Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS7168496 B2
Tipo de publicaciónConcesión
Número de solicitudUS 10/483,017
Número de PCTPCT/US2002/020256
Fecha de publicación30 Ene 2007
Fecha de presentación26 Jun 2002
Fecha de prioridad6 Jul 2001
TarifaPagadas
También publicado comoCA2453063A1, CA2453063C, US20040238181, WO2003004819A2, WO2003004819A3, WO2003004819B1
Número de publicación10483017, 483017, PCT/2002/20256, PCT/US/2/020256, PCT/US/2/20256, PCT/US/2002/020256, PCT/US/2002/20256, PCT/US2/020256, PCT/US2/20256, PCT/US2002/020256, PCT/US2002/20256, PCT/US2002020256, PCT/US200220256, PCT/US2020256, PCT/US220256, US 7168496 B2, US 7168496B2, US-B2-7168496, US7168496 B2, US7168496B2
InventoresRobert Lance Cook, Lev Ring, David Paul Brisco
Cesionario originalEventure Global Technology
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Liner hanger
US 7168496 B2
Resumen
An apparatus and method for forming or repairing a wellbore casing by radially expanding a tubular liner.
Imágenes(7)
Previous page
Next page
Reclamaciones(12)
1. A method of coupling a radially expandable tubular member to a preexisting structure, comprising:
positioning the tubular member within the preexisting structure;
injecting fluidic materials into the tubular member;
sensing the operating pressure of the fluidic materials;
radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount;
radially expanding and plastically deforming the tubular member using a tubular expansion cone when the sensed operating pressure exceeds the predetermined amount; and
movably coupling a tubular shoe to the tubular expansion cone.
2. The method of claim 1, wherein sensing the operating pressure includes:
sensing the operating pressure of the fluidic materials within the tubular member.
3. An apparatus for coupling a radially expandable tubular member to a preexisting structure, comprising:
a tubular support member including a first passage;
a tubular expansion cone coupled to the tubular support member defining a second passage and including an internal flange;
a tubular shoe movably received within the second passage of the tubular expansion cone defining one or more radial passages and a valveable passage fluidicly coupled to the first passage and including an external flange for engaging the internal flange;
one or more pressure relief valves positioned in corresponding ones of the radial passages; and
an expandable tubular member movably coupled to the tubular expansion cone.
4. A system for coupling a radially expandable tubular member to a preexisting structure, comprising:
means for positioning the tubular member within the preexisting structure;
means for injecting fluidic materials into the tubular member;
means for sensing the operating pressure of the fluidic materials;
means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount; and
means for radially expanding and plastically deforming the tubular member using a tubular expansion cone when the sensed operating pressure exceeds the predetermined amount; and
means for movably coupling a tubular shoe to the tubular expansion cone.
5. The system of claim 4, wherein the means for sensing the operating pressure includes:
means for sensing the operating pressure of the fluidic materials within the tubular member.
6. A method of coupling a radially expandable tubular member to a preexisting structure, comprising:
positioning the tubular member within the preexisting structure;
injecting fluidic materials into the tubular member;
sensing the operating pressure of the fluidic materials;
radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount;
radially expanding and plastically deforming the tubular member by using the operating pressure to displace an expansion member in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount; and
limiting an operating pressure-driven longitudinal displacement of the expansion member by exerting the operating pressure on a member movably carried by the expansion member.
7. A system for coupling a radially expandable tubular member to a preexisting structure, comprising:
means for positioning the tubular member within the preexisting structure;
means for injecting fluidic materials into the tubular member;
means for sensing the operating pressure of the fluidic materials;
means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount;
means for radially expanding and plastically deforming the tubular member by using the operating pressure to displace an expansion member in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount; and
means for utilizing the operating pressure to exert a force on the expansion member in a manner limiting an available operating pressure-driven displacement thereof in the longitudinal direction.
8. An apparatus for coupling a radially expandable tubular member to a preexisting structure, comprising:
a support member; and
an expansion device movably coupled to the support member comprising:
one or more expansion surfaces adapted to be displaced in the longitudinal direction relative to the support member for engaging and radially expanding and plastically deforming the expandable tubular member; and
one or more pressure sensing elements coupled to the expansion surfaces for controlling the longitudinal displacement of the expansion surfaces as a function of the sensed operating pressure within the expandable tubular member.
9. A method of coupling a radially expandable pipeline member to a preexisting structure, comprising:
positioning the pipeline member within the preexisting structure;
injecting fluidic materials into the pipeline member;
sensing the operating pressure of the fluidic materials;
radially expanding and plastically deforming the pipeline member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount;
radially expanding and plastically deforming the pipeline member using a pipeline expansion cone when the sensed operating pressure exceeds the predetermined amount; and
movably coupling a shoe to the pipeline expansion cone.
10. An apparatus for coupling a radially expandable pipeline member to a preexisting structure, comprising:
a tubular support member including a first passage;
a pipeline expansion cone coupled to the tubular support member defining a second passage and including an internal flange;
a tubular shoe movably received within the second passage of the tubular expansion cone defining one or more radial passages and a valveable passage fluidicly coupled to the first passage and including an external
flange for engaging the internal flange;
one or more pressure relief valves positioned in corresponding ones of the radial passages; and
an expandable pipeline member movably coupled to the tubular expansion cone.
11. A method of coupling a radially expandable tubular member to a preexisting structure, comprising:
positioning the tubular member within the preexisting structure;
injecting pressurized fluid into the tubular member; and
utilizing the pressure of the injected fluid to (1) radially expand and plastically deform the tubular member by displacing an expansion member in the longitudinal direction relative to the tubular member and (2) limit a fluid pressure-driven longitudinal displacement of the expansion member by exerting the fluid pressure on a member movably carried by the expansion member.
12. A system for coupling a radially expandable tubular member to a preexisting structure, comprising:
means for positioning the tubular member within the tubular member;
means for injecting pressurized fluid into the tubular member;
means for radially expanding and plastically deforming the tubular member by displacing an expansion member in the longitudinal direction relative to the tubular member using fluid pressure exerted on the expansion member; and
means for utilizing the pressurized fluid to exert a force on the expansion member in a manner limiting an available pressure-driven longitudinal displacement thereof.
Descripción
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of the filing date, and is a national stage filing, of PCT patent application PCT/US02/20256, filed on Jun. 26, 2002, the disclosure of which is incorporated herein by reference.

