Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS7033356 B2
Tipo de publicaciónConcesión
Número de solicitudUS 10/657,378
Fecha de publicación25 Abr 2006
Fecha de presentación8 Sep 2003
Fecha de prioridad2 Jul 2002
TarifaPagadas
También publicado comoUS20040049185
Número de publicación10657378, 657378, US 7033356 B2, US 7033356B2, US-B2-7033356, US7033356 B2, US7033356B2
InventoresScott T. Latterell, Douglas S. Wahnschaffe
Cesionario originalGyrus Medical, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US 7033356 B2
Resumen
Electrosurgical forceps are described that have jaws capable of being closed relative to one another, the jaws each supporting electrode structures especially shaped to enhance the ability of the instrument to desiccate/seal or cut tissue structures clamped between the opposed jaws. One of the opposed jaws has a generally arcuate cross-section with a raised central zone and the other electrode has a recess adapted to accommodate the raised central zone of the cooperating electrode. By appropriating the shaping the mating electrode surfaces, tissue structures placed between the jaws are stretched laterally as clamping occurs. The stretching action prevents bunching of the tissue and results in improved desiccation, sealing and cutting. A fine, uninsulated conductor disposed on the one jaw, but insulated from the electrode surface on that jaw, serves as a cutting electrode.
Imágenes(10)
Previous page
Next page
Reclamaciones(16)
1. A bipolar electrosurgical instrument for clamping, sealing and cutting tissue comprising:
(a) a handle;
(b) a body joined to the handle;
(c) a jaw assembly joined to the body and arranged such that manipulation of the handle allows tissue at a surgical site to be clamped between opposed jaws of the jaw assembly, the jaw assembly having length, height and width axes;
(d) a first of said opposed jaws having at least a first sealing electrode, the jaw being formed with a recess formed longitudinally along the length axis, said recess having first and second sidewalls, each side wall having at least a portion extending at an oblique angle to the width axis of the jaw assembly
(e) the other of said opposed jaws having at least a second sealing electrode, the jaw having a cross-section exhibiting a raised central zone adapted to conform to the recess of the first jaw for pinching and tensioning the tissue when at least one of the jaws is made to close relative to the other jaw; and
(f) a cutting electrode supported by one of said opposed jaws.
2. The bipolar electrosurgical instrument of claim 1 wherein the cutting electrode extends in spaced, centered relation along a length dimension of a sealing surface of the second sealing electrode located above and generally parallel to said central zone.
3. The bipolar electrosurgical instrument of claim 1 wherein the cutting electrode comprises a protuberance disposed on and insulated from an outer surface of the second sealing electrode.
4. The bipolar electrosurgical instrument of claim 1 wherein the body is pivotally joined to the handle.
5. The bipolar electrosurgical instrument of claim 1 wherein the body comprises an elongated tube having a lumen extending the length thereof and the handle is mechanically coupled to the first and the other of the opposed jaws through the lumen.
6. The bipolar electrosurgical instrument of claim 1 and further including switching means for selectively applying a sealing voltage between the first and second electrodes or a cutting voltage between the cutting electrode and at least one of the first and the second sealing electrodes.
7. The bipolar electrosurgical instrument of claim 6 wherein the switching means is configured to apply a cutting voltage between the cutting electrode and both said first and second sealing electrodes.
8. The bipolar electrosurgical instrument of claim 1 wherein the first of said opposed jaws includes an insulating strip that extends along a length axis of said first of said opposed jaws in alignment with said cutting electrode supported by the other of said opposed jaws.
9. The bipolar electrosurgical instrument of claim 1 wherein the cutting electrode is supported by an insulating material on one of said opposed jaws.
10. The bipolar electrosurgical instrument of claim 8 wherein the cutting electrode is supported by an insulating material on one of said opposed jaws.
11. The bipolar electrosurgical instrument of claim 8 wherein the insulating strip is a resilient structure.
12. The bipolar electrosurgical instrument of claim 11 wherein the resilient structure is compressed by the cutting electrode when at least one of the jaws is made to close relative to the other jaws to thereby apply an opposing return force to the cutting electrode.
13. The bipolar electrosurgical instrument of claim 1 wherein the cutting electrode is affixed to and electrically insulated from the first sealing member.
14. The bipolar electrosurgical instrument of claim 1 wherein the cutting electrode is affixed to and electrically insulated from the second sealing electrode.
15. The bipolar electrosurgical instrument of claim 1 wherein the sidewalls are generally planar.
16. The bipolar electrosurgical instrument of claim 1 wherein the sidewalls are arcuate.
Descripción
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of complete application Ser. No. 10/188,207, filed Jul. 2, 2002 now abandoned and is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

I. Field of the Invention

This invention relates generally to electrosurgical instruments, and more particularly to an improved forceps whose jaws are especially designed to facilitate selective cutting, desiccation and sealing of tissue structures without the need for an instrument exchange.

II. Discussion of the Prior Art

The prior art is replete with electrosurgical forceps for use in open and laparoscopic procedures to cut through tissue structures, desiccate the tissue and any blood vessels to stem bleeding and for creating a fluid-tight seal between tissue structures along the margins of a cut. The Stern et al. U.S. Pat. No. 5,443,463 describes a coagulating forceps for use in open procedures in which the cooperating faces of its opposed jaws are generally planar and support a plurality of electrodes on one jaw and temperature sensing elements on the opposed jaw. Cutting of tissue is by way of a sharp blade that is actuated following electrocoagulation on opposed sides of the cut line.

The Fineburg U.S. Pat. No. 5,458,598 describes an endoscopic cutting and coagulating device, which, like the Stern '463 device has opposed jaw members whose opposed jaws are generally identical, each having a U-shape defining a central slot and with generally planar, albeit serrated, mating faces. A mechanical, sharpened blade, when actuated, passes longitudinally through the central slot following coagulation on each side of the cut.

The Wrublewski et al. U.S. Pat. No. 6,174,309 describes an electrosurgical instrument designed to seal and cut tissue. Embodiments for open and endoscopic procedures are described. In each case, the mating faces of the forceps jaws are such that one has raised electrode surfaces straddling a resiliently mounted cutting blade and the other has a recess for receiving the raised electrode surface therein when the jaws are closed and an intermediate groove in which the resiliently mounted cutting blade may enter. Coagulation takes place when tissue is squeezed between the jaws and a suitable voltage is applied between the raised electrodes on one jaw and on the opposite jaw. Cutting takes place when the voltage is applied between the cutting blade and the jaw having the recesses.

The Rydell et al. U.S. Pat. No. 5,445,638 describes a device somewhat similar to the Fineburg et al. '598 patent described above. It, too, has jaws having planar mating surfaces.

