Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS7949512 B2
Tipo de publicaciónConcesión
Número de solicitudUS 12/425,699
Fecha de publicación24 May 2011
Fecha de presentación17 Abr 2009
Fecha de prioridad8 Nov 2004
TarifaPagadas
También publicado comoUS7490207, US7536291, US7962714, US8230195, US20060230244, US20090187711, US20100017184, US20110283073, WO2006053050A2, WO2006053050A3
Número de publicación12425699, 425699, US 7949512 B2, US 7949512B2, US-B2-7949512, US7949512 B2, US7949512B2
InventoresManoj Kumar Vijayan Retnamma, Ho-Chi Chen, Zahid Iikal, Rajiv Kottomtharayil
Cesionario originalCommvault Systems, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Systems and methods for performing virtual storage operations
US 7949512 B2
Resumen
The present invention includes a system for simulating the performing of data storage operations. The system may include a storage manager component, at least one media management component directed by the storage manager component to manage storage operations to at least one storage device, and a storage emulation module adapted to simulate the characteristics of the at least one storage device. Under the direction of the storage manager, the emulation module may be adapted to simulate storage operations to one or more storage devices performed by one or more of the media management components.
Imágenes(8)
Previous page
Next page
Reclamaciones(16)
1. A computing system for simulating data storage operations, the computing system comprising:
at least one virtual data agent executing in one or more computer processors, the virtual data agent configured to obtain application specific data associated with an application, wherein the application specific data comprises a plurality of different data formats, the virtual data agent further comprising a plurality of different types of data agents wherein each of the different types of data agents is associated with one of the different data formats of the application specific data;
a storage device emulation module executing in one or more computers, wherein the storage device emulation module comprises different types of simulated storage devices that are null devices that do not store the application specific data, wherein the different types of simulated storage devices are configured to simulate storage operations associated one or more of the different types of application specific data obtained by the different types of data agents associated with the virtual data agent; and
a storage manager component executing in one or more computers that automatically assigns the different types of simulated storage devices based on the different types of data agents associated with the virtual data agent.
2. The computing system of claim 1, wherein the different types of simulated storage devices are selected based on the different data formats of the application specific data.
3. The computing system of claim 1, wherein one or more of the different types of simulated storage devices are selected based on characteristics of the different types of simulated storage devices.
4. The computing system claim 1, wherein characteristics of the different types of simulated storage devices are obtained via a program interface in communication with the storage device emulation module.
5. The computing system of claim 1, wherein the storage device emulation module comprises at least one file describing characteristics of at least one storage device.
6. The computing system of claim 1, wherein characteristics of the different types of simulated storage devices are stored in at least one XML file.
7. The computing system of claim 1, wherein one or more of the different types of simulated storage devices discard the application specific data.
8. The computing system of claim 1, wherein characteristics associated with the at least one storage drive device comprises information associated with at least one of the group consisting of a storage drive device serial number, a manufacturer name, a barcode, a storage drive device model number, network address information, and a storage drive device manufacturer.
9. A method of simulating data storage operations with a virtual data agent comprising:
obtaining, by at least one virtual data agent executing on one or more computers, application specific data from an application executing on one or more of the computers, wherein the application specific data comprises different data formats, wherein the virtual data agent further comprises a plurality of different types of data agents wherein each of the different types of data agents agent is associated with one of the different data formats of the application specific data; and
simulating the storage of the application specific data with a storage device emulation module executing in one or more computers, wherein the storage device emulation module comprises different types of simulated storage devices that are null devices that do not store the application specific data, wherein the different types of simulated storage devices simulate storage operations associated with one or more of the different data formats associated with the application specific data obtained by the different types of data agents associated with the virtual data agent; and
automatically assigning the different types of simulated storage devices based on the different types of data agents associated with the virtual data agent.
10. The method of claim 9, further comprising selecting the different types of simulated storage devices based on the different data formats of the application specific data.
11. The method of claim 9, further comprising selecting one or more of the different types of simulated storage devices based on characteristics of the different types of simulated storage devices.
12. The method of claim 9, further comprising obtaining characteristics of the different types of simulated storage devices via a program interface in communication with the storage device emulation module.
13. The method of claim 9, wherein the storage device emulation module comprises at least one file describing characteristics of at least one storage device.
14. The method of claim 9, further comprising storing characteristics of the different types of simulated storage devices in at least one XML file.
15. The method of claim 9, further comprising discarding the application specific data sent to the one or more of the different types of simulated storage devices.
16. The method of claim 9, wherein characteristics associated with the at least one storage drive device comprises information associated with at least one of the group consisting of a storage drive device serial number, a manufacturer name, a barcode, a storage drive device model number, network address information, and a storage drive device manufacturer.
Descripción
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/269,136, filed Nov. 8, 2005, which claims benefit priority to U.S. Provisional Application No. 60/626,076, filed Nov. 8, 2004, each of which is hereby incorporated herein by reference in its entirety.