This application also claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, the disclosure of which is incorporated herein by reference.

This application is related to the following co-pending applications: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999 now U.S. Pat. No. 6,497,289, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937, (4) U.S. patent application Ser. No. 09/440,338, filed on Sep. 15, 1999, now U.S. Pat. No. 6,328,113, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, now U.S. Pat. No. 6,640,903, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, now U.S. Pat. No. 6,568,471, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, now U.S. Pat. No. 6,575,240, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, now U.S. Pat. No. 6,557,640, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, now U.S. Pat. No. 6,604,763, (10) PCT patent application serial no. PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001; (23) U.S. provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001; (24) U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001; and (25) U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, the disclosures of which are incorporated herein by reference.

This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. Pat. No. 6,640,903 which was filed as U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, filed on Jan 9, 2003, (17) U.S Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, which claims priority from provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, which claims priority from provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, which claims priority from provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/322,947, filed on Dec. 18, 2002, which claims priority from provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, which claims priority from provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, which claims priority from provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, which claims priority from provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, (36) PCT Application US02/24399, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (37) PCT Application US02/29856, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, filed on Oct. 3, 2001, (38) PCT Application US02/20256, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, filed on Feb. 15 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, filed on Jun 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, filed on May. 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, filed on 8/23/02, (88) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, filed on May. 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999; (122) PCT patent application serial no PCT/US2004/06246, filed on Feb. 26, 2004; (123) PCT patent application serial number PCT/US2004/08170, filed on Mar. 15, 2004; (124) PCT patent application serial number PCT/US2004/08171, filed on Mar. 15, 2004; (125) PCT patent application serial number PCT/US2004/08073, filed on Mar. 18, 2004; (126) PCT patent application serial number PCT/US2004/07711, filed on Mar. 11, 2004; (127) PCT patent application serial number PCT/US2004/029025, filed on Mar. 26, 2004; (128) PCT patent application serial number PCT/US2004/010317, filed on Apr. 2, 2004; (129) PCT patent application serial numberPCT/US2004/010712, filed on Apr. 6, 2004; (130) PCT patent application serial number PCT/US2004/010762, filed on Apr. 6, 2004; (131) PCT patent application serial numberPCT/US2004/011973, filed on Apr. 15, 2004; (132) U.S. provisional patent application serial number 60/495056, filed on Aug. 14, 2003; (133) U.S. provisional patent application Ser. No. 60/600679, filed on Aug. 11, 2004; (134) PCT patent application serial number PCT/US2005/027318, filed on Jul. 29, 2005; (135) PCT patent application serial numberPCT/US2005/028936, filed on Aug. 12, 2005; (136) PCT patent application Ser. No. PCT/US2005/028669, filed on Aug. 11, 2005; (137) PCT patent application serial numberPCT/US2005/028453, filed on Aug. 11, 2005; (138) PCT patent application Ser. No. PCT/US2005/028641, filed on Aug. 11, 2005; (139) PCT patent application serial numberPCT/US2005/028819, on Aug. 11, 2005; (140) PCT patent application Ser. No. PCT/US2005/028446, filed on Aug. 11, 2005; (141) PCT patent application serial numberPCT/US2005/028642, filed on Aug. 11, 2005; (142) PCT patent application Ser. No. PCT/US2005/028451, filed on Aug. 11, 2005, and (143) PCT patent application serial numberPCT/US2005/028473, filed on Aug. 11, 2005, (144) U.S. utility patent application Ser. No. 10/546082, filed on Aug. 16, 2005, (145) U.S. utility patent application Ser. No. 10/546076, filed on Aug. 16, 2005, (146) U.S. utility patent application Ser. No. 10/545936, filed on Aug. 16, 2005, (147) U.S. utility patent application Ser. No. 10/546079, filed on Aug. 16, 2005(148) U.S. utility patent application Ser. No. 10/545941, filed on Aug. 16, 2005, (149) U.S. utility patent application Ser. No. 546078, filed on Aug. 16, 2005, filed on Aug. 11, 2005, (150) U.S. utility patent application Ser. No. 10/545941, filed on Aug. 16, 2005, (151) U.S. utility patent application Ser. No. 11/249967, filed on Oct. 13, 2005, (152) U.S. provisional patent application Ser. No. 60/734302, filed on Nov. 7, 2005, (153) U.S. provisional patent application Ser. No. 60/725181, filed on Oct. 11, 2005, (154) PCT patent application serial numberPCT/US2005/023391, filed Jun. 29, 2005which claims priority from U.S. provisional patent application Ser. No. 60/585370, filed on Jul. 2, 2004, (155) U.S. provisional patent application Ser. No. 60/721579, filed on Sep. 28, 2005, (156) U.S. provisional patent application Ser. No. 60/717391, filed on Sep. 15, 2005, (157) U.S. provisional patent application Ser. No. 60/702935, filed on Jul. 27, 2005, (158) U.S. provisional patent application Ser. No. 60/663913, filed on Mar. 21, 2005, (159) U.S. provisional patent application Ser. No. 60/652564, filed on Feb. 14, 2005, (160) U.S. provisional patent application Ser. No. 60/645840, filed on Jan. 21, 2005, (161) PCT patent application serial numberPCT/US2005/043122, filed on Nov. 29, 2005which claims priority from U.S. provisional patent application Ser. No. 60/631703, filed on Nov. 30, 2004, (162) U.S. provisional patent application Ser. No. 60/752787, filed on Dec. 22, 2005, (163) U.S. National Stage application Ser. No. 10/548934, filed on Sep. 12, 2005; (164) U.S. National Stage application Ser. No. 10/549410, filed on Sep. 13, 2005; (165) U.S. Provisional Patent application No. 60/717391, filed on Sep. 15, 2005; (166) U.S. National Stage application Ser. No. 10/550906, filed on Sep. 27, 2005; (167) U.S. National Stage application Ser. No. 10/551880, filed on Sep. 30, 2005; (168) U.S. National Stage application Ser. No. 10/552253, filed on Oct. 4, 2005; (169) U.S. National Stage application Ser. No. 10/552790, filed on Oct. 11, 2005; (170) U.S. Provisional Patent Application No. 60/725,181, filed on Oct. 11, 2005; (171) U.S. National Stage application Ser. No. 10/553094, filed on Oct. 13, 2005; (172) U.S. National Stage application Ser. No. 10/553566, filed on Oct. 17, 2005; (173) PCT Patent Application No. PCT/US2006/002449, filed on Jan. 20, 2006, and (174) PCT Patent Application No. PCT/US2006/004809, filed on Feb. 9, 2006; (175) U.S. Utility Patent application Ser. No. 11/356899, filed on Feb. 17, 2006, (176) U.S. National Stage application Ser. No. 10/568200, filed on Feb. 13, 2006, (177) U.S. National Stage application Ser. No. 10/568719, filed on Feb. 16, 2006, (178) U.S. National Stage application Ser. No. 10/569323, (179) U.S. National State patent application Ser. No. 10/571041, filed on Mar. 3, 2006; (180) U.S. National State patent application Ser. No. 10/571017, filed on Mar. 3, 2006; (181) U.S. National State patent application Ser. No. 10/571086, filed on Mar. 6, 2006; and (182) U.S. National State patent application Ser. No. 10/571085, filed on Mar. 6, 2006, (183) U.S. utility patent application Ser. No. 10/938788, filed on Sep. 10, 2004, (184) U.S. utility patent application Ser. No. 10/938225, filed on Sep. 10, 2004, (185) U.S. utility patent application Ser. No. 10/952288, filed on Sep. 28, 2004, (186) U.S. utility patent application Ser. No. 10/952416, filed on Sep. 28, 2004, (187) U.S. utility patent application Ser. No. 10/950749, filed on Sep. 27, 2004, and (188) U.S. utility patent application Ser. No. 10/950869, filed on Sep. 27, 2004.

