-dissipating properties is used as a core substrate in order to improve the heat-dissipating properties of a multilayer circuit board on which a semiconductor element is mounted.
  • a multilayer circuit board or a multilayer wiring board for mounting a semiconductor element thereon, comprising a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, wherein the multilayer circuit board is adapted to allow the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween.
  • the multilayer circuit board can have thermal vias piercing through the insulating layers to thereby allow the heat spreader to be joined to the core substrate through the thermal vias, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulation layers.
  • the thermal vias are formed of the same material as the material for the wiring layers.
  • the multilayer circuit board can be provided with a sealing conductor in the shape of a frame surrounding the area where the semiconductor element is to be mounted.
  • the sealing conductor represents a member through which the heat spreader is connected to the thermal vias so as to ensure the thermal connection of the heat spreader to the thermal via.
  • the sealing conductor is formed of the same material as the material for the thermal vias.
  • the multilayer circuit board can have an area at which the core substrate is exposed to thereby allow the heat spreader to be directly joined to the core substrate.
  • the multilayer circuit board can have thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulation layers.
  • the thermal vias thermally connecting the semiconductor element to the core substrate are also formed of the same material as the material for the wiring layers.
  • a semiconductor device comprising a multilayer circuit board, a semiconductor element mounted on the multilayer circuit board, and a heat spreader for dissipating heat generated from the semiconductor element, the heat spreader being disposed so as to cover the semiconductor element, wherein the multilayer circuit board or multilayer wiring board for mounting a semiconductor element thereon is as set out above.
  • FIG. 1 shows a first embodiment of the semiconductor device of the invention
  • FIG. 2 shows a second embodiment of the semiconductor device of the invention
  • FIGS. 3A to 3 H illustrates the production of the multilayer circuit board of the invention.
  • FIG. 4 illustrates the multilayer circuit board on which a semiconductor element is mounted.
  • FIG. 1 shows a sectional view illustrating the structure of a first embodiment of the semiconductor device according to the invention, fabricated by mounting a semiconductor element 30 on the multilayer circuit board 10 of the invention.
  • the multilayer circuit board 10 used in this semiconductor device is formed by stacking a plurality of wiring layers 26 a , 26 b on either side of a core substrate 12 made of a metal, such as copper or aluminum, each of the stacked wiring layers 26 a , 26 b being isolated from an adjacent wiring layer by an insulating layer 13 interposed therebetween.
  • the semiconductor element 30 is mounted on one side (the upper side in the drawing) of the multilayer circuit board 10 by flip chip bonding, and has a heat spreader 40 attached so as to cover the semiconductor element 30 .
  • the heat spreader is preferably made of a metal, such as copper or aluminum.
  • Wiring patterns 26 a , 26 b of adjacent wiring layers are connected to each other by a via 20 .
  • the multilayer circuit board 10 is provided, on the side opposed to the side on which the semiconductor element 30 is mounted, with external connection terminals 50 to connect the multilayer circuit board 10 to external circuits (not shown).
  • a concavity 40 b for containing the semiconductor element 30 is formed on the side of the heat spreader 40 facing the multilayer circuit board 10 .
  • the heat spreader 40 is joined to the top side of the multilayer circuit board 10 , containing the semiconductor element 30 within the concavity 40 b .
  • a sealing conductor 14 in the shape of frame surrounding the area where the semiconductor element 30 is mounted, is also provided on the surface of the multilayer circuit board 10 .
  • the sealing conductor 14 serves as a member through which the heat spreader is connected to the thermal vias 16 so as to ensure the thermal connection of the heat spreader 40 to the thermal vias 16 .
  • the heat spreader 40 which has a joining section 40 a at its periphery, is attached to the multilayer circuit board 10 , with the joining section 40 a being joined to the sealing conductor 14 .
  • the outer side of the semiconductor element 30 is in contact with the inner bottom face of the concavity 40 b of the heat spreader 40 , and heat is efficiently dissipated from the semiconductor element 30 to the heat spreader 40 .
  • the heat spreader 40 is bonded to the sealing conductor 14 by solder or an adhesive.
  • the core substrate may be grounded using an external connecting terminal, to thereby allow the heat spreader to have earth potential.
  • a characteristic feature of the multilayer circuit board 10 of the present embodiment is first thermal vias 16 and second thermal vias 18 are provided so as to pierce through the insulation layers 13 of the side of the circuit board 10 on which the semiconductor element 30 is mounted.
  • the first and second thermal vias 16 and 18 are formed of a material (a conductor material) having a thermal conductivity greater than that of the material for the insulating layers, and the first thermal via 16 serves to connect the sealing conductor 14 to the core substrate 12 by the conductor to thereby enhance the thermal conductivity between the core substrate 12 and the heat spreader 40 , and the second thermal via 18 serves to connect the semiconductor element 30 to the core substrate 12 by the conductor to thereby enhance the thermal conductivity between the core substrate 12 and the semiconductor element 30 .
  • the first thermal vias 16 which connect the sealing conductor 14 to the core substrate 12 , may be positioned, at a discretionary interval, in the direction of the circumference of the sealing conductor 14 provided in the shape of frame.
  • the second thermal vias 18 which connect the semiconductor element 30 to the core substrate 12 , are positioned in correspondence with the locations of thermal bumps 19 of the semiconductor element 30 .
  • the first and second thermal vias 16 and 18 are formed by filling the via holes of respective insulating layers with a conductor to form so-called filled vias, and successively coupling the filled vias of adjacent insulating layers so as to form a column-like structure.
  • the first and second thermal vias 16 and 18 of such a column-like structure connect the sealing conductor 14 of the heat spreader 40 to the core substrate 12 and the semiconductor element 30 to the core substrate 10 , respectively, to thereby enhance the thermal conductivity between the heat spreader 40 and the core substrate 12 and the thermal conductivity between the semiconductor element 30 and the core substrate 12 , respectively.
  • heat generated from the semiconductor element 30 is transferred from the surface of the semiconductor element 30 to the heat spreader 40 and transferred to the core substrate 12 through the second thermal vias 18 , to thereby be dissipated, and the heat transferred to the core substrate 12 is, in turn, transferred to the heat spreader 40 through the first thermal vias 16 to be dissipated.
  • first thermal vias 16 connecting the heat spreader 40 to the core substrate 12 and second thermal vias 18 connecting the semiconductor element 30 to the core substrate 12 are provided, the second thermal vias 18 need not be always provided, and may be provided as required or depending on the arrangement of bumps of the semiconductor element 30 .
  • FIG. 2 illustrates the structure of a second embodiment of the semiconductor device fabricated by mounting a semiconductor element 30 on the multilayer circuit board 10 of the invention.
  • the semiconductor element 30 is mounted on one side of the multilayer circuit board 10 , and a heat spreader 40 is attached so as to cover the semiconductor element 30 , as in the semiconductor device of the first embodiment.
  • a characteristic feature of the semiconductor device of the present embodiment resides in the fact that a joining section 40 a at the periphery of the heat spreader 40 is directly joined to the core substrate 12 .
  • parts of respective insulating layers of the multilayer circuit board 10 are removed at the sites thereof corresponding to the joining section 40 a of the heat spreader 40 , to expose part of the surface of the core substrate 12 to which the joining section 40 a of the heat spreader 40 is to be joined.
  • the insulating layers 13 having parts thereof removed are contained, together with the wiring layers 26 a , 26 b of the circuit board 10 as well as the semiconductor element 40 , within a concavity 40 b of the heat spreader 40 , the concavity 40 b being surrounded by the joining section 40 a of the heat spreader 40 .
