US7463348B2 - Rail vehicle mounted rail measurement system - Google Patents

Rail vehicle mounted rail measurement system Download PDF

Info

Publication number
US7463348B2
US7463348B2 US11/456,312 US45631206A US7463348B2 US 7463348 B2 US7463348 B2 US 7463348B2 US 45631206 A US45631206 A US 45631206A US 7463348 B2 US7463348 B2 US 7463348B2
Authority
US
United States
Prior art keywords
rail
railhead
image
reference marker
railway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/456,312
Other versions
US20080007724A1 (en
Inventor
Wing Yeung Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transportation IP Holdings LLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US11/456,312 priority Critical patent/US7463348B2/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUNG, WING YEUNG
Priority to PCT/US2007/071894 priority patent/WO2008008611A2/en
Priority to CN200780026485XA priority patent/CN101489852B/en
Publication of US20080007724A1 publication Critical patent/US20080007724A1/en
Application granted granted Critical
Publication of US7463348B2 publication Critical patent/US7463348B2/en
Assigned to GE GLOBAL SOURCING LLC reassignment GE GLOBAL SOURCING LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/045Rail wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera

Definitions

  • a distance between rails of a railway track, or the rail gage of the track remains within predetermined ranges such as may be specified by FRA requirements.
  • the gage of a pair of rails is defined by the FRA as the distance between the rails measured at a point five eights of an inch below a top surface of the rail head.
  • Standard U.S. rail gage is specified by the FRA as 56.5 inches.
  • the gage cannot be permitted to spread to more than one inch and a quarter from the U.S. standard gage distance of 56.5 inches.
  • the most primitive technique for track inspection is to perform a visual inspection of the track to assess track condition. Such an inspection typically involves track inspection personnel walking along or riding adjacent to a track to look for potential track anomalies indicative of potential track failure. This technique may involve the use of various mechanical measuring devices designed to assist the inspection personnel in making track measurements, such as manually measuring a rail gage of the track.
  • these manual techniques are time consuming and labor intensive.
  • a rail measurement system for mounting on a rail vehicle for travel over a railway having two spaced apart rails includes a first collimated light source mounted on a rail vehicle for providing a first reference marker relative to a first rail of a railway.
  • the system also includes a camera mounted on the rail vehicle for recording an image of the reference marker relative to the first rail.
  • the system further includes an image processor coupled to the camera for analyzing the image of the reference marker relative to the first rail to determine a first rail alignment dimension with respect to the reference marker.
  • a rail measurement system for mounting on a rail vehicle includes a first collimated light source mounted on a rail vehicle providing a first reference marker relative to a first rail of a railway and a second collimated light source mounted on a rail vehicle and spaced apart from the first collimated light source for providing a second reference marker relative to a second rail of the railway.
  • the system also includes a camera mounted on the rail vehicle for recording an image of the first and second reference markers relative to respective first and second rails and an image processor coupled to the camera for analyzing the image of the first and second reference markers relative to respective first and second rails to determine a rail alignment dimension corresponding to the first and second reference markers relative to respective first and second rails and a spacing between the markers.
  • a method for measuring a rail alignment of spaced apart rails of a railway from a rail vehicle for travel over the railway includes using a first collimated light source for providing a first reference marker relative to a first rail of a railway. The method also includes capturing an image of the first reference marker relative to a first rail of a railway and processing the image to determine a first rail alignment dimension with respect to the first reference marker.
  • FIG. 1 is schematic side view of an example rail measurement system for mounting on a rail vehicle for travel over a railway;
  • FIG. 2 is schematic cross sectional view of an example rail measurement system for mounting on a rail vehicle for travel over a railway.
  • Image acquisition and digitizing systems have been used on locomotives to record images acquired by cameras mounted on the locomotives. Recent advances in image processing have greatly improved the ability to process images acquired by locomotive on-board digitizing systems to extract information in near real-time. However, it has proven difficult to use an onboard camera system to image the track and perform track alignment measurements.
  • the inventors of the present invention have innovatively realized that by providing a measurement reference marker viewable by a camera oriented for inspecting rails of a railway track, rail dimensions, such as rail gage, may be readily determined using image processing techniques on images of the measurement reference marker in relation to a rail being imaged.
  • FIG. 1 is schematic side view of an example rail measurement system 10 for mounting on a rail vehicle for travel over a railway 16 .
  • the system 10 is mounted on a locomotive 12 proximate a wheel 14 of the locomotive 14 for performing rail dimension measurements on a portion of the railway rail 18 proximate where the wheel is applying force to the rail 18 .
  • a rail measurement dimension made proximate a wheel 14 better reflects a condition of an alignment of the rail 18 when the locomotive 12 is traveling over the rail 18 .
  • the rails of the railway 16 may be slightly forced apart compared to an unloaded rail condition. Consequently, a rail measurement made on unloaded rails may result in a measurement being within a predetermined gage dimension range, but the same rails may not be within the predetermined gage dimension range due to spreading when the rails are loaded.
  • the system 10 may include a first collimated light source 20 mounted on the locomotive 12 for providing a first reference marker 22 relative to a first rail 18 of the railway 16 .
  • the collimated light source 20 may include a laser producing a collimated light beam forming the first reference marker 22 .
  • the laser may be aimed at a top 24 of the railhead 26 of the rail 18 so that the collimated light beam shines substantially perpendicularly from the locomotive 12 to the railhead top 24 .
  • the system 10 may also include a camera 28 mounted on the locomotive 12 for recording an image of the reference marker 22 relative to the first rail 18 .
