US7423232B2 - Method for resistance welding/brazing a tube to a member - Google Patents

Method for resistance welding/brazing a tube to a member Download PDF

Info

Publication number
US7423232B2
US7423232B2 US11/109,570 US10957005A US7423232B2 US 7423232 B2 US7423232 B2 US 7423232B2 US 10957005 A US10957005 A US 10957005A US 7423232 B2 US7423232 B2 US 7423232B2
Authority
US
United States
Prior art keywords
tube
filler material
filler
weld
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/109,570
Other versions
US20050194360A1 (en
Inventor
Venkatasubramanian Ananthanarayanan
Dharmendra M. Ramachandra
Richard W. Marczewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to US11/109,570 priority Critical patent/US7423232B2/en
Assigned to DELPHI TECHNOLOGIES, INC. reassignment DELPHI TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANANTHANARAYANAN, VENKATASUBRAMANIAN, RAMACHANDRA, DHARMENDRA M., MARCZEWSKI, RICHARD W.
Publication of US20050194360A1 publication Critical patent/US20050194360A1/en
Application granted granted Critical
Publication of US7423232B2 publication Critical patent/US7423232B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0004Resistance soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the present invention relates generally to welding and brazing, and more particularly to a method for resistance welding/brazing a tube to a member.
  • Resistance welding also known as electric-resistance welding
  • electric-resistance welding is a known metallurgical process used to weld a right-angle end flange of a tube to a surface projection of a plate wherein metal is heated by its own resistance to a semi-fused (i.e., soft) or fused (i.e., molten) state by the passage of very heavy electric currents for very short lengths of time and then welded.
  • the plate is stamped creating depressions on the top surface and creating surface projections on the bottom surface so that during the resistance welding, the projections soften and/or melt creating a weld nugget which joins together the plate to the tube flange.
  • Gas metal arc welding uses a consumable metal wire as one electrode and the parts as another electrode, and moves the consumable metal wire (or the parts) to draw an arc and weld the parts together.
  • the welding is accompanied by a gas (such as a mixture of argon and carbon dioxide) to prevent oxidation and stabilize the arc.
  • gas metal arc welding is well known.
  • solid metal wire or metal core wire i.e., an annular-solid wire whose core is filled with metal powder such as a mixture of metal, alloy and/or oxide powders
  • the welding arc creates a molten weld puddle which results in the welding together of the parts.
  • a ceramic ferrule is used to contain the weld puddle when needed.
  • Gas metal arc welding requires expensive welding equipment, the molten weld puddle tends to flow away from the joint area (depending on the joint position with respect to gravity) resulting in welds of inconsistent quality, and the process requires a long cycle time between welds.
  • Conventional methods for attaching parts together also include friction welding.
  • To join two tubes together end to end one of the tubes is rotated about its longitudinal axis, and the tube ends are pressed together, wherein friction causes heating of the ends creating the weld.
  • To join a tube to a plate the tube is rotated about its longitudinal axis, and the tube end and the plate are pressed together, wherein friction causes heating creating the weld.
  • Friction welding requires expensive welding equipment, and the process requires a long cycle time between welds. Friction welding is not easily applicable to thin-walled tubes because they do not retain their shapes well under heat and pressure. It is noted that laser and electron-beam welding for the above joints also need expensive equipment and expensive joint preparation.
  • Conventional brazing is a known metallurgical process used to join together two metal members.
  • a brazing material is interposed between the two members, and external heat is applied to the assemblage which bonds the brazing material to the two members.
  • a batch of assemblages of member pairs with interposed brazing material is heated in an oven or by an infrared heat source. In some applications, the members tend to become distorted from the oven or infrared heat.
  • Conventional brazing requires expensive heating equipment and batch heat processing of the assemblages.
  • a first method of the invention is for welding/brazing a tube to a member and includes steps a) through e).
  • Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion.
  • Step b) includes obtaining a member.
  • Step c) includes obtaining a filler material having a different chemical composition from that of the tube and the member.
  • Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member.
  • Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
  • a second method of the invention is for welding a tube to a member and includes steps a) through e)
  • Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion.
  • Step b) includes obtaining a member.
  • Step c) includes obtaining a filler material.
  • Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member.
  • Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
  • a third method of the invention is for brazing a tube to a member and includes steps a) through e)
  • Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion.
  • Step b) includes obtaining a member.
  • Step c) includes obtaining a filler material having a different chemical composition from that of the tube and the member.
  • Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member.
  • Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
  • the tube form allows resistance welding/brazing of a tube to a member to be commercially feasible, as can be appreciated by those skilled in the art. Resistance welding/brazing is less expensive than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing also has a shorter cycle time between welds/brazes than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing heats only the joint area of the tube and the member avoiding heat distortion of the parts in contrast to using an external heat source.
  • FIG. 1 is a block diagram of a first method of the invention for resistance welding/brazing a tube to a member
  • FIG. 2 is a schematic, side cross-sectional view of a first embodiment of a tube and a member (which is another tube) and a filler material gasket used in a first example of the first method, showing the tubes just before welding/brazing;
  • FIG. 3 is a view, as in FIG. 2 , but showing the two tubes after welding/brazing and with the welding/brazing electrodes removed;
  • FIG. 4 is a view, as in FIG. 2 , but showing a second embodiment of a tube and a member (which is a plate) and a filler material coating used in a second example of the first method, showing the tube and the plate just before welding/brazing.
  • a first method of the invention is for welding/brazing a tube 10 to a member 12 and is shown in block diagram form in FIG. 1 with a first embodiment of the tube 10 and the member 12 shown in FIGS. 2 and 3 .
  • the first method includes steps a) through e).
  • Step a) is labeled as “Obtain Tube Having A Tube Form” in block 14 of FIG. 1 .
  • Step a) includes obtaining a tube 10 having an axially-extending first portion 16 and having a tube form 18 which extends transversely from the first portion 16 .
  • Step b) is labeled as “Obtain Member” in block 20 of FIG. 1 .
  • Step b) includes obtaining a member 12 .
  • Step c) is labeled as “Obtain Filler Material” in block 22 of FIG.
  • Step c) includes obtaining a filler material 24 .
  • Step d) is labeled as “Dispose Tube, Member and Filler Material” in block 26 of FIG. 1 .
  • Step d) includes, after steps a) through c), disposing the tube 10 , the member 12 , and the filler material 24 such that the filler material 24 contacts the tube form 18 and the member 12 .
  • Step e) is labeled as “Create Weld/Braze Zone” in block 28 of FIG. 1 .
  • Step e) includes, after step d), creating a resistance current path through the tube 10 , the filler material 24 and the member 12 which melts at least some of the filler material 24 creating a weld/braze zone 30 which includes at least some of the tube 10 , at least some of the filler material 24 and at least some of the member 12 .
  • welding/brazing a tube 10 to a member 12 using a filler material 24 is meant welding the tube 10 to the member 12 using a filler material 24 , brazing the tube 10 to the member 12 using a filler material 24 , welding a portion of the tube 10 to a portion of the member 12 using a filler material 24 and brazing another portion of the tube 10 to another portion of the member 12 using the filler material 24 , or welding a portion of a filler material 24 to one of the tube 10 and the member 12 and brazing another portion of the filler material 24 to the other of the tube 10 and the member 12 .