In each of the above-described embodiments, tissue to be coagulated, desiccated is clamped between the jaws of the device and a voltage is applied to the jaws to cause an RF current to flow through the captured tissue to heat and vaporize the moisture in the tissue. Cutting then takes place as a separate step, either by applying a cut voltage to a movable, metal blade member relative to a cooperating jaw or by effecting movement of a sharp blade through the previously desiccated tissue.

SUMMARY OF THE INVENTION

We have found that significantly improved cutting, sealing or desiccation can be achieved, when compared to prior art devices of which we are aware, by providing a forceps with non-planar mating jaw surfaces. By providing one jaw with a first electrode surface having a raised male profile and the opposite jaw with a correspondingly shaped second electrode surface defining a female recess, as tissue is being clamped therebetween, it is placed under tension and stretched slightly, which allows it to be more readily and uniformly heated when a voltage is applied between the electrodes on the opposed jaws. The tension also aids in cutting in that the shaped electrodes improves movement of the cutting electrode through tissue. As a further feature of our invention, a cutting electrode is supported on the electrode surface on one of the jaw, but is electrically isolated from that electrode surface. Switching means are then provided for applying a desiccating or sealing voltage between the first and second electrode surfaces or a cutting voltage between the cutting electrode and the first and second electrode surfaces.

Other features and advantages of the invention will become apparent from the following detailed description of a preferred embodiment, especially when considered in conjunction with the accompanying drawings in which like numerals in the several views refer to corresponding parts.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side elevation view of an electrosurgical cutting and sealing forceps designed for use in open procedures;

FIG. 2 is a cross-sectional view taken along the line 22 in FIG. 1;

FIG. 3 is a cross-sectional view taken along the line 33 in FIG. 1;

FIG. 4 is a side elevational view of an electrosurgical forceps designed for use in laparoscopic procedures and having an electrode structure in accordance with the present invention;

FIG. 5 is a cross-sectional view taken along the line 55 in FIG. 4;

FIG. 6 is a partial view of the forceps jaws having an alternative placement for a cutting electrode;

FIG. 7 is a partial side elevational view of a bipolar cutting, desiccating and sealing forceps jaw assembly fabricated in accordance with a further embodiment of the invention;

FIG. 8 is a cross-sectional view taken along the line 88 in FIG. 7;

FIG. 9 is a cross-sectional view taken through the jaws of a still further embodiment in which an anvil of a compressible material is included;

FIG. 10 is a cross-sectional view like that of FIG. 9, but with the jaws slightly parted;

FIG. 11 is a cross-sectional view taken through the jaws of yet another embodiment of the invention; and

FIG. 12 is an electrical wiring diagram showing one way of switching a radio frequency electrosurgical generator to the electrodes of the forceps instruments of FIGS. 1 and 4.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, there is indicated generally by numeral 10 a bipolar electrosurgical forceps that is adapted to clamp, seal, desiccate and cut tissue structures in the course of an open surgical procedure, the forceps 10 includes a first forceps half 12 comprising a handle member and a second body or forceps half 14 that are electrically isolated from each other and pivotally joined by a fastener 16. The forceps halves 12 and 14 are preferably fabricated from a metal or plastic and have finger-receiving loops 18 and 20 at a proximal end thereof and jaws 22 and 24 at a distal end thereof.

Suitably fastened to a planar face 26 of the jaw 22 is a first conductive sealing electrode 28. Electrode 28 may be integral to the jaw 22. As can best be seen in the cross-sectional view of FIG. 2, the jaw/electrode 28 has obliquely extending sidewalls relative to a width axis of said jaw forming recess 30 whose arcuate sides converge to form a central, longitudinally extending notch 32 of rectangular cross-section. The exposed surfaces of the tapered arcuate recess and the notch are uninsulated.

The jaw 24 of the forceps half 14 has an electrode 34 either fastened to jaw surface 36 or integral with the jaw 24. As can best be seen from the cross-sectional view of FIG. 3, the electrode 34 may have a generally arcuate or beveled cross-section with obliquely extending sidewalls forming a raised dome 36 in a central zone that is adapted to fit within and conform to the recess 30 of the electrode 28. A cut electrode 42 is mounted to and extends along the length of the electrode 34, and is isolated from electrode 34 by insulating plastic or ceramic 40. As can be seen from FIG. 3, the strip 40 is generally centrally disposed at the crown of the arcuate dome 36.

Referring once more to FIG. 1, a cutting electrode 42 may comprise a thin, rigid, isolated conductor disposed on the crown of dome 36 or, alternatively, may be a fine wire that is affixed at its distal end 44 to an end surface of the insulating strip 40. The other end 46 of the wire cut electrode 42 is set in an insulating plastic 48 on the jaw 24. Thus, while the cut electrode 42 runs closely parallel to the arcuate electrode 34 (typically within about 0.025 and 0.050 inch of electrode 34), it remains electrically insulated therefrom along its entire length. While a deposited conductor or a fine wire cut electrode has been found to function well, it is to be understood that the cut electrode can be otherwise configured so as to cooperate with the jaw members in the manner described.

Routed on or through the forceps half 18 is a three conductor cord 48 having terminals 50, 52 and 54 adapted to be plugged into jacks on an electrosurgical generator or a switch box associated therewith. A first of the three wires in the cord 48 connects to the electrode 28 mounted on the jaw 22. A second conductor in the cord 48 exits the scissors half 12 proximate the pivot fastener 16 and connects to the electrode 34. The third wire in the cord 48 connects to the cut electrode 42.

In operation, tissue to be sealed and desiccated is positioned between the open jaws 24 and 26 of the forceps instrument 10 and when the forceps halves 12 and 14 are brought together, the tissue becomes squeezed between the arcuate, domed, male electrode 34 affixed to the jaw 24 and the inclined walls or electrode 38 defining the recess 30. Squeezing the finger loops 18 and 20 toward one another results in the interposed tissue being squeezed and stretched by the wiping action between the mating electrode surfaces as the two are brought together.

By applying a predetermined voltage, via the cord 48, between the electrodes 28 and 34, tissue cells are desiccated and, in case the tissue structure is tubular, the walls thereof become sealed together. The notch 32 in the electrode 28 receives the cut electrode 42 therein, allowing the electrodes 28 and 34 to close tightly on the tissue structure to be electrocoagulated.

If it is desired to maintain the tissue structure clamped between the mating electrode surfaces for a time without the need for manually gripping the finger loops 18 and 20, there is provided a tab 51 on the forceps half 14 having a plurality of parallel, saw-tooth, detent grooves 53 formed therein. A cooperating tab 55 with a barb 56 on its undersurface is formed on the forceps half 12. As the forceps handles are brought together, the barb 56 can be made to fall into one of the plurality of saw-tooth notches 53 to thereby latch the forceps jaws in their closed disposition.