This application is related to the following patents and pending applications, each of which is hereby incorporated herein by reference in its entirety:

    • application Ser. No. 11/269,520, titled System and Method for Performing Multistream Storage Operations, filed Nov. 7, 2005;
    • application Ser. No. 11/269,512, titled System and Method to Support Single Instance Storage Operations, filed Nov. 7, 2005;
    • application Ser. No. 11/269,514, titled Method and System of Pooling Storage Devices, filed Nov. 7, 2005;
    • application Ser. No. 11/269,521, titled Method and System for Selectively Deleting Stored Data, filed Nov. 7, 2005;
    • application Ser. No. 11/269,519, titled Method and System for Grouping Storage System Components, filed Nov. 7, 2005;
    • application Ser. No. 11/269,515, titled Systems and Methods for Recovering Electronic Information From a Storage Medium, filed Nov. 7, 2005;
    • application Ser. No. 11/269,513, titled Method and System for Monitoring a Storage Network, filed Nov. 7, 2005; and
    • application Ser. No. 11/269,119, titled System and Method for Enhancing Auxiliary Storage Operation, filed Nov. 8, 2005.
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention disclosed herein relates generally to performing storage operations in a computer network. More particularly, the present invention relates to performing simulated storage operations in a storage management system.

2. Description of the Related Art

Storage management systems have evolved into complex entities with many components including hardware and software modules designed to perform a variety of different storage operations on electronic data. In some instances, users may wish to simulate storage operations to particular hardware. For example, a network engineer or sales person may wish to demonstrate capabilities of a storage management system without going to the trouble of installing and configuring one or more of the many pieces of hardware that are part of today's complex storage management systems. Many components of storage management systems may be software modules, which may easily be installed on a laptop or other computing device. Without attaching and configuring additional hardware components required by the system to perform storage operations, users cannot generally test or otherwise demonstrate the software modules that also make up a storage management system.

Thus, there is a need for performing simulated storage operations without the added requirement of utilizing storage media hardware.

SUMMARY OF THE INVENTION

The invention may include systems and methods for performing simulated storage operations on electronic data. Data structures and other schema may be used to present software modules with simulated interfaces for various hardware components that may not be physically present in the system. Thus, software modules may perform storage operations, direct data, and otherwise interface with the simulated hardware represented by data structures and schemas. Software modules interface with a simulated hardware interface that reads the information contained in the data structures and schemas to present a virtually identical interface of a storage device and mimic the behavior of a storage device. The data structures and schemas contain various information, which may include, among other things, characteristics, attributes, and functionality associated with simulated hardware storage devices and other components associated with a storage operation system.

According to an embodiment of the invention, a system for simulating the performing of data storage operations is provided. The system may comprise a storage manager component and one or more media management components configured to perform storage operations on one or more storage devices under the direction of the storage manager component. A storage emulation module adapted to simulate the characteristics of the one or more storage devices may, under the direction of the storage manager, simulate storage operations on the one or more storage devices performed by the one or more media management components.

According to another embodiment of the invention, a method of simulating data storage operations is provided. The method comprises accessing one or more electronic files comprising information associated with a storage device and selecting a media management component associated with the accessed one or more electronic files. The electronic data is transferred from a computer device to the media management component, where a storage operation is simulated between the media management component and the storage device based on the accessed one or more electronic files.