  • Examples of a “weld/braze zone 30 ” include a weld zone, a braze zone, and a zone having a weld zone portion and a braze zone portion. Other examples are left to the artisan.
  • a filler material includes a filler weld material and a filler braze material.
  • step e) of the first method for welding/brazing a tube 10 to a member 12 using a filler material 24 examples include non-deformation resistance welding, deformation resistance welding, non-deformation resistance brazing and deformation resistance brazing.
  • non-deformation resistance welding at least some of the tube 10 and/or at least some of the member 12 are melted by the internal heat produced during the creation of the resistance current path in step e);
  • deformation resistance welding at least some of the tube 10 and/or at least some of the member 12 need only be softened (but may have at least a portion melted) by the internal heat produced during the creation of the resistance current path in step e).
  • non-deformation resistance brazing or deformation resistance brazing no portion of the tube 10 and/or no portion of the member 12 is melted.
  • Other examples are left to the artisan.
  • the filler material 24 includes at least one gasket 32 , and step d) disposes the at-least-one gasket 32 between the tube form 18 and the member 12 .
  • the filler material includes a coating disposed on the tube form.
  • the coating is plated on the tube form.
  • the filler material includes a coating disposed on the member.
  • the filler material includes a first coating portion disposed on the tube form and includes a second coating portion disposed on the member.
  • the member 12 is a tubular member as shown in FIGS. 2 and 3 .
  • the weld zone 30 extends the width of the tube form 18 as can be seen in FIG. 3 .
  • the weld zone extends the width of the gasket 32 .
  • a portion of the tube above the tube form extends inside the tubular member.
  • the member is a non-tubular member.
  • the member is a plate (without a hole or with a hole in which the tube is partially disposed).
  • the member is a thicker solid.
  • the tube 10 and the member 12 consist essentially of steel, and the filler material 24 consists essentially of copper. Other variations, and other choices of materials making up the tube, the member and the filler material, are left to the artisan.
  • the tube 10 is a substantially circular tube.
  • the tube 10 is a completely straight tube.
  • the tube is a bent or otherwise non-straight tube.
  • the tube is a long tube.
  • the tube is a short tubular connector. It is noted that a tube axially extends along its centerline and that the length of a tube is the distance along its centerline whether the centerline is straight or not. Other constructions, variations, and modifications of the tube are left to the artisan.
  • the tube form 18 is disposed proximate an end of the tube 10 as shown in FIG. 2 .
  • the term “proximate” includes “at”.
  • the tube form is disposed elsewhere on the tube than proximate an end of the tube.
  • the first method resistance welds/brazes a tube to a plate wherein the plate has a through hole surrounding the tube and wherein the tube extends both above and below the plate. Other embodiments and variations are left to the artisan.
  • the tube form 18 is a fold 34 as shown in FIG. 2 .
  • a “fold” is a fold of the tube wall of a portion of the tube. The fold may or may not include axially-spaced-apart first and second fold portions.
  • the fold is an annular fold.
  • the fold is an outwardly-extending annular fold.
  • the tube form 18 is a flange.
  • a flange is a tube form which does not include a fold.
  • the flange is an annular flange.
  • the flange is an outwardly-extending annular flange.
  • Other annular and non-annular tube forms, including inwardly-extending (or both inwardly and outwardly-extending) tube forms, are left to the artisan.
  • the tube form 18 is a monolithic portion of the tube 10 .
  • conventional tube forming methods are used to create the tube form 18 such as by surrounding the tube 10 with a die having a tube-form-shaped recess, supporting the inside of the tube 10 with a solid cylinder, and pushing against the ends of the tube 10 to force a portion of the tube 10 into the recess to create the tube form 18 .
  • the tube 10 is created by pouring molten metal into a tube mold which is shaped to create the tube form 18 .
  • Other enablements and techniques are left to the artisan.
  • FIG. 2 shows one electrode choice which can be used in a conventional resistance welding machine to perform the first method (higher electric currents would be used for welding and lower electric currents would be used for brazing the same parts).
  • first and second electrodes 36 and 38 are used.
  • the first electrode 36 is an annular (e.g., a one or two or more piece annular) electrode disposed axially against the tube form 18 on a surface of the tube form 18 .
  • the second electrode 38 also is an annular electrode disposed as shown in FIG. 2 .
  • step e) is performed without relatively axially moving the tube form 18 deformingly toward the member 12 .
  • step e) includes relatively axially moving the tube form 18 deformingly toward the member 12 (along lines of movement indicated by arrows 39 in FIG. 2 .). It is noted, when the welding/brazing of the first method is welding, that step e) is with or without the application of deforming pressure when the metal of the parts to be welded is melted and step e) is with the application of deforming pressure when the metal of the parts to be welded is only softened. Even when not applying deforming pressure, the tube 10 and the member 12 typically would be moved relatively toward each other to maintain the resistance welding/brazing current path during step e).
  • “relatively moving” a first piece toward a second piece is meant moving the first piece toward the second piece or moving the second piece toward the first piece or moving both pieces toward each other.
  • the weld/braze zone 30 created by step e) is a leak-tight annular weld/braze zone. In another option, the weld/braze zone 30 is not a leak-tight weld zone. A non-leak-tight weld/braze zone is satisfactory for particular welding/brazing applications as can be appreciated by the artisan.
  • the tube 10 has a chemical composition which is different from that of the member 12 .
  • the compositions are such that the tube and the member could be resistance welded without the filler material, and in another variation, they could not.
  • the tube 10 has a chemical composition which is identical to that of the member 12 .
  • the final joint consists of the tube 10 and the member 12 joined together through the filler material 24 , wherein the filler material 24 fuses together the tube 10 and the member 12 or wherein the filler material 24 coalesces metallurgically through hot diffusion.
  • the filler material 24 has an appropriate chemistry or chemistry gradient to accomplish the welding/brazing of the tube 10 to the member 12 accounting for different mechanical, physical, metallurgical bonding, corrosion, and/or thermal properties of the tube 10 and the member 12 , as can be appreciated by those skilled in the art.
  • FIG. 4 A second embodiment of a tube 40 and a member 42 (which is a plate) is shown in FIG. 4 .
  • the filler material is a coating 44 on the tube form 46 .
  • the tube form 46 is a flange 48 .
  • a first electrode 50 and an annular second electrode 52 are employed as shown in FIG. 4 .
  • step e) specifies that substantially none of the tube 10 and substantially none of the member 12 are autogenously welded together at the tube form. It is noted that autogenous welding means welding together without an intervening filler weld material.
  • a second method of the invention is identical to the first application of the first method except that the tube 10 is welded to the member 12 using a filler weld material creating a weld zone in step e) and except that the filler material 24 is not required to have (but may have) a different chemical composition from that of the tube 10 and/or the member 12 .
  • a third method of the invention is identical to the first application of the first method except that the tube 10 is brazed to the member 12 using a filler braze material creating a braze zone in step e).
  • the tube form allows resistance welding/brazing of a tube to a member to be commercially feasible, as can be appreciated by those skilled in the art. Resistance welding/brazing is less expensive than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing also has a shorter cycle time between welds/brazes than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing heats only the joint area of the tube and the member avoiding heat distortion of the parts in contrast to using an external heat source.