  • the outer side of the semiconductor element 30 is in contact with the inner bottom face of the concavity 40 b of the heat spreader 40 .
  • the multilayer circuit board 10 is provided with thermal vias 18 , which connect thermal bumps 19 of the semiconductor element 30 to the core substrate 12 .
  • the thermal vias 18 need not be always provided, as indicated in the description of the first embodiment of the multilayer circuit board.
  • heat generated from the semiconductor element 30 can be dissipated from the surface of the semiconductor element 30 to the heat spreader 40 , while being dissipated to the core substrate 12 through the thermal vias 18 .
  • the direct contact of the core substrate 12 and the heat spreader 40 can further enhance the heat dissipation from the core substrate 12 , whereby it is possible to effectively improve the heat dissipation of the entire semiconductor device.
  • the multilayer circuit board of the invention may be produced using a build-up process.
  • the multilayer circuit board 10 having the two types of thermal vias i.e., the first and second thermal vias 16 and 18 , as shown in FIG. 1
  • the multilayer circuit board 10 having the two types of thermal vias can be produced by forming wiring patterns on either side of the core substrate 12 by a build-up process.
  • a method for producing the multilayer circuit board 10 of this type is illustrated in FIGS. 3A to H.
  • a core substrate 12 of metal sheet is drilled to have through holes 21 , as shown in FIG. 3 A.
  • the through holes 21 are located at the sites of the core substrate 12 where wiring patterns formed on both sides of the core substrate 12 are to be electrically connected.
  • FIG. 3B illustrates the core substrate 12 provided with the electrically insulating layers 22 a and the piercing hole 21 a thus formed.
  • the insulating layer 22 a on one side of the core substrate 12 is then bored via holes 23 a and 23 b .
  • the via holes 23 a are provided along the periphery of the core substrate 12 , and are used to form the first thermal vias 16 serving to connect the heat spreader 40 to the core substrate 12 , as shown in FIG. 1 .
  • the via holes 23 b are used to form the second thermal vias 18 serving to connect the semiconductor element 30 to the core substrate 12 , also as shown in FIG. 1 .
  • the via holes 23 a and 23 b can be formed by chemical etching or laser etching.
  • the substrate 12 is then subjected to electroless plating and electroplating with copper to form a conductor layer 24 on the insulating layer 22 a and inside the piercing holes 21 a , as shown in FIG. 3 C.
  • the conductor layer 24 inside the piercing hole 21 a serves as a conductor for electrically connecting wiring patterns subsequently formed on both sides of the core substrate 12 .
  • the via holes 23 a and 23 b can be filled with copper to form unitary thermal vias 16 a and 18 a for first and second thermal vias, respectively.
  • a resin material 25 is then filled in the piercing holes 21 a coated with the conductor layer 24 , and a further conductor layer 24 ′ is formed by electroless plating and electroplating to cover the conductor layer 24 on both sides of the core substrate 12 , to thereby provide, along with the conductor layer 24 , a conductor film 24 a , as shown in FIG. 3 D.
  • the conductor film 24 a is chemically etched to form first wiring patterns 26 a on the respective insulation layers 22 a on either side of the core substrate 12 , as shown in FIG. 3 E.
  • a photoresist may be coated on the surface of the conductor film 24 a , and be exposed and developed to provide a resist pattern covering the sites of the conductor film 24 a where the wiring pattern 26 a is to be formed, and the conductor film 24 a can then be etched using the resist pattern as a mask.
  • sheets of electrically insulating resin such as polyimide
  • second insulating layers 22 b are laminated on either side of the substrate 12 to provide second insulating layers 22 b , the second insulating layers 22 b being then laser-etched to form via holes 27 therein, as shown in FIG. 3 F.
  • further via holes 23 a and 23 b are formed for the formation of the first and second thermal vias, the via holes 23 a and 23 b communicating with the unitary thermal vias 16 a and 18 a for first and second thermal vias of the underlying layer of wiring pattern.
  • the surfaces of the substrate 12 having the insulating layers 22 b formed are then electrolessly plated and electroplated with copper, to form thereon a conductor layer (copper layer) while filling the via holes 23 a , 23 b , 27 with copper, after which the conductor layers are etched to provide second wiring patterns 26 b , while forming first and second thermal vias 16 b and 18 b positioned on and connected to the underlying unitary thermal vias 16 a and 18 a , respectively, as shown in FIG. 3 G.
  • the first wiring patterns 26 a and the second wiring patterns 26 b are connected with each other by vias 28 , which are formed of the conductor filled in the via holes 27 .
  • Sheets of insulating resin are then laminated on either side of the substrate 12 having the second wiring patterns 26 b formed to provide third insulating layers 22 c , the third insulating layers 22 c being then laser-etched to form via holes therein, after which third wiring patterns 26 c , vias 28 for the connection of the third wiring patterns 26 c with the second wiring patterns 26 b , first thermal vias 16 c and second thermal vias 18 c for the dissipation of heat generated from a semiconductor element, are formed, as described before, from a conductor, such as copper, as shown in FIG. 3 H. Simultaneously, sealing conductor 14 in the shape of a frame surrounding the area where the semiconductor element 30 ( FIG.
  • the entire first thermal via 16 for the connection of the core substrate 12 of the multilayer circuit board 10 with a heat spreader 40 is made up of the stacked unitary thermal vias 16 a , 16 b , 16 c
  • the entire second thermal via 18 for the connection of the core substrate 12 with a semiconductor element 30 ( FIG. 1 ) to be mounted thereon is made up of the stacked unitary thermal vias 18 a , 18 b , 18 c .
  • the multilayer circuit board 10 is covered with a solder resist 29 so as to expose the patterned conductor on either side thereof.
  • FIG. 4 illustrates the multilayer circuit board 10 on which a semiconductor element 30 is mounted.
  • the semiconductor element 30 is mounted on the multilayer circuit board 10 by flip-chip bonding, and is connected to the circuit board 10 through bumps 32 .
  • An underfill material 34 is filled in the gap between the circuit board 10 and the semiconductor element 30 after the flip-chip bonding.
  • External connection terminals 50 are provided on the lands 48 on the side of the multilayer circuit board 10 opposed to the side on which the semiconductor element 30 is mounted.
  • the external connection terminal may be formed by bonding a solder ball on the land 48 .
  • the semiconductor device shown in FIG. 1 can be obtained by joining the joining section 40 a of the heat spreader 40 ( FIG. 1 ) to the multilayer circuit board 10 illustrated in FIG. 4 .
  • the multilayer circuit board having been fabricated as illustrated in FIGS. 3A to 3 H can be subjected to machining, such as countersinking, to thereby remove the wiring layers and insulating layers from one side (the side on which the semiconductor element is to be mounted) of the circuit board at a peripheral portion thereof so as to exposed a corresponding portion of the core substrate to which the joining section 40 a of the heat spreader 40 ( FIG. 2 ) is to be connected.
  • machining such as countersinking
  • a plurality of multilayer circuit boards are formed together, in an arrangement of rows and columns, using a common core substrate, and individual multilayer circuit boards on the common core substrate are cut, along with the core substrate, into pieces of multilayer circuit board by milling, while being countersunk to have a peripheral area exposing the core substrate thereat.
  • the semiconductor device as shown in FIG. 2 is obtained by joining the joining section 40 a of the heat spreader 40 to the core substrate 12 .
  • the multilayer circuit board of the invention makes it possible to improve thermal conductivity between the heat spreader and the core substrate by directly joining the heat spreader to the core substrate, to thereby improve the heat dissipating properties between the multilayer circuit board and the core substrate, which makes it possible, in turn, to mount on the multilayer circuit board a semiconductor element generating a large amount of heat.
  • the invention makes it possible to provide a multilayer circuit board and a semiconductor element having high reliability.
  • thermally connecting the semiconductor element to the core substrate can further enhance the heat dissipation from the semiconductor element.