  • the camera 28 may be configured for imaging in a frequency range overlapping with a frequency range of the collimated light source 20 used to produce the reference marker 22 .
  • the camera 28 may sense visible light produced by a visible light producing laser, or may sense infrared light generated by an infrared light producing laser.
  • the camera 28 may be positioned on the locomotive 12 at a suitable location for imaging in the vicinity of the rail 18 and the reference marker 22 , as shown by the dotted line field of view indication 32 .
  • a zoom lens 29 may be provided to achieve a sufficient field of view and resolution needed to image the reference marker 22 and rail 18 .
  • an illumination source 34 such as an incandescent, fluorescent, or light emitting diode (LED), may be provided to illuminate an area, indicated, for example, by dotted line indication 36 , being imaged by the camera 28 during low light and/or night time conditions.
  • LED light emitting diode
  • the camera 28 is in communication with an image processor 50 receiving an image of the reference marker 22 relative to the rail 18 .
  • the image processor 50 may be a component of an existing video capture system conventionally used on locomotives to record track images in the vicinity of the locomotive 12 .
  • the image processor 50 may be configured for analyzing the image of the reference marker 22 relative to the rail 18 to determine a first rail alignment dimension with respect to the reference marker 22 .
  • the image processor 50 may be configured for measuring spatial dimensions between the reference marker 22 and features of the imaged rail 18 and for comparing such measurement dimensions to predetermined dimension ranges to determine if the measured dimensions are within the predetermined dimension ranges.
  • the image processor 50 may be configured for measuring rail wear, such as by measuring features of the imaged rail 18 with respect to the reference marker 22 to determine if the features are worn beyond an allowable dimension.
  • the image processor 50 may be in communication with a locomotive locating system, such as a global positioning system (GPS) 30 in communication with a GPS satellite 31 for determining a location of the locomotive 12 .
  • the image processor 50 may tag the images received from the camera 28 with a location of the locomotive 12 when the images are captured so that rail measurements may be correlated to location.
  • the locomotive information may be used to modify predetermined dimension ranges used by the image processor 50 to determine whether a measured dimension is within a predetermined dimension range.
  • the system 10 may be configured for measuring a rail gage of a railway track over which the locomotive 12 is traveling.
  • the system 10 may include the first collimated light source 20 being mounted on one side of a rail vehicle, such as locomotive 12 , for providing a first reference marker 22 relative to a first rail 18 of the railway 16 .
  • a second collimated light source 21 spaced apart from the first collimated light source, may provide a second reference marker 23 relative to a second rail 19 of the railway 16 .
  • the first and second collimated light sources 20 , 21 may be spaced apart to generate respective reference markers 22 , 23 being spaced apart a distance 38 about the width of the rail gage 39 being measured.
  • the collimated light sources 20 , 21 may be adjustable to move the reference markers 22 , 23 to achieve a desired alignment relative to the respective rails 18 , 19 .
  • the collimated light sources 20 , 21 may be positioned so that the reference markers 22 , 23 impinge on respective tops 24 of the railheads 26 and extend substantially perpendicularly with respect to the tops 24 of the railheads 26 .
  • a camera e.g. 28
  • a camera may be mounted on the rail vehicle for recording an image of the first and second reference markers 22 , 23 relative to respective first and second rails 18 , 19 .
  • a single camera may be used provided it has sufficient field of view and resolution to capture images of both rails 18 , 19 and markers 22 , 23 .
  • two cameras 28 , 29 may be separately used to image respective rails 18 , 19 and markers 22 , 23 .
  • An image processor 50 may be coupled to the cameras 28 , 29 for analyzing respective images of the first and second reference markers 22 , 23 relative to respective first and second rails 18 , 19 .
  • the image processor 50 may be configured to determine a rail alignment dimension corresponding to a spatial relationship between first and second reference markers 22 , 23 and respective first and second rails 18 , 19 and a spacing between the first and second markers 22 , 23 .
  • the image processor 50 may be configured for analyzing captured images to determine marker 22 , 23 to rail feature dimensions, such as laser beam to rail head edge dimensions 40 , 42 , 44 , 46 as shown in FIG. 2 .
  • the inventors of the present invention have innovatively determined that rail head edges 52 provide relatively high contrast for image analysis compared to other features of the rail 18 .
  • a measured rail dimension such as a measured rail gage 39
  • the image processor 50 may be further configured for comparing the measured rail dimensions to a predetermined dimension range to determine if the measured rail dimension is within the predetermined dimension range. If the rail dimension is outside of the predetermined dimension range, the location of the rail 18 , 19 may be tagged by the image processor 50 using, for example, the locomotive's GPS location.
  • the invention may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is to provide a rail vehicle mounted rail measurement system.
  • Any such resulting program, having computer-readable code means may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention.
  • the computer readable media may be, for instance, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link.
  • the article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
  • An apparatus for making, using or selling the invention may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, I/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention.
  • CPU central processing unit
  • memory storage devices
  • communication links and devices servers
  • I/O devices I/O devices

Abstract

A rail measurement system (10) for mounting on a rail vehicle (e.g., 12) for travel over a railway (16) having two spaced apart rails (18, 19) includes a first collimated light source (20) mounted on the rail vehicle for providing a first reference marker (22) relative to a first rail of the railway. The system includes a camera (28) mounted on the rail vehicle for recording an image of the reference marker relative to the first rail. The system also includes an image processor (50) coupled to the camera for analyzing the image of the reference marker relative to the first rail to determine a first rail alignment dimension (e.g., 39) with respect to the reference marker.