Abstract

A method for welding/brazing a tube to a member. The tube has an axially-extending first portion and has a tube form which extends transversely from the first portion. A filler material is obtained. The tube, the member and the filler material are positioned such that the filler material contacts the tube form and the member. A resistance current path is created through the tube, the filler material and the member which melts at least some of the filler material creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a continuation-in-part application of U.S. patent application Ser. No. 10/430,578 filed May 6, 2003 now abandoned.
TECHNICAL FIELD
The present invention relates generally to welding and brazing, and more particularly to a method for resistance welding/brazing a tube to a member.
BACKGROUND OF THE INVENTION
Resistance welding (also known as electric-resistance welding) is a known metallurgical process used to weld a right-angle end flange of a tube to a surface projection of a plate wherein metal is heated by its own resistance to a semi-fused (i.e., soft) or fused (i.e., molten) state by the passage of very heavy electric currents for very short lengths of time and then welded. In one known variation, the plate is stamped creating depressions on the top surface and creating surface projections on the bottom surface so that during the resistance welding, the projections soften and/or melt creating a weld nugget which joins together the plate to the tube flange.
Conventional methods for welding a tube to another tube or for welding a tube to a plate include gas metal arc welding. Gas metal arc welding uses a consumable metal wire as one electrode and the parts as another electrode, and moves the consumable metal wire (or the parts) to draw an arc and weld the parts together. The welding is accompanied by a gas (such as a mixture of argon and carbon dioxide) to prevent oxidation and stabilize the arc. Such gas metal arc welding is well known. In a conventional gas metal arc welding technique, solid metal wire or metal core wire (i.e., an annular-solid wire whose core is filled with metal powder such as a mixture of metal, alloy and/or oxide powders) is used with the wire usually at a positive electrical welding potential and with the parts electrically grounded. The welding arc creates a molten weld puddle which results in the welding together of the parts. A ceramic ferrule is used to contain the weld puddle when needed. Gas metal arc welding requires expensive welding equipment, the molten weld puddle tends to flow away from the joint area (depending on the joint position with respect to gravity) resulting in welds of inconsistent quality, and the process requires a long cycle time between welds.
Conventional methods for attaching parts together also include friction welding. To join two tubes together end to end, one of the tubes is rotated about its longitudinal axis, and the tube ends are pressed together, wherein friction causes heating of the ends creating the weld. To join a tube to a plate, the tube is rotated about its longitudinal axis, and the tube end and the plate are pressed together, wherein friction causes heating creating the weld. Friction welding requires expensive welding equipment, and the process requires a long cycle time between welds. Friction welding is not easily applicable to thin-walled tubes because they do not retain their shapes well under heat and pressure. It is noted that laser and electron-beam welding for the above joints also need expensive equipment and expensive joint preparation.
Conventional brazing is a known metallurgical process used to join together two metal members. In this method, a brazing material is interposed between the two members, and external heat is applied to the assemblage which bonds the brazing material to the two members. Typically, a batch of assemblages of member pairs with interposed brazing material is heated in an oven or by an infrared heat source. In some applications, the members tend to become distorted from the oven or infrared heat. Conventional brazing requires expensive heating equipment and batch heat processing of the assemblages.
What is needed is a less expensive method for metallurgically joining a tube to a member.
SUMMARY OF THE INVENTION
A first method of the invention is for welding/brazing a tube to a member and includes steps a) through e). Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion. Step b) includes obtaining a member. Step c) includes obtaining a filler material having a different chemical composition from that of the tube and the member. Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member. Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
A second method of the invention is for welding a tube to a member and includes steps a) through e) Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion. Step b) includes obtaining a member. Step c) includes obtaining a filler material. Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member. Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
A third method of the invention is for brazing a tube to a member and includes steps a) through e) Step a) includes obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion. Step b) includes obtaining a member. Step c) includes obtaining a filler material having a different chemical composition from that of the tube and the member. Step d) includes, after steps a) through c), positioning the tube, the member and the filler material such that the filler material contacts the tube form and the member. Step e) includes, after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material.
Several benefits and advantages are derived from one or more of the methods of the invention. The tube form allows resistance welding/brazing of a tube to a member to be commercially feasible, as can be appreciated by those skilled in the art. Resistance welding/brazing is less expensive than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing also has a shorter cycle time between welds/brazes than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing heats only the joint area of the tube and the member avoiding heat distortion of the parts in contrast to using an external heat source.
SUMMARY OF THE DRAWINGS
FIG. 1 is a block diagram of a first method of the invention for resistance welding/brazing a tube to a member;
FIG. 2 is a schematic, side cross-sectional view of a first embodiment of a tube and a member (which is another tube) and a filler material gasket used in a first example of the first method, showing the tubes just before welding/brazing;
FIG. 3 is a view, as in FIG. 2, but showing the two tubes after welding/brazing and with the welding/brazing electrodes removed;
FIG. 4 is a view, as in FIG. 2, but showing a second embodiment of a tube and a member (which is a plate) and a filler material coating used in a second example of the first method, showing the tube and the plate just before welding/brazing.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A first method of the invention is for welding/brazing a tube 10 to a member 12 and is shown in block diagram form in FIG. 1 with a first embodiment of the tube 10 and the member 12 shown in FIGS. 2 and 3. The first method includes steps a) through e). Step a) is labeled as “Obtain Tube Having A Tube Form” in block 14 of FIG. 1. Step a) includes obtaining a tube 10 having an axially-extending first portion 16 and having a tube form 18 which extends transversely from the first portion 16. Step b) is labeled as “Obtain Member” in block 20 of FIG. 1. Step b) includes obtaining a member 12. Step c) is labeled as “Obtain Filler Material” in block 22 of FIG. 1. Step c) includes obtaining a filler material 24. Step d) is labeled as “Dispose Tube, Member and Filler Material” in block 26 of FIG. 1. Step d) includes, after steps a) through c), disposing the tube 10, the member 12, and the filler material 24 such that the filler material 24 contacts the tube form 18 and the member 12. Step e) is labeled as “Create Weld/Braze Zone” in block 28 of FIG. 1. Step e) includes, after step d), creating a resistance current path through the tube 10, the filler material 24 and the member 12 which melts at least some of the filler material 24 creating a weld/braze zone 30 which includes at least some of the tube 10, at least some of the filler material 24 and at least some of the member 12.
By “welding/brazing” a tube 10 to a member 12 using a filler material 24 is meant welding the tube 10 to the member 12 using a filler material 24, brazing the tube 10 to the member 12 using a filler material 24, welding a portion of the tube 10 to a portion of the member 12 using a filler material 24 and brazing another portion of the tube 10 to another portion of the member 12 using the filler material 24, or welding a portion of a filler material 24 to one of the tube 10 and the member 12 and brazing another portion of the filler material 24 to the other of the tube 10 and the member 12. Examples of a “weld/braze zone 30” include a weld zone, a braze zone, and a zone having a weld zone portion and a braze zone portion. Other examples are left to the artisan. A filler material includes a filler weld material and a filler braze material.