Abstract

A multilayer circuit board for mounting a semiconductor element thereon, comprising a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, wherein the multilayer circuit board allows the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween. A semiconductor device using the multilayer circuit board is also disclosed.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a multilayer circuit board or a multilayer wiring board and a semiconductor device and, more particularly, to a multilayer circuit board having improved heat-dissipating properties and a semiconductor device using it.
2. Description of the Related Art
Among multilayer circuit boards used for semiconductor devices, there are products in which a metal substrate is used as a core substrate, and wiring layers are stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween. The stacked wiring layers can be formed on either side of the core substrate by a build-up process. According to a build-up process, a multilayer circuit board, in which one wiring layer is electrically connected to another wiring layer by vias through the insulating layer, can be obtained by forming an insulating layer electrically insulating wiring layers from each other and having via holes for the interconnection of the wiring layers, forming a conductor layer on the surface of the insulating layer and the inside of the via holes by plating or the like, and then etching the conductor layer in a given pattern.
A semiconductor device is produced by mounting, on the multilayer circuit board thus formed, a semiconductor chip or chips and required circuit parts. In recent years, semiconductor elements have had increasingly improved performances, thereby increasing the amount of heat generated therefrom. Conventional methods for dealing with an increased amount of heat generated from such a semiconductor element include a method of dissipating the generated heat by attaching a heat spreader (or heat sink) to the semiconductor element and using a fan. Also, a metal sheet with good heat-dissipating properties is used as a core substrate in order to improve the heat-dissipating properties of a multilayer circuit board on which a semiconductor element is mounted.
However, even with a multilayer circuit board using a metal sheet for a core substrate, the heat-dissipating properties are not always enough considering the increasing amount of heat generated from a semiconductor element, and a multilayer circuit board having better heat-dissipating properties is required to remove the heat generated from a semiconductor element.
It is known to use a member made of a metal to cover a semiconductor element mounted on a multilayer circuit board, to thereby dissipate heat generated by the semiconductor element from the top face of the metallic member to environment. Again, with a multilayer circuit board using such a cover member, heat-dissipating properties are not always enough to increase amount of heat removed from a semiconductor element, and a multilayer circuit board having improved heat-dissipating properties is again required.
SUMMARY OF THE INVENTION
It is an object of the invention to solve these problems, and to provide a multilayer circuit board, or a multilayer wiring board, which can have further improved heat-dissipating properties and makes it possible to mount thereon a semiconductor element potentially generating a large amount of heat.
It is also an object of the invention to provide a semiconductor device using the multilayer circuit board.
According to the invention, there is provided a multilayer circuit board or a multilayer wiring board, for mounting a semiconductor element thereon, comprising a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, wherein the multilayer circuit board is adapted to allow the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween.
In one embodiment, the multilayer circuit board can have thermal vias piercing through the insulating layers to thereby allow the heat spreader to be joined to the core substrate through the thermal vias, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulation layers.
Preferably, the thermal vias are formed of the same material as the material for the wiring layers.
The multilayer circuit board can be provided with a sealing conductor in the shape of a frame surrounding the area where the semiconductor element is to be mounted. The sealing conductor represents a member through which the heat spreader is connected to the thermal vias so as to ensure the thermal connection of the heat spreader to the thermal via.
Preferably, the sealing conductor is formed of the same material as the material for the thermal vias.
In another embodiment, the multilayer circuit board can have an area at which the core substrate is exposed to thereby allow the heat spreader to be directly joined to the core substrate.
In both the embodiments set out above, the multilayer circuit board can have thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulation layers.
Preferably, the thermal vias thermally connecting the semiconductor element to the core substrate are also formed of the same material as the material for the wiring layers.
According to the invention, there is also provided a semiconductor device comprising a multilayer circuit board, a semiconductor element mounted on the multilayer circuit board, and a heat spreader for dissipating heat generated from the semiconductor element, the heat spreader being disposed so as to cover the semiconductor element, wherein the multilayer circuit board or multilayer wiring board for mounting a semiconductor element thereon is as set out above.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objects and advantages of the invention will be well understood and appreciated, by a person with ordinary skill in the art, from the following detailed description made by referring to the attached drawings, wherein:
FIG. 1 shows a first embodiment of the semiconductor device of the invention;
FIG. 2 shows a second embodiment of the semiconductor device of the invention;
FIGS. 3A to 3H illustrates the production of the multilayer circuit board of the invention; and
FIG. 4 illustrates the multilayer circuit board on which a semiconductor element is mounted.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a sectional view illustrating the structure of a first embodiment of the semiconductor device according to the invention, fabricated by mounting a semiconductor element 30 on the multilayer circuit board 10 of the invention. The multilayer circuit board 10 used in this semiconductor device is formed by stacking a plurality of wiring layers 26 a, 26 b on either side of a core substrate 12 made of a metal, such as copper or aluminum, each of the stacked wiring layers 26 a, 26 b being isolated from an adjacent wiring layer by an insulating layer 13 interposed therebetween. The semiconductor element 30 is mounted on one side (the upper side in the drawing) of the multilayer circuit board 10 by flip chip bonding, and has a heat spreader 40 attached so as to cover the semiconductor element 30. The heat spreader is preferably made of a metal, such as copper or aluminum. Wiring patterns 26 a, 26 b of adjacent wiring layers are connected to each other by a via 20. The multilayer circuit board 10 is provided, on the side opposed to the side on which the semiconductor element 30 is mounted, with external connection terminals 50 to connect the multilayer circuit board 10 to external circuits (not shown).