BACKGROUND OF THE INVENTION

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.

Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.

The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbores and wellheads.

SUMMARY OF THE INVENTION

According to one exemplary embodiment of the invention, a method of coupling a radially expandable tubular member to a preexisting structure is provided that includes positioning the tubular member within the preexisting structure, injecting fluidic materials into the tubular member, sensing the operating pressure of the fluidic materials, radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, radially expanding and plastically deforming the tubular member using a tubular expansion cone when the sensed operating pressure exceeds the predetermined amount, and movably coupling a tubular shoe to the tubular expansion cone.

According to another exemplary embodiment of the invention, an apparatus for coupling a radially expandable tubular member to a preexisting structure is provided that includes a tubular support member including a first passage, a tubular expansion cone coupled to the tubular support member defining a second passage and including an internal flange, a tubular shoe movably received within the second passage of the tubular expansion cone defining one or more radial passages and a valveable passage fluidicly coupled to the first passage and including an external flange for engaging the internal flange, one or more pressure relief valves positioned in corresponding ones of the radial passages, and an expandable tubular member movably coupled to the tubular expansion cone.

According to another exemplary embodiment of the invention, a system for coupling a radially expandable tubular member to a preexisting structure is provided that includes means for positioning the tubular member within the preexisting structure, means for injecting fluidic materials into the tubular member, means for sensing the operating pressure of the fluidic materials, means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, means for radially expanding and plastically deforming the tubular member using a tubular expansion cone when the sensed operating pressure exceeds the predetermined amount, and means for movably coupling a tubular shoe to the tubular expansion cone.

According to another exemplary embodiment of the invention, a method of coupling a radially expandable tubular member to a preexisting structure is provided that includes positioning the tubular member within the preexisting structure, injecting fluidic materials into the tubular member; sensing the operating pressure of the fluidic materials, radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, and radially expanding and plastically deforming the tubular member by displacing an expansion member in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount.

According to another exemplary embodiment of the invention, a system for coupling a radially expandable tubular member to a preexisting structure is provided that includes means for positioning the tubular member within the preexisting structure, means for injecting fluidic materials into the tubular member, means for sensing the operating pressure of the fluidic materials, means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, and means for radially expanding and plastically deforming the tubular member by displacing an expansion member in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount.

According to another exemplary embodiment of the invention, an apparatus for coupling a radially expandable tubular member to a preexisting structure is provided that includes a support member, and an expansion device movably coupled to the support member that includes one or more expansion surfaces adapted to be displaced in the longitudinal direction relative to the support member for engaging and radially expanding and plastically deforming the expandable tubular member, and one or more pressure sensing elements coupled to the expansion surfaces for controlling the longitudinal displacement of the expansion surfaces as a function of the sensed operating pressure within the expandable tubular member.

According to another exemplary embodiment of the invention, a method of coupling a radially expandable tubular member to a preexisting structure is provided that includes positioning the tubular member within the preexisting structure, injecting fluidic materials into the tubular member; sensing the operating pressure of the fluidic materials, radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, radially expanding and plastically deforming the tubular member using an expansion device when the sensed operating pressure exceeds the predetermined amount, and movably coupling a tubular shoe to the expansion device.

According to another exemplary embodiment of the invention, a system for coupling a radially expandable tubular member to a preexisting structure is provided that includes means for positioning the tubular member within the preexisting structure, means for injecting fluidic materials into the tubular member, means for sensing the operating pressure of the fluidic materials, means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, means for radially expanding and plastically deforming the tubular member using an expansion device when the sensed operating pressure exceeds the predetermined amount, and means for movably coupling a tubular shoe to the expansion device.