Examples of step e) of the first method for welding/brazing a tube 10 to a member 12 using a filler material 24 include non-deformation resistance welding, deformation resistance welding, non-deformation resistance brazing and deformation resistance brazing. In non-deformation resistance welding, at least some of the tube 10 and/or at least some of the member 12 are melted by the internal heat produced during the creation of the resistance current path in step e); In deformation resistance welding, at least some of the tube 10 and/or at least some of the member 12 need only be softened (but may have at least a portion melted) by the internal heat produced during the creation of the resistance current path in step e). In non-deformation resistance brazing or deformation resistance brazing, no portion of the tube 10 and/or no portion of the member 12 is melted. Other examples are left to the artisan.
In one example of the filler material 24, the filler material 24 includes at least one gasket 32, and step d) disposes the at-least-one gasket 32 between the tube form 18 and the member 12. In another example, the filler material includes a coating disposed on the tube form. In one variation, the coating is plated on the tube form. In an additional example, the filler material includes a coating disposed on the member. In a further example, the filler material includes a first coating portion disposed on the tube form and includes a second coating portion disposed on the member.
In one example of the first method, the member 12 is a tubular member as shown in FIGS. 2 and 3. In one modification, the weld zone 30 extends the width of the tube form 18 as can be seen in FIG. 3. In another modification, not shown, the weld zone extends the width of the gasket 32. In one variation, not shown, a portion of the tube above the tube form extends inside the tubular member. In a different example, the member is a non-tubular member. In one variation, the member is a plate (without a hole or with a hole in which the tube is partially disposed). In another variation, the member is a thicker solid. In one choice of materials, the tube 10 and the member 12 consist essentially of steel, and the filler material 24 consists essentially of copper. Other variations, and other choices of materials making up the tube, the member and the filler material, are left to the artisan.
In one construction using the first method, the tube 10 is a substantially circular tube. In one variation, the tube 10 is a completely straight tube. In another variation, the tube is a bent or otherwise non-straight tube. In one modification, the tube is a long tube. In another modification, the tube is a short tubular connector. It is noted that a tube axially extends along its centerline and that the length of a tube is the distance along its centerline whether the centerline is straight or not. Other constructions, variations, and modifications of the tube are left to the artisan.
In one embodiment using the first method, the tube form 18 is disposed proximate an end of the tube 10 as shown in FIG. 2. The term “proximate” includes “at”. In a different embodiment, the tube form is disposed elsewhere on the tube than proximate an end of the tube. In one variation of this different embodiment, the first method resistance welds/brazes a tube to a plate wherein the plate has a through hole surrounding the tube and wherein the tube extends both above and below the plate. Other embodiments and variations are left to the artisan.
In one enablement of the first method, the tube form 18 is a fold 34 as shown in FIG. 2. A “fold” is a fold of the tube wall of a portion of the tube. The fold may or may not include axially-spaced-apart first and second fold portions. In one variation, the fold is an annular fold. In one modification, the fold is an outwardly-extending annular fold. In a different enablement, the tube form 18 is a flange. For purposes of describing any of the methods, a flange is a tube form which does not include a fold. In one variation, the flange is an annular flange. In one modification, the flange is an outwardly-extending annular flange. Other annular and non-annular tube forms, including inwardly-extending (or both inwardly and outwardly-extending) tube forms, are left to the artisan.
In one enablement of the first method, the tube form 18 is a monolithic portion of the tube 10. In one technique, conventional tube forming methods are used to create the tube form 18 such as by surrounding the tube 10 with a die having a tube-form-shaped recess, supporting the inside of the tube 10 with a solid cylinder, and pushing against the ends of the tube 10 to force a portion of the tube 10 into the recess to create the tube form 18. In another technique, the tube 10 is created by pouring molten metal into a tube mold which is shaped to create the tube form 18. Other enablements and techniques are left to the artisan.
FIG. 2 shows one electrode choice which can be used in a conventional resistance welding machine to perform the first method (higher electric currents would be used for welding and lower electric currents would be used for brazing the same parts). In this choice, first and second electrodes 36 and 38 are used. The first electrode 36 is an annular (e.g., a one or two or more piece annular) electrode disposed axially against the tube form 18 on a surface of the tube form 18. The second electrode 38 also is an annular electrode disposed as shown in FIG. 2.
In one technique using the first method, step e) is performed without relatively axially moving the tube form 18 deformingly toward the member 12. In another technique, step e) includes relatively axially moving the tube form 18 deformingly toward the member 12 (along lines of movement indicated by arrows 39 in FIG. 2.). It is noted, when the welding/brazing of the first method is welding, that step e) is with or without the application of deforming pressure when the metal of the parts to be welded is melted and step e) is with the application of deforming pressure when the metal of the parts to be welded is only softened. Even when not applying deforming pressure, the tube 10 and the member 12 typically would be moved relatively toward each other to maintain the resistance welding/brazing current path during step e). By “relatively moving” a first piece toward a second piece is meant moving the first piece toward the second piece or moving the second piece toward the first piece or moving both pieces toward each other.
In one option using the first method, the weld/braze zone 30 created by step e) is a leak-tight annular weld/braze zone. In another option, the weld/braze zone 30 is not a leak-tight weld zone. A non-leak-tight weld/braze zone is satisfactory for particular welding/brazing applications as can be appreciated by the artisan.
In one deployment of the first method, the tube 10 has a chemical composition which is different from that of the member 12. In one variation, the compositions are such that the tube and the member could be resistance welded without the filler material, and in another variation, they could not. In a different deployment, the tube 10 has a chemical composition which is identical to that of the member 12.
In one operation involving the first method, the final joint consists of the tube 10 and the member 12 joined together through the filler material 24, wherein the filler material 24 fuses together the tube 10 and the member 12 or wherein the filler material 24 coalesces metallurgically through hot diffusion. In one variation, the filler material 24 has an appropriate chemistry or chemistry gradient to accomplish the welding/brazing of the tube 10 to the member 12 accounting for different mechanical, physical, metallurgical bonding, corrosion, and/or thermal properties of the tube 10 and the member 12, as can be appreciated by those skilled in the art.
A second embodiment of a tube 40 and a member 42 (which is a plate) is shown in FIG. 4. In this embodiment, the filler material is a coating 44 on the tube form 46. In this embodiment, the tube form 46 is a flange 48. A first electrode 50 and an annular second electrode 52 are employed as shown in FIG. 4.
In a first application of the first method, step e) specifies that substantially none of the tube 10 and substantially none of the member 12 are autogenously welded together at the tube form. It is noted that autogenous welding means welding together without an intervening filler weld material. A second method of the invention is identical to the first application of the first method except that the tube 10 is welded to the member 12 using a filler weld material creating a weld zone in step e) and except that the filler material 24 is not required to have (but may have) a different chemical composition from that of the tube 10 and/or the member 12. A third method of the invention is identical to the first application of the first method except that the tube 10 is brazed to the member 12 using a filler braze material creating a braze zone in step e).
Several benefits and advantages are derived from one or more of the methods of the invention. The tube form allows resistance welding/brazing of a tube to a member to be commercially feasible, as can be appreciated by those skilled in the art. Resistance welding/brazing is less expensive than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing also has a shorter cycle time between welds/brazes than gas metal arc welding or friction welding or brazing using an external heat source. Resistance welding/brazing heats only the joint area of the tube and the member avoiding heat distortion of the parts in contrast to using an external heat source.
The foregoing description of several methods of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise procedures or precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.