On the side of the heat spreader 40 facing the multilayer circuit board 10, a concavity 40 b for containing the semiconductor element 30 is formed. The heat spreader 40 is joined to the top side of the multilayer circuit board 10, containing the semiconductor element 30 within the concavity 40 b. In the embodiment shown in FIG. 1, a sealing conductor 14, in the shape of frame surrounding the area where the semiconductor element 30 is mounted, is also provided on the surface of the multilayer circuit board 10. The sealing conductor 14 serves as a member through which the heat spreader is connected to the thermal vias 16 so as to ensure the thermal connection of the heat spreader 40 to the thermal vias 16. The heat spreader 40, which has a joining section 40 a at its periphery, is attached to the multilayer circuit board 10, with the joining section 40 a being joined to the sealing conductor 14. When the heat spreader 40 is joined to the multilayer circuit board 10, the outer side of the semiconductor element 30 is in contact with the inner bottom face of the concavity 40 b of the heat spreader 40, and heat is efficiently dissipated from the semiconductor element 30 to the heat spreader 40. The heat spreader 40 is bonded to the sealing conductor 14 by solder or an adhesive.
In the invention, the core substrate may be grounded using an external connecting terminal, to thereby allow the heat spreader to have earth potential.
A characteristic feature of the multilayer circuit board 10 of the present embodiment is first thermal vias 16 and second thermal vias 18 are provided so as to pierce through the insulation layers 13 of the side of the circuit board 10 on which the semiconductor element 30 is mounted. The first and second thermal vias 16 and 18 are formed of a material (a conductor material) having a thermal conductivity greater than that of the material for the insulating layers, and the first thermal via 16 serves to connect the sealing conductor 14 to the core substrate 12 by the conductor to thereby enhance the thermal conductivity between the core substrate 12 and the heat spreader 40, and the second thermal via 18 serves to connect the semiconductor element 30 to the core substrate 12 by the conductor to thereby enhance the thermal conductivity between the core substrate 12 and the semiconductor element 30.
The first thermal vias 16, which connect the sealing conductor 14 to the core substrate 12, may be positioned, at a discretionary interval, in the direction of the circumference of the sealing conductor 14 provided in the shape of frame. The second thermal vias 18, which connect the semiconductor element 30 to the core substrate 12, are positioned in correspondence with the locations of thermal bumps 19 of the semiconductor element 30.
As shown in FIG. 1, the first and second thermal vias 16 and 18 are formed by filling the via holes of respective insulating layers with a conductor to form so-called filled vias, and successively coupling the filled vias of adjacent insulating layers so as to form a column-like structure. The first and second thermal vias 16 and 18 of such a column-like structure connect the sealing conductor 14 of the heat spreader 40 to the core substrate 12 and the semiconductor element 30 to the core substrate 10, respectively, to thereby enhance the thermal conductivity between the heat spreader 40 and the core substrate 12 and the thermal conductivity between the semiconductor element 30 and the core substrate 12, respectively.
Specifically, heat generated from the semiconductor element 30 is transferred from the surface of the semiconductor element 30 to the heat spreader 40 and transferred to the core substrate 12 through the second thermal vias 18, to thereby be dissipated, and the heat transferred to the core substrate 12 is, in turn, transferred to the heat spreader 40 through the first thermal vias 16 to be dissipated.
In the embodiment shown in FIG. 1, although both first thermal vias 16 connecting the heat spreader 40 to the core substrate 12 and second thermal vias 18 connecting the semiconductor element 30 to the core substrate 12 are provided, the second thermal vias 18 need not be always provided, and may be provided as required or depending on the arrangement of bumps of the semiconductor element 30.
FIG. 2 illustrates the structure of a second embodiment of the semiconductor device fabricated by mounting a semiconductor element 30 on the multilayer circuit board 10 of the invention. In the semiconductor device of this embodiment, the semiconductor element 30 is mounted on one side of the multilayer circuit board 10, and a heat spreader 40 is attached so as to cover the semiconductor element 30, as in the semiconductor device of the first embodiment. A characteristic feature of the semiconductor device of the present embodiment resides in the fact that a joining section 40 a at the periphery of the heat spreader 40 is directly joined to the core substrate 12.
To directly join the heat spreader 40 to the core substrate 12, parts of respective insulating layers of the multilayer circuit board 10 are removed at the sites thereof corresponding to the joining section 40 a of the heat spreader 40, to expose part of the surface of the core substrate 12 to which the joining section 40 a of the heat spreader 40 is to be joined. The insulating layers 13 having parts thereof removed are contained, together with the wiring layers 26 a, 26 b of the circuit board 10 as well as the semiconductor element 40, within a concavity 40 b of the heat spreader 40, the concavity 40 b being surrounded by the joining section 40 a of the heat spreader 40. At the condition of the heat spreader 40 being joined to the multilayer circuit board 10, the outer side of the semiconductor element 30 is in contact with the inner bottom face of the concavity 40 b of the heat spreader 40.
Also in this embodiment, the multilayer circuit board 10 is provided with thermal vias 18, which connect thermal bumps 19 of the semiconductor element 30 to the core substrate 12. However, the thermal vias 18 need not be always provided, as indicated in the description of the first embodiment of the multilayer circuit board.
In the semiconductor device of this embodiment, heat generated from the semiconductor element 30 can be dissipated from the surface of the semiconductor element 30 to the heat spreader 40, while being dissipated to the core substrate 12 through the thermal vias 18. The direct contact of the core substrate 12 and the heat spreader 40 can further enhance the heat dissipation from the core substrate 12, whereby it is possible to effectively improve the heat dissipation of the entire semiconductor device.
The multilayer circuit board of the invention may be produced using a build-up process. By way of example, the multilayer circuit board 10 having the two types of thermal vias, i.e., the first and second thermal vias 16 and 18, as shown in FIG. 1, can be produced by forming wiring patterns on either side of the core substrate 12 by a build-up process. A method for producing the multilayer circuit board 10 of this type is illustrated in FIGS. 3A to H.
First, a core substrate 12 of metal sheet is drilled to have through holes 21, as shown in FIG. 3A. The through holes 21 are located at the sites of the core substrate 12 where wiring patterns formed on both sides of the core substrate 12 are to be electrically connected.
Subsequently, the core substrate 12 is sandwiched between sheets of resin having electrical insulating properties, such as polyimide, and the resin sheets are then heated and pressed to coat both surfaces of the core substrate 12 with an electrically insulating layer of the resin material and to fill the through holes 21 with the resin material. The resin material filled in the through hole 21 is bored a piercing hole which pierces the material. FIG. 3B illustrates the core substrate 12 provided with the electrically insulating layers 22 a and the piercing hole 21 a thus formed.