When it is desired to sever the tissue structure, a second predetermined voltage is applied, via the cord 48, between the cut electrode 42 and the electrodes 28 and 34. It will be recalled that the cut wire 42 and the electrode 34 are insulated from one another by virtue of the insulating strip 40 disposed in the groove 38 of the electrode 34. By placing the lower jaw 24 beneath the tissue structure to be cut, and draping it over the surface of electrode 34 so that the tissue is brought into contact with the cut electrode 42 and jaw 34 as a predetermined voltage is applied, the tissue will be severed. Again, the shape of the jaws aids transection of tissue in that the tensioning better enables tissue to glide over the jaw/electrode.

A second embodiment of the invention is illustrated in FIG. 4. Here, the forceps instrument is designed for a laparoscopic procedure. The forceps of FIG. 4 includes a handle member 60 that supports an elongated barrel 62 having forceps jaws at a distal end thereof, which are indicated generally by numeral 66. The handle and mechanism for opening and closing the forceps jaws 66 relative to one another may be like that described in the Rydell U.S. Pat. No. 5,462,546, the contents of which are hereby incorporated by reference as if fully set forth herein. As is described in that patent, by manipulating the scissors-like handle 60, a push rod 68 coupled to the jaws 66 by links 70 causes the jaws to open and close relative to one another. The first jaw 72 preferably comprises a rigid metal member having a concave recess 74 and a longitudinal notch 75, as shown in the cross-sectional view of FIG. 5, which is taken along the line 55 in FIG. 4. The jaws may be straight and aligned with the barrel 62 or they may be curved as in the Rydell '546 patent.

The other jaw 76 of the forceps comprises a metal electrode having a generally arcuate cross-sectional shape with a raised central dome that is adapted to fit within the concave recess 74 of the jaw member 72 when the jaws 72 and 76 are made to close relative to one another. The jaw 76 also supports a fine, narrow, conductive cut electrode 78 that remains electrically insulated from a metal jaw 76 in that its proximal and distal ends are embedded in an insulating strip 80 that is fitted into a groove 82 that extends longitudinally and is formed inwardly of the crest of the arcuate surface of the jaw 76.

It can be seen that when the handle member 61 is squeezed, the jaws 66 close relative to one another while the cut electrode 78 remains electrically isolated from conductive surfaces of the jaw 76. As with the embodiment of FIG. 1, because of the shape profile of the electrode surfaces of the jaw members 72 and 76, when tissue is disposed between the jaws and the handle member 61 is squeezed, the tissue will be draped over the convex arcuate profile of the jaw electrode 76 and stretched taut by wiping action of the concave surface of jaw 72 as the two come together. Now, by applying a predetermined voltage to appropriate ones of the jacks 84, 86 or 88, a current will be made to flow between the jaws 72 and 76 through the tissue captured therebetween to effect desiccation and/or sealing of the tissue structure. When it is desired to effect cutting of the tissue, a different voltage is applied between the cut electrode 78 and the jaw electrodes 76 and 72 to effectively cut through the tissue. It is not required that the jaws 72 and 76 be closed relative to one another during a cutting operation. By placing the lower jaw 76 beneath the tissue structure to be cut and draping it over the cutting electrode 78 so that the tissue engages both the cutting electrode and the metal jaw 76, upon a slight lifting motion on the handle, application of a cutting voltage between the two will result in severing of the tissue.

Referring next to FIG. 6, there is shown a partial view of the forceps jaw portion of the laparoscopic instrument illustrated in FIG. 4 but with the cutting electrode disposed on an exterior surface of a jaw rather than its mating surface. In this arrangement, the jaw assembly 66′ comprises a first jaw member 72′ and a second jaw member 76′ both being formed from a conductive material, such as stainless steel, Again, the blade assembly 66′ may be rectilinear or may have a curved profile. The mating faces of the jaws are preferably contoured in the fashion indicated in FIG. 5 to provide a stretching or tensioning of tissue structures as it is being pinched between the mating jaw faces. In the embodiment of FIG. 6, however, the cutting electrode 78′ is repositioned so as to be located on an outer surface of the jaw member 76′ with a layer of insulating ceramic effectively electrically isolating the cut electrode 78′ from the metal surface comprising the jaw member 76′. In the embodiment of FIG. 6, the cut electrode 78′ is a small bump or protuberance rather than a length of wire as in the embodiment of FIG. 5.

In the arrangements of FIGS. 4 and 6, an electrical cord 83, having three insulated conductors extends through the handle 60 and into the lumen of the tubular barrel 62 so as to electrically connect, individually, to the jaws 72 and 76 and to the cut electrode 78. Connector pins 84, 86 and 88 permit the forceps instrument to be connected to a power source such as a conventional electrosurgical generator.

FIG. 7 shows an alternative jaw construction that is attachable to the handle mechanism of a laparoscopic forceps instrument like that of FIG. 4. Manipulation of the handle member 61 causes the jaws 89 and 90 to open and close in the manner earlier described to clamp and release tissue structures therebetween. The serrated teeth 91 on the opposed jaw surfaces allow better gripping of tissue therebetween.

Referring to the cross-sectional view of FIG. 8, the lower jaw 89 is raised and includes planar sidewalls that extend obliquely to the width axis of jaw 89 leading to a longitudinally extending slot 92. Disposed in this slot is an insulator 93, preferably of ceramic that supports a metal cutting electrode element 94. A longitudinal cavity 95 runs along the inner surface of the recessed jaw 90 and it is lined with a thin layer of insulating material 96. By providing this insulated surface, the top and bottom jaws exhibit generally equal tissue-contact areas important to providing effective tissue sealing. Planar sidewalls extend obliquely to the width axis of the jaw 90 to conform to the raised structure of jaw 89 and lead to the cavity 95.

Electrical connection to the cutting element 94 and to the jaw electrodes is provided by a cord that extends through the handle and is adapted to be connected to an electrosurgical generator in the manner previously described.

When the forceps jaws are closed about tissue to be sealed, because of the profile of the mating jaw surfaces, the tissue will be stretched slightly. When an appropriate RF voltage is applied between the closed jaws 89 and 90, an electrical current will pass through the tissue captured between the jaws to effect desiccation/sealing. If it is desired severe the tissue, a RF voltage is applied between the cutting electrode element 94 and the electrode comprising the jaw 89 and/or 90.

Turning next to FIGS. 9 and 10, there is shown a modification that may be made to the blade structure of FIGS. 7 and 8. Here, the insulating layer 96 is replaced with a resilient strip 98 of an insulating material. A slight recess or channel 99 runs along the exposed edge of the strip. The resilient strip 98, which may be one of a number of elastomers or a spring having an insulating coating, is bonded within a hollowed-out cavity formed in the recessed jaw 90 and runs parallel to the cutting electrode 94.