Claims (20)

1. A method for welding/brazing a tube to a member comprising the steps of:
a) obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion;
b) obtaining a member;
c) obtaining a filler material having a different chemical composition from that of the tube and the member;
d) after steps a) through c), disposing the tube, the member and the filler material such that the filler material contacts the tube form and the member; and
e) after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material wherein none of the tube and none of the member are autogenously welded together at the tube form.
2. The method of claim 1, wherein the filler material includes a coating disposed on the tube form.
3. The method of claim 2, wherein the coating is plated on the tube form.
4. The method of claim 1, wherein the filler material includes a coating disposed on the member.
5. The method of claim 1, wherein the filler material includes a first coating portion disposed on the tube form and includes a second coating portion disposed on the member.
6. The method of claim 1, wherein the member is a tubular member.
7. The method of claim 1, wherein the member is a non-tubular member.
8. The method of claim 1, wherein the tube form is disposed proximate an end of the tube.
9. The method of claim 1, wherein the tube form is a fold.
10. The method of claim 9, wherein the fold is an outwardly-extending annular fold.
11. The method of claim 1, wherein step e) is performed without relatively axially moving the tube form deformingly toward the member.
12. The method of claim 1, wherein step e) includes relatively axially moving the tube form deformingly toward the member.
13. The method of claim 1, wherein the weld/braze zone created by step e) is a leak-tight annular weld/braze zone.
14. The method of claim 1, wherein the tube has a chemical composition which is different from that of the member.
15. The method of claim 1, wherein the tube has a chemical composition which is identical to that of the member.
16. A method for welding a tube to a member comprising the steps of:
a) obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion;
b) obtaining a member;
c) obtaining a filler weld material;
d) after steps a) through c), disposing the tube, the member and the filler weld material such that the filler weld material contacts the tube form and the member; and
e) after step d), creating a resistance current path through the tube, the filler weld material and the member which melts at least some of the filler weld material creating a weld zone which includes at least some of the tube, at least some of the member, and at least some of the filler weld material wherein none of the tube and none of the member are autogenously welded together at the tube form.
17. A method for brazing a tube to a member comprising the steps of:
a) obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion;
b) obtaining a member;
c) obtaining a filler braze material having a different chemical composition from that of the tube and the member;
d) after steps a) through c), disposing the tube, the member and the filler braze material such that the filler braze material contacts the tube form and the member; and
e) after step d), creating a resistance current path through the tube, the filler braze material and the member which melts at least some of the filler braze material creating a braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler braze material wherein none of the tube and none of the member are autogenously welded together at the tube form.
18. A method for welding/brazing a tube to a member comprising the steps of:
a) obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion;
b) obtaining a member;
c) obtaining a filler material gasket having a different chemical composition from that of the tube and the member;
d) after steps a) through c), disposing the tube, the member and the filler material gasket such that the filler material gasket contacts the tube form and the member; and
e) after step d), creating a resistance current path through the tube, the filler material gasket and the member which melts at least some of the filler material gasket creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material gasket, wherein none of the tube and none of the member are autogenously welded together at the tube form, and wherein step d) disposes the at-least-one filler material gasket between the tube form and the member.
19. A method for welding/brazing a tube to a member comprising the steps of:
a) obtaining a tube having an axially-extending first portion and having a tube form which extends transversely from the first portion;
b) obtaining a member;
c) obtaining a filler material having a different chemical composition from that of the tube and the member;
d) after steps a) through c), disposing the tube, the member and the filler material such that the filler material contacts the tube form and the member; and
e) after step d), creating a resistance current path through the tube, the filler material and the member which melts at least some of the filler material creating a weld/braze zone which includes at least some of the tube, at least some of the member, and at least some of the filler material, wherein the tube form is a flange, and wherein none of the tube and none of the member are autogenously welded together at the tube form.
20. The method of claim 19, wherein the flange is an outwardly-extending annular flange.
US11/109,570 2003-05-06 2005-04-19 Method for resistance welding/brazing a tube to a member Expired - Fee Related US7423232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/109,570 US7423232B2 (en) 2003-05-06 2005-04-19 Method for resistance welding/brazing a tube to a member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/430,578 US20040222193A1 (en) 2003-05-06 2003-05-06 Method for resistance welding/brazing a tube to a member
US11/109,570 US7423232B2 (en) 2003-05-06 2005-04-19 Method for resistance welding/brazing a tube to a member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/430,578 Continuation-In-Part US20040222193A1 (en) 2003-05-06 2003-05-06 Method for resistance welding/brazing a tube to a member

Publications (2)

Publication Number Publication Date
US20050194360A1 US20050194360A1 (en) 2005-09-08
US7423232B2 true US7423232B2 (en) 2008-09-09

Family

ID=33416275

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/430,578 Abandoned US20040222193A1 (en) 2003-05-06 2003-05-06 Method for resistance welding/brazing a tube to a member
US11/109,570 Expired - Fee Related US7423232B2 (en) 2003-05-06 2005-04-19 Method for resistance welding/brazing a tube to a member

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/430,578 Abandoned US20040222193A1 (en) 2003-05-06 2003-05-06 Method for resistance welding/brazing a tube to a member

Country Status (3)

Country Link
US (2) US20040222193A1 (en)
AU (1) AU2003265416A1 (en)
WO (1) WO2004103630A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058058A1 (en) * 2007-08-28 2009-03-05 Finnigan Brian T Inflators and method for manufacturing inflators
US20150183048A1 (en) * 2012-07-12 2015-07-02 Whirlpool S.A. Device and process for simultaneous shaping and welding of connector pipes for compressors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272077A1 (en) * 2006-05-24 2007-11-29 Genie Industries, Inc. Linear actuator assembly
WO2007146962A2 (en) * 2006-06-12 2007-12-21 Genie Industries, Inc. Joint assembly and related methods
WO2008011148A2 (en) * 2006-07-21 2008-01-24 Edison Welding Institute, Inc. Conductive heat resistance deformation welding method
CA3026249A1 (en) * 2016-06-02 2017-12-07 Priefert Mfg. Co. Inc. Apparatus, systems and methods for a brazed joint
CN114322633A (en) * 2021-12-30 2022-04-12 浙江银轮机械股份有限公司 Connecting piece and heat exchanger