The insulating layer 22 a on one side of the core substrate 12 is then bored via holes 23 a and 23 b. The via holes 23 a are provided along the periphery of the core substrate 12, and are used to form the first thermal vias 16 serving to connect the heat spreader 40 to the core substrate 12, as shown in FIG. 1. The via holes 23 b are used to form the second thermal vias 18 serving to connect the semiconductor element 30 to the core substrate 12, also as shown in FIG. 1. The via holes 23 a and 23 b can be formed by chemical etching or laser etching.
The substrate 12 is then subjected to electroless plating and electroplating with copper to form a conductor layer 24 on the insulating layer 22 a and inside the piercing holes 21 a, as shown in FIG. 3C. The conductor layer 24 inside the piercing hole 21 a serves as a conductor for electrically connecting wiring patterns subsequently formed on both sides of the core substrate 12. By carrying out the electroless plating and electroplating under appropriate conditions, the via holes 23 a and 23 b can be filled with copper to form unitary thermal vias 16 a and 18 a for first and second thermal vias, respectively.
A resin material 25 is then filled in the piercing holes 21 a coated with the conductor layer 24, and a further conductor layer 24′ is formed by electroless plating and electroplating to cover the conductor layer 24 on both sides of the core substrate 12, to thereby provide, along with the conductor layer 24, a conductor film 24 a, as shown in FIG. 3D.
The conductor film 24 a is chemically etched to form first wiring patterns 26 a on the respective insulation layers 22 a on either side of the core substrate 12, as shown in FIG. 3E. To form the wiring pattern 26 a by etching the conductor film 24 a, a photoresist may be coated on the surface of the conductor film 24 a, and be exposed and developed to provide a resist pattern covering the sites of the conductor film 24 a where the wiring pattern 26 a is to be formed, and the conductor film 24 a can then be etched using the resist pattern as a mask.
Subsequently, for the formation of second layers of wiring patters, sheets of electrically insulating resin, such as polyimide, are laminated on either side of the substrate 12 to provide second insulating layers 22 b, the second insulating layers 22 b being then laser-etched to form via holes 27 therein, as shown in FIG. 3F. Simultaneously, further via holes 23 a and 23 b are formed for the formation of the first and second thermal vias, the via holes 23 a and 23 b communicating with the unitary thermal vias 16 a and 18 a for first and second thermal vias of the underlying layer of wiring pattern.
The surfaces of the substrate 12 having the insulating layers 22 b formed are then electrolessly plated and electroplated with copper, to form thereon a conductor layer (copper layer) while filling the via holes 23 a, 23 b, 27 with copper, after which the conductor layers are etched to provide second wiring patterns 26 b, while forming first and second thermal vias 16 b and 18 b positioned on and connected to the underlying unitary thermal vias 16 a and 18 a, respectively, as shown in FIG. 3G. The first wiring patterns 26 a and the second wiring patterns 26 b are connected with each other by vias 28, which are formed of the conductor filled in the via holes 27.
Sheets of insulating resin are then laminated on either side of the substrate 12 having the second wiring patterns 26 b formed to provide third insulating layers 22 c, the third insulating layers 22 c being then laser-etched to form via holes therein, after which third wiring patterns 26 c, vias 28 for the connection of the third wiring patterns 26 c with the second wiring patterns 26 b, first thermal vias 16 c and second thermal vias 18 c for the dissipation of heat generated from a semiconductor element, are formed, as described before, from a conductor, such as copper, as shown in FIG. 3H. Simultaneously, sealing conductor 14 in the shape of a frame surrounding the area where the semiconductor element 30 (FIG. 1) is to be mounted is formed from the conductor, and lands 48 for external connection terminals 50 (FIG. 1) are also formed, from the conductor, at the opposed side of the substrate 12. In a multilayer circuit board 10 thus produced, the entire first thermal via 16 for the connection of the core substrate 12 of the multilayer circuit board 10 with a heat spreader 40 (FIG. 1) is made up of the stacked unitary thermal vias 16 a, 16 b, 16 c, and the entire second thermal via 18 for the connection of the core substrate 12 with a semiconductor element 30 (FIG. 1) to be mounted thereon is made up of the stacked unitary thermal vias 18 a, 18 b, 18 c. As shown in FIG. 3H, the multilayer circuit board 10 is covered with a solder resist 29 so as to expose the patterned conductor on either side thereof.
FIG. 4 illustrates the multilayer circuit board 10 on which a semiconductor element 30 is mounted. The semiconductor element 30 is mounted on the multilayer circuit board 10 by flip-chip bonding, and is connected to the circuit board 10 through bumps 32. An underfill material 34 is filled in the gap between the circuit board 10 and the semiconductor element 30 after the flip-chip bonding. External connection terminals 50 are provided on the lands 48 on the side of the multilayer circuit board 10 opposed to the side on which the semiconductor element 30 is mounted. The external connection terminal may be formed by bonding a solder ball on the land 48.
The semiconductor device shown in FIG. 1 can be obtained by joining the joining section 40 a of the heat spreader 40 (FIG. 1) to the multilayer circuit board 10 illustrated in FIG. 4.
When the semiconductor device, as shown in FIG. 2 and which has only the thermal vias 18 connecting the semiconductor element 30 to the core substrate 12, is produced, the multilayer circuit board having been fabricated as illustrated in FIGS. 3A to 3H can be subjected to machining, such as countersinking, to thereby remove the wiring layers and insulating layers from one side (the side on which the semiconductor element is to be mounted) of the circuit board at a peripheral portion thereof so as to exposed a corresponding portion of the core substrate to which the joining section 40 a of the heat spreader 40 (FIG. 2) is to be connected. In this case, it is not necessary to form thermal vias for connecting the heat spreader to the core substrate at the peripheral area of the multilayer circuit board when the circuit board is produced.
In general, a plurality of multilayer circuit boards are formed together, in an arrangement of rows and columns, using a common core substrate, and individual multilayer circuit boards on the common core substrate are cut, along with the core substrate, into pieces of multilayer circuit board by milling, while being countersunk to have a peripheral area exposing the core substrate thereat. After the separation of the individual circuit boards, the semiconductor device as shown in FIG. 2 is obtained by joining the joining section 40 a of the heat spreader 40 to the core substrate 12.
The multilayer circuit board of the invention makes it possible to improve thermal conductivity between the heat spreader and the core substrate by directly joining the heat spreader to the core substrate, to thereby improve the heat dissipating properties between the multilayer circuit board and the core substrate, which makes it possible, in turn, to mount on the multilayer circuit board a semiconductor element generating a large amount of heat. Thus, the invention makes it possible to provide a multilayer circuit board and a semiconductor element having high reliability. In addition, thermally connecting the semiconductor element to the core substrate can further enhance the heat dissipation from the semiconductor element.