According to another exemplary embodiment of the invention, a method of coupling a radially expandable tubular member to a preexisting structure that includes positioning the tubular member within the preexisting structure, injecting fluidic materials into the tubular member, sensing the operating pressure of the fluidic materials, radially expanding and plastically deforming the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, and radially expanding and plastically deforming the tubular member by displacing an expansion device in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount.

According to another exemplary embodiment of the invention, a system for coupling a radially expandable tubular member to a preexisting structure is provided that includes means for positioning the tubular member within the preexisting structure, means for injecting fluidic materials into the tubular member, means for sensing the operating pressure of the fluidic materials, means for radially expanding the tubular member into contact with the preexisting structure when the sensed operating pressure exceeds a predetermined amount, and means for radially expanding and plastically deforming the tubular member by displacing an expansion device in the longitudinal direction relative to the tubular member when the sensed operating pressure exceeds the predetermined amount.

According to another exemplary embodiment of the invention, an apparatus for coupling a radially expandable tubular member to a preexisting structure that includes a support member, and an expansion device movably coupled to the support member that includes one or more expansion surfaces adapted to be displaced in the longitudinal direction relative to the support member for engaging and radially expanding and plastically deforming the expandable tubular member, and one or more pressure sensing elements coupled to the expansion surfaces for controlling the longitudinal displacement of the expansion surfaces as a function of the sensed operating pressure within the expandable tubular member.

According to another exemplary embodiment of the invention, an apparatus for coupling a radially expandable tubular member to a preexisting structure is provided that includes an end of a tapered tubular member coupled to an end of the expandable tubular member, an end of another tubular member coupled to another end of the tapered tubular member, a tubular support member, an end of a tubular expansion cone coupled to an end of the tubular support member and positioned within the tapered tubular member, wherein another end of the tubular expansion cone comprises an internal flange, an end of a tubular shoe defining a valveable longitudinal passage and one or more radial passages supported by the end of the other tubular member, wherein another end of the tubular shoe comprises an external flange, and one or more burst discs coupled to and positioned within each of the radial passages.

According to another exemplary embodiment of the invention, a method of radially expanding and plastically deforming a tubular member is provided that includes coupling a shoe to an end of the tubular member, positioning an expansion device within the tubular member, pressurizing an interior portion of tubular member define between the shoe and the expansion device to radially expand and plastically deform the tubular member, and removing the shoe from the interior of the tubular member using the expansion device.

According to another exemplary embodiment of the invention, a system for radially expanding and plastically deforming a tubular member is provided that includes means for coupling a shoe to an end of the tubular member, means for positioning an expansion device within the tubular member, means for pressurizing an interior portion of tubular member define between the shoe and the expansion device to radially expand and plastically deform the tubular member, and means for removing the shoe from the interior of the tubular member using the expansion device.

According to another exemplary embodiment of the invention, a method of radially expanding and plastically deforming a tubular member is provided that includes coupling a shoe to an end of the tubular member, positioning an expansion device within the tubular member, radially expanding and plastically deforming the tubular member using the expansion device, and removing the shoe from the interior of the tubular member using the expansion device.

According to another exemplary embodiment of the invention, a system for radially expanding and plastically deforming a tubular member is provided that includes means for coupling a shoe to an end of the tubular member, means for positioning an expansion device within the tubular member, means for radially expanding and plastically deforming the tubular member using the expansion device, and means for removing the shoe from the interior of the tubular member using the expansion device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a fragmentary cross-sectional illustration of an embodiment of a liner hanger positioned within a wellbore including a preexisting section of wellbore casing.

FIG. 2 is a fragmentary cross-sectional illustration of the injection of a fluidic material into the apparatus of FIG. 2.

FIG. 3 is a fragmentary cross-sectional illustration of the placement of a ball into the valveable passage of the tubular shoe of the apparatus of FIG. 2.

FIG. 4 is a fragmentary cross-sectional illustration of the continued injection of the fluidic material into the apparatus of FIG. 3 in order to burst the burst discs.

FIG. 5 is a fragmentary cross-sectional illustration of the continued injection of the fluidic material into the apparatus of FIG. 4 in order to plastically deform and radially expand the expandable tubular member.

FIG. 6 is a fragmentary cross-sectional illustration of the completion of the radial expansion and plastic deformation of the expandable tubular member of the apparatus of FIG. 5.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

An apparatus and method for plastically deforming a tubular liner within a wellbore within a subterranean formation is provided. The apparatus and method thereby provides a system for coupling a radially expandable tubular liner to an open hole or cased section of a wellbore within a subterranean formation. Furthermore, in this manner, a wellbore casing, a pipeline, or a structural support may be formed or repaired using the present illustrative embodiments.

Referring initially to FIG. 1, an embodiment of an apparatus 100 for radially expanding and plastically deforming a tubular liner includes a tubular support member 105 that defines a passage 105 a that is coupled to a tubular expansion cone 110 that defines a passage 110 a and includes a recess 110 b for mating with and receiving the tubular support member 105, a recess 110 c, and an internal flange 110 d. The tubular expansion cone 110 further includes a first section 110 e having a substantially cylindrical outer surface, a second section 110 f having a substantially tapered conical outer surface, and a third section 110 g having a substantially cylindrical outer surface. In an exemplary embodiment, the outside diameter of the first section 110 e is greater than the outside diameter of the third section 110 g. In an exemplary embodiment, the recess 110 b includes internal threads and the end of the tubular support member 105 that is received within the recess 110 b includes external threads for engaging the internal threads.