Description

FIELD OF THE INVENTION
This invention relates to inspection of railway rails, and, more particularly, to a rail vehicle mounted rail measurement system.
BACKGROUND OF THE INVENTION
Fixed rail transportation systems that include one or more a rail vehicles traveling over spaced apart rails of a railway track have been an efficient way of moving cargo and people from one geographical location to another. In densely populated countries and countries having a unimproved road transportation systems, rail vehicles may be the primary means for moving people and cargo. Accordingly, there are probably millions of miles of railroad track throughout the world that need to be maintained to provide safe rail transportation. These railroad tracks need to be routinely inspected to identify problems that may be indicative of incipient track failures. Such track failures may occur as a result of soil and ballast displacement, deterioration of ties supporting the rails, and/or loosening of rail attachment members that may result in track misalignment.
Accordingly, there is a continuing need to improve railway track inspection means. In particular, it is important to ensure that a distance between rails of a railway track, or the rail gage of the track, remain within predetermined ranges such as may be specified by FRA requirements. The gage of a pair of rails is defined by the FRA as the distance between the rails measured at a point five eights of an inch below a top surface of the rail head. Standard U.S. rail gage is specified by the FRA as 56.5 inches. For a U.S. standard gage track, the gage cannot be permitted to spread to more than one inch and a quarter from the U.S. standard gage distance of 56.5 inches.
The most primitive technique for track inspection is to perform a visual inspection of the track to assess track condition. Such an inspection typically involves track inspection personnel walking along or riding adjacent to a track to look for potential track anomalies indicative of potential track failure. This technique may involve the use of various mechanical measuring devices designed to assist the inspection personnel in making track measurements, such as manually measuring a rail gage of the track. However, these manual techniques are time consuming and labor intensive.
Various mechanical rail gage measurement systems have been proposed, but such systems may be susceptible to foreign debris on the rails and still may be too time consuming and may require auxiliary equipment to operate the measurement system. More recently, optical and electromagnetic methods have been proposed to measure rail alignment. Such systems typically rely on sophisticated and expensive electronic hardware for determining rail alignment.
BRIEF DESCRIPTION OF THE INVENTION
The present invention is directed to a system and method for measuring rail dimensions of a railway using rail vehicle mounted equipment. In an embodiment, a rail measurement system for mounting on a rail vehicle for travel over a railway having two spaced apart rails includes a first collimated light source mounted on a rail vehicle for providing a first reference marker relative to a first rail of a railway. The system also includes a camera mounted on the rail vehicle for recording an image of the reference marker relative to the first rail. The system further includes an image processor coupled to the camera for analyzing the image of the reference marker relative to the first rail to determine a first rail alignment dimension with respect to the reference marker.
In another embodiment, a rail measurement system for mounting on a rail vehicle includes a first collimated light source mounted on a rail vehicle providing a first reference marker relative to a first rail of a railway and a second collimated light source mounted on a rail vehicle and spaced apart from the first collimated light source for providing a second reference marker relative to a second rail of the railway. The system also includes a camera mounted on the rail vehicle for recording an image of the first and second reference markers relative to respective first and second rails and an image processor coupled to the camera for analyzing the image of the first and second reference markers relative to respective first and second rails to determine a rail alignment dimension corresponding to the first and second reference markers relative to respective first and second rails and a spacing between the markers.
In another embodiment, a method for measuring a rail alignment of spaced apart rails of a railway from a rail vehicle for travel over the railway includes using a first collimated light source for providing a first reference marker relative to a first rail of a railway. The method also includes capturing an image of the first reference marker relative to a first rail of a railway and processing the image to determine a first rail alignment dimension with respect to the first reference marker.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the present invention will become apparent from the following detailed description of the invention when read with the accompanying drawings in which:
FIG. 1 is schematic side view of an example rail measurement system for mounting on a rail vehicle for travel over a railway; and
FIG. 2 is schematic cross sectional view of an example rail measurement system for mounting on a rail vehicle for travel over a railway.
DETAILED DESCRIPTION OF THE INVENTION
Image acquisition and digitizing systems have been used on locomotives to record images acquired by cameras mounted on the locomotives. Recent advances in image processing have greatly improved the ability to process images acquired by locomotive on-board digitizing systems to extract information in near real-time. However, it has proven difficult to use an onboard camera system to image the track and perform track alignment measurements. The inventors of the present invention have innovatively realized that by providing a measurement reference marker viewable by a camera oriented for inspecting rails of a railway track, rail dimensions, such as rail gage, may be readily determined using image processing techniques on images of the measurement reference marker in relation to a rail being imaged.
FIG. 1 is schematic side view of an example rail measurement system 10 for mounting on a rail vehicle for travel over a railway 16. In an aspect of the invention, the system 10 is mounted on a locomotive 12 proximate a wheel 14 of the locomotive 14 for performing rail dimension measurements on a portion of the railway rail 18 proximate where the wheel is applying force to the rail 18. It is believed that a rail measurement dimension made proximate a wheel 14 better reflects a condition of an alignment of the rail 18 when the locomotive 12 is traveling over the rail 18. For example, under the weight of the locomotive 12, the rails of the railway 16 may be slightly forced apart compared to an unloaded rail condition. Consequently, a rail measurement made on unloaded rails may result in a measurement being within a predetermined gage dimension range, but the same rails may not be within the predetermined gage dimension range due to spreading when the rails are loaded.
In an embodiment of the invention, the system 10 may include a first collimated light source 20 mounted on the locomotive 12 for providing a first reference marker 22 relative to a first rail 18 of the railway 16. For example, the collimated light source 20 may include a laser producing a collimated light beam forming the first reference marker 22. The laser may be aimed at a top 24 of the railhead 26 of the rail 18 so that the collimated light beam shines substantially perpendicularly from the locomotive 12 to the railhead top 24.