Claims (18)

1. A multilayer circuit board for mounting a semiconductor element thereon, comprising a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, wherein the multilayer circuit board is adapted to allow the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween, the multilayer circuit board having thermal vias piercing through the insulating layers to thereby allow the heat spreader to be joined to the core substrate through the thermal vias, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
2. The multilayer circuit board of claim 1, wherein the thermal vias are formed of the same material as the material for the wiring layers.
3. The multilayer circuit board of claim 1, which is provided with a sealing conductor in the shape of a frame surrounding the area where the semiconductor element is to be mounted.
4. The multilayer circuit board of claim 1, which has second thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
5. The multilayer circuit board of claim 3, wherein the sealing conductor is formed of the same material as the material for the thermal vias.
6. The multilayer circuit board of claim 4, wherein the second thermal vias are formed of the same material as the material for the wiring layers.
7. A multilayer circuit board for mounting a semiconductor element thereon, comprising a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, wherein the multilayer circuit board is adapted to allow the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween, the multilayer circuit board having an area at which the core substrate is exposed to thereby allow the heat spreader to be directly joined to the core substrate, the exposed area of the substrate being located at the peripheral region of the substrate surrounding the semiconductor element mounted on the multilayer circuit board.
8. The multilayer circuit board of claim 7, which has thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
9. The multilayer circuit board of claim 8, wherein the thermal vias are formed of the same material as the material for the wiring layers.
10. A semiconductor device comprising a multilayer circuit board, a semiconductor element mounted on the multilayer circuit board, and a heat spreader for dissipating heat generated from the semiconductor element, the heat spreader being disposed so as to cover the semiconductor element, wherein the multilayer circuit board comprises a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, and wherein the multilayer circuit board allows the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween, the multilayer circuit board having thermal vias piercing through the insulating layers to thereby allow the heat spreader to be joined to the core substrate through the thermal vias, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
11. The semiconductor device of claim 10, wherein the thermal vias are formed of the same material as the material for the wiring layers.
12. The semiconductor device of claim 10, wherein the multilayer circuit board is provided with a sealing conductor in the shape of a frame surrounding the area where the semiconductor element is mounted.
13. The semiconductor device of claim 10, wherein the multilayer circuit board has second thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
14. The semiconductor device of claim 12, wherein the sealing conductor is formed of the same material as the material for the thermal vias.
15. The semiconductor device of claim 13, wherein the second thermal vias are formed of the same material as the material for the wiring layers.
16. A semiconductor device comprising a multilayer circuit board, a semiconductor element mounted on the multilayer circuit board, and a heat spreader for dissipating heat generated from the semiconductor element, the heat spreader being disposed so as to cover the semiconductor element, wherein the multilayer circuit board comprises a core substrate of a metal material and a plurality of wiring layers stacked on either side of the core substrate, each of the stacked wiring layers being isolated from an adjacent wiring layer by an insulating layer interposed therebetween, the multilayer circuit board having an area at which a heat spreader for dissipating heat generated from the semiconductor element mounted on the circuit board is to be joined to the multilayer circuit board, and wherein the multilayer circuit board allows the heat spreader to be joined to the core substrate without the insulating layers being interposed therebetween, the multilayer circuit board having an area at which the core substrate is exposed to thereby allow the heat spreader to be directly jointed to the core substrate, the exposed area of the substrate being located at the peripheral region of the substrate surrounding the semiconductor element mounted on the multilayer circuit board.
17. The semiconductor device of claim 16, wherein the multilayer circuit board has thermal vias piercing through the insulating layers to thereby allow the semiconductor element to be thermally connected to the core substrate, the thermal vias being formed of a material having a thermal conductivity greater than the thermal conductivity of the insulating layers.
18. The semiconductor device of claim 17, wherein the thermal vias are formed of the same material as the material for the wiring layers.
US10/244,210 2001-09-25 2002-09-16 Multilayer circuit board and semiconductor device using the same Expired - Lifetime US6891732B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-291329 2001-09-25
JP2001291329A JP3817453B2 (en) 2001-09-25 2001-09-25 Semiconductor device

Publications (2)

Publication Number Publication Date
US20030058630A1 US20030058630A1 (en) 2003-03-27
US6891732B2 true US6891732B2 (en) 2005-05-10