An end of a tubular shoe 115 mates with and is movably received within the recess 110 c of the tubular expansion cone 110 that defines a passage 115 a and a valveable passage 115 b and includes an external flange 115 c, and an external flange 115 d including a recessed portion 115 da. The tubular shoe 115 further includes radial passages 115 e and 115 f for receiving corresponding burst discs, 115 ea and 115 fa. An end of a tubular support member 120 that defines a passage 120 a mates with and is movably received within the recess 115 da of the external flange 115 d of the tubular shoe 115 and includes an external flange 120 b having a substantially conical outer surface.

An end of an expandable tubular member 125 mates with and is coupled to the tubular support member 120 that defines a passage 125 a for receiving the tubular support member 105, the tubular expansion cone 110, and the tubular shoe 115. In an exemplary embodiment, the end of the expandable tubular member 125 is coupled to the tubular support member 120 by a conventional threaded connection. In an exemplary embodiment, the expandable tubular member 125 includes a first section 125 b having a substantially cylindrical outer surface, a second section 125 c having a substantially conical outer surface, and a third section 125 d having a substantially cylindrical outer surface. In an exemplary embodiment, the outside diameter of the first section 125 b is greater than the outside diameter of the third section 125 d, a plurality of tubular sealing members, 130 a, 130 b, and 130 c, are coupled to the external surface of the first section 125 b of the expandable tubular member 125.

An end of a tubular member 140 that defines a passage 140 a is coupled to an end of the tubular support member 120. In an exemplary embodiment, the connection between the tubular member 140 and the tubular support member 120 is a conventional threaded connection.

In an exemplary embodiment, as illustrated in FIG. 1, the apparatus 100 may be positioned within a wellbore 200 within a subterranean formation 205 that includes a preexisting section of wellbore casing 210. The wellbore 200 may be vertical, horizontal, or an intermediate orientation.

As illustrated in FIG. 2, a fluidic material 215 may then be injected into the apparatus 100 through the passages 105 a, 110 a, 115 a, 115 b, and 140 a in order to ensure the proper operation of the passages. In an alternative embodiment, before or after the injection of the fluidic material 215, a hardenable fluidic sealing material such as, for example, cement, may be injected into the apparatus 100, through the passages 105 a, 110 a, 115 a, 115 b, and 140 a, in order to form an annular body of a fluidic sealing material between the tubular member 125 and the wellbore 200.

As illustrated in FIG. 3, a ball 220 may then be placed into the valveable passage 115 b of the tubular shoe 115 by introducing the ball into the injected fluidic material 215. In this manner, the valveable passage 115 b of the tubular shoe 115 may be sealed off thereby permitting the passage 115 a to be pressurized by the continued injection of the fluidic material 215.

As illustrated in FIG. 4, the continued injection of the fluidic material 215 will burst the burst discs 115 ea and 115 fa thereby permitting the injected fluidic material to pass through the radial passages 115 e and 115 f into the annular region between the tubular shoe 115 and the expandable tubular member 125 below the tubular expansion cone 110 above the external flange 115 d of the tubular shoe.

As illustrated in FIG. 5, the continued injection of the fluidic material 215 will continue to pressurize the annular region, between the tubular shoe 115 and the expandable tubular member 125 below the tubular expansion cone 110 above the external flange 115 d of the tubular shoe, and thereby extrude the expandable tubular member 125 off of the tubular expansion cone 110 by plastically deforming and radially expanding the expandable tubular member.

During the continued radial expansion of the expandable tubular member 125, the tubular support member 105 and the tubular expansion cone 110 may be raised out of the wellbore 200. Because the tubular expansion cone 110 and the tubular shoe 115 are movably coupled, the axial displacement of the tubular expansion cone 110 during the radial expansion of the tubular member 125 does not displace the tubular shoe in the axial direction. In an exemplary embodiment, during the radial expansion and plastic deformation of the expandable tubular member 125, the tubular shoe 120 is supported by the tubular support member 120 in the axial direction.

In an exemplary embodiment, the radial expansion of the expandable tubular member 125 further causes the sealing members, 130 a, 130 b, and 130 c, to engage the preexisting wellbore casing 210. In this manner, the radially expanded tubular member 125, the tubular support member 120, and the tubular member 140 are coupled to the preexisting wellbore casing. Furthermore, in this manner, a fluidic seal is provided between the radially expanded tubular member 125 and the preexisting wellbore casing 210.

As illustrated in FIG. 6, once the radial expansion of the expandable tubular member 125 has been completed, the tubular support member 105, the tubular expansion cone 110, and the tubular shoe 115 are removed from the wellbore 200. In particular, the external flange 115 c of the tubular shoe 115 engages the internal flange 110 d of the tubular expansion cone 110 thereby permitting the tubular shoe to be removed from the wellbore 200.

In a preferred embodiment, the apparatus 100, and method of operating the apparatus, is provided substantially as disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, filed on Apr. 26, 2000, (10) PCT patent application serial number PCT/US00/18635, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001; (23) U.S. provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001; (24) U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001; and (25) U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, the disclosures of which are incorporated herein by reference.

It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the apparatus 100 may be used to form and/or repair, for example, a wellbore casing, a pipeline, or a structural support. Furthermore, the burst discs 115 ea and 115 fa may be replaced with conventional pressure relief valves.

Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4681814 Mar 1865 Improvement in tubes for caves in oil or other wells
US3319408 Dic 1885 Half to ralph bagaley
US33218424 Mar 18858 Dic 1885 William a
US3412374 May 1886 Bicycle
US51980511 Jul 189115 May 1894 Charles s
US80288015 Mar 190524 Oct 1905Thomas W Phillips JrOil-well packer.
US80615628 Mar 19055 Dic 1905Dale MarshallLock for nuts and bolts and the like.
US9585171 Sep 190917 May 1910John Charles MettlerWell-casing-repairing tool.
US98444910 Ago 190914 Feb 1911John S StewartCasing mechanism.
US116604019 Jul 191528 Dic 1915William BurlinghamApparatus for lining tubes.
US12338881 Sep 191617 Jul 1917Frank W A FinleyArt of well-producing or earth-boring.
US149412811 Jun 192113 May 1924Power Specialty CoMethod and apparatus for expanding tubes
US15897819 Nov 192522 Jun 1926Joseph M AndersonRotary tool joint
US159035714 Ene 192529 Jun 1926John F PenrosePipe joint
US159721213 Oct 192424 Ago 1926Spengler Arthur FCasing roller
US16134611 Jun 19264 Ene 1927Edwin A JohnsonConnection between well-pipe sections of different materials
US175653112 May 192829 Abr 1930Fyrac Mfg CoPost light
US18802181 Oct 19304 Oct 1932Simmons Richard PMethod of lining oil wells and means therefor
US19815255 Dic 193320 Nov 1934Price Bailey EMethod of and apparatus for drilling oil wells
US204687021 May 19357 Jul 1936Anthony ClasenMethod of repairing wells having corroded sand points
US208718524 Ago 193613 Jul 1937Stephen V DillonWell string
US21227575 Jul 19355 Jul 1938Hughes Tool CoDrill stem coupling
US214516821 Oct 193524 Ene 1939Flagg RayMethod of making pipe joint connections
US216026318 Mar 193730 May 1939Hughes Tool CoPipe joint and method of making same
US218727512 Ene 193716 Ene 1940Mclennan Amos NMeans for locating and cementing off leaks in well casings
US220458615 Jun 193818 Jun 1940Byron Jackson CoSafety tool joint
US221422629 Mar 193910 Sep 1940English AaronMethod and apparatus useful in drilling and producing wells
US22268045 Feb 193731 Dic 1940Johns ManvilleLiner for wells
US227301730 Jun 193917 Feb 1942Alexander BoyntonRight and left drill pipe
US23014958 Abr 193910 Nov 1942Abegg & Reinhold CoMethod and means of renewing the shoulders of tool joints
US23718403 Dic 194020 Mar 1945Otis Herbert CWell device
US238321418 May 194321 Ago 1945Bessie PugsleyWell casing expander
US244762923 May 194424 Ago 1948Baash Ross Tool CompanyApparatus for forming a section of casing below casing already in position in a well hole
US250027622 Dic 194514 Mar 1950Walter L ChurchSafety joint
US25462958 Feb 194627 Mar 1951Reed Roller Bit CoTool joint wear collar
US25833169 Dic 194722 Ene 1952Bannister Clyde EMethod and apparatus for setting a casing structure in a well hole or the like
US262789128 Nov 195010 Feb 1953Clark Paul BWell pipe expander
US264784728 Feb 19504 Ago 1953Fluid Packed Pump CompanyMethod for interfitting machined parts
US27345802 Mar 195314 Feb 1956 layne
US279613419 Jul 195418 Jun 1957Exxon Research Engineering CoApparatus for preventing lost circulation in well drilling operations
US281202524 Ene 19555 Nov 1957Doherty Wilfred TExpansible liner
US29075895 Nov 19566 Oct 1959Hydril CoSealed joint for tubing
US29297414 Nov 195722 Mar 1960Morris A SteinbergMethod for coating graphite with metallic carbides
US301536215 Dic 19582 Ene 1962Johnston Testers IncWell apparatus
US30155008 Ene 19592 Ene 1962Dresser IndDrill string joint
US301854729 Jul 195330 Ene 1962Babcock & Wilcox CoMethod of making a pressure-tight mechanical joint for operation at elevated temperatures
US30678192 Jun 195811 Dic 1962Gore George LCasing interliner
US30685635 Nov 195818 Dic 1962Westinghouse Electric CorpMetal joining method
US310470331 Ago 196024 Sep 1963Jersey Prod Res CoBorehole lining or casing
US311199112 May 196126 Nov 1963Pan American Petroleum CorpApparatus for repairing well casing
US31671224 May 196226 Ene 1965Pan American Petroleum CorpMethod and apparatus for repairing casing
US31756186 Nov 196130 Mar 1965Pan American Petroleum CorpApparatus for placing a liner in a vessel
US31791689 Ago 196220 Abr 1965Pan American Petroleum CorpMetallic casing liner
US318881617 Sep 196215 Jun 1965Koch & Sons Inc HPile forming method
US319167729 Abr 196329 Jun 1965Kinley Myron MMethod and apparatus for setting liners in tubing
US319168014 Mar 196229 Jun 1965Pan American Petroleum CorpMethod of setting metallic liners in wells
US320345125 Jun 196431 Ago 1965Pan American Petroleum CorpCorrugated tube for lining wells
US320348325 Jun 196431 Ago 1965Pan American Petroleum CorpApparatus for forming metallic casing liner
US320954621 Sep 19605 Oct 1965Lawrence LawtonMethod and apparatus for forming concrete piles
US321010222 Jul 19645 Oct 1965Joslin Alvin EarlPipe coupling having a deformed inner lock
US32333154 Dic 19628 Feb 1966Plastic Materials IncPipe aligning and joining apparatus
US324547115 Abr 196312 Abr 1966Pan American Petroleum CorpSetting casing in wells
US327081726 Mar 19646 Sep 1966Gulf Research Development CoMethod and apparatus for installing a permeable well liner
US329709215 Jul 196410 Ene 1967Pan American Petroleum CorpCasing patch
US332629326 Jun 196420 Jun 1967Wilson Supply CompanyWell casing repair
US33432523 Mar 196426 Sep 1967Reynolds Metals CoConduit system and method for making the same or the like
US33535994 Ago 196421 Nov 1967Gulf Oil CorpMethod and apparatus for stabilizing formations
US335495524 Abr 196428 Nov 1967Berry William BMethod and apparatus for closing and sealing openings in a well casing