FIG. 9 shows a cross-section through the jaw assembly when the jaws are squeezed together. It can be seen that the exposed cutting electrode 94 compresses the resilient insulating material 98 which, in turn, acts to push a tissue structure being severed against the cutting electrode. In the cross-section of FIG. 10, the raised jaw 89 and the recessed jaw 90 are slightly open relative to one another, showing the resilient material 98 in its undistorted condition.

In use, when the forceps jaws are clamped about a tissue structure to be cut, as the requisite voltages applied and cutting begins, the elastic properties of the resilient material supplies a force urging the tissue against the cutting electrode 94 to maintain a more uniform and consistent engagement of the tissue being severed with the cutting electrode.

FIG. 11 is included to illustrate that the cutting electrode element 94 and the ceramic cutting element holder 93 can be affixed to the recessed top jaw 90 instead of to the raised bottom jaw 89, as in the embodiments of FIGS. 7–10.

FIG. 12 illustrates a switching arrangement for selectively coupling the outputs from an electrosurgical generator 100 to the three separate electrodes on the instruments of FIGS. 1, 4 and 611 to selectively desiccate/seal tissue structures or to sever such tissue structures. When the double pole, double throw switch 102 is in the position illustrated in FIG. 12, the RF voltage from the generator will be applied between the electrodes 28 and 34 in the embodiment of FIG. 1 or electrodes 72/72′ and 76/76′ in the embodiment of FIGS. 4 and 6 or electrodes 8990 in the embodiments of FIGS. 7–11. When the switch 102 is thrown to its alternate position, a voltage for cutting tissue will be applied between the cut electrode 42 (FIG. 1) or 78 (FIG. 4) or the protuberance 78′ (FIG. 6) or to the cut electrode 94 in the embodiments of FIGS. 7–11, and the electrodes 34 (FIG. 1), 76/76′ (FIG. 4 or 6) or 89 (FIGS. 7–11). It may prove expedient to connect a capacitor, C, between the conductors leading to the coag electrodes 28 and 34 in the embodiment of FIG. 1 or electrodes 72 and 76 in the embodiment of FIG. 4 or 89 and 90 in the embodiments of FIGS. 7–11. The capacitor, preferably having a capacitance of about 2.2 nF, functions to create an electrical link between the coag electrodes when the cutting electrode is energized. However, when the coagulating electrodes are energized, a sufficient voltage difference is generated between the coagulating electrodes to effect sealing/coagulation. The switch may take any number of forms and it, along with capacitor, C, may be conveniently located on the instrument itself, on the electrosurgical generator or on a foot switch module often used in electrosurgical systems.

With the jaw assembly 66′ on the laparoscopic instrument shown in FIG. 4 in place of the jaw assembly 66, sealing or desiccation takes place by closing the mating faces of the jaws 72′ and 76′ about the tissue and then applying a voltage between the two jaws causing a current flow through the captured tissue. When cutting, the voltage is preferably applied between the protuberance 78′ and the jaw members 76′. When the tissue to be severed is draped over the cut electrode 78′, it will also contact the jaw members 76′ functioning as a return electrode. Then by gently lifting the tissue while drawing the electrode 78′ thereacross, cutting occurs along a line traversed by the electrodes 78′.

This invention has been described herein in considerable detail in order to comply with the patent statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment and operating procedures, can be accomplished without departing from the scope of the invention itself