According to yet another embodiment of the invention, a method of simulating data storage operations implemented by a computer device is provided. The method comprises accessing, at the computer, a program interface associated with simulating storage operations. At the computer, information associated with one or more storage devices is determined via the program interface. At the computer, one or more media management components are assigned to each of the one or more storage devices via the program interface, where under the direction of a storage manager component, data storage operation are simulated based on the assigned media management component and the determined information.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:

FIG. 1 is a block diagram of a storage operation cell in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention;

FIG. 2 is a block diagram of a hierarchically organized group of storage operation cells in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention;

FIG. 3 is a block diagram of a hierarchically organized group of storage operation cells in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention;

FIG. 4 is a conceptual illustration of a storage operation system simulator according to an embodiment of the invention;

FIG. 5 is a flow diagram illustrating the general steps used for providing simulated storage operations according to an embodiment of the invention;

FIG. 6 is a system diagram illustrating the interaction of a storage device emulation module with other components of a storage operation cell according to an embodiment of the invention; and

FIG. 7 is a flow diagram illustrating simulated storage operations according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 presents a block diagram of a storage operation cell in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention. As shown, the storage operation cell includes a storage management component, such as storage manager 100 and one or more of the following: a client 85, a data store 90, a data agent 95, a media management component, such as a media agent 125, a media management component index cache 130, a storage device 135, a storage management component index cache 105, a jobs agent 110, an interface module 115, and a management agent 120. The system and elements thereof are exemplary of a modular storage management system such as that further described in application Ser. No. 09/610,738, which is incorporated herein by reference in its entirety. A storage operation cell may generally include combinations of hardware and software components directed to performing storage operations on electronic data. Exemplary storage operation cells according to embodiments of the invention include CommCells as embodied in the QNet storage management system-and the QiNetix storage management system by CommVault Systems of Oceanport, N.J., and as further described in Application Ser. No. 60/482,305 and application Ser. No. 09/354,058, which are hereby incorporated by reference in their entirety.

Storage operations cells may be related to backup cells and may provide all of the functionality of backup cells as further described in application Ser. No. 09/354,058. Storage operation cells may also perform additional types of storage operations and provided by other types of storage management functionality. Storage operation cells performing storage operations may also include, but are not limited to, creation, storage, retrieval, migration, deletion, and tracking of primary or production volume data, secondary volume data, primary copies, secondary copies, auxiliary copies, snapshot copies, backup copies, incremental copies, differential copies, Hierarchical Storage Management (“HSM”) copies, archive copies, Information Lifecycle Management (“ILM”) copies, and other types of copies and versions of electronic data. Storage operation cells may also include an integrated management console for providing users or system processes to interface with, in order to perform storage operations on electronic data.

A storage operation cell may be organized and associated with other storage operation cells by forming a logical hierarchy among various components of a storage management system. Storage operation cells generally include a storage manager 100, and, one or more other components including, but not limited to, a client computer 85, a data agent 95, a media management component 125, a storage device 135, such as a single instance storage device, and other components.

For example, a storage operation cell may contain a data agent 95 which may generally be a software module that is responsible for performing storage operations related to client computer 85 data that may be stored in data store 90 or another memory location. For example, data agent 95 may provide archiving, migrating, and recovery of client computer data. A data agent may perform storage operations in accordance with one or more storage policies or other preferences. A storage policy is generally a data structure or other information which includes a set of preferences and other storage criteria for performing a storage operation. The preferences and storage criteria may include, but are not limited to, a storage location, relationships between system components, network pathway to utilize, retention policies, data characteristics, compression or encryption requirements, preferred system components to utilize in a storage operation, and other criteria relating to a storage operation. Storage policies may be stored to a storage manager index, to archive media as metadata for use in restore operations or other storage operations, or to other locations or components of the system.

Each client computer 85 generally has at least one data agent 95 and the system may support many client computers 85. The system may also generally provide a plurality of data agents 95 each of which may intend to perform storage operations related to data associated with a different application, for example, in order to backup, migrate, and recover application specific data. For example, different individual data agents 95 may be designed to handle MICROSOFT EXCHANGE data, LOTUS NOTES data, MICROSOFT WINDOWS 2000 file system data, MICROSOFT ACTIVE DIRECTORY OBJECTS data, and other types of data known in the art.