Family

ID=19113498

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/244,210 Expired - Lifetime US6891732B2 (en) 2001-09-25 2002-09-16 Multilayer circuit board and semiconductor device using the same

Country Status (2)

Country Link
US (1) US6891732B2 (en)
JP (1) JP3817453B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176924A1 (en) * 2003-03-07 2004-09-09 Salmon Peter C. Apparatus and method for testing electronic systems
US20050040513A1 (en) * 2003-08-20 2005-02-24 Salmon Peter C. Copper-faced modules, imprinted copper circuits, and their application to supercomputers
US20050145414A1 (en) * 2003-01-28 2005-07-07 Cmk Corporation Metal core multilayer printed wiring board
US20050184376A1 (en) * 2004-02-19 2005-08-25 Salmon Peter C. System in package
US20050255722A1 (en) * 2004-05-07 2005-11-17 Salmon Peter C Micro blade assembly
US20060131728A1 (en) * 2004-12-16 2006-06-22 Salmon Peter C Repairable three-dimensional semiconductor subsystem
US20070007983A1 (en) * 2005-01-06 2007-01-11 Salmon Peter C Semiconductor wafer tester
US20070023923A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Flip chip interface including a mixed array of heat bumps and signal bumps
US20070023889A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Copper substrate with feedthroughs and interconnection circuits
US20070023904A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Electro-optic interconnection apparatus and method
US20070108590A1 (en) * 2005-02-18 2007-05-17 Stats Chippac Ltd. Semiconductor package system with thermal die bonding
US20070194456A1 (en) * 2006-02-23 2007-08-23 Charles Cohn Flexible circuit substrate for flip-chip-on-flex applications
US20090193652A1 (en) * 2005-08-01 2009-08-06 Salmon Peter C Scalable subsystem architecture having integrated cooling channels
US20100071936A1 (en) * 2007-04-05 2010-03-25 Dsem Holdings Sdn. Bhd. Thermally-Efficient Metal Core Printed Circuit Board With Selective Electrical And Thermal Connectivity
US8669646B2 (en) * 2011-05-31 2014-03-11 Broadcom Corporation Apparatus and method for grounding an IC package lid for EMI reduction
US9666506B2 (en) * 2014-11-07 2017-05-30 Shinko Electric Industries Co., Ltd. Heat spreader with wiring substrate for reduced thickness

