Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS7776446 B2
Tipo de publicaciónConcesión
Número de solicitudUS 11/352,910
Fecha de publicación17 Ago 2010
Fecha de presentación13 Feb 2006
Fecha de prioridad4 Jun 2001
TarifaCaducada
También publicado comoUS20060275610
Número de publicación11352910, 352910, US 7776446 B2, US 7776446B2, US-B2-7776446, US7776446 B2, US7776446B2
InventoresGwo Swei, John R. Kastelic, Alexander Tukachinsky
Cesionario originalSaint-Gobain Performance Plastics Corporation
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Multi-layer release films
US 7776446 B2
Resumen
A multilayer film includes a first layer including a blend of a polyolefin and a diene elastomer, a second layer directly contacting and directly bonded to the first layer, and a third layer directly contacting and directly bonded to the first layer. The second and third layers include a fluoropolymer.
Imágenes(3)
Previous page
Next page
Reclamaciones(10)
1. A multilayer film comprising:
a first layer comprising a blend of a polyolefin and a diene elastomer, the diene elastomer including ethylene propylene monomer (EPDM) elastomer; and
a second layer directly contacting and directly bonded to the first layer, the second layer comprising a fluoropolymer;
a third layer bonded directly to and directly contacting the first layer, wherein the third layer includes fluoropolymer.
2. The multilayer film of claim 1, wherein the diene monomer of the ethylene propylene diene monomer (EPDM) elastomer includes an alkenyl norbornene.
3. The multilayer film of claim 1, wherein the polyolefin includes polypropylene.
4. The multilayer film of claim 1, wherein the polyolefin includes polyethylene.
5. The multilayer film of claim 4, wherein the polyethylene includes high density polyethylene.
6. A multilayer film comprising:
a first layer comprising a blend of polyolefin and ethylene propylene diene monomer (EPDM) elastomer;
a second layer directly contacting and directly bonded to the first layer, the second layer comprising a fluoropolymer, wherein the fluoropolymer includes fluorinated ethylene propylene copolymer (FEP); and
a third layer bonded directly to and directly contacting the first layer, wherein the third layer includes fluorinated ethylene propylene copolymer (FEP).
7. The multilayer film of claim 6, wherein a diene monomer of the ethylene propylene diene monomer (EPDM) elastomer includes an alkenyl norborene.
8. The multilayer film of claim 6, wherein the polyolefin includes polypropylene.
9. The multilayer film of claim 6, wherein the polyolefin includes polyethylene.
10. The multilayer film of claim 9, wherein the polyethylene includes high density polyethylene.
Descripción
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of and claims priority from U.S. Utility patent application Ser. No. 10/663,288, now U.S. Utility Pat. No. 6,998,007, filed Sep. 16, 2003, entitled “MULTILAYER STRUCTURE WITH INTERCROSSLINKED POLYMER LAYERS,” naming inventors Alexander Tukachinsky, Michael L. Friedman, and Paul W. Ortiz, which is a continuation-in-part of and claims priority from U.S. Utility patent application Ser. No. 09/873,612, now U.S. Utility Pat. No. 6,652,943, filed Jun. 4, 2001, which applications are incorporated by reference herein in their entirety.

FIELD OF THE DISCLOSURE

This disclosure, in general, relates to multi-layer release films and methods for making such films.

BACKGROUND

Increasingly, manufacturers are seeking polymers to create surfaces that are resistant to chemical and environmental damage. In addition, manufacturers are seeking films that have release characteristics, forming a surface that is resistant to adhesion with other surfaces. In particular applications, films formed of such polymers have been used as airplane and train cargo holders, vinyl siding surface treatments, photovoltaic protective coverings, and release films. An example of such polymers includes low surface energy polymers. Low surface energy polymers, such as fluoropolymers, exhibit a resistant to damage caused by exposure to chemicals, such as methyl ethyl ketone (MEK), have a resistance to stains, demonstrate a resistance to damage caused by exposure to environmental conditions, and typically, form a release surface.

While such low surface energy polymers are in demand, the polymers tend to be expensive. In addition, such polymers exhibit low wetting characteristics and given their tendency to form a release surface, adhere poorly with other polymer substrates. For particular fluoropolymers, such as PVDF, manufacturers have turned to adhesive layers including acrylic polymers to adhere the fluoropolymer layer to incompatible substrates. However, acrylic polymers are typically less tolerant of environmental stresses, such as ultraviolet light exposure and high temperature. As such, the bond between a fluoropolymer layer film and an underlying substrate may degrade with time. Moreover, mismatches between mechanical properties of an underlying substrate and a fluoropolymer layer degrade the contact between the layers and the substrate with ongoing mechanical stress, resulting in reduced peel strength and a potential degradation of the bond between the fluoropolymer layer and the underlying film layers.

As such, an improved multi-layer film and a method for manufacturing such multi-layer films would be desirable.

SUMMARY

In a particular embodiment, a multilayer film includes a first layer including a blend of a polyolefin and a diene elastomer and a second layer directly contacting and directly bonded to the first layer. The second layer includes a fluoropolymer.

In another exemplary embodiment, a multilayer film includes a first layer including a blend of polyolefin and ethylene propylene diene monomer (EPDM) elastomer and includes a second layer directly contacting and directly bonded to the first layer. The second layer includes a fluoropolymer.

In a further exemplary embodiment, a multilayer film includes a first layer comprising a blend of polyolefin and ethylene propylene diene monomer (EPDM) elastomer. The polyolefin is selected from the group consisting of polyethylene and polypropylene. The multilayer film also includes a second layer directly contacting and directly bonded to the first layer. The second layer includes fluorinated ethylene propylene copolymer.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.

FIG. 1 includes an illustration of an exemplary multi-layer film.

FIG. 2 includes a graphical illustration of data representing the thermal performance of blends of polyolefin and diene elastomer.

DESCRIPTION OF THE DRAWINGS

In a particular embodiment, a multi-layer film includes first and second layers. The first layer may include a blend of a diene elastomer and a polyolefin. For example, the blend may include a diene elastomer and at least about 40% by weight polyolefin. The second layer includes a low surface energy polymer. For example, the low surface energy polymer may include a fluoropolymer. The second layer is bonded directly to and directly contacts the first layer. In an exemplary embodiment, the multi-layer film may also include a third layer bonded directly to and directly contacting the first layer. The third layer may include, for example, the low surface energy polymer. In a particular example, the second and third layers form opposite outermost layers of the multi-layer film.

In an exemplary embodiment, the multi-layer film may be formed by blending a diene elastomer and at least 40% by weight of a polyolefin. A multi-layer film including first and second layers may be extruded. The first layer includes the blend of diene elastomer and polyolefin. The second layer includes a low surface energy polymer. In an exemplary embodiment, the first and second layers are coextruded so as to directly contact each other. In addition, the first layer may be cured, such as through crosslinking. For example, the multi-layer film may be exposed to radiation, such as e-beam radiation or ultraviolet electromagnetic radiation. Alternatively, water activated crosslinking agents may be used to cure the polymer blend of the first layer.