The system 10 may also include a camera 28 mounted on the locomotive 12 for recording an image of the reference marker 22 relative to the first rail 18. In an aspect of the invention, the camera 28 may be configured for imaging in a frequency range overlapping with a frequency range of the collimated light source 20 used to produce the reference marker 22. For example, the camera 28 may sense visible light produced by a visible light producing laser, or may sense infrared light generated by an infrared light producing laser. The camera 28 may be positioned on the locomotive 12 at a suitable location for imaging in the vicinity of the rail 18 and the reference marker 22, as shown by the dotted line field of view indication 32. A zoom lens 29 may be provided to achieve a sufficient field of view and resolution needed to image the reference marker 22 and rail 18. In another aspect of the invention, an illumination source 34, such as an incandescent, fluorescent, or light emitting diode (LED), may be provided to illuminate an area, indicated, for example, by dotted line indication 36, being imaged by the camera 28 during low light and/or night time conditions.
In a further aspect of the invention, the camera 28 is in communication with an image processor 50 receiving an image of the reference marker 22 relative to the rail 18. In an embodiment of the invention, the image processor 50 may be a component of an existing video capture system conventionally used on locomotives to record track images in the vicinity of the locomotive 12. The image processor 50 may be configured for analyzing the image of the reference marker 22 relative to the rail 18 to determine a first rail alignment dimension with respect to the reference marker 22. For example, the image processor 50 may be configured for measuring spatial dimensions between the reference marker 22 and features of the imaged rail 18 and for comparing such measurement dimensions to predetermined dimension ranges to determine if the measured dimensions are within the predetermined dimension ranges. In another embodiment, the image processor 50 may be configured for measuring rail wear, such as by measuring features of the imaged rail 18 with respect to the reference marker 22 to determine if the features are worn beyond an allowable dimension.
In an embodiment of the invention, the image processor 50 may be in communication with a locomotive locating system, such as a global positioning system (GPS) 30 in communication with a GPS satellite 31 for determining a location of the locomotive 12. The image processor 50 may tag the images received from the camera 28 with a location of the locomotive 12 when the images are captured so that rail measurements may be correlated to location. In another aspect, the locomotive information may be used to modify predetermined dimension ranges used by the image processor 50 to determine whether a measured dimension is within a predetermined dimension range. For example, based on a sensed location of the locomotive 12 relative to a track geometry database stored, for example, in memory 48, the system 10 may identify a type of track geometry being measured, such as a curved section of track, that may require modification of the predetermined dimension ranges from predetermined dimension ranges used for assessing straight track sections. In another aspect of the invention, the image processor 50 may be in communication with the collimated light source 20 and the illumination light source 34, respectively, for controlling their functions, such as to increase and/or decrease their respective light intensities.
In an embodiment of the invention shown in the schematic cross sectional view FIG. 2, the system 10 may be configured for measuring a rail gage of a railway track over which the locomotive 12 is traveling. The system 10 may include the first collimated light source 20 being mounted on one side of a rail vehicle, such as locomotive 12, for providing a first reference marker 22 relative to a first rail 18 of the railway 16. At an opposite of the locomotive 12, a second collimated light source 21, spaced apart from the first collimated light source, may provide a second reference marker 23 relative to a second rail 19 of the railway 16. The first and second collimated light sources 20, 21 may be spaced apart to generate respective reference markers 22, 23 being spaced apart a distance 38 about the width of the rail gage 39 being measured. In an aspect of the invention, the collimated light sources 20, 21 may be adjustable to move the reference markers 22, 23 to achieve a desired alignment relative to the respective rails 18, 19. The collimated light sources 20, 21 may be positioned so that the reference markers 22, 23 impinge on respective tops 24 of the railheads 26 and extend substantially perpendicularly with respect to the tops 24 of the railheads 26.
A camera, e.g. 28, may be mounted on the rail vehicle for recording an image of the first and second reference markers 22, 23 relative to respective first and second rails 18, 19. A single camera may be used provided it has sufficient field of view and resolution to capture images of both rails 18, 19 and markers 22, 23. In the example embodiment shown in FIG. 2, two cameras 28, 29 may be separately used to image respective rails 18, 19 and markers 22, 23. An image processor 50 may be coupled to the cameras 28, 29 for analyzing respective images of the first and second reference markers 22, 23 relative to respective first and second rails 18, 19. The image processor 50 may be configured to determine a rail alignment dimension corresponding to a spatial relationship between first and second reference markers 22, 23 and respective first and second rails 18, 19 and a spacing between the first and second markers 22, 23. For example, the image processor 50 may be configured for analyzing captured images to determine marker 22, 23 to rail feature dimensions, such as laser beam to rail head edge dimensions 40, 42, 44, 46 as shown in FIG. 2.
The inventors of the present invention have innovatively determined that rail head edges 52 provide relatively high contrast for image analysis compared to other features of the rail 18. By determining the marker 22, 23 to rail head dimensions 40, 42, 44, 46 and by using the distance 38 between the markers 22, 23, a measured rail dimension, such as a measured rail gage 39, may be calculated. The image processor 50 may be further configured for comparing the measured rail dimensions to a predetermined dimension range to determine if the measured rail dimension is within the predetermined dimension range. If the rail dimension is outside of the predetermined dimension range, the location of the rail 18, 19 may be tagged by the image processor 50 using, for example, the locomotive's GPS location.
Based on the foregoing specification, the invention may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is to provide a rail vehicle mounted rail measurement system. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention. The computer readable media may be, for instance, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
One skilled in the art of computer science will easily be able to combine the software created as described with appropriate general purpose or special purpose computer hardware, such as a microprocessor, to create a computer system or computer sub-system embodying the method of the invention. An apparatus for making, using or selling the invention may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, I/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention.
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims (24)