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US420901714 Mar 197524 Jun 1980Shaw Robert FSurgical instrument having self-regulating radiant heating of its cutting edge and method of using the same
US442700618 Ene 198224 Ene 1984Medical Research Associates, Ltd. #1Electrosurgical instruments
US449223117 Sep 19828 Ene 1985Auth David CNon-sticking electrocautery system and forceps
US465521623 Jul 19857 Abr 1987Alfred TischerCombination instrument for laparoscopical tube sterilization
US519054117 Oct 19902 Mar 1993Boston Scientific CorporationSurgical instrument and method
US526978027 Sep 199114 Dic 1993Delma Elektro- Und Medizinische Apparatebau Gesellschaft MbhElectro-surgical devices
US53242891 May 199228 Jun 1994Hemostatic Surgery CorporationHemostatic bi-polar electrosurgical cutting apparatus and methods of use
US544346316 Ago 199322 Ago 1995Vesta Medical, Inc.Coagulating forceps
US544563816 Jul 199329 Ago 1995Everest Medical CorporationBipolar coagulation and cutting forceps
US54585982 Dic 199317 Oct 1995Cabot Technology CorporationCutting and coagulating forceps
US55734249 Feb 199512 Nov 1996Everest Medical CorporationApparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator
US557353523 Sep 199412 Nov 1996United States Surgical CorporationBipolar surgical instrument for coagulation and cutting
US55993503 Abr 19954 Feb 1997Ethicon Endo-Surgery, Inc.Electrosurgical clamping device with coagulation feedback
US57358497 Nov 19967 Abr 1998Everest Medical CorporationEndoscopic forceps with thumb-slide lock release mechanism
US6174309 *11 Feb 199916 Ene 2001Medical Scientific, Inc.Seal & cut electrosurgical instrument
US618700312 Nov 199713 Feb 2001Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US62704972 Jun 19997 Ago 2001Olympus Optical Co., Ltd.High-frequency treatment apparatus having control mechanism for incising tissue after completion of coagulation by high-frequency treatment tool
US627388721 Ene 199914 Ago 2001Olympus Optical Co., Ltd.High-frequency treatment tool
US633486016 Ago 20001 Ene 2002Karl Storz Gmbh & Co. KgBipolar medical instrument
US6736813 *20 Jun 200118 May 2004Olympus Optical Co., Ltd.High-frequency treatment tool
US690846320 Abr 200121 Jun 2005The Trustees Of Columbia University In The City Of New YorkElectrothermal device for coagulating, sealing and cutting tissue during surgery
US2002019852516 Ago 200226 Dic 2002Schulze Dale R.Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US2003013974131 Dic 200224 Jul 2003Gyrus Medical LimitedSurgical instrument
US200400063402 Jul 20028 Ene 2004Gyrus Medical, Inc.Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue
DE4242143A114 Dic 199216 Jun 1994Delma Elektro Med AppMulti-function HF surgical instrument - has protective sleeve enclosing coagulation and tissue separation probes, rinsing tube and suction tube
EP0797959A127 Mar 19971 Oct 1997Ethicon Endo-Surgery, Inc.Improved bipolar scissors
EP1287788A121 Ago 20025 Mar 2003Gyrus Medical LimitedElectrosurgical system
WO1997005829A17 Ago 199620 Feb 1997Cabot Technology CorporationCutting and coagulating forceps
Otras citas
Referencia
1US 5,961,551, 10/1999, Chasak et al. (withdrawn)
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US764527722 Dic 200512 Ene 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US765149429 Ene 200326 Ene 2010Salient Surgical Technologies, Inc.Fluid-assisted medical device
US765500718 Dic 20062 Feb 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US768680410 Ene 200630 Mar 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US768682721 Oct 200530 Mar 2010Covidien AgMagnetic closure mechanism for hemostat
US770873519 Jul 20054 May 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US77226078 Nov 200625 May 2010Covidien AgIn-line vessel sealer and divider
US77272324 Feb 20051 Jun 2010Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US77317178 Ago 20068 Jun 2010Covidien AgSystem and method for controlling RF output during tissue sealing
US774461518 Jul 200629 Jun 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US775390929 Abr 200413 Jul 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US77669109 Nov 20063 Ago 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US7771424 *16 Mar 200510 Ago 2010Starion InstrumentsIntegrated metalized ceramic heating element for use in a tissue cutting and sealing device
US77714256 Feb 200610 Ago 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US777603613 Mar 200317 Ago 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US77760377 Jul 200617 Ago 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US778987829 Sep 20067 Sep 2010Covidien AgIn-line vessel sealer and divider
US779902826 Sep 200821 Sep 2010Covidien AgArticulating bipolar electrosurgical instrument
US781128214 Nov 200512 Oct 2010Salient Surgical Technologies, Inc.Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US78112838 Oct 200412 Oct 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US781563422 Dic 200319 Oct 2010Salient Surgical Technologies, Inc.Fluid delivery system and controller for electrosurgical devices
US781987229 Sep 200626 Oct 2010Covidien AgFlexible endoscopic catheter with ligasure
US782879827 Mar 20089 Nov 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US783768513 Jul 200523 Nov 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US78461585 May 20067 Dic 2010Covidien AgApparatus and method for electrode thermosurgery
US784616129 Sep 20067 Dic 2010Covidien AgInsulating boot for electrosurgical forceps
US785781218 Dic 200628 Dic 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US787785219 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US787785319 Sep 20081 Feb 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US78790358 Nov 20061 Feb 2011Covidien AgInsulating boot for electrosurgical forceps
US788753517 Ago 200415 Feb 2011Covidien AgVessel sealing wave jaw
US788753619 Ago 200915 Feb 2011Covidien AgVessel sealing instrument
US789687812 Mar 20091 Mar 2011Coviden AgVessel sealing instrument
US790982317 Ene 200622 Mar 2011Covidien AgOpen vessel sealing instrument
US791884825 Mar 20055 Abr 2011Maquet Cardiovascular, LlcTissue welding and cutting apparatus and method
US792271812 Oct 200612 Abr 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US792295328 Sep 200612 Abr 2011Covidien AgMethod for manufacturing an end effector assembly
US793164914 Feb 200726 Abr 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US793505214 Feb 20073 May 2011Covidien AgForceps with spring loaded end effector assembly
US794704119 Ago 200924 May 2011Covidien AgVessel sealing instrument
US79511486 Feb 200431 May 2011Salient Surgical Technologies, Inc.Electrosurgical device having a tissue reduction sensor
US795114917 Oct 200631 May 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US795115022 Feb 201031 May 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US795533221 Sep 20057 Jun 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US796396510 May 200721 Jun 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US799814030 Mar 200416 Ago 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US80168279 Oct 200813 Sep 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US80340521 Nov 201011 Oct 2011Covidien AgApparatus and method for electrode thermosurgery
US803867022 Dic 200518 Oct 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US804807011 Feb 20031 Nov 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices, systems and methods
US807074625 May 20076 Dic 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US807555730 Oct 200713 Dic 2011Salient Surgical Technologies, Inc.Fluid-assisted medical devices and methods
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US812374329 Jul 200828 Feb 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US812862430 May 20066 Mar 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US81424733 Oct 200827 Mar 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US814748917 Feb 20113 Abr 2012Covidien AgOpen vessel sealing instrument
US81571534 Feb 201117 Abr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 Sep 200824 Abr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US81629405 Sep 200724 Abr 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US816297315 Ago 200824 Abr 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US816718518 Nov 20101 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 Feb 20118 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Ene 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 Oct 200929 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819243321 Ago 20075 Jun 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US819679513 Ago 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 Feb 201112 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US819747225 Mar 200512 Jun 2012Maquet Cardiovascular, LlcTissue welding and cutting apparatus and method
US819747910 Dic 200812 Jun 2012Tyco Healthcare Group LpVessel sealer and divider
US819763315 Mar 201112 Jun 2012Covidien AgMethod for manufacturing an end effector assembly