As illustrated in FIG. 1, a multi-layer film 100 may include a layer 102, which forms an outermost surface 112. The layer 102 may be bonded to a layer 104 along a major surface 108 of the layer 104. In an exemplary embodiment, the multi-layer film 100 includes two layers, such as the layer 102 and the layer 104. Alternatively, the multi-layer film 100 may include two or more layers, such as three layers. For example, a third layer 106 may be bonded to a second major surface 110 of the layer 104. The second major surface 110 is, for example, a major surface opposite the major surface 108. In such an example, the third layer 106 may form an outermost surface 114 opposite the outermost surface 112. In a further alternative embodiment, the layer 104 may be formed of multiple core or intermediate layers.

In general, the intermediate layer 104 has greater thickness than the outermost layer 102 or optional outermost layer 106. For example, an outermost layer, such as the layer 102 and optionally, the layer 106, may form not greater than about 20% by volume of the multi-layer film 100. For example, the layer 102 may form not greater than about 15% by volume of the multi-layer film 100, such as not greater than about 10% by volume of the multi-layer film 100. The intermediate layer 104 may form at least about 60% by volume of the multi-layer film 100, such as at least about 70% by volume or at least about 80% by volume of the multi-layer film 100. The total film thickness of the multi-layer film 100 may be at least about 13 microns. For example, the multi-layer film 100 may have a total thickness of at least about 25 microns, such as at least about 50 microns, at least about 100 microns, or as high as 200 microns or higher.

In an exemplary embodiment, the layer 102 includes a low surface energy polymer. For example, a low surface energy polymer may be a polymer that has a tendency to form a low surface energy surface. In an example, a low surface energy polymer includes a fluoropolymer. An exemplary fluoropolymer may be formed of a homopolymer, copolymer, terpolymer, or polymer blend formed from a monomer, such as tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, perfluoropropyl vinyl ether, perfluoromethyl vinyl ether, or any combination thereof. An exemplary fluoropolymer includes a fluorinated ethylene propylene copolymer (FEP), a copolymer of tetrafluoroethylene and perpfluoropropyl vinyl ether (PFA), a copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether (MFA), a copolymer of ethylene and tetrafluoroethylene (ETFE), a copolymer of ethylene and chlorotrifluoroethylene (ECTFE), polychlorotrifluoroethylene (PCTFE), poly vinylidene fluoride (PVDF), a terpolymer including tetrafluoroethylene, hexafluoropropylene, and vinylidenefluoride (THV), or any blend or any alloy thereof. For example, the fluoropolymer may include FEP. In a further example, the fluoropolymer may include PVDF. In an exemplary embodiment, the fluoropolymer may be a polymer crosslinkable through radiation, such as e-beam. An exemplary crosslinkable fluoropolymer may include ETFE, THV, PVDF, or any combination thereof. A THV resin is available from Dyneon 3M Corporation Minneapolis, Minn. An ECTFE polymer is available from Ausimont Corporation (Italy) under the trade name Halar. Other fluoropolymers used herein may be obtained from Daikin (Japan) and DuPont (USA). In particular, FEP fluoropolymers are commercially available from Daikin, such as NP-12X.

In an exemplary embodiment, the layer 104 includes an elastomeric material. In a particular embodiment, the elastomeric material includes a crosslinkable elastomeric polymer. For example, the layer 104 may include a diene elastomer. In a particular example, the elastomeric material includes a blend of a diene elastomer and a polyolefin. In a particular example, the diene elastomer is a copolymer formed from at least one diene monomer. For example, the diene elastomer may be a copolymer of ethylene, propylene and diene monomer (EPDM). An exemplary diene monomer includes a conjugated diene, such as butadiene, isoprene, chloroprene, or the like; a non-conjugated diene including from 5 to about 25 carbon atoms, such as 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 2,5-dimethyl-1,5-hexadiene, 1,4-octadiene, or the like; a cyclic diene, such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, or the like; a vinyl cyclic ene, such as 1-vinyl-1-cyclopentene, 1-vinyl-1-cyclohexene, or the like; an alkylbicyclononadiene, such as 3-methylbicyclo-(4,2,1)-nona-3,7-diene, or the like; an indene, such as methyl tetrahydroindene, or the like; an alkenyl norbornene, such as 5-ethylidene-2-norbornene, 5-butylidene-2-norbornene, 2-methallyl-5-norbornene, 2-isopropenyl-5-norbornene, 5-(1,5-hexadienyl)-2-norbornene, 5-(3,7-octadienyl)-2-norbornene, or the like; a tricyclodiene, such as 3-methyltricyclo (5,2,1,02,6)-deca-3,8-diene or the like; or any combination thereof. In a particular embodiment, the diene includes a non-conjugated diene. In another embodiment, the diene elastomer includes alkenyl norborene. The diene elastomer may include, for example, ethylene from about 63 wt % to about 95 wt % of the polymer, propylene from about 5 wt % to about 37 wt %, and the diene monomer from about 0.2 wt % to about 15 wt %, based upon the total weight of the diene elastomer. In a particular example, the ethylene content is from about 70 wt % to about 90 wt %, propylene from about 17 wt % to about 31 wt %, and the diene monomer from about 2 wt % to about 10 wt % of the diene elastomer. The diene elastomer typically has a Mooney viscosity of at least about 20, such as about 25 to about 150 (ML 1+8 at 125° C.). In an exemplary embodiment, the diene elastomer has a dilute solution viscosity (DSV) of at least about 1, such as about 1.3 to about 3 measured at 25° C. as a solution of 0.1 grams of diene polymer per deciliter of toluene. Prior to crosslinking, the diene elastomer may have a green tensile strength of about 800 psi to about 1,800 psi, such as about 900 psi to about 1,600 psi. The uncrosslinked diene elastomer may have an elongation at break of at least about 600 percent. In general, the diene elastomer includes a small amount of a diene monomer, such as a dicyclopentadiene, a ethylnorborene, a methylnorborene, a non-conjugated hexadiene, or the like, and typically have a number average molecular weight of from about 50,000 to about 100,000. Exemplary diene elastomers are commercially available under the tradename Nordel from Dow Dupont.