1. A rail measurement system for mounting on a rail vehicle for travel over a railway having two spaced apart rails, the system comprising:
a first collimated light source mounted on a rail vehicle for providing a first reference marker relative to a top of a railhead of a first rail of a railway;
a first camera mounted on the rail vehicle for recording an image of the reference marker relative to the top of the railhead of the first rail; and
an image processor coupled to the camera for analyzing the image of the reference marker relative to the top of the railhead of the first rail to determine a first rail alignment dimension of the top of the railhead with respect to the reference marker.
2. The system of claim 1, further comprising a second collimated light source mounted on the rail vehicle spaced apart from the first source for providing a second reference marker relative to a top of a railhead of a second rail of the railway.
3. The system of claim 2, wherein the first camera and a second camera are configured for recording respective images of the first and second reference markers relative to the respective top of the railhead of the first and second rails.
4. The system of claim 2, wherein the image processor is configured for analyzing the images of the first and second reference markers relative to the respective top of the railhead of the first and second rails to determine a second rail alignment dimension corresponding to the first and second reference markers relative to the respective top of the railhead of the first and second rails and a spacing between the first and second markers.
5. The system of claim 2, further comprising a second camera for recording a second image of the second reference marker relative to the top of the railhead of the second rail and providing the second image to the image processor.
6. The system of claim 1, further comprising a locator providing location information to the image processor for correlating rail alignment dimensions with location of a railway portion being imaged.
7. The system of claim 1, further comprising an illumination source for illuminating an area proximate the top of the railhead of the first rail being imaged by the first camera.
8. The system of claim 1, wherein the rail vehicle comprises a locomotive.
9. The system of claim 1, wherein the collimated light source comprises a laser.
10. The system of claim 1, wherein the image processor is further configured for analyzing the image of the first reference marker relative to the top of the railhead of the first rail to determine when the first rail is worn beyond an allowable dimension.
11. A rail measurement system for mounting on a rail vehicle for travel over a railway having spaced apart rails, the system comprising:
a first collimated light source mounted on a rail vehicle providing a first reference marker relative to a top of a railhead of a first rail of a railway;
a second collimated light source mounted on a rail vehicle and spaced apart from the first collimated light source for providing a second reference marker relative to a top of a railhead of a second rail of the railway; and
a pair of cameras mounted on the rail vehicle for recording a respective image of the first and second reference markers relative to the respective top of the railhead of the first and second rails;
an image processor coupled to the pair of cameras for analyzing the image of the first and second reference markers relative to the respective top of the railhead of the first and second rails to determine a rail alignment dimension corresponding to the first and second reference markers relative to the respective top of the railhead of the first and second rails and a spacing between the markers.
12. The system of claim 11, wherein a first camera of the pair of cameras is for recording a first image of the first reference marker relative to the first rail and a second camera of the pair of cameras is for recording a second image of the second reference marker relative to the second rail.
13. The system of claim 11, wherein the rail alignment dimension comprises a rail gage.
14. A method for measuring a rail alignment of spaced apart rails of a railway from a rail vehicle for travel over the railway, the method comprising:
using a first collimated light source for providing a first reference marker relative to a top of a railhead of a first rail of a railway;
capturing an image of the first reference marker relative to the top of the railhead of the first rail of the railway; and
processing the image to determine a first rail alignment dimension of the top of the railhead with respect to the first reference marker.
15. The method of claim 14, further comprising using a second collimated light source spaced apart from the first source for providing a second reference marker relative to a top of a railhead of a second rail of the railway.
16. The method of claim 15, further comprising capturing an image of the second reference marker relative to the top of the railhead of the second rail of the railway.
17. The method of claim 16, further comprising processing the image of the second reference marker to determine a second rail alignment dimension with respect to the second reference marker.
18. The method of claim 17, determining a third rail alignment dimension with respect to the first rail alignment, the second rail alignment and distance between the first and second markers.
19. The method of claim 14, wherein processing the image to determine the first rail alignment dimension comprises determining a distance between the first reference marker and a feature of the first rail.
20. The method of claim 18, further comprising determining when the third dimension exceeds a predetermined alignment dimension range.
21. The method of claim 20, further comprising adjusting the predetermined alignment dimension range responsive to track geometry.
22. The method of claim 21, wherein the track geometry is determined responsive to a sensed location of the rail vehicle.
23. The method of claim 22, wherein the location of the rail vehicle is sensed using a GPS system.
24. The method of claim 14, wherein processing the image further comprises analyzing the image to determine when the top of the railhead of the first rail is worn beyond an allowable dimension.
US11/456,312 2006-07-10 2006-07-10 Rail vehicle mounted rail measurement system Active 2026-07-24 US7463348B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/456,312 US7463348B2 (en) 2006-07-10 2006-07-10 Rail vehicle mounted rail measurement system
PCT/US2007/071894 WO2008008611A2 (en) 2006-07-10 2007-06-22 Rail vehicle mounted rail measurement system
CN200780026485XA CN101489852B (en) 2006-07-10 2007-06-22 Rail vehicle mounted rail measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/456,312 US7463348B2 (en) 2006-07-10 2006-07-10 Rail vehicle mounted rail measurement system