US335876014 Oct 196519 Dic 1967Schlumberger Technology CorpMethod and apparatus for lining wells
US335876928 May 196519 Dic 1967Berry William BTransporter for well casing interliner or boot
US336499318 Abr 196723 Ene 1968Wilson Supply CompanyMethod of well casing repair
US337171721 Sep 19655 Mar 1968Baker Oil Tools IncMultiple zone well production apparatus
US34125653 Oct 196626 Nov 1968Continental Oil CoMethod of strengthening foundation piling
US34190808 Sep 196731 Dic 1968Schlumberger Technology CorpZone protection apparatus
US342424414 Sep 196728 Ene 1969Kinley Co J CCollapsible support and assembly for casing or tubing liner or patch
US342770716 Dic 196518 Feb 1969Connecticut Research & Mfg CorMethod of joining a pipe and fitting
US347750622 Jul 196811 Nov 1969Lynes IncApparatus relating to fabrication and installation of expanded members
US34892202 Ago 196813 Ene 1970J C KinleyMethod and apparatus for repairing pipe in wells
US349837629 Dic 19663 Mar 1970Schwegman Harry EWell apparatus and setting tool
US350451525 Sep 19677 Abr 1970Reardon Daniel RPipe swedging tool
US352004912 Oct 196614 Jul 1970Dudin Anatoly AlexeevichMethod of pressure welding
US35284981 Abr 196915 Sep 1970Wilson Ind IncRotary cam casing swage
US356877317 Nov 19699 Mar 1971Chancellor Forest EApparatus and method for setting liners in well casings
US357808116 May 196911 May 1971Bodine Albert GSonic method and apparatus for augmenting the flow of oil from oil bearing strata
US35798055 Jul 196825 May 1971Gen ElectricMethod of forming interference fits by heat treatment
US360588721 May 197020 Sep 1971Shell Oil CoApparatus for selectively producing and testing fluids from a multiple zone well
US363192631 Dic 19694 Ene 1972Schlumberger Technology CorpWell packer
US36655912 Ene 197030 May 1972Imp Eastman CorpMethod of making up an expandable insert fitting
US366754726 Ago 19706 Jun 1972Vetco Offshore Ind IncMethod of cementing a casing string in a well bore and hanging it in a subsea wellhead
US366919021 Dic 197013 Jun 1972Otis Eng CorpMethods of completing a well
US368225615 May 19708 Ago 1972Stuart Charles AMethod for eliminating wear failures of well casing
US368719612 Dic 196929 Ago 1972Schlumberger Technology CorpDrillable slip
US369162416 Ene 197019 Sep 1972Kinley John CMethod of expanding a liner
US369371722 Oct 197026 Sep 1972Gulf Research Development CoReproducible shot hole
US370473023 Jun 19695 Dic 1972Sunoco Products CoConvolute tube and method for making same
US370930616 Feb 19719 Ene 1973Baker Oil Tools IncThreaded connector for impact devices
US371112315 Ene 197116 Ene 1973Hydro Tech Services IncApparatus for pressure testing annular seals in an oversliding connector
US371237626 Jul 197123 Ene 1973Gearhart Owen IndustriesConduit liner for wellbore and method and apparatus for setting same
US374606827 Ago 197117 Jul 1973Minnesota Mining & MfgFasteners and sealants useful therefor
WO2001018354A1 *6 Sep 200015 Mar 2001E2Tech LtdApparatus for and method of anchoring a first conduit to a second conduit
Otras citas
Referencia
1Combined Search Report and Written Opinion to Application No. PCT/US04/08030 Jan. 6, 2005.
2Examination Report to Applicaiton No. GB 0320747.9, May 25, 2004.
3Examination Report to Application GB 0220872.6, Oct. 29, 2004.
4Examination Report to Application No. GB 0208367.3, Jan. 30, 2004.
5Examination Report to Application No. GB 0216409.3, Feb. 9, 2004.
6Examination Report to Application No. GB 0219757.2, May 10, 2004.
7Examination Report to Application No. GB 0225505.7, Oct. 27, 2004.
8Examination Report to Application No. GB 0306046.4, Sep. 10, 2004.
9Examination Report to Application No. GB 0311596.1, May 18, 2004.
10Examination Report to Application No. GB 0314846.7, Jul. 15, 2004.
11Examination Report to Application No. GB 0325071.9, Feb. 2, 2004.
12Examination Report to Application No. GB 0325072.7, Feb. 5, 2004.
13Examination Report to Application No. GB 0325072.7; Apr. 13, 2004.
14Examination Report to Application No. GB 0400018.8; Oct. 29, 2004.
15Examination Report to Application No. GB 0400019.6; Oct. 29, 2004.
16Examination Report to Application No. GB 0404830.2, Aug. 17, 2004.
17Examination Report to Application No. GB 0404837.7, Jul. 12, 2004.
18Examination Report to Application No. GB 0408672.4, Jul. 12, 2004.
19Examination Report to Application No. GB 0422419.2 Dec. 8, 2004.
20Examination Report, Application PCT/US02/25727; Jul. 7, 2004.
21Examination Report, Application PCT/US03/10144; Jul. 7, 2004.
22International Examination Report, Application PCT/US03/11765; Dec. 10, 2004.
23International Examination Report, Application PCT/US03/25676, Aug. 17, 2004.
24International Examination Report, Application PCT/US03/25677, Aug. 17, 2004.
25International Examination Report, Application PCT/US03/29460; Dec. 8, 2004.
26International Examination Report, Application PCT/US03/29859, Aug. 16, 2004.
27International Search Report, Application PCT/US02/00677, Feb. 24, 2004.
28International Search Report, Application PCT/US02/20477; Apr. 6, 2004.
29International Search Report, Application PCT/US02/24399; Feb. 27, 2004.
30International Search Report, Application PCT/US02/25608; May 24, 2004.
31International Search Report, Application PCT/US02/25727; Feb. 19, 2004.
32International Search Report, Application PCT/US02/36157; Apr. 14, 2004.
33International Search Report, Application PCT/US02/36267; May 21, 2004.
34International Search Report, Application PCT/US02/39425, May 28, 2004.