US82111057 May 20073 Jul 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US822141612 Sep 200817 Jul 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US823599223 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US823599324 Sep 20087 Ago 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US823602523 Sep 20087 Ago 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US82412825 Sep 200814 Ago 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US824128317 Sep 200814 Ago 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US82412845 Ene 200914 Ago 2012Covidien AgVessel sealer and divider with non-conductive stop members
US825199623 Sep 200828 Ago 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US82573527 Sep 20104 Sep 2012Covidien AgBipolar forceps having monopolar extension
US825738715 Ago 20084 Sep 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US82679354 Abr 200718 Sep 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US826793623 Sep 200818 Sep 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US827744718 Nov 20092 Oct 2012Covidien AgSingle action tissue sealer
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US829822816 Sep 200830 Oct 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US8298231 *26 Ene 200930 Oct 2012Tyco Healthcare Group LpBipolar scissors for adenoid and tonsil removal
US829823224 Mar 200930 Oct 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US830358215 Sep 20086 Nov 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US830358610 Feb 20096 Nov 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US831778728 Ago 200827 Nov 2012Covidien LpTissue fusion jaw angle improvement
US83337654 Jun 201218 Dic 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US834813129 Sep 20068 Ene 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US834894829 Jul 20108 Ene 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US836029729 Sep 200629 Ene 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836106812 Oct 201029 Ene 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
US836107128 Ago 200829 Ene 2013Covidien AgVessel sealing forceps with disposable electrodes
US836107219 Nov 201029 Ene 2013Covidien AgInsulating boot for electrosurgical forceps
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US836670927 Dic 20115 Feb 2013Covidien AgArticulating bipolar electrosurgical instrument
US838275426 Ene 200926 Feb 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US839409426 Feb 200912 Mar 2013Gyrus Medical LimitedSurgical instrument
US839409512 Ene 201112 Mar 2013Covidien AgInsulating boot for electrosurgical forceps
US839409611 Abr 201112 Mar 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US841457719 Nov 20099 Abr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US841972726 Mar 201016 Abr 2013Aesculap AgImpedance mediated power delivery for electrosurgery
US84247404 Nov 201023 Abr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US842550430 Nov 201123 Abr 2013Covidien LpRadiofrequency fusion of cardiac tissue
US84546024 May 20124 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US845952010 Ene 200711 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 Feb 200811 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Ene 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US846995621 Jul 200825 Jun 2013Covidien LpVariable resistor jaw
US84699577 Oct 200825 Jun 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US847545528 Oct 20032 Jul 2013Medtronic Advanced Energy LlcFluid-assisted electrosurgical scissors and methods
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US848610720 Oct 200816 Jul 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US849665616 Ene 200930 Jul 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US849999312 Jun 20126 Ago 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851724314 Feb 201127 Ago 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US852389810 Ago 20123 Sep 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US853531225 Sep 200817 Sep 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US854012811 Ene 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854071111 Jul 200724 Sep 2013Covidien AgVessel sealer and divider
US85510881 Abr 20098 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US855109130 Mar 20118 Oct 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US85625981 Abr 200922 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US856841131 Mar 200929 Oct 2013Applied Medical Resources CorporationElectrosurgical system
US85684447 Mar 201229 Oct 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US85798941 Abr 200912 Nov 2013Applied Medical Resources CorporationElectrosurgical system
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US859150616 Oct 201226 Nov 2013Covidien AgVessel sealing system
US859729631 Ago 20123 Dic 2013Covidien AgBipolar forceps having monopolar extension
US859729729 Ago 20063 Dic 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US86022871 Jun 201210 Dic 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dic 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dic 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 Feb 201231 Dic 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Ene 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862300313 Jul 20127 Ene 2014Maquet Cardiovascular LlcApparatus and method for regulating tissue welder jaws
US862301723 Jul 20097 Ene 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US86232769 Feb 20097 Ene 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US86361873 Feb 201128 Ene 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Ene 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US86367619 Oct 200828 Ene 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US864171315 Sep 20104 Feb 2014Covidien AgFlexible endoscopic catheter with ligasure
US864734127 Oct 200611 Feb 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US865212010 Ene 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Ene 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US866868919 Abr 201011 Mar 2014Covidien AgIn-line vessel sealer and divider
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US867911423 Abr 201025 Mar 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US868425327 May 20111 Abr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US86966679 Ago 201215 Abr 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US873444319 Sep 200827 May 2014Covidien LpVessel sealer and divider for large tissue structures
US874090120 Ene 20103 Jun 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US87465292 Dic 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US876474828 Ene 20091 Jul 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878441728 Ago 200822 Jul 2014Covidien LpTissue fusion jaw angle improvement
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879527428 Ago 20085 Ago 2014Covidien LpTissue fusion jaw angle improvement
US88008389 Feb 201212 Ago 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880832519 Nov 201219 Ago 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882799219 Oct 20109 Sep 2014Aesculap AgImpedance mediated control of power delivery for electrosurgery
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US88522288 Feb 20127 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US8858547 *22 Jul 201014 Oct 2014Intuitive Surgical Operations, Inc.Cut and seal instrument
US88585544 Jun 201314 Oct 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US887086723 Mar 201128 Oct 2014Aesculap AgArticulable electrosurgical instrument with a stabilizable articulation actuator
US888276624 Ene 200611 Nov 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US888877028 Abr 201118 Nov 2014Aesculap AgApparatus for tissue cauterization
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889463812 Jun 201225 Nov 2014Maquet Cardiovascular LlcTissue welding and cutting apparatus and method
US889888826 Ene 20122 Dic 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US88994655 Mar 20132 Dic 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US891147114 Sep 201216 Dic 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US89159101 Abr 200923 Dic 2014Applied Medical Resources CorporationElectrosurgical system
US89257883 Mar 20146 Ene 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 May 201113 Ene 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US893997327 Nov 201327 Ene 2015Covidien AgSingle action tissue sealer
US894512510 Sep 20103 Feb 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US894512627 Nov 20133 Feb 2015Covidien AgSingle action tissue sealer
US894512723 Ene 20143 Feb 2015Covidien AgSingle action tissue sealer
US89615036 Ene 201424 Feb 2015Maquet Cardiovascular LlcApparatus and method for regulating tissue welder jaws
US896831425 Sep 20083 Mar 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 Abr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897984511 Ago 201017 Mar 2015Erbe Elektromedizin GmbhElectrosurgical forceps
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Abr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 Ene 201314 Abr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US902304323 Sep 20085 May 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US902847425 Mar 201012 May 2015Covidien LpMicrowave surface coagulator with retractable blade
US90284938 Mar 201212 May 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903969129 Jun 201226 May 2015Covidien LpSurgical forceps