Publications (2)

Publication Number Publication Date
US20080007724A1 US20080007724A1 (en) 2008-01-10
US7463348B2 true US7463348B2 (en) 2008-12-09

Family

ID=38794520

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/456,312 Active 2026-07-24 US7463348B2 (en) 2006-07-10 2006-07-10 Rail vehicle mounted rail measurement system

Country Status (3)

Country Link
US (1) US7463348B2 (en)
CN (1) CN101489852B (en)
WO (1) WO2008008611A2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073428A1 (en) * 2007-08-22 2009-03-19 Steven Magnus Rail measurement system
US20100225757A1 (en) * 2009-03-04 2010-09-09 Hand Held Products, Inc. System and method for measuring irregular objects with a single camera
US20110216200A1 (en) * 2002-06-04 2011-09-08 Wing Yeung Chung Locomotive wireless video recorder and recording system
US20120263342A1 (en) * 2011-04-15 2012-10-18 International Business Machines Corporation Method and system of rail component detection using vision technology
US20120274768A1 (en) * 2011-04-27 2012-11-01 Georgetown Rail Equipment Company Method and system for calibrating laser profiling systems
US20130033700A1 (en) * 2011-08-05 2013-02-07 Abdelbasset Hallil Radiation dosimeter with localization means and methods
US8914171B2 (en) 2012-11-21 2014-12-16 General Electric Company Route examining system and method
US20150235094A1 (en) * 2014-02-17 2015-08-20 General Electric Company Vehicle imaging system and method
US9255913B2 (en) 2013-07-31 2016-02-09 General Electric Company System and method for acoustically identifying damaged sections of a route
US9481385B2 (en) 2014-01-09 2016-11-01 General Electric Company Systems and methods for predictive maintenance of crossings
US9671358B2 (en) 2012-08-10 2017-06-06 General Electric Company Route examining system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US9810533B2 (en) 2011-04-27 2017-11-07 Trimble Inc. Railway track monitoring
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US9846025B2 (en) 2012-12-21 2017-12-19 Wabtec Holding Corp. Track data determination system and method
US9875414B2 (en) 2014-04-15 2018-01-23 General Electric Company Route damage prediction system and method
US9873442B2 (en) 2002-06-04 2018-01-23 General Electric Company Aerial camera system and method for identifying route-related hazards
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US10006877B2 (en) 2014-08-20 2018-06-26 General Electric Company Route examining system and method
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US10311551B2 (en) 2016-12-13 2019-06-04 Westinghouse Air Brake Technologies Corporation Machine vision based track-occupancy and movement validation
US10322734B2 (en) 2015-01-19 2019-06-18 Tetra Tech, Inc. Sensor synchronization apparatus and method
US10349491B2 (en) 2015-01-19 2019-07-09 Tetra Tech, Inc. Light emission power control apparatus and method
US10362293B2 (en) 2015-02-20 2019-07-23 Tetra Tech, Inc. 3D track assessment system and method
US10384697B2 (en) 2015-01-19 2019-08-20 Tetra Tech, Inc. Protective shroud for enveloping light from a light emitter for mapping of a railway track
US10625760B2 (en) 2018-06-01 2020-04-21 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
US10713503B2 (en) 2017-01-31 2020-07-14 General Electric Company Visual object detection system
US10730538B2 (en) 2018-06-01 2020-08-04 Tetra Tech, Inc. Apparatus and method for calculating plate cut and rail seat abrasion based on measurements only of rail head elevation and crosstie surface elevation
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10908291B2 (en) 2019-05-16 2021-02-02 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
US11124207B2 (en) 2014-03-18 2021-09-21 Transportation Ip Holdings, Llc Optical route examination system and method
US11377130B2 (en) 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system
DE102021206827A1 (en) 2021-06-30 2023-01-19 Siemens Mobility GmbH Method and arrangement for monitoring wheel-rail contact in a rail vehicle

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2003527C2 (en) * 2008-09-23 2011-05-19 Volkerrail Nederland B V Monitoring a turnout of a railway or tramway line.
CN101700777B (en) * 2009-10-24 2011-09-28 株洲南车时代电气股份有限公司 Track geometric parameter measurement car
CN102030016A (en) * 2010-11-03 2011-04-27 西南交通大学 Structured light vision-based track irregularity state detection method
DE102011017134B4 (en) * 2011-04-10 2014-07-31 Wilfried Scherf Arrangement for measuring track sections for the purpose of maintenance of railway tracks
JP5763974B2 (en) * 2011-06-03 2015-08-12 川崎重工業株式会社 Progress measurement device, progress measurement system, and progress measurement method
CN102507587B (en) * 2011-09-20 2013-11-27 株洲时代电子技术有限公司 Perambulated inspection system and method
CN102438356B (en) * 2011-09-20 2013-11-27 株洲时代电子技术有限公司 Light source regulating device and method
CN102864704B (en) * 2012-10-26 2014-08-20 石家庄铁道大学 Device and method for steel rail surface online measurement and laser selective repair
US9308925B2 (en) * 2012-12-02 2016-04-12 General Electric Company System and method for inspection of wayside rail equipment
CN104048646B (en) * 2014-06-27 2015-08-12 山东世纪矿山机电有限公司 Based on Derail detector and the method for laser image measurement
EP3172106B1 (en) * 2014-07-25 2020-02-19 General Impianti S.r.l. Method to obtain data concerning the upper profile of an element of a railway track or switch
JP6269409B2 (en) * 2014-09-17 2018-01-31 三菱電機株式会社 Gauge measuring device, gauge measuring method
PL3088274T3 (en) * 2015-04-24 2020-11-30 Volkerrail Nederland Bv Video detail image of the track geometry
CN105891217A (en) * 2016-04-27 2016-08-24 重庆大学 System and method for detecting surface defects of steel rails based on intelligent trolley
JP6242515B1 (en) * 2017-01-30 2017-12-06 みらい建設工業株式会社 Structure diagnosis method
US10352690B2 (en) * 2017-12-18 2019-07-16 Industrial Technology Research Institute Measuring apparatus
US10151582B1 (en) * 2017-12-20 2018-12-11 Laird Technologies, Inc. Systems and methods for monitoring locomotive wheel size
CN108508023B (en) * 2018-03-30 2021-06-04 苏州阚创检测有限公司 Defect detection system for contact end jacking bolt in railway contact network
CN108974043A (en) * 2018-08-09 2018-12-11 铁路愿景欧洲有限公司 Railroad track survey system
CN111102901B (en) * 2018-10-29 2021-07-02 富鼎电子科技(嘉善)有限公司 Machine tool detection device
US10953899B2 (en) * 2018-11-15 2021-03-23 Avante International Technology, Inc. Image-based monitoring and detection of track/rail faults
US11004228B2 (en) * 2018-11-16 2021-05-11 Westinghouse Air Brake Technologies Corporation Image based train length determination
CN111220121A (en) * 2019-11-20 2020-06-02 南京航空航天大学 Railway roadbed settlement multipoint monitoring device and method based on LED imaging