35International Search Report, Application PCT/US03/00609, May 20, 2004.
36International Search Report, Application PCT/US03/04837, May 28, 2004.
37International Search Report, Application PCT/US03/06544, Jun. 9, 2004.
38International Search Report, Application PCT/US03/13787; May 28, 2004.
39International Search Report, Application PCT/US03/14153; May 28, 2004.
40International Search Report, Application PCT/US03/18530; Jun. 24, 2004.
41International Search Report, Application PCT/US03/19993; May 24, 2004.
42International Search Report, Application PCT/US03/20870; May 24, 2004.
43International Search Report, Application PCT/US03/20870; Sep. 30, 2004.
44International Search Report, Application PCT/US03/24779; Mar. 3, 2004.
45International Search Report, Application PCT/US03/25667; Feb. 26, 2004.
46International Search Report, Application PCT/US03/25675; May 25, 2004.
47International Search Report, Application PCT/US03/25676; May 17, 2004.
48International Search Report, Application PCT/US03/25677; May 21, 2004.
49International Search Report, Application PCT/US03/25707; Jun. 23, 2004.
50International Search Report, Application PCT/US03/25715; Apr. 9, 2004.
51International Search Report, Application PCT/US03/25742; Dec. 20, 2004.
52International Search Report, Application PCT/US03/25742; May 27, 2004.
53International Search Report, Application PCT/US03/29460; May 25, 2004.
54International Search Report, Application PCT/US03/29859; May 21, 2004.
55International Search Report, Application PCT/US03/38550; Jun. 15, 2004.
56Internationl Examination Report, Application PCT/US02/24399, Aug. 6, 2004.
57Michigan Metrology "3D Surface Finish Roughness Texture Wear WYKO Veeco" C.A. Brown, PhD; Charles, W.A. Johnson, S. Chester.
58Search and Examination Report to Application No. GB 0308293.0, Jul. 14, 2003.
59Search and Examination Report to Application No. GB 0308294.8, Jul. 14, 2003.
60Search and Examination Report to Application No. GB 0308295.5, Jul. 14, 2003.
61Search and Examination Report to Application No. GB 0308296.3, Jul. 14, 2003.
62Search and Examination Report to Application No. GB 0308297.1, Jul. 2003.
63Search and Examination Report to Application No. GB 0308303.7, Jul 14, 2003.
64Search and Examination Report to Application No. GB 0404833.6, Aug. 19, 2004.
65Search and Examination Report to Application No. GB 0411892.3, Jul. 14, 2004.
66Search and Examination Report to Application No. GB 0411893.3, Jul. 14, 2004.
67Search and Examination Report to Application No. GB 0412190.1, Jul. 22, 2004.
68Search and Examination Report to Application No. GB 0412191.9, Jul. 22, 2004.
69Search and Examination Report to Application No. GB 0412192.7, Jul. 22, 2004.
70Search and Examination Report to Application No. GB 0416834.0, Aug. 11, 2004.
71Search and Examination Report to Application No. GB 0416834.0, Nov. 16, 2004.
72Search and Examination Report to Application No. GB 0417810.9, Aug. 25, 2004.
73Search and Examination Report to Application No. GB 0417811.7, Aug. 25, 2004.
74Search and Examination Report to Application No. GB 0418005.5, Aug. 25, 2004.
75Search and Examination Report to Application No. GB 0418425.5, Sep. 10, 2004.
76Search and Examination Report to Application No. GB 0418426.3 Sep. 10, 2004.
77Search and Examination Report to Application No. GB 0418427.1 Sep. 10, 2004.
78Search and Examination Report to Application No. GB 0418429.7 Sep. 10, 2004.
79Search and Examination Report to Application No. GB 0418430.5 Sep. 10, 2004.
80Search and Examination Report to Application No. GB 0418431.3 Sep. 10, 2004.
81Search and Examination Report to Application No. GB 0418432.1 Sep. 10, 2004.
82Search and Examination Report to Application No. GB 0418433.9 Sep. 10, 2004.
83Search and Examination Report to Application No. GB 0418439.6 Sep. 10, 2004.
84Search and Examination Report to Application No. GB 0418442.0 Sep. 10, 2004.
85Search and Examination Report to Application No. GB 0422893.8 Nov. 24, 2004.
86Search and Examination Report to Application No. GB 0423416.7 Nov. 12, 2004.
87Search and Examination Report to Application No. GB 0423417.5 Nov. 12, 2004.
88Search and Examination Report to Application No. GB 0423418.3 Nov. 12, 2004.
89Search Report to Application No. GB 0415835.8, Dec. 2, 2004.
90Written Opinion to Application No PCT/US03/38550 Dec. 10, 2004.
91Written Opinion to Application No. PCT/US01/19014; Dec. 10, 2002.
92Written Opinion to Application No. PCT/US02/25608 Sep. 13, 2004.
93Written Opinion to Application No. PCT/US02/25675 Nov. 24, 2004.
94Written Opinion to Application No. PCT/US02/39425; Nov. 22, 2004.
95Written Opinion to Application No. PCT/US03/13787 Nov. 9, 2004.
96Written Opinion to Application No. PCT/US03/14153 Nov. 9, 2004.
97Written Opinion to Application No. PCT/US03/14153 Sep. 9, 2004.
98Written Opinion to Application No. PCT/US03/18530 Sep. 13, 2004.
99Written Opinion to Application No. PCT/US03/19993 Oct. 15, 2004.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US84537294 Feb 20104 Jun 2013Key Energy Services, LlcHydraulic setting assembly
US868409619 Nov 20091 Abr 2014Key Energy Services, LlcAnchor assembly and method of installing anchors
Clasificaciones
Clasificación de EE.UU.166/380, 166/207, 166/384
Clasificación internacionalE21B43/10
Clasificación cooperativaE21B43/105, E21B43/103, E21B43/106
Clasificación europeaE21B43/10F, E21B43/10F2, E21B43/10F1
Eventos legales
FechaCódigoEventoDescripción
30 Jul 2010FPAYFee payment
Year of fee payment: 4