The polyolefin of the blend may include a homopolymer, a copolymer, a terpolymer, an alloy, or any combination thereof formed from a monomer, such as ethylene, propylene, butene, pentene, methyl pentene, octene, or any combination thereof. An exemplary polyolefin includes high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), ultra low density polyethylene, ethylene propylene copolymer, ethylene butene copolymer, polypropylene (PP), polybutene, polypentene, polymethylpentene, polystyrene, ethylene propylene rubber (EPR), ethylene octene copolymer, or any combination thereof. In a particular example, the polyolefin includes high density polyethylene. In another example, the polyolefin includes polypropylene. In a further example, the polyolefin includes ethylene octene copolymer. In a particular embodiment, the polyolefin is not a modified polyolefin, such as a carboxylic functional group modified polyolefin, and in particular, is not ethylene vinyl acetate. In addition, the polyolefin is not formed from a diene monomer. In a particular example, the polyolefin has a degree of crystallinity. For example, the polyolefin may have at least about 35% crystallinity. In a particular example, the polyolefin may have a crystallinity of at least about 50%, such as at least about 60% or at least about 70% crystallinity. In a particular example, the polyolefin may be a high crystallinity polyolefin. Alternatively, the polyolefin may be a low crystallinity polyolefin, having a crystallinity not greater than 35%. Low crystallinity polyolefins may enhance conformability of release films or improve clarity. An exemplary commercially available polyolefin includes Equistar 8540, an ethylene octene copolymer; Equistar GA-502-024, an LLDPE; Dow DMDA-8904NT 7, an HDPE; Basell Pro-Fax SR275M, a random polypropylene copolymer; Dow 7C50, a block PP copolymer; or products formerly sold under the tradename Engage by Dupont Dow.

In an example, the blend includes not greater than about 40 wt % polyolefin, such as not greater than about 30 wt % polyolefin. For example, the blends may include not greater than about 20 wt % of the polyolefin, such as not greater than 10 wt %. In a particular example, the blend includes about 5 wt % to about 30 wt %, such as about 10 wt % to about 30 wt %, about 10 wt % to about 25 wt %, or about 10 wt % to about 20 wt %.

In general, the blend exhibits compatibility between the polymeric components. DMA analysis may provide evidence of compatibility. DMA analysis may show a single tan delta peak between glass transition temperatures of major components of a blend, indicating compatibility. Alternatively, an incompatible blend may exhibit more than one tan delta peak. In an example, the blend may exhibit a single tan delta peak. In particular, the single tan delta peak may be between the glass transition temperature of the polyolefin and the glass transition temperature of the diene elastomer.

In general, blend may be cured through cross-linking. In a particular example, the diene elastomer may be cross-linkable through radiation, such as using X-ray radiation, gamma radiation, ultraviolet electromagnetic radiation, visible light radiation, electron beam (e-beam) radiation, or any combination thereof. Ultraviolet (UV) radiation may include radiation at a wavelength or a plurality of wavelengths in the range of from 170 nm to 400 nm, such as in the range of 170 nm to 220 nm. Ionizing radiation includes high-energy radiation capable of generating ions and includes electron beam (e-beam) radiation, gamma radiation, and x-ray radiation. In a particular example, e-beam ionizing radiation includes an electron beam generated by a Van de Graaff generator, an electron-accelerator, or an x-ray. In an alternative embodiment, the diene elastomer may be crosslinkable through thermal methods. In a further example, the diene elastomer may be crosslinkable through chemical reaction, such as a reaction between a silane crosslinking agent and water.

In an exemplary embodiment, the blend may further include a crosslinking agent, a photoinitiator, a filler, a plasticizer, or any combination thereof. Alternatively, the blend may be free of crosslinking agents, photoinitiators, fillers, or plasticizers. In particular, the blend may be free of photoinitiators or crosslinking agents.

To facilitate crosslinking, the material of the elastomeric layer 104 may include a photoinitiator or a sensibilizer composition. For example, when ultra-violet radiation is contemplated as the form of irradiation or when e-beam radiation is contemplated as the form of irradiation, the material may include a photoinitiator to increase the crosslinking efficiency, i.e., degree of crosslinking per unit dose of radiation.

An exemplary photoinitiator includes benzophenone, ortho- and para-methoxybenzophenone, dimethylbenzophenone, dimethoxybenzophenone, diphenoxybenzophenone, acetophenone, o-methoxy-acetophenone, acenaphthene-quinone, methyl ethyl ketone, valerophenone, hexanophenone, alpha-phenyl-butyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzo-phenone, benzoin, benzoin methyl ether, 3-o-morpholinodeoxybenzoin, p-diacetyl-benzene, 4-aminobenzophenone, 4′-methoxyacetophenone, alpha-tetralone, 9-acetylphenanthrene, 2-acetyl-phenanthrene, 10-thioxanthenone, 3-acetyl-phenanthrene, 3-acetylindole, 9-fluorenone, 1-indanone, 1,3,5-triacetylbenzene, thioxanthen-9-one, xanthene-9-one, 7-H-benz[de]anthracen-7-one, benzoin tetrahydrophyranyl ether, 4,4′-bis(dimethylamino)-benzophenone, 1′-acetonaphthone, 2′ acetonaphthone, aceto-naphthone and 2,3-butanedione, benz[a]anthracene-7,12-dione, 2,2-dimethoxy-2-phenylaceto-phenone, alpha-diethoxy-acetophenone, alpha-dibutoxy-acetophenone, anthraquinone, isopropylthioxanthone, or any combination thereof. An exemplary polymeric initiator may include poly(ethylene/carbon monoxide), oligo[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)-phenyl]propanone], polymethylvinyl ketone, polyvinylaryl ketones, or any combination thereof.

Another exemplary photoinitiator includes benzophenone; anthrone; xanthone; the Irgacure® series of photoinitiators from Ciba-Geigy Corp. including 2,2-dimethoxy-2-phenylacetophenone (Irgacure® 651), 1-hydroxycyclohexylphenyl ketone (Irgacure® 184), or 2-methyl-1-[4-(methylthio)phenyl]-2-moropholino propan-1-one (Irgacure® 907); or any combination thereof. Generally, the photoinitiator exhibits low migration from the material of the elastomeric layer 104. In addition, the photoinitiator typically has a low vapor pressure at extrusion temperatures and sufficient solubility in the polymer or polymer blends of the elastomeric layer 104 to yield efficient crosslinking. In an exemplary embodiment, the vapor pressure and solubility, or polymer compatibility, of the photoinitiator may be improved by derivatizing the photoinitiator. An exemplary derivatized photoinitiator includes, for example, higher molecular weight derivatives of benzophenone, such as 4-phenylbenzophenone, 4-allyloxybenzophenone, 4-dodecyloxybenzophenone, or any combination thereof. In an example, the photoinitiator may be covalently bonded to a polymer of the material of the elastomeric layer 104.

In an exemplary embodiment, the material of the elastomeric layer 104 includes about 0.0 wt % to about 3.0 wt % photoinitiator, such as about 0.1 wt % to about 2.0 wt %.

Crosslinking may also be facilitated by a chemical crosslinking agent, such as a peroxide, an amine, a silane, or any combination thereof. In an exemplary embodiment, the material of the elastomeric layer 104 may be prepared by dry blending solid state forms of polymer and the crosslinking agent, i.e., in powder form. Alternatively, the material may be prepared in liquid form, sorbed in inert powdered support or by preparing coated pellets, or the like.

An exemplary thermally activatable crosslinking agent includes a free radical generating chemical, which when exposed to heat decomposes to form at least one, and typically two or more free radicals to effect crosslinking. In an exemplary embodiment, the crosslinking agent is an organic crosslinking agent including an organic peroxide, an amine, a silane, or any combination thereof.