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505742A (en) 1968-12-04 1970-04-14 Rene A Fiechter Indicator device for continually monitoring deviations from the correct elevation and gauge of railroad tracks
US3864039A (en) * 1973-07-12 1975-02-04 Us Transport Rail gage apparatus
US4259018A (en) 1978-11-20 1981-03-31 The United States Of America As Represented By The Secretary Of The Department Of Transportation Optical track gage measuring device
US4490038A (en) 1981-02-12 1984-12-25 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile apparatus for determining the lateral position of a railroad track
US4654973A (en) 1985-10-21 1987-04-07 Worthy James T Railroad track gage
US4915504A (en) 1988-07-01 1990-04-10 Norfolk Southern Corporation Optical rail gage/wear system
EP0378781A1 (en) 1989-01-17 1990-07-25 Linsinger Maschinenbau Gmbh Method and device for the contactless measurement of the deformation and wear of railroad tracks; method for the measurement of the gauge on railroad tracks
US5203089A (en) 1990-06-12 1993-04-20 Cegelec Railroad vehicle for measuring the geometrical parameters of railroad track
US6356299B1 (en) 1996-08-05 2002-03-12 National Railroad Passenger Corporation Automated track inspection vehicle and method
US6600999B2 (en) 2000-10-10 2003-07-29 Sperry Rail, Inc. Hi-rail vehicle-based rail inspection system
US20030142297A1 (en) * 2000-07-18 2003-07-31 Ettore Casagrande Apparatus for measuring the characteristic parameters of an overhead railway or traming line
US6647891B2 (en) * 2000-12-22 2003-11-18 Norfolk Southern Corporation Range-finding based image processing rail way servicing apparatus and method
US20060017911A1 (en) * 2004-06-30 2006-01-26 Villar Christopher M System and method for inspecting railroad track
US6995556B2 (en) 2002-07-23 2006-02-07 Ensco, Inc. Electromagnetic gage sensing system and method for railroad track inspection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2633936Y (en) * 2003-06-26 2004-08-18 上海理工大学附属二厂 Non contact type two-way rail straight line automatic measurer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505742A (en) 1968-12-04 1970-04-14 Rene A Fiechter Indicator device for continually monitoring deviations from the correct elevation and gauge of railroad tracks
US3864039A (en) * 1973-07-12 1975-02-04 Us Transport Rail gage apparatus
US4259018A (en) 1978-11-20 1981-03-31 The United States Of America As Represented By The Secretary Of The Department Of Transportation Optical track gage measuring device
US4490038A (en) 1981-02-12 1984-12-25 Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. Mobile apparatus for determining the lateral position of a railroad track
US4654973A (en) 1985-10-21 1987-04-07 Worthy James T Railroad track gage
US4915504A (en) 1988-07-01 1990-04-10 Norfolk Southern Corporation Optical rail gage/wear system
EP0378781A1 (en) 1989-01-17 1990-07-25 Linsinger Maschinenbau Gmbh Method and device for the contactless measurement of the deformation and wear of railroad tracks; method for the measurement of the gauge on railroad tracks
US5203089A (en) 1990-06-12 1993-04-20 Cegelec Railroad vehicle for measuring the geometrical parameters of railroad track
US6356299B1 (en) 1996-08-05 2002-03-12 National Railroad Passenger Corporation Automated track inspection vehicle and method
US20030142297A1 (en) * 2000-07-18 2003-07-31 Ettore Casagrande Apparatus for measuring the characteristic parameters of an overhead railway or traming line
US6600999B2 (en) 2000-10-10 2003-07-29 Sperry Rail, Inc. Hi-rail vehicle-based rail inspection system
US6647891B2 (en) * 2000-12-22 2003-11-18 Norfolk Southern Corporation Range-finding based image processing rail way servicing apparatus and method
US6995556B2 (en) 2002-07-23 2006-02-07 Ensco, Inc. Electromagnetic gage sensing system and method for railroad track inspection
US20060017911A1 (en) * 2004-06-30 2006-01-26 Villar Christopher M System and method for inspecting railroad track