US903969420 Oct 201126 May 2015Just Right Surgical, LlcRF generator system for surgical vessel sealing
US9039732 *11 Jul 201126 May 2015Covidien LpSurgical forceps
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907252429 Jun 20127 Jul 2015Covidien LpSurgical forceps
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US90846061 Jun 201221 Jul 2015Megadyne Medical Products, Inc.Electrosurgical scissors
US909533919 May 20144 Ago 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US909534718 Sep 20084 Ago 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US910135815 Jun 201211 Ago 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Ago 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US910767219 Jul 200618 Ago 2015Covidien AgVessel sealing forceps with disposable electrodes
US911387424 Jun 201425 Ago 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US91138989 Sep 201125 Ago 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390329 Oct 201225 Ago 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US911390520 Jun 201325 Ago 2015Covidien LpVariable resistor jaw
US911394022 Feb 201225 Ago 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US91444556 Jun 201129 Sep 2015Just Right Surgical, LlcLow power tissue sealing device and method
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US914932325 Ene 20106 Oct 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US917369818 May 20113 Nov 2015Aesculap AgElectrosurgical tissue sealing augmented with a seal-enhancing composition
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US919866226 Jun 20121 Dic 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US91987172 Feb 20151 Dic 2015Covidien AgSingle action tissue sealer
US920487814 Ago 20148 Dic 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dic 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dic 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dic 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Ene 201515 Dic 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921601923 Sep 201122 Dic 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dic 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dic 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Ene 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Ene 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US923789127 May 201119 Ene 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Ene 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US924798821 Jul 20152 Feb 2016Covidien LpVariable resistor jaw
US92655522 Dic 201423 Feb 2016Covidien LpMethod of manufacturing electrosurgical seal plates
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US927796225 Mar 20118 Mar 2016Aesculap AgImpedance mediated control of power delivery for electrosurgery
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Ago 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dic 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921217 Sep 201022 Mar 2016Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US930175228 Mar 20125 Abr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Abr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US93017599 Feb 20125 Abr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 Jun 201212 Abr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 Mar 201312 Abr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 Oct 201312 Abr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Abr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Abr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Abr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Abr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Ago 201526 Abr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Abr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Abr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93205636 Feb 201226 Abr 2016Applied Medical Resources CorporationElectrosurgical instruments and connections thereto
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US933932315 May 200817 May 2016Aesculap AgElectrocautery method and apparatus
US933932728 Jun 201217 May 2016Aesculap AgElectrosurgical tissue dissecting device
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US934553514 Oct 201424 May 2016Covidien LpApparatus, system and method for performing an electrosurgical procedure
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US935802826 May 20157 Jun 2016Covidien LpSurgical forceps
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 Oct 201221 Jun 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 Mar 201321 Jun 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US937525425 Sep 200828 Jun 2016Covidien LpSeal and separate algorithm
US93752705 Nov 201328 Jun 2016Covidien AgVessel sealing system
US93752715 Nov 201328 Jun 2016Covidien AgVessel sealing system
US938698327 May 201112 Jul 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 Feb 201312 Jul 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 Mar 201212 Jul 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 May 201319 Jul 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 Mar 201326 Jul 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 Jul 20122 Ago 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940267927 May 20092 Ago 2016Maquet Cardiovascular LlcSurgical instrument and method
US940860428 Feb 20149 Ago 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 Jun 20129 Ago 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 Mar 201216 Ago 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 Mar 20126 Sep 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 Dic 201213 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 Ago 201320 Sep 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 Ago 201327 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US946306024 Jun 201511 Oct 2016Megadyne Medical Products, Inc.Electrosurgical scissors
US94630675 Nov 201311 Oct 2016Covidien AgVessel sealing system
US94684381 Mar 201318 Oct 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 Mar 20121 Nov 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 May 20138 Nov 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 Mar 201315 Nov 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949222511 Feb 201415 Nov 2016Covidien AgVessel sealer and divider for use with small trocars and cannulas
US949821930 Jun 201522 Nov 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 Ago 20136 Dic 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 Oct 20146 Dic 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951089626 May 20156 Dic 2016Covidien LpSurgical forceps
US951706328 Mar 201213 Dic 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 Ago 201313 Dic 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 Mar 201320 Dic 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95390539 May 201410 Ene 2017Covidien LpVessel sealer and divider for large tissue structures
US95497325 Mar 201324 Ene 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US954977511 Mar 201424 Ene 2017Covidien AgIn-line vessel sealer and divider
US95547941 Mar 201331 Ene 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US955484110 Abr 201431 Ene 2017Covidien LpDual durometer insulating boot for electrosurgical forceps
US956103213 Ago 20137 Feb 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 Jun 20127 Feb 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 Feb 201314 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US956610811 Nov 201314 Feb 2017Applied Medical Resources CorporationElectrosurgical system
US957257422 Jun 201521 Feb 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 Mar 201321 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 May 201321 Feb 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US957911713 May 201428 Feb 2017Covidien LpMulti-function surgical instruments
US95791454 Feb 201428 Feb 2017Covidien AgFlexible endoscopic catheter with ligasure
US95856578 Feb 20137 Mar 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 Abr 20167 Mar 2017Ethicon Endo-Surgery, LlcStapling systems
US95856638 Mar 20167 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US958571413 Jul 20077 Mar 2017Bovie Medical CorporationSurgical sealing and cutting apparatus
US95857163 Jun 20147 Mar 2017Covidien AgVessel sealing instrument with electrical cutting mechanism
US95920508 Feb 201314 Mar 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 Mar 201414 Mar 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 May 201414 Mar 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 Nov 201514 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US959714119 May 201421 Mar 2017Covidien LpSwitch assemblies for multi-function surgical instruments and surgical instruments incorporating the same
US960359528 Feb 201428 Mar 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 Ago 201328 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960365221 Ago 200828 Mar 2017Covidien LpElectrosurgical instrument including a sensor
US961011323 Feb 20154 Abr 2017Maquet Cardiovascular LlcApparatus and method for regulating tissue welder jaws