An exemplary organic peroxide includes 2,7-dimethyl-2,7-di(t-butylperoxy)octadiyne-3,5; 2,7-dimethyl-2,7-di(peroxy ethyl carbonate)octadiyne-3,5; 3,6-dimethyl-3,6-di(peroxy ethyl carbonate)octyne-4; 3,6-dimethyl-3,6-(t-butylperoxy)octyne-4; 2,5-dimethyl-2,5-di(peroxybenzoate)hexyne-3; 2,5-dimethyl-2,5-di(peroxy-n-propyl carbonate)hexyne-3; 2,5-dimethyl-2,5-di(peroxy isobutyl carbonate)hexyne-3; 2,5-dimethyl-2,5-di(peroxy ethyl carbonate)hexyne-3; 2,5-dimethyl-2,5-di(alpha-cumyl peroxy)hexyne-3; 2,5-dimethyl-2,5-di(peroxy beta-chloroethyl carbonate) hexyne-3; 2,5-dimethyl-2,5-di(t-butylperoxy) hexyne-3; or any combination thereof. A particular crosslinking agent is 2,5-dimethyl-2,5-di(t-butyl peroxy)hexyne-3, available from Elf Atochem under the trade designation Lupersol 130. Another exemplary crosslinking agent is dicumyl peroxide, available from Elf Atochem as Luperox 500R. In a particular embodiment, the crosslinking agent is present in the material in an amount between about 0.1 wt % to about 5.0 wt %, such as about 0.5 wt % to about 2.0 wt % based on the weight of the material.

An exemplary silane crosslinking agent has the general formula:

in which R1 is a hydrogen atom or methyl group; x and y are 0 or 1 with the proviso that when x is 1, y is 1; n is an integer from 1 to 12, preferably 1 to 4, and each R independently is a hydrolyzable organic group such as an alkoxy group having from 1 to 12 carbon atoms (e.g., methoxy, ethoxy, butoxy), aryloxy group (e.g., phenoxy), araloxy group (e.g., benzyloxy), aliphatic acyloxy group having from 1 to 12 carbon atoms (e.g., formyloxy, acetyloxy, propanoyloxy), amino or substituted amino groups (e.g., alkylamino, arylamino), or a lower alkyl group having 1 to 6 carbon atoms, with the proviso that not more than one of the three R groups is an alkyl. Such silanes may be grafted to a polymer through the use of an organic peroxide. Additional ingredients such as heat and light stabilizers, pigments, or any combination thereof, also may be included in the material. In general, the crosslinking reaction may result from a reaction between the grafted silane groups and water. Water may permeate into the bulk polymer from the atmosphere or from a water bath or “sauna”. An exemplary silane includes an unsaturated silane that comprise an ethylenically unsaturated hydrocarbyl group, such as a vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or gamma-(meth)acryloxy allyl group, and a hydrolyzable group, such as, for example, a hydrocarbyloxy, hydrocarbonyloxy, or hydrocarbylamino group. An example of a hydrolyzable group includes a methoxy group, an ethoxy group, a formyloxy group, an acetoxy group, a proprionyloxy group, an alkyl group, an arylamino group, or any combination thereof. A particular silane is an unsaturated alkoxy silanes that can be grafted onto the polymer. In particular, the silane may include vinyl trimethoxy silane, vinyl triethoxy silane, gamma-(meth)acryloxy propyl trimethoxy silane, or any combination thereof.

The amount of silane crosslinker may vary widely depending upon the nature of the blend, the silane, the processing conditions, the grafting efficiency, the ultimate application, and similar factors. Typically, at least 0.5 parts per hundred resin (phr), such as at least about 0.7 phr, is used. Generally, the amount of silane crosslinker does not exceed 5 phr, such as not greater than about 2 phr.

In another exemplary embodiment, an amine crosslinking agent may include a monoalkyl, duallyl or trialkyl monoamine, wherein the alkyl group contains from about 2 to about 14 carbon atoms; a trialkylene diamine of the formula N(R2)3N; a dialkylene diamine of the formula HN(R2)2NH; an alkylene diamine, H2NR2NH2; a dialkylene triamine, H2NR2NHR2NH2; an aliphatic amine having a cyclic chain of from four to six carbon atoms; or any combination thereof. The alkylene group R2 in the above formulae may include from about 2 to about 14 carbon atoms. An exemplary cyclic amine may have a heteroatom, such as oxygen, for example, an N-alkyl morpholine. Another exemplary cyclic amine includes pyridine, N,N-dialkyl cyclohexylamine, or any combination thereof. An exemplary amine is triethylamine; di-n-propylamine; tri-n-propylamine; n-butylamine; cyclohexylamine; triethylenediamine; ethylenediamine; propylenediamine; hexamethylenediamine; N,N-diethyl cyclohexylamine; pyridine; ethyl-p-dimethyl amine benzoate (EDAB); octyl-p-dimethyl aminobenzoate (ODAB); or any combination thereof. In an exemplary embodiment, the material includes from about 0.5 wt % to about 10.0 wt % of the amine.

In a particular example, curing is enhanced using FirstCure ITX, available from Albemarle, Inc. FirstCure ITX may also be used in conjunction with an amine synergist, such as ethyl-p-dimethyl amine benzoate (EDAB) or octyl-p-dimethyl aminobenzoate (ODAB).

Returning to FIG. 1, the multi-layer film 100 may be formed through a method, such as coextrusion, colamination, extrusion lamination, melt coating of a preformed layer, or comolding. In particular, co-extrusion may produce a film or a sheet. For example, a sheet of each layer 102, 104, and optionally, 106 may be extruded and placed together while in a heat-softened condition in the co-extrusion die or after the outlet of the die to form a pre-formed article. When chemical crosslinkers are present, crosslinking may occur. Alternatively, the sheet may be subjected to radiation crosslinking.

Once the multilayer article is pre-formed, crosslinking may be performed. In an example, crosslinking may effect bonding of the layers 102, 104, and optionally, 106 together. Such crosslinking may alter mechanical properties of the elastomeric layer 104 and improve peel strength between the layers 102, 104, and 106. Crosslinking may be performed at elevated temperature, such as when the layers 102, 104, and optionally, 106 are placed together at above the melting point of either component, at room temperature, or at any temperature in between.

To illustrate crosslinking by radiation, a film is prepared by the extrusion process. In the extrusion process, the material of layer 102, the material of layer 104, and optionally, the material of layer 106 may be separately melted and separately supplied or jointly melted and supplied to a co-extrusion feed block and die head wherein a film including the layers 102, 104, and optionally 106 is generated. An exemplary die employs a “coat hanger” type configuration. An exemplary linear coat hanger die head is commercially available from Extrusion Dies, Inc. (Connecticut) or Cloeren Die Corp., (Texas). In an exemplary embodiment, the coextruded multilayer film is drawn at a ratio not greater than 30:1, such as not greater than 20:1. Alternatively, the extruded layers may be pressed together at pressures in the range of 0.1 MPa to 80 MPa.