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873442B2 (en) 2002-06-04 2018-01-23 General Electric Company Aerial camera system and method for identifying route-related hazards
US20110216200A1 (en) * 2002-06-04 2011-09-08 Wing Yeung Chung Locomotive wireless video recorder and recording system
US8913131B2 (en) 2002-06-04 2014-12-16 General Electric Company Locomotive wireless video recorder and recording system
US9950722B2 (en) 2003-01-06 2018-04-24 General Electric Company System and method for vehicle control
US9956974B2 (en) 2004-07-23 2018-05-01 General Electric Company Vehicle consist configuration control
US9828010B2 (en) 2006-03-20 2017-11-28 General Electric Company System, method and computer software code for determining a mission plan for a powered system using signal aspect information
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US20090073428A1 (en) * 2007-08-22 2009-03-19 Steven Magnus Rail measurement system
US7659972B2 (en) * 2007-08-22 2010-02-09 Kld Labs, Inc. Rail measurement system
US8643717B2 (en) 2009-03-04 2014-02-04 Hand Held Products, Inc. System and method for measuring irregular objects with a single camera
US20100225757A1 (en) * 2009-03-04 2010-09-09 Hand Held Products, Inc. System and method for measuring irregular objects with a single camera
US8625878B2 (en) * 2011-04-15 2014-01-07 International Business Machines Corporation Method and system of rail component detection using vision technology
US20120263342A1 (en) * 2011-04-15 2012-10-18 International Business Machines Corporation Method and system of rail component detection using vision technology
US20120274768A1 (en) * 2011-04-27 2012-11-01 Georgetown Rail Equipment Company Method and system for calibrating laser profiling systems
US9810533B2 (en) 2011-04-27 2017-11-07 Trimble Inc. Railway track monitoring
US8711222B2 (en) * 2011-04-27 2014-04-29 Georgetown Rail Equipment Company Method and system for calibrating laser profiling systems
US20130033700A1 (en) * 2011-08-05 2013-02-07 Abdelbasset Hallil Radiation dosimeter with localization means and methods
US9671358B2 (en) 2012-08-10 2017-06-06 General Electric Company Route examining system and method
US8914171B2 (en) 2012-11-21 2014-12-16 General Electric Company Route examining system and method
US9846025B2 (en) 2012-12-21 2017-12-19 Wabtec Holding Corp. Track data determination system and method
US9255913B2 (en) 2013-07-31 2016-02-09 General Electric Company System and method for acoustically identifying damaged sections of a route
US9481385B2 (en) 2014-01-09 2016-11-01 General Electric Company Systems and methods for predictive maintenance of crossings
US10049298B2 (en) 2014-02-17 2018-08-14 General Electric Company Vehicle image data management system and method
US20150235094A1 (en) * 2014-02-17 2015-08-20 General Electric Company Vehicle imaging system and method
US11124207B2 (en) 2014-03-18 2021-09-21 Transportation Ip Holdings, Llc Optical route examination system and method
US9875414B2 (en) 2014-04-15 2018-01-23 General Electric Company Route damage prediction system and method
US10006877B2 (en) 2014-08-20 2018-06-26 General Electric Company Route examining system and method
US10728988B2 (en) 2015-01-19 2020-07-28 Tetra Tech, Inc. Light emission power control apparatus and method
US10322734B2 (en) 2015-01-19 2019-06-18 Tetra Tech, Inc. Sensor synchronization apparatus and method
US10349491B2 (en) 2015-01-19 2019-07-09 Tetra Tech, Inc. Light emission power control apparatus and method
US10384697B2 (en) 2015-01-19 2019-08-20 Tetra Tech, Inc. Protective shroud for enveloping light from a light emitter for mapping of a railway track
US11259007B2 (en) 2015-02-20 2022-02-22 Tetra Tech, Inc. 3D track assessment method
US11399172B2 (en) 2015-02-20 2022-07-26 Tetra Tech, Inc. 3D track assessment apparatus and method
US11196981B2 (en) 2015-02-20 2021-12-07 Tetra Tech, Inc. 3D track assessment apparatus and method
US10362293B2 (en) 2015-02-20 2019-07-23 Tetra Tech, Inc. 3D track assessment system and method
US10311551B2 (en) 2016-12-13 2019-06-04 Westinghouse Air Brake Technologies Corporation Machine vision based track-occupancy and movement validation
US10713503B2 (en) 2017-01-31 2020-07-14 General Electric Company Visual object detection system
US10730538B2 (en) 2018-06-01 2020-08-04 Tetra Tech, Inc. Apparatus and method for calculating plate cut and rail seat abrasion based on measurements only of rail head elevation and crosstie surface elevation
US10625760B2 (en) 2018-06-01 2020-04-21 Tetra Tech, Inc. Apparatus and method for calculating wooden crosstie plate cut measurements and rail seat abrasion measurements based on rail head height
US10870441B2 (en) 2018-06-01 2020-12-22 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11305799B2 (en) 2018-06-01 2022-04-19 Tetra Tech, Inc. Debris deflection and removal method for an apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11377130B2 (en) 2018-06-01 2022-07-05 Tetra Tech, Inc. Autonomous track assessment system
US10807623B2 (en) 2018-06-01 2020-10-20 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11560165B2 (en) 2018-06-01 2023-01-24 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US11919551B2 (en) 2018-06-01 2024-03-05 Tetra Tech, Inc. Apparatus and method for gathering data from sensors oriented at an oblique angle relative to a railway track
US10908291B2 (en) 2019-05-16 2021-02-02 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
US11169269B2 (en) 2019-05-16 2021-11-09 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
US11782160B2 (en) 2019-05-16 2023-10-10 Tetra Tech, Inc. System and method for generating and interpreting point clouds of a rail corridor along a survey path
DE102021206827A1 (en) 2021-06-30 2023-01-19 Siemens Mobility GmbH Method and arrangement for monitoring wheel-rail contact in a rail vehicle

Also Published As

Publication number Publication date
CN101489852A (en) 2009-07-22
WO2008008611A3 (en) 2008-04-03
US20080007724A1 (en) 2008-01-10
WO2008008611A2 (en) 2008-01-17
CN101489852B (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US7463348B2 (en) Rail vehicle mounted rail measurement system
US11433931B2 (en) Image-based monitoring and detection of track/rail faults
US7616329B2 (en) System and method for inspecting railroad track
US8209145B2 (en) Methods for GPS to milepost mapping
US8405837B2 (en) System and method for inspecting surfaces using optical wavelength filtering
US20120300060A1 (en) Vision system for imaging and measuring rail deflection
US8289526B2 (en) System and method for analyzing rolling stock wheels
US20040263624A1 (en) Video inspection system for inspection of rail components and method thereof
JP2012531546A (en) Tilt correction system and method for rail seat wear
US20190180118A1 (en) Locomotive imaging system and method
KR20220143473A (en) Mobile rail facility inspection system
BRPI0512871B1 (en) SYSTEM AND METHOD FOR INSPECTING RAILWAY RAILWAY

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHUNG, WING YEUNG;REEL/FRAME:017902/0823

Effective date: 20060627

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: GE GLOBAL SOURCING LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:047736/0178

Effective date: 20181101

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12