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3875867B2 (en) * 2001-10-15 2007-01-31 新光電気工業株式会社 Method for forming holes in silicon substrate
JP4411123B2 (en) 2004-03-31 2010-02-10 新光電気工業株式会社 Manufacturing method of heat sink
JP4630027B2 (en) * 2004-09-08 2011-02-09 日本シイエムケイ株式会社 Printed wiring board and manufacturing method thereof
JP2008544512A (en) * 2005-06-16 2008-12-04 イムベラ エレクトロニクス オサケユキチュア Circuit board structure and manufacturing method thereof
JP2007123753A (en) * 2005-10-31 2007-05-17 National Institute Of Advanced Industrial & Technology Interposer, semiconductor chip unit, and semiconductor chip laminated module, as well as manufacturing method therefor
JP4962228B2 (en) * 2006-12-26 2012-06-27 株式会社ジェイテクト Multi-layer circuit board and motor drive circuit board
TW200915505A (en) * 2007-09-29 2009-04-01 Kinik Co Packaging carrier with high heat-dissipation and method for manufacturing the same
JPWO2010041630A1 (en) * 2008-10-10 2012-03-08 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP4730426B2 (en) 2008-11-19 2011-07-20 ソニー株式会社 Mounting substrate and semiconductor module
JP5601447B2 (en) * 2010-01-14 2014-10-08 東芝ディーエムエス株式会社 Printed wiring board with built-in semiconductor chip
US10297550B2 (en) * 2010-02-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC architecture with interposer and interconnect structure for bonding dies
JP4669567B1 (en) 2010-02-24 2011-04-13 エンパイア テクノロジー ディベロップメント エルエルシー Wiring board and manufacturing method thereof
US10181454B2 (en) * 2010-03-03 2019-01-15 Ati Technologies Ulc Dummy TSV to improve process uniformity and heat dissipation
KR20130041645A (en) * 2011-10-17 2013-04-25 삼성전기주식회사 Printed circuit board
JP5987314B2 (en) * 2011-12-27 2016-09-07 イビデン株式会社 Printed wiring board
CN104584701B (en) * 2012-06-22 2018-11-13 株式会社尼康 Substrate, shooting unit and filming apparatus
JP5306551B1 (en) * 2012-11-27 2013-10-02 太陽誘電株式会社 Multilayer circuit board
TWI543315B (en) * 2014-04-16 2016-07-21 Viking Tech Corp A carrier and a package structure having the carrier
US9433101B2 (en) * 2014-10-16 2016-08-30 International Business Machines Corporation Substrate via filling
DE102015226712A1 (en) * 2014-12-26 2016-06-30 Omron Automotive Electronics Co., Ltd. circuit board
JP6333215B2 (en) * 2015-05-19 2018-05-30 オムロンオートモーティブエレクトロニクス株式会社 Printed circuit boards, electronic devices
WO2018133069A1 (en) * 2017-01-22 2018-07-26 乐健科技(珠海)有限公司 Igbt module and method for manufacturing same
JP6994342B2 (en) 2017-10-03 2022-01-14 新光電気工業株式会社 Board with built-in electronic components and its manufacturing method
US10643943B2 (en) * 2018-06-25 2020-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure, package-on-package structure and manufacturing method thereof
JP7010314B2 (en) * 2020-02-03 2022-01-26 大日本印刷株式会社 Through Silicon Via Substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963697A (en) * 1988-02-12 1990-10-16 Texas Instruments Incorporated Advanced polymers on metal printed wiring board
US5239448A (en) * 1991-10-28 1993-08-24 International Business Machines Corporation Formulation of multichip modules
US5616888A (en) * 1995-09-29 1997-04-01 Allen-Bradley Company, Inc. Rigid-flex circuit board having a window for an insulated mounting area
US5644327A (en) * 1995-06-07 1997-07-01 David Sarnoff Research Center, Inc. Tessellated electroluminescent display having a multilayer ceramic substrate
US6323439B1 (en) * 1998-09-24 2001-11-27 Ngk Spark Plug Co., Ltd. Metal core multilayer resin wiring board with thin portion and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963697A (en) * 1988-02-12 1990-10-16 Texas Instruments Incorporated Advanced polymers on metal printed wiring board
US5239448A (en) * 1991-10-28 1993-08-24 International Business Machines Corporation Formulation of multichip modules
US5644327A (en) * 1995-06-07 1997-07-01 David Sarnoff Research Center, Inc. Tessellated electroluminescent display having a multilayer ceramic substrate
US5616888A (en) * 1995-09-29 1997-04-01 Allen-Bradley Company, Inc. Rigid-flex circuit board having a window for an insulated mounting area
US6323439B1 (en) * 1998-09-24 2001-11-27 Ngk Spark Plug Co., Ltd. Metal core multilayer resin wiring board with thin portion and method for manufacturing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145414A1 (en) * 2003-01-28 2005-07-07 Cmk Corporation Metal core multilayer printed wiring board
US7087845B2 (en) * 2003-01-28 2006-08-08 Cmk Corporation Metal core multilayer printed wiring board
US20040176924A1 (en) * 2003-03-07 2004-09-09 Salmon Peter C. Apparatus and method for testing electronic systems
US7505862B2 (en) 2003-03-07 2009-03-17 Salmon Technologies, Llc Apparatus and method for testing electronic systems
US20090192753A1 (en) * 2003-03-07 2009-07-30 Salmon Peter C Apparatus and method for testing electronic systems
US20050040513A1 (en) * 2003-08-20 2005-02-24 Salmon Peter C. Copper-faced modules, imprinted copper circuits, and their application to supercomputers
US7408258B2 (en) * 2003-08-20 2008-08-05 Salmon Technologies, Llc Interconnection circuit and electronic module utilizing same
US20050184376A1 (en) * 2004-02-19 2005-08-25 Salmon Peter C. System in package
US20050255722A1 (en) * 2004-05-07 2005-11-17 Salmon Peter C Micro blade assembly
US20060131728A1 (en) * 2004-12-16 2006-06-22 Salmon Peter C Repairable three-dimensional semiconductor subsystem
US7427809B2 (en) 2004-12-16 2008-09-23 Salmon Technologies, Llc Repairable three-dimensional semiconductor subsystem
US20070007983A1 (en) * 2005-01-06 2007-01-11 Salmon Peter C Semiconductor wafer tester
US20100176503A1 (en) * 2005-02-18 2010-07-15 Sangkwon Lee Semiconductor package system with thermal die bonding
US7714451B2 (en) 2005-02-18 2010-05-11 Stats Chippac Ltd. Semiconductor package system with thermal die bonding
US20070108590A1 (en) * 2005-02-18 2007-05-17 Stats Chippac Ltd. Semiconductor package system with thermal die bonding
US8304922B2 (en) 2005-02-18 2012-11-06 Stats Chippac Ltd. Semiconductor package system with thermal die bonding
US20090193652A1 (en) * 2005-08-01 2009-08-06 Salmon Peter C Scalable subsystem architecture having integrated cooling channels
US7586747B2 (en) 2005-08-01 2009-09-08 Salmon Technologies, Llc. Scalable subsystem architecture having integrated cooling channels
US20070023904A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Electro-optic interconnection apparatus and method
US20070023889A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Copper substrate with feedthroughs and interconnection circuits
US20070023923A1 (en) * 2005-08-01 2007-02-01 Salmon Peter C Flip chip interface including a mixed array of heat bumps and signal bumps
US7394028B2 (en) * 2006-02-23 2008-07-01 Agere Systems Inc. Flexible circuit substrate for flip-chip-on-flex applications
US20070194456A1 (en) * 2006-02-23 2007-08-23 Charles Cohn Flexible circuit substrate for flip-chip-on-flex applications
US20100071936A1 (en) * 2007-04-05 2010-03-25 Dsem Holdings Sdn. Bhd. Thermally-Efficient Metal Core Printed Circuit Board With Selective Electrical And Thermal Connectivity
US8669646B2 (en) * 2011-05-31 2014-03-11 Broadcom Corporation Apparatus and method for grounding an IC package lid for EMI reduction
US9666506B2 (en) * 2014-11-07 2017-05-30 Shinko Electric Industries Co., Ltd. Heat spreader with wiring substrate for reduced thickness

Also Published As

Publication number Publication date
JP2003101243A (en) 2003-04-04
JP3817453B2 (en) 2006-09-06
US20030058630A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
US6891732B2 (en) Multilayer circuit board and semiconductor device using the same
JP5224845B2 (en) Semiconductor device manufacturing method and semiconductor device
US7087988B2 (en) Semiconductor packaging apparatus
US7591067B2 (en) Thermally enhanced coreless thin substrate with embedded chip and method for manufacturing the same
US5943216A (en) Apparatus for providing a two-sided, cavity, inverted-mounted component circuit board
KR20070045929A (en) Electronic-part built-in substrate and manufacturing method therefor
KR100825451B1 (en) Semiconductor package and method for producing the same
JP2001217337A (en) Semiconductor device and manufacturing method therefor
JPH0917919A (en) Semiconductor device
US6009620A (en) Method of making a printed circuit board having filled holes
US6759270B2 (en) Semiconductor chip module and method of manufacture of same
JP2008124459A (en) Manufacturing method of circuit board which has solder paste connection part
JP2016063130A (en) Printed wiring board and semiconductor package
JP2813682B2 (en) Substrate for mounting electronic components
JP2784522B2 (en) Electronic component mounting substrate and method of manufacturing the same
US6207354B1 (en) Method of making an organic chip carrier package
JP2005011883A (en) Wiring board, manufacturing method thereof and semiconductor device
KR20150065029A (en) Printed circuit board, manufacturing method thereof and semiconductor package
US6913814B2 (en) Lamination process and structure of high layout density substrate
TWI614855B (en) Semiconductor assembly with electromagnetic shielding and thermally enhanced characteristics and method of making the same
JP2784524B2 (en) Multilayer electronic component mounting substrate and method of manufacturing the same
JP2007318048A (en) Multilayer wiring board and manufacturing method therefor
CN113964093A (en) Packaging structure and preparation method thereof
TW201901889A (en) Wiring substrate and method of manufacturing wiring substrate
JP2784521B2 (en) Multilayer electronic component tower mounting substrate and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHINKO ELECTRIC INDUSTRIES, CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKANO, AKIHITO;IIJIMA, TAKAHIRO;REEL/FRAME:013303/0384

Effective date: 20020904

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12