Once the film is formed, radiation crosslinking may be immediately performed and the film may be rolled. Alternatively, the film may be rolled in an uncrosslinked state, unrolled at a later time and subjected to radiation crosslinking.

The radiation may be effective to create crosslinks in the crosslinkable polymer of the layer 104. The intralayer crosslinking of polymer molecules within the layer 104 provides a cured composition and imparts structural strength to the layer 104 of the multi-layer film 100. In addition, radiation may effect a bond between an outermost layer 102 formed of a fluoropolymer and the core layer 104, such as through interlayer crosslinking. In a particular embodiment, the combination of interlayer crosslinking bonds between the layers and the cured core layer present an integrated composite that is highly resistant to delamination, has a high quality of adhesion resistant and protective surface, incorporates a minimum amount of adhesion resistant material, and yet, is physically substantial for convenient handling and deployment of the multilayer film 100. For example, the multilayer film may exhibit a peel strength of at least about 5 gm/cm of width, when tested in standard “T”-Peel configuration at room temperature. In particular, thinner films below 1 mil in thickness may have a peel strength of at least about 5 gm/cm, such as at least about 10 gm/cm. In another example, the peel strength of the multilayer film may be at least about 30 gm/cm, such as at least about 40 gm/cm, at least about 45 gm/cm, or even at least about 50 gm/cm. In particular, thicker films or films used in conjunction with adhesive tapes over a wide temperature range may have peel strengths of at least about 30 gm/cm.

In a particular embodiment, the radiation may be ultraviolet electromagnetic radiation having a wavelength between 170 nm and 400 nm, such as about 170 nm to about 220 nm. Crosslinking may be effected using at least about 120 J/cm2 radiation.

Once formed and cured, the multi-layer polymer film may exhibit desirable mechanical properties. For example, the multi-layer polymer film may have a tensile strength of at least about 12 MPa, based on ASTM D882-02 testing methods. For example, the multi-layer film may have a tensile strength of at least about 15 MPa, such as at least about 20 MPa.

In another exemplary embodiment, the multi-layer film exhibits a desirable elongation at ultimate tensile strength based on ASTM D882-02 testing methods. For example, the multi-layer film may exhibit an elongation at ultimate tensile strength of at least about 145%, such as at least about 170% or at least about 200%.

Particular embodiments of a multilayer film including a core layer formed of a blend of EPDM and polyolefin and including an outermost layer formed of fluoropolymer may advantageously exhibit improved mechanical properties while maintaining crosslinkability and interlayer bonding. For example, embodiments of a multilayer film including a core layer formed of a blend of EPDM and not greater than about 40 wt % polyolefin and an outermost layer of fluoropolymer may exhibit improved tensile strength and elongation at ultimate tensile strength. Further embodiments of a multilayer film including a core layer formed of a blend of EPDM and not greater than about 40 wt % polyolefin and an outermost layer of fluoropolymer may exhibit intracrosslinking within the core layer and bonding between the core layer and the outermost layer of fluoropolymer without the use of an intervening adhesive layer. In addition, embodiments including a blend may include layers that exhibit similar responses to mechanical stress, reducing interfacial separating in response to mechanical stress.

EXAMPLES

Five polymers are selected for a blending study. Specifically, blends are formed that include EPDM and one of five commercially available polyolefins. The commercially available polyolefins are Equistar 8540, an ethylene octene copolymer; Equistar GA-502-024, an LLDPE; Dow DMDA-8904NT 7, an HDPE; Basell Pro-Fax SR275M, a random polypropylene copolymer; and Dow 7C50, a block PP copolymer. The selected EPDM grade is Nordel 4725, available from Dupont-Dow. A blend including the EPDM and at least one polyolefin is included as an intermediate or core layer of a multi-layer film that includes outermost layers formed from Daikin NP-12X FEP. The multi-layer film is coextruded and exposed to ultraviolet electromagnetic radiation, curing the blend of the core layer.

The multi-layer films are coextruded to 1 mil in thickness and exposed to ultraviolet radiation generated by an H+ bulb included in a Fusion UV Systems Model VPS-6 system. The samples are exposed through multiple passes to ultraviolet radiation for a total exposure of 129 J/cm2. The blends did not include a photoinitiator.

Example 1

Dynamic mechanical analysis (DMA) is used to evaluate the compatibility of the blends. The tan delta peak of a DMA scan provides the glass transition temperature (Tg) for the overall blend. In a compatible system, the Tg moves according to the relative amounts of each component in the binary blend, i.e., the Tg for the blend has an intermediate value relative to the glass transition temperature of the two components and the Tg value changes according to the relative amounts of the components. Alternatively, an incompatible blend behaves as at least two different materials and at least two tan delta peaks appear in the DMA scan. Each of the blends in the above-described samples exhibits a single tan delta peak between the glass transition temperatures of the component polymers.

Example 2

Mechanical properties, such as the tensile strength and the percent elongation at ultimate tensile strength, of the samples are tested. The procedure follows ASTM D882-02. A cross head speed of 20 inches per minute with a 5 kN load cell is used. The samples are conditioned at 23° C. and 50 relative humidity (RH) for twelve hours prior to testing.

TABLE 1
Mechanical Properties for Films including Polymer Blends
Tensile Strength (MPa)
Polyolefin in Blend 10 wt % 20 wt % 30 wt %
Ethylene Octene (Engage 8540) 21.9 20.3 16.1
LLDPE (Equistar) 26.6 24.3 24.3
HDPE (Dow DMDA) 16.0 19.6 19.6
PP (Dow 7C50) 16.7 17.4 23.7
PP (Basell ProFax) 18.1 20.7 24.0

A comparative sample including 100% Nordel 4725 EPDM as a core layer has a tensile strength of 12.5 MPa. As illustrated in Table 1, each of the samples exhibits a tensile strength of at least about 12 MPa. Many of the samples including blends in intermediate or core layers exhibit a tensile strength of at least about 15 MPa and particular samples exhibit a tensile strength greater than 20 MPa. In general, addition of a polyolefin to the blend of the core layer increases the tensile strength of the sample relative to a sample including 100% Nordel 4725 EPDM in the core layer. Particular samples, such as the sample including a blend including linear low density polyethylene blend and the sample including a blend including ethylene octene copolymer exhibit peak tensile strength at approximately 10%. Other samples exhibit an increasing tensile strength at amounts as high as 30%, such as the sample including a blend including high density polyethylene and the sample including the blend including polypropylene block copolymer.

Percent elongation at ultimate tensile strength is also measured. A comparative sample including 100% Nordel 4725 EPDM as a core layer has an elongation at ultimate tensile strength of 149%. Table 2 includes the percent elongation for the above-described samples. Each of the samples exhibits an elongation at ultimate tensile strength of at least about 147%. The sample including the ethylene octene copolymer blend exhibits a peak percent elongation at a composition of between 10 and 20% of the ethylene octene copolymer. Other samples, such as the sample including the LLDP blend and the sample including the polypropylene random copolymer blend, exhibit increasing percent elongation at 30%.