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1292812A (en) 1918-02-08 1919-01-28 Laurence S Lachman Method of uniting metal parts.
US2106272A (en) 1936-07-15 1938-01-25 Gen Motors Corp Shock absorber
US2277871A (en) 1940-11-30 1942-03-31 Rca Corp Hermetic seal
US2326296A (en) 1940-06-15 1943-08-10 Bell Telephone Labor Inc Machine for sealing receptacles
US2447259A (en) 1945-02-12 1948-08-17 Worthington Pump & Mach Corp Condenser
US2824212A (en) 1955-10-19 1958-02-18 Fairchild Engine & Airplane Resistance welding methods and apparatus
US3503474A (en) 1967-04-01 1970-03-31 Fichtel & Sachs Ag Welded shock absorber assembly
US3585345A (en) 1969-04-02 1971-06-15 Karl G Jespersen Apparatus and method for welding
US3618817A (en) 1970-05-14 1971-11-09 Rheem Mfg Co Food container and method of making the same
US3784778A (en) 1968-12-09 1974-01-08 Ca Atomic Energy Ltd Method and apparatus for t. i. g. tube welding
US3784260A (en) 1971-03-27 1974-01-08 K Araya Wheel rim
DE2806287A1 (en) 1978-02-15 1979-08-16 Schulz Wilhelm Welding bent flange onto pipe end without using filler rod - by bending out pipe end of fitting flanged auxiliary sleeve then positioning main flange with profiled rim
US4185369A (en) 1978-03-22 1980-01-29 General Electric Company Method of manufacture of cooled turbine or compressor buckets
JPS55136593A (en) 1979-04-10 1980-10-24 Dengensha Mfg Co Ltd Production of welded joint
JPS55136584A (en) 1979-04-11 1980-10-24 Matsushita Electric Ind Co Ltd Resistance welding method
US4231488A (en) 1979-04-16 1980-11-04 Ward William H Container closure spout construction and method of forming same
US4269106A (en) 1978-03-06 1981-05-26 Hilti Aktiengesellschaft Dowel for a hollow wall structure
US4273983A (en) 1973-07-14 1981-06-16 Toyota Jidosha Kogyo Kabushiki Kaisha Method of resistance welding
US4322598A (en) 1980-11-12 1982-03-30 Rwc Inc. Method for forming a conduit extending through and beyond opposite sides of a housing wall
US4408112A (en) 1981-06-12 1983-10-04 Gasparas Kazlauskas Welding insert ring and method of welding therefor
US4427869A (en) 1979-12-04 1984-01-24 Toyo Kogyo Co., Ltd. Method for manufacturing panel assemblies for automobiles
US4480166A (en) 1983-03-14 1984-10-30 General Motors Corporation Resistance welding of zinc-coated steel
US4496410A (en) 1981-04-02 1985-01-29 Raychem Limited Production of dimensionally recoverable articles
US4514614A (en) 1982-08-18 1985-04-30 Westinghouse Electric Corp. Pressure-differential method for sleeve-to-tube joining
US4648811A (en) 1984-09-27 1987-03-10 Kabushiki Kaisha Toshiba Closed type compressor
US4677271A (en) 1983-01-17 1987-06-30 Paul Opprecht Method for electrical resistance-welding and installation for carrying out said method and use of said method in drum manufacture
US4676427A (en) 1985-01-17 1987-06-30 Lucas Industries Public Limited Company Master cylinder flange attachment
US4769624A (en) 1986-10-30 1988-09-06 General Motors Corporation Permanent magnet assembly
US5204491A (en) 1990-11-27 1993-04-20 Thomson -- Brandt Armements Pyrotechnic detonator using coaxial connections
DE4209218A1 (en) 1992-03-21 1993-11-11 Fichtel & Sachs Ag Telescopic vibration damper or suspension with resistance welding - has raised area on one fastening faces to increase static and dynamic strength of weld by forming ring connecting face
US5374800A (en) 1992-11-20 1994-12-20 Mitsubishi Nuclear Fuel Co. Method for welding of fuel rod
US5386923A (en) 1994-01-28 1995-02-07 Kurata Corporation Joint structure of container and pipe
US5538076A (en) 1993-12-17 1996-07-23 Nippondenso Co., Ltd. Pipe fitting mechanism and heat exchanger using same
US5540192A (en) 1995-05-25 1996-07-30 Uis, Inc. Integrated water pump assembly for internal combustion engines
JPH08193577A (en) 1994-10-07 1996-07-30 Sanyo Electric Co Ltd Enclosed motor-driven compressor
JPH08215859A (en) 1995-02-20 1996-08-27 Horie Metal Co Ltd Seam welding equipment
US5649039A (en) 1991-11-07 1997-07-15 Lucent Technologies Inc. Optical fiber ferrule assembly
US5786548A (en) 1996-08-15 1998-07-28 Hughes Electronics Corporation Hermetic package for an electrical device
US5831235A (en) 1996-06-24 1998-11-03 Cecil; Dimitrios G. Apparatus and method of welding a tube and bracket assembly
EP0884501A1 (en) 1997-06-13 1998-12-16 Financy Damper end-piece and production method therefor
US5896960A (en) 1997-08-25 1999-04-27 General Motors Corporation Welded rod fitting damper manufacture
US6089617A (en) 1997-07-31 2000-07-18 Hewlett-Packard Company System for attaching a tubular device to a planar device
US6130502A (en) 1996-05-21 2000-10-10 Kabushiki Kaisha Toshiba Cathode assembly, electron gun assembly, electron tube, heater, and method of manufacturing cathode assembly and electron gun assembly
US6186696B1 (en) 1996-12-31 2001-02-13 Vallourec Composants Automobiles Vitry Method for the crosswise shrinking of a cylindrical part in a tubular part, tool kit for its implementation, and assembly of two corresponding parts
US6287513B1 (en) 1999-08-24 2001-09-11 Delphi Technologies, Inc. Method of shaping powder metal parts
US20020008387A1 (en) 2000-01-14 2002-01-24 Vasudeva Kailash C. Exhaust system flanges
US6370740B1 (en) 2000-06-16 2002-04-16 The United States Of America As Represented By The Secretary Of The Navy Mechanical clamp for cylindrical objects
US6390124B1 (en) 1999-08-06 2002-05-21 Futaba Industrial Co. Ltd. Fuel inlet and manufacturing method thereof
US6476543B1 (en) 1999-10-29 2002-11-05 Hitachi, Ltd. Cathode ray tube having an improved electrode assembly
US20020162651A1 (en) 1999-01-20 2002-11-07 Hino Motors, Ltd. EGR cooler
US6539837B2 (en) 2001-05-17 2003-04-01 Delphi Technologies, Inc. Apparatus and method of attaching a connecting member and a tube member to a housing of a vacuum brake booster
US6552294B1 (en) 2001-10-02 2003-04-22 Delphi Technologies, Inc. Method for metallurgically attaching together two members
US6586110B1 (en) 2000-07-07 2003-07-01 Delphi Technologies, Inc. Contoured metal structural members and methods for making the same
US6615488B2 (en) 2002-02-04 2003-09-09 Delphi Technologies, Inc. Method of forming heat exchanger tube
US6623048B2 (en) 2001-05-17 2003-09-23 Delphi Technologies, Inc. Apparatus and method of attaching a tube member to a housing of a vacuum brake booster
US20030196715A1 (en) 2001-06-01 2003-10-23 Shunji Sakamoto Fuel tank or fuel pipe exhibiting excellent corrosion resistance and method for manufacturing the same
US6654995B1 (en) 2000-10-16 2003-12-02 General Motors Corporation Method for joining tubular members
US6689981B1 (en) 2002-09-09 2004-02-10 Delphi Technologies, Inc. Method for metallurgically capping an end of a tube
US6693251B1 (en) 2002-08-22 2004-02-17 Delphi Technologies, Inc. Method for manufacturing a metallic tubular assembly
US20040035830A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically attaching together two tubes
US20040035834A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically joining a tube to a member
WO2004019377A2 (en) 2002-08-22 2004-03-04 Delphi Technologies, Inc. Method for metallurgically joining a tube to a member
US6705438B2 (en) 2001-07-11 2004-03-16 Delphi Technologies, Inc. Method for attaching ring to damper base cup and damper having ring
US20040056001A1 (en) 2002-09-24 2004-03-25 Delphi Technologies Inc. Deformation resistance welding of sheet metal, tubes, and similar shapes
US6791051B2 (en) 2002-08-22 2004-09-14 Delphi Technologies, Inc. Method for metallurgically attaching a tube to a member
US6791052B1 (en) 2003-03-28 2004-09-14 Delphi Technologies, Inc. Method for resistance welding a tube to a member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925637A (en) * 1972-03-28 1975-12-09 Otto Alfred Becker Resistance welding