US96158268 Feb 201311 Abr 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 Mar 201325 Abr 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 Mar 201425 Abr 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 Mar 201425 Abr 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US963616324 Nov 20142 May 2017Maquet Cardiovascular LlcTissue welding and cutting apparatus and method
US96491109 Abr 201416 May 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 Jun 201216 May 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US96491495 May 201516 May 2017Just Right Surgical, LlcRF generator system for surgical vessel sealing
US965561411 Mar 201323 May 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 Ago 201323 May 2017Ethicon LlcSurgical stapling device with a curved end effector
US96556741 Oct 201423 May 2017Covidien LpApparatus, system and method for performing an electrosurgical procedure
US966211015 Sep 201530 May 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 Ago 201313 Jun 2017Ethicon LlcSurgical stapling device with a curved end effector
US968723014 Mar 201327 Jun 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US96872378 Jun 201527 Jun 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US968729317 Nov 201427 Jun 2017Covidien LpDeployment mechanism for surgical instruments
US968729417 Nov 201427 Jun 2017Covidien LpDeployment mechanism for surgical instruments
US969036226 Mar 201427 Jun 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 Feb 20144 Jul 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 Mar 201311 Jul 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 Ago 201311 Jul 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 Feb 201311 Jul 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 May 201411 Jul 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 Feb 201418 Jul 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US971349219 May 201425 Jul 2017Covidien LpSwitch assemblies for multi-function surgical instruments and surgical instruments incorporating the same
US972409129 Ago 20138 Ago 2017Ethicon LlcSurgical stapling device
US97240945 Sep 20148 Ago 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 Nov 20148 Ago 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US972415317 Nov 20148 Ago 2017Covidien LpDeployment mechanisms for surgical instruments
US973069212 Mar 201315 Ago 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 Sep 201515 Ago 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 Abr 201515 Ago 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 Mar 201415 Ago 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 Sep 201422 Ago 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 Mar 201622 Ago 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 Sep 201522 Ago 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US973735724 Sep 201322 Ago 2017Covidien AgVessel sealer and divider
US974392825 Mar 201429 Ago 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 Mar 201429 Ago 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 Sep 20155 Sep 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 Mar 20145 Sep 2017Ethicon LlcSurgical stapling instrument system
US975050124 May 20165 Sep 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US975056122 Feb 20165 Sep 2017Covidien LpSystem for manufacturing electrosurgical seal plates
US97571237 Mar 201312 Sep 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 Feb 201412 Sep 2017Ethicon LlcImplantable layer assemblies
US97571285 Sep 201412 Sep 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 Mar 201412 Sep 2017Ethicon LlcStapling assembly for forming different formed staple heights
US20050137592 *24 Nov 200423 Jun 2005Nguyen Lap P.Vessel sealing instrument
US20050149017 *18 Nov 20047 Jul 2005Dycus Sean T.Movable handle for vessel sealer
US20050154387 *8 Oct 200414 Jul 2005Moses Michael C.Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US20060079933 *21 Sep 200513 Abr 2006Dylan HushkaLatching mechanism for forceps
US20060173452 *3 Jun 20033 Ago 2006Buysse Steven PLaparoscopic bipolar electrosurgical instrument
US20060190035 *19 Abr 200624 Ago 2006Sherwood Services AgLatching mechanism for forceps
US20060212030 *16 Mar 200521 Sep 2006Mcgaffigan Thomas HIntegrated metalized ceramic heating element for use in a tissue cutting and sealing device
US20060217697 *25 Mar 200528 Sep 2006Liming LauApparatus and method for regulating tissue welder jaws
US20060217706 *25 Mar 200528 Sep 2006Liming LauTissue welding and cutting apparatus and method
US20070005061 *30 Jun 20054 Ene 2007Forcept, Inc.Transvaginal uterine artery occlusion
US20070027450 *28 Jul 20051 Feb 2007Forcept, Inc.Devices and methods for mobilization of the uterus
US20070043352 *19 Ago 200522 Feb 2007Garrison David MSingle action tissue sealer
US20070062017 *11 Sep 200622 Mar 2007Dycus Sean TVessel sealer and divider and method of manufacturing same
US20070118111 *22 Nov 200524 May 2007Sherwood Services AgElectrosurgical forceps with energy based tissue division
US20070118115 *22 Nov 200524 May 2007Sherwood Services AgBipolar electrosurgical sealing instrument having an improved tissue gripping device
US20070173811 *24 Ene 200626 Jul 2007Sherwood Services AgMethod and system for controlling delivery of energy to divide tissue
US20070179499 *13 Jun 20032 Ago 2007Garrison David MVessel sealer and divider for use with small trocars and cannulas
US20070203485 *27 Mar 200730 Ago 2007Keppel David SElectrosurgical electrode having a non-conductive porous ceramic coating
US20070260238 *5 May 20068 Nov 2007Sherwood Services AgCombined energy level button
US20070265616 *10 May 200615 Nov 2007Sherwood Services AgVessel sealing instrument with optimized power density
US20070299439 *26 Mar 200727 Dic 2007Gyrus Medical, Inc.Bipolar cutting and coagulating forceps
US20080004616 *6 Sep 20073 Ene 2008Patrick Ryan TApparatus and method for sealing and cutting tissue
US20080039836 *8 Ago 200614 Feb 2008Sherwood Services AgSystem and method for controlling RF output during tissue sealing
US20080082100 *25 May 20073 Abr 2008Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US20080142726 *27 Oct 200619 Jun 2008Keith RelleenMulti-directional mechanical scanning in an ion implanter
US20090198228 *26 Ene 20096 Ago 2009Tyco Healthcare Group LpBipolar Scissors for Adenoid and Tonsil Removal
US20090234355 *26 Feb 200917 Sep 2009Gyrus Medical LimitedSurgical instrument
US20090292282 *18 Nov 200426 Nov 2009Dycus Sean TMovable handle for vessel sealer
US20100228250 *12 Feb 20109 Sep 2010Intuitive Surgical Operations, Inc.Cut and seal instrument
US20100292691 *22 Jul 201018 Nov 2010Intuitive Surgical Operations, Inc.Cut and seal instrument
US20110046439 *21 Ago 200924 Feb 2011Maquet Cardiovascular LlcCleaning system for imaging devices
US20110071523 *23 Sep 200924 Mar 2011Tyco Healthcare Group LpVessel Sealer with Self-Aligning Jaws
US20110238053 *25 Mar 201029 Sep 2011Vivant Medical, Inc.Microwave Surface Coagulator with Retractable Blade
US20120265241 *12 Abr 201118 Oct 2012Tyco Healthcare Group LpSurgical Forceps and Method of Manufacturing Thereof
US20130018372 *11 Jul 201117 Ene 2013Tyco Healthcare Group LpSurgical Forceps
USD64924915 Feb 200722 Nov 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD68022012 Ene 201216 Abr 2013Coviden IPSlider handle for laparoscopic device
USD74825929 Dic 201426 Ene 2016Applied Medical Resources CorporationElectrosurgical instrument
USRE448347 Dic 20128 Abr 2014Covidien AgInsulating boot for electrosurgical forceps
CN105193499A *19 Oct 201530 Dic 2015孙华Electric coagulation hemostasis device and traditional Chinese medicine composition used for device
DE102009049399A1 *14 Oct 200924 Feb 2011Erbe Elektromedizin GmbhElektrochirurgisches Instrument
DE102009049401A1 *14 Oct 200924 Feb 2011Erbe Elektromedizin GmbhElektrochirurgische Zange
EP2621389B13 Oct 201118 Mar 2015Applied Medical Resources CorporationElectrosurgical instrument with jaws and with an electrode
Clasificaciones
Clasificación de EE.UU.606/48, 606/51, 606/52
Clasificación internacionalA61B18/14
Clasificación cooperativaA61B2018/00607, A61B2018/00601, A61B18/1442, A61B2018/00589, A61B2018/0063
Clasificación europeaA61B18/14F
Eventos legales
FechaCódigoEventoDescripción
8 Sep 2003ASAssignment
Owner name: GYRUS MEDICAL, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LATTERELL, SCOTT T.;WAHNSCHAFFE, DOUGLAS S.;REEL/FRAME:014485/0124
Effective date: 20030902
17 Ago 2005ASAssignment
Owner name: THE GOVERNOR AND COMPANY OF THE BANK OF SCOTLAND,
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GYRUS MEDICAL, INC.;REEL/FRAME:016408/0631
Effective date: 20050721
18 Ago 2005ASAssignment
Owner name: THE GOVERNOR AND COMPANY OF THE BANK OF SCOTLAND,
Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF DOCUMENT ERRONEOUSLY RECORDED AS AN ASSIGNMENT TO RECORDATION OF GRANT OF SECURITY INTEREST PREVIOUSLY RECORDED ON REEL 016408 FRAME 0631;ASSIGNOR:GYRUS MEDICAL, INC.;REEL/FRAME:016418/0162
Effective date: 20050721
23 Sep 2009FPAYFee payment
Year of fee payment: 4
15 May 2013ASAssignment
Owner name: GYRUS ACMI, INC., MASSACHUSETTS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BANK OF SCOTLAND;REEL/FRAME:030422/0113
Effective date: 20130419
25 Oct 2013FPAYFee payment
Year of fee payment: 8