TABLE 2
Mechanical Properties for Films including Polymer Blends
Elongation at Ultimate Tensile Strength (%)
Polyolefin in Blend 10 wt % 20 wt % 30 wt %
Ethylene Octene 250 240 111
(Engage 8540)
LLDPE (Equistar) 172 220 240
HDPE (Dow DMDA) 196 205 194
PP (Dow 7C50) 198 226 223
PP (Basell ProFax) 154 188 236

Example 3

Thermal behavior of a set of samples including a blend of Engage® 8540 polyolefin and Nordel 4725 as a core layer are tested for thermal behavior using a Vicat probe. Multi-layer films including a core layer encapsulated by FEP layers are formed. Samples include a core layer formed of a material selected from 100% EPDM Nordel 4725, a blend including Nordel 4725 and 10% Engage® 8540 polyolefin, or a blend including Nordel 4725 and 30% Engage® 8540 polyolefin. The samples are UV treated using an H+ bulb. In addition, an untreated sample is tested.

FIG. 1 includes a graphic illustration of probe height relative to temperature. The untreated sample exhibits a quick drop in probe height with increased temperature. In contrast, each of the UV treated samples including polyolefin exhibit a similar change in probe height relative to temperature to the change in probe height of the 100% EPDM sample. As such, the core layer may crosslink in the samples including a blend of EPDM and as much as 30% polyolefin. In addition, the outermost layers of FEP may adhere to layers including blends of EPDM and about 30% polyolefin or less, without the use of an intermediate adhesive layer.