Patent Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1292812A (en) 1918-02-08 1919-01-28 Laurence S Lachman Method of uniting metal parts.
US2106272A (en) 1936-07-15 1938-01-25 Gen Motors Corp Shock absorber
US2326296A (en) 1940-06-15 1943-08-10 Bell Telephone Labor Inc Machine for sealing receptacles
US2277871A (en) 1940-11-30 1942-03-31 Rca Corp Hermetic seal
US2447259A (en) 1945-02-12 1948-08-17 Worthington Pump & Mach Corp Condenser
US2824212A (en) 1955-10-19 1958-02-18 Fairchild Engine & Airplane Resistance welding methods and apparatus
US3503474A (en) 1967-04-01 1970-03-31 Fichtel & Sachs Ag Welded shock absorber assembly
US3784778A (en) 1968-12-09 1974-01-08 Ca Atomic Energy Ltd Method and apparatus for t. i. g. tube welding
US3585345A (en) 1969-04-02 1971-06-15 Karl G Jespersen Apparatus and method for welding
US3618817A (en) 1970-05-14 1971-11-09 Rheem Mfg Co Food container and method of making the same
US3784260A (en) 1971-03-27 1974-01-08 K Araya Wheel rim
US4273983A (en) 1973-07-14 1981-06-16 Toyota Jidosha Kogyo Kabushiki Kaisha Method of resistance welding
DE2806287A1 (en) 1978-02-15 1979-08-16 Schulz Wilhelm Welding bent flange onto pipe end without using filler rod - by bending out pipe end of fitting flanged auxiliary sleeve then positioning main flange with profiled rim
US4269106A (en) 1978-03-06 1981-05-26 Hilti Aktiengesellschaft Dowel for a hollow wall structure
US4185369A (en) 1978-03-22 1980-01-29 General Electric Company Method of manufacture of cooled turbine or compressor buckets
JPS55136593A (en) 1979-04-10 1980-10-24 Dengensha Mfg Co Ltd Production of welded joint
JPS55136584A (en) 1979-04-11 1980-10-24 Matsushita Electric Ind Co Ltd Resistance welding method
US4231488A (en) 1979-04-16 1980-11-04 Ward William H Container closure spout construction and method of forming same
US4427869A (en) 1979-12-04 1984-01-24 Toyo Kogyo Co., Ltd. Method for manufacturing panel assemblies for automobiles
US4322598A (en) 1980-11-12 1982-03-30 Rwc Inc. Method for forming a conduit extending through and beyond opposite sides of a housing wall
US4496410A (en) 1981-04-02 1985-01-29 Raychem Limited Production of dimensionally recoverable articles
US4408112A (en) 1981-06-12 1983-10-04 Gasparas Kazlauskas Welding insert ring and method of welding therefor
US4514614A (en) 1982-08-18 1985-04-30 Westinghouse Electric Corp. Pressure-differential method for sleeve-to-tube joining
US4677271A (en) 1983-01-17 1987-06-30 Paul Opprecht Method for electrical resistance-welding and installation for carrying out said method and use of said method in drum manufacture
US4480166A (en) 1983-03-14 1984-10-30 General Motors Corporation Resistance welding of zinc-coated steel
US4648811A (en) 1984-09-27 1987-03-10 Kabushiki Kaisha Toshiba Closed type compressor
US4676427A (en) 1985-01-17 1987-06-30 Lucas Industries Public Limited Company Master cylinder flange attachment
US4769624A (en) 1986-10-30 1988-09-06 General Motors Corporation Permanent magnet assembly
US5204491A (en) 1990-11-27 1993-04-20 Thomson -- Brandt Armements Pyrotechnic detonator using coaxial connections
US5649039A (en) 1991-11-07 1997-07-15 Lucent Technologies Inc. Optical fiber ferrule assembly
DE4209218A1 (en) 1992-03-21 1993-11-11 Fichtel & Sachs Ag Telescopic vibration damper or suspension with resistance welding - has raised area on one fastening faces to increase static and dynamic strength of weld by forming ring connecting face
US5374800A (en) 1992-11-20 1994-12-20 Mitsubishi Nuclear Fuel Co. Method for welding of fuel rod
US5538076A (en) 1993-12-17 1996-07-23 Nippondenso Co., Ltd. Pipe fitting mechanism and heat exchanger using same
US5386923A (en) 1994-01-28 1995-02-07 Kurata Corporation Joint structure of container and pipe
JPH08193577A (en) 1994-10-07 1996-07-30 Sanyo Electric Co Ltd Enclosed motor-driven compressor
JPH08215859A (en) 1995-02-20 1996-08-27 Horie Metal Co Ltd Seam welding equipment
US5540192A (en) 1995-05-25 1996-07-30 Uis, Inc. Integrated water pump assembly for internal combustion engines
US6130502A (en) 1996-05-21 2000-10-10 Kabushiki Kaisha Toshiba Cathode assembly, electron gun assembly, electron tube, heater, and method of manufacturing cathode assembly and electron gun assembly
US5831235A (en) 1996-06-24 1998-11-03 Cecil; Dimitrios G. Apparatus and method of welding a tube and bracket assembly
US5786548A (en) 1996-08-15 1998-07-28 Hughes Electronics Corporation Hermetic package for an electrical device
US6186696B1 (en) 1996-12-31 2001-02-13 Vallourec Composants Automobiles Vitry Method for the crosswise shrinking of a cylindrical part in a tubular part, tool kit for its implementation, and assembly of two corresponding parts
EP0884501A1 (en) 1997-06-13 1998-12-16 Financy Damper end-piece and production method therefor
US6089617A (en) 1997-07-31 2000-07-18 Hewlett-Packard Company System for attaching a tubular device to a planar device
US5896960A (en) 1997-08-25 1999-04-27 General Motors Corporation Welded rod fitting damper manufacture
US20020162651A1 (en) 1999-01-20 2002-11-07 Hino Motors, Ltd. EGR cooler
US6390124B1 (en) 1999-08-06 2002-05-21 Futaba Industrial Co. Ltd. Fuel inlet and manufacturing method thereof
US6287513B1 (en) 1999-08-24 2001-09-11 Delphi Technologies, Inc. Method of shaping powder metal parts
US6476543B1 (en) 1999-10-29 2002-11-05 Hitachi, Ltd. Cathode ray tube having an improved electrode assembly
US20020008387A1 (en) 2000-01-14 2002-01-24 Vasudeva Kailash C. Exhaust system flanges
US6370740B1 (en) 2000-06-16 2002-04-16 The United States Of America As Represented By The Secretary Of The Navy Mechanical clamp for cylindrical objects
US6586110B1 (en) 2000-07-07 2003-07-01 Delphi Technologies, Inc. Contoured metal structural members and methods for making the same
US6654995B1 (en) 2000-10-16 2003-12-02 General Motors Corporation Method for joining tubular members
US6623048B2 (en) 2001-05-17 2003-09-23 Delphi Technologies, Inc. Apparatus and method of attaching a tube member to a housing of a vacuum brake booster
US6539837B2 (en) 2001-05-17 2003-04-01 Delphi Technologies, Inc. Apparatus and method of attaching a connecting member and a tube member to a housing of a vacuum brake booster
US20030196715A1 (en) 2001-06-01 2003-10-23 Shunji Sakamoto Fuel tank or fuel pipe exhibiting excellent corrosion resistance and method for manufacturing the same
US6705438B2 (en) 2001-07-11 2004-03-16 Delphi Technologies, Inc. Method for attaching ring to damper base cup and damper having ring
US6552294B1 (en) 2001-10-02 2003-04-22 Delphi Technologies, Inc. Method for metallurgically attaching together two members
US6615488B2 (en) 2002-02-04 2003-09-09 Delphi Technologies, Inc. Method of forming heat exchanger tube
WO2004019377A2 (en) 2002-08-22 2004-03-04 Delphi Technologies, Inc. Method for metallurgically joining a tube to a member
US6693251B1 (en) 2002-08-22 2004-02-17 Delphi Technologies, Inc. Method for manufacturing a metallic tubular assembly
US20040035834A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically joining a tube to a member
US20040035829A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for manufacturing a metallic tubular assembly
US20040035832A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically joining a tube to a member
US20040035504A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for joining a tube to a member
US20040035833A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically joining a tube to a member
US20040035830A1 (en) 2002-08-22 2004-02-26 Venkatasubramanian Ananthanarayanan Method for metallurgically attaching together two tubes
US6791051B2 (en) 2002-08-22 2004-09-14 Delphi Technologies, Inc. Method for metallurgically attaching a tube to a member
US6717091B2 (en) 2002-08-22 2004-04-06 Delphi Technologies, Inc. Method for metallurgically attaching together two tubes
US6689981B1 (en) 2002-09-09 2004-02-10 Delphi Technologies, Inc. Method for metallurgically capping an end of a tube
US20040056001A1 (en) 2002-09-24 2004-03-25 Delphi Technologies Inc. Deformation resistance welding of sheet metal, tubes, and similar shapes
WO2004028730A1 (en) 2002-09-24 2004-04-08 Delphi Technologies, Inc. Deformation resistance welding of sheet metal, tubes, and similar shapes
US6791052B1 (en) 2003-03-28 2004-09-14 Delphi Technologies, Inc. Method for resistance welding a tube to a member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058058A1 (en) * 2007-08-28 2009-03-05 Finnigan Brian T Inflators and method for manufacturing inflators
US7823918B2 (en) 2007-08-28 2010-11-02 Delphi Technologies, Inc. Inflators and method for manufacturing inflators
US20110025028A1 (en) * 2007-08-28 2011-02-03 Delphi Technologies, Inc. Inflators and method for manufacturing inflators
US8083257B2 (en) 2007-08-28 2011-12-27 Delphi Technologies, Inc. Inflators and method for manufacturing inflators
US20150183048A1 (en) * 2012-07-12 2015-07-02 Whirlpool S.A. Device and process for simultaneous shaping and welding of connector pipes for compressors
US9975197B2 (en) * 2012-07-12 2018-05-22 Whirlpool, S.A. Device and process for simultaneous shaping and welding of connector pipes for compressors

Also Published As

Publication number Publication date
AU2003265416A1 (en) 2004-12-13
US20050194360A1 (en) 2005-09-08
US20040222193A1 (en) 2004-11-11
WO2004103630A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6953147B2 (en) Method for joining a tube to a member
US7423232B2 (en) Method for resistance welding/brazing a tube to a member
EP1545824B1 (en) Deformation resistance welding of sheet metal, tubes, and similar shapes
US6693251B1 (en) Method for manufacturing a metallic tubular assembly
JP4785846B2 (en) Resistance welding method
US6791052B1 (en) Method for resistance welding a tube to a member
US6689981B1 (en) Method for metallurgically capping an end of a tube
US6717091B2 (en) Method for metallurgically attaching together two tubes
US6875944B2 (en) Method for resistance welding/brazing a tube to a container
WO2004019377A2 (en) Method for metallurgically joining a tube to a member
WO2004018136A1 (en) Method for joining a tube to a member
JP2021186842A (en) Manufacturing method and manufacturing apparatus for jointed article
US20190061035A1 (en) System and method for joining components
JPH04167972A (en) Method for welding tube to plate
JPS5942174A (en) Manufacture of copper alloy joint by resistance heating
WO2004019376A2 (en) Method for metallurgically joining a tube to a member

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANANTHANARAYANAN, VENKATASUBRAMANIAN;RAMACHANDRA, DHARMENDRA M.;MARCZEWSKI, RICHARD W.;REEL/FRAME:016497/0737;SIGNING DATES FROM 20050401 TO 20050412

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120909