The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US3151173 *18 Jul 196129 Sep 1964Du PontProcess for producing 5-alkylidene norbornene
US326986222 Oct 196430 Ago 1966Raychem CorpCrosslinked polyvinylidene fluoride over a crosslinked polyolefin
US364616922 Ene 197029 Feb 1972Copolymer Rubber & Chem CorpSulfur vulcanizable elastomeric blends comprising diolefin rubber and epdm terpolymers
US365082717 Nov 196921 Mar 1972Electronized Chemicals CorpFep cables
US3758643 *20 Ene 197111 Sep 1973Uniroyal IncD polyolefin plastic thermoplastic blend of partially cured monoolefin copolymer rubber an
US3806558 *12 Ago 197123 Abr 1974Uniroyal IncDynamically partially cured thermoplastic blend of monoolefin copolymer rubber and polyolefin plastic
US40412077 Oct 19769 Ago 1977Bridgestone Tire Company LimitedHeat resistant rubber laminates
US4113806 *30 Ago 197612 Sep 1978Exxon Research & Engineering Co.Low density polyethylene, ethylene-propyleene copolymer elastomer
US413053530 Abr 197619 Dic 1978Monsanto CompanyThermoplastic vulcanizates of olefin rubber and polyolefin resin
US415582314 Sep 197722 May 1979Raychem CorporationImproved mechanical properties at high temperatures
US450741124 Sep 198126 Mar 1985The British Petroleum Company LimitedCoatings, carboxylic acid polymer
US46770176 Feb 198630 Jun 1987Ausimont, U.S.A., Inc.Coextrusion of thermoplastic fluoropolymers with thermoplastic polymers
US471054420 Feb 19871 Dic 1987E. I. Du Pont De Nemours And CompanyThermoplastic composition of polyolefin and high ethylene content ethylene/alkyl acrylate elastomer
US484084920 Ago 198720 Jun 1989Tosoh CorporationLaminated article from molding compositions of a chlorosulfonated polyolefin and a fluorine-containing elastomer
US4957968 *9 Ago 198818 Sep 1990Monsanto CompanyOlefin polymer containing reactive groups, adhesion to metals
US509316629 May 19903 Mar 1992Tokai Rubber Industries, Ltd.Laminated rubber structure
US526662715 Jul 199230 Nov 1993Quantum Chemical CorporationHydrolyzable silane copolymer compositions resistant to premature crosslinking and process
US52817667 Ago 199225 Ene 1994Champlain Cable CorporationMotor lead wire
US5284889 *20 Nov 19928 Feb 1994Minnesota Mining And Manufacturing CompanyElectrically insulating film backing
US533445020 May 19922 Ago 1994The Dow Chemical CompanyWeatherable styrenic film structures with intermediate tie layer and laminates thereof
US5427831 *2 Jun 199427 Jun 1995E. I. Du Pont De Nemours And CompanyFluoropolymer laminates
US54807219 Sep 19942 Ene 1996Ausimont, S.P.A.Multilayer structures of fluorinated and non-fluorinated thermoplastic polymers
US55786813 Abr 199526 Nov 1996E. I. Du Pont De Nemours And CompanyCurable elastomeric blends
US5658670 *17 Ago 199519 Ago 1997Minnesota Mining And Manufactury CompanyMixing a di- or polyfunctional amine with melt processible, nonfluorinated polymer for improved adhesion with layer of fluoropolymer upon forming composite
US5695838 *15 Ago 19969 Dic 1997Mitsui Petrochemical Industries, Ltd.Graft-modified with unsaturated acid and acid anhydride; improved adhesion
US5696213 *21 Abr 19959 Dic 1997Exxon Chemical Patents Inc.Ethylene-α-olefin-diolefin elastomers solution polymerization process
US5804661 *21 Feb 19968 Sep 1998Bridgestone/Firestone, Inc.EPDM flashing compositions
US58326366 Sep 199610 Nov 1998Nike, Inc.Article of footwear having non-clogging sole
US5843577 *22 Mar 19951 Dic 1998Advanced Elastomer Systems, L.P.Thermoplastic elastomers having improved surface properties
US5855977 *26 Ago 19965 Ene 1999Minnesota Mining And Manufacturing CompanyBonding strength
US586666310 Jul 19972 Feb 1999E. I. Du Pont De Nemours And CompanyProcesses of polymerizing olefins
US588024124 Ene 19969 Mar 1999E. I. Du Pont De Nemours And CompanyHighly branched polyalkenes
US588032310 Jul 19979 Mar 1999E. I. Du Pont De Nemours And CompanyProcesses for making α-olefins
US588622410 Jul 199723 Mar 1999E. I. Du Pont De Nemours And CompanyUseful for polymerizing ethylene, acyclic olefins, and/or selected cyclic olefins
US591665914 Ene 199629 Jun 1999Chemfab CorporationComposites of fluoropolymers with thermally non-adherent non-fluoropolymers and methods for producing the same
US591698910 Jul 199729 Jun 1999E. I. Du Pont De Nemours And CompanyPolymers of C4 and higher α-olefins
US6080487 *26 Ago 199627 Jun 20003M Innovative Properties CompanyMethod of improving adhesion between a fluoropolymer and a substrate
US6096428 *9 Abr 19981 Ago 20003M Innovative Properties CompanyFirst layer bonding material comprising non-fluorinated polymeric material containing a blend of carboxyl, carboxylate, anhydride, amide, imide, or acid functional polyolefin, a base, and an organo-onium compound
US610742210 Jul 199722 Ago 2000E.I. Du Pont De Nemours And CompanyCopolymer of an olefin and an unsaturated partially fluorinated functionalized monomer
US61173751 Abr 199812 Sep 2000Bridgestone/Firestone, Inc.Insulation board comprising a foam core of polyisocyanurate or polyurethane, being free of facers; made continuously by heat curing a foamable polymer liquid between two temporary facer sheets to form insulation board, removing sheets
US614043910 Jul 199731 Oct 2000E. I. Du Pont De Nemours And CompanyPolymers of cyclopentene
US6197393 *11 Jun 19986 Mar 20013M Innovative Properties CompanyMulti-layer compositions comprising a fluoropolymer
US620727718 Dic 199727 Mar 2001Rockbestos-Surprenant Cable Corp.Multiple insulating layer high voltage wire insulation
US6211291 *30 Jun 19983 Abr 2001E. I. Du Pont De Nemours And CompanyPolyolefin compositions
US628815619 Ago 199811 Sep 2001E. I. Du Pont De Nemours And CompanyCalenderable thermoplastic polymer compositions
US6300418 *2 Nov 19999 Oct 2001Dsm N.V.Thermoplastic elastomer composition adapted for adhesion to polar materials
US637287014 Abr 199816 Abr 2002Daikin Industries Ltd.Tetrafluoroethylene copolymer and use thereof
US63914605 Ago 199921 May 2002Yamauchi CorporationRubber for hot press cushioning pad, manufacturing method thereof, hot press cushioning pad and method of manufacturing printed circuit board
US643254228 Sep 199813 Ago 2002Alliedsignal Inc.Bonding multilayer of different polymers
US6482522 *19 Dic 199719 Nov 2002Dyneon LlcElastomer compositions for bonding to fluoropolymers
US649497710 Jun 199717 Dic 2002Norton Performance Plastics CorporationDecoration with pressure sensitive adhesives
US650684214 Nov 199714 Ene 2003Dupont Dow Elastomers L.L.C.Rheology-modified thermoplastic elastomer compositions and articles fabricated therefrom
US651488810 Jul 19974 Feb 2003Yamauchi CorporationCushioning material for forming press
US6524671 *12 Mar 199825 Feb 2003E. I. Du Pont De Nemours And CompanyCoextruded fluoropolymer/polyamide laminate
US653456924 Ene 200118 Mar 2003Cabot CorporationPolymers containing modified pigments and methods of preparing the same
US653808411 Dic 200125 Mar 2003Daikin Industries, Ltd.Tetrafluoroethylene copolymer and use thereof
US66325186 Oct 199914 Oct 2003E. I. Du Pont De Nemours And CompanyPrimer layer of an amine functional acrylic polymer, thermoplastic adhesive layer containing acid modified polyolefin, thermoplastic substrate
US6652943 *4 Jun 200125 Nov 2003Saint-Gobain Performance Plastics CorporationIntercrosslinking a crosslinkable thermoplastic polymer in contact with an incompatible thermoplastic resin to effect bonding
US6667101 *26 Ene 200123 Dic 2003AtofinaThermoformable multilayer film for the protection of substrates and objects obtained
US66702976 Nov 200030 Dic 2003E. I. Du Pont De Nemours And CompanyLate transition metal diimine catalyst
US6686012 *23 Ago 20003 Feb 20043M Innovative Properties CompanyMulti-layer articles including a fluoroplastic layer
US674254518 Abr 20021 Jun 2004Parker-Hannifin CorporationHose construction
US6753087 *21 May 200122 Jun 20043M Innovative Properties CompanyFluoropolymer bonding
US6790510 *31 Ago 200014 Sep 2004Mitsubishi Plastics, Inc.Releasing laminated film
US6838520 *29 May 20034 Ene 2005Equistar Chemicals, LpAdhesives for fluoropolymer films and structures containing same
US689727223 Ago 200024 May 2005E.I. Du Pont De Nemours And CompanyDiimine palladium or nickel complex having bulky substituents on the imine nitrogen having steric bulk sufficient to form a polymer with alpha-olefin, ethylene, or cyclopentene repeat units.
US694618217 Jul 200020 Sep 2005Allgeuer Thomas TFringed surface structures obtainable in a compression molding process
US6960377 *13 Abr 20041 Nov 2005Dayco Products, LlcFuel hose and its production
US6998007 *16 Sep 200314 Feb 2006Saint-Gobain Performance Plastics CorporationPrevents peel delamination of the core layer
US2002002711013 Sep 20017 Mar 2002Khaled MahmudPolymers containing modified pigments and methods of preparing the same
US200200704737 Feb 200213 Jun 2002Jerry ShifmanFuel hose having improved fuel vapor barrier properties comprising blended terpolymers of hexafluoropropylene, vinylidene fluoride, and tetrafluoroethylene
US2002012841211 Dic 200112 Sep 2002Daikin Industries Ltd.Viscosity; chemical resistance, solvent resistance, non-tackiness, dielectric, stain resistance, flameproofing; moldings
US20020197482 *4 Jun 200126 Dic 2002Alexander TukachinskyIntercrosslinking a crosslinkable thermoplastic polymer in contact with an incompatible thermoplastic resin to effect bonding
US2003007106917 Jun 200217 Abr 2003Shelton James J.Method and apparatus for disinfecting a refrigerated water cooler reservoir and its dispensing spigot(s)
US2003008238629 Oct 20011 May 2003Hussey John K.Bonding silicone to rubber; chemical resistance coating
US20040058162 *16 Sep 200325 Mar 2004Saint-Gobain Performance Plastics CorporationPrevents peel delamination of the core layer
US2004010259120 Oct 200327 May 2004Brookhart Maurice S.Polymerization of olefins
US2004012455013 Ago 20031 Jul 2004Itt Manufacturing Enterprises, Inc.Strip diffuser
US2004012761415 Oct 20031 Jul 2004Peijun JiangPolyolefin adhesive compositions and articles made therefrom
US2004019751013 Abr 20047 Oct 2004Jerry ShifmanFlexible hose having reduced fuel vapor permeability and method of manufacturing such hose
US2004022904313 May 200318 Nov 2004Spohn Peter D.Multilayer composite and method of making same
US2005000320428 Sep 20046 Ene 2005Thomas FrankelMutiple layered membrane with fluorine containing polymer layer
US2005002595615 Oct 20033 Feb 2005Bainbridge David W.Composite materials made from pretreated, adhesive coated beads
US200501237648 Nov 20049 Jun 2005Hoffmann Rene C.Markable powder and interference pigment containing coatings
US2005013111927 Dic 200416 Jun 2005Wood Willard E.thermoplastic blend ; absorption impurities; barrier films; container closure
US2005014350830 Dic 200330 Jun 2005General Electric CompanyResin compositions with fluoropolymer filler combinations
US2005018737220 Feb 200425 Ago 2005General Electric CompanyTranslucent thermoplastic composition, method for making the composition and articles molded there from
US2006002007618 Jul 200526 Ene 2006L&L Products, Inc.Sealant material
US2006002977515 Sep 20059 Feb 2006Mackinnon Thomas KevinProcess of and apparatus for making a shingle, and shingle made thereby
US200600525409 Sep 20049 Mar 2006Maria EllulThermoplastic vulcanizates
US20060275572 *2 Jun 20067 Dic 2006Anthony BonnetMultilayer pipe for transporting water or gas
US200701283942 Dic 20057 Jun 2007Thomas Frankelsubstrate layer comprises ethylene propylene diene monomer, primer layer comprising polyamideimide and/or polyethersulfone, and dispersion layer comprising polytetrafluoroethylene
US20070190335 *13 Feb 200616 Ago 2007Saint-Gobain Performance Plastics CorporationMulti-layer release films
US20070202311 *28 Feb 200630 Ago 2007Saint-Gobain Performance Plastics CorporationMulti-layer release films
US20080029210 *3 Ago 20067 Feb 2008Saint-Gobain Performance Plastics CorporationRoofing membrane
EP0137519B112 Oct 198428 Ago 1991Occidental Chemical CorporationGraft polymers of polymerizable monomers and olefin polymers
EP0376681A227 Dic 19894 Jul 1990Mitsui Petrochemical Industries, Ltd.Release film composed of a laminate
EP0405089A226 Abr 19902 Ene 1991Shin-Etsu Chemical Co., Ltd.Method for the preparation of a covering film for flexible printed circuit board
EP0989302A217 Sep 199929 Mar 2000Norton Performance Plastics CorporationPump diaphragm and method for making the same
EP0992518B114 Abr 19981 Sep 2004Daikin Industries, LimitedTetrafluoroethylene copolymer and use thereof
EP1038904A110 Mar 200027 Sep 2000Ausimont S.p.A.Crosslinked compositions of thermoplastic fluoropolymers
EP1131375B113 Oct 19993 Mar 2004E.I. Du Pont De Nemours And CompanyFluoropolymer film structures and laminates produced therefrom
EP1356226B18 Ene 200220 Abr 2005Parker Hannifin CorporationThermoplastic reinforced hose construction
EP1541337A11 Dic 200315 Jun 2005Icopal Plastic Membranes A/SMethod of producing a membrane and a membrane
EP1541338A11 Dic 200415 Jun 2005Icopal Plastic Membranes A/SMembrane and method of producing same
EP1541642A120 Nov 200415 Jun 2005Rohm And Haas CompanyMarkable powder coating comprising a magnetic interference pigment
EP1605002A112 Mar 200414 Dic 2005JSR CorporationHydrogenated diene copolymer, polymer composition, and molded object
JP2003211472A Título no disponible
WO1998005493A1 *4 Ago 199712 Feb 1998Du PontCoextruded laminate
WO1998032795A129 Ene 199830 Jul 1998Dupont Dow Elastomers LlcRheology-modified thermoplatic elastomer compositions and articles fabricated therefrom
WO2001005573A117 Jul 200025 Ene 2001Thomas T AllgeuerThermoplastic articles comprising a fringed surface structure
WO2001055245A224 Ene 20012 Ago 2001Cabot CorpPolymers containing modified pigments and methods of preparing the same
WO2001069610A116 Mar 200120 Sep 2001Mckeough LiamElectrical wire insulation
WO2002016111A120 Dic 200028 Feb 2002Dyneon LlcProcess for preparing a multi-layer article having a fluoroplastic layer and an elastomer layer
WO2004065467A122 Ene 20045 Ago 2004Theodore John LangImproved high temperature and high humidity release coating for polymer film
WO2004076541A220 Feb 200410 Sep 2004Gen ElectricTranslucent thermoplastic composition, method for making the composition and articles molded there from.
WO2004101274A24 May 200425 Nov 2004Saint Gobain Performance PlastMultilayer composite and method of making same
WO2005078808A14 Feb 200525 Ago 2005James Anton ChaneyPhotovoltaic system and method of making same
WO2006121194A110 May 200616 Nov 2006Tatsuta System Electronics CoShielding film, shielded printed circuit board, shielded flexible printed circuit board, method of manufacturing shielding film, and method of manufacturing shielded printed circuit board
Otras citas
Referencia
1"Encyclopedia of Polymer Science and Engineering"; Supplement Volume; John Wiley & Sons; pp. 109-110.
2Alger, Polymer Science Dictionary, 2nd Edition, p. 554, Apr. 1999.
3Ebnesajjad, Sina et al. "Manufacturing Parts from Melt-processible Fluoropolymers" Fluoropolymers Applications in Chemical Processing Industries-The Definitive User's Guide and Databook, William Andrew Publishing/Plastics Design Library, pp. 193-252.
4Ebnesajjad, Sina et al. "Manufacturing Parts from Melt-processible Fluoropolymers" Fluoropolymers Applications in Chemical Processing Industries—The Definitive User's Guide and Databook, William Andrew Publishing/Plastics Design Library, pp. 193-252.
5U.S. Appl. No. 11/352,911, filed Feb. 13, 2006, Gwo Swei, et al.
6USPTO Office Action for (U.S. Appl. No. 11/352,911) mailed Apr. 14, 2008.
7V. Palissery, et al.; "Mechanical Characerisation of a Rigid Polymer Foam to Model Cancellous Bone"; Bioengineering Sciences Research Group; University of Southampton.
8 *Whelan, Tony, Polymer Technology Dictionary (1994), pp. 160-161.
9Wright, Ralph E.; "Molded Thermosets; A Handbook for Plastics Engineers, Molders, and Designers"; Hanser Publishers; Oxford University Press; New York; 1991.
Clasificaciones
Clasificación de EE.UU.428/421, 525/232, 428/422, 428/522, 428/517, 428/519, 428/515, 428/520, 428/500, 428/521, 428/516, 525/240
Clasificación internacionalB32B27/08, B32B7/04, B32B27/28, B32B27/32
Clasificación cooperativaB32B2250/03, B32B2250/242, B32B27/32, B32B27/322, B32B25/16, B32B2457/12, B32B2270/00, B32B2307/54, B32B27/08, B32B2250/40
Clasificación europeaB32B27/08, B32B27/32A, B32B25/16, B32B27/32
Eventos legales
FechaCódigoEventoDescripción
17 Ago 2014LAPSLapse for failure to pay maintenance fees
28 Mar 2014REMIMaintenance fee reminder mailed
19 Feb 2007ASAssignment
Owner name: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION, OHI
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SWEI, GWO;KASTELIC, JOHN R.;TUKACHINSKY, ALEXANDER;REEL/FRAME:018903/0265;SIGNING DATES FROM 19950922 TO 20060428
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SWEI, GWO;KASTELIC, JOHN R.;TUKACHINSKY, ALEXANDER;SIGNING DATES FROM 19950922 TO 20060428;REEL/FRAME:018903/0265