If a client computer 85 includes two or more types of data, one data agent 95 may generally be required for each data type in order to perform storage operations related to client computer 85 data. For example, to backup, migrate, and restore all of the data on a MICROSOFT EXCHANGE 2000 server, the client computer 85 would use one MICROSOFT EXCHANGE 2000 mailbox data agent 95 to backup the EXCHANGE 2000 mailboxes, one MICROSOFT EXCHANGE 2000 database data agent 95 to backup the Exchange 2000 databases, one MICROSOFT EXCHANGE 2000 public folder data agent 95 to backup the EXCHANGE 2000 public folders, and one MICROSOFT WINDOWS 2000 file system data agent 95 to backup the client computer's 85 file system. These data agents 95 may be treated as four separate data agents 95 by the system even though they reside on the same client computer 85. Separate data agents may be combined to form a virtual data agent (not shown) for performing storage operations related to a specific application. Thus, the four separate data agents of the previous example may be combined as a virtual data agent suitable for performing storage operations related to all types of MICROSOFT EXCHANGE 2000 and/or WINDOWS 2000 data.

The storage manager 100 may generally be a software module or application that coordinates and controls storage operations performed by the storage operation cell. The storage manager 100 may communicate with all elements of the storage operation cell including client computers 85, data agents 95, media management components 125, and storage devices 135 regarding storage operations, for example, to initiate and manage system backups, migrations, and recoveries. The storage manager 100 may also communicate with other storage operation cells.

The storage manager 100 may include a jobs agent 110 software module which monitors the status of all storage operations that have been performed, that are being performed, or that are scheduled to be performed by the storage operation cell. The jobs agent 110 may be communicatively coupled with an interface agent 115 software module. The interface agent 115 may provide presentation logic, such as a graphical user interface (“GUI”), an application program interface (“API”), or other interface by which users and system processes may be able to retrieve information about the status of storage operations and issue instructions to the storage operations cell regarding the performance of storage operations. For example, a user may modify the schedule of a number of pending snapshot copies or other types of copies. As another example, a user may use the GUI to view the status of all storage operations currently pending in all storage operation cells or the status of particular components in a storage operation cell.

The storage manager 100 may also include a management agent 120 software module. The management agent 120 may generally provide an interface with other management components 100 in other storage operations cells through which information and instructions regarding storage operations may be conveyed. For example, a management agent 120 in a first storage operation cell can communicate with a management agent 120 in a second storage operation cell regarding the status of storage operations in the second storage operation cell. A management agent 120 in a first storage operation cell can communicate with a management agent 120 in a second storage operation cell to control the storage manager 100 (and other components) of the second storage operation cell via management agent 120 contained in the storage manager 100 of the second storage operation cell. The management agent 120 in the first storage operation cell may communicate directly with and control the components in the second storage management cell and bypasses the storage manager 100 in the second storage management cell. Storage operation cells can thus be organized hierarchically among cells.

A media management component 125 may be a software module that conducts data, as directed by a storage manager 100, between client computers 85 and one or more storage devices 135. The media management component 125 may communicatively be coupled with and generally configured to control one or more storage devices 135. For example, the media management component 125 may instruct a storage device 135 to use a robotic arm or other means to load or eject a media cartridge, and to archive, migrate, or restore application specific data. The media management component 125 may generally communicate with storage devices 135 via a local bus such as a SCSI adaptor. In some embodiments, the storage device 135 may be communicatively coupled to the media management component 125 via a Storage Area Network (“SAN”).

Each media management component 125 may maintain an index cache 130 which stores index data the system generates during storage operations as further described herein. For example, storage operations for MICROSOFT EXCHANGE data generate index data. Index data may include, for example, information regarding the location of the stored data on a particular media, information regarding the content of the data stored such as file names, sizes, creation dates, formats, application types, and other file-related criteria, information regarding one or more clients associated with the data stored, information regarding one or more storage policies, storage criteria, or storage preferences associated with the data stored, compression information, retention-related information, encryption-related information, stream-related information, and other types of information. Index data may thus provides the system with an efficient mechanism for performing storage operations including locating user files for recovery operations and for managing and tracking stored data. The system generally maintains two copies of the index data regarding particular stored data. A first copy may generally be stored with the data copied to a storage device 135. Thus, a tape may contain the stored data as well as index information related to the stored data. In the event of a system restore, the index data stored with the stored data may be used to rebuild a media management component index 130 or other index useful in performing storage operations. In addition, the media management component 125 that controls the storage operation may also write an additional copy of the index data to its index cache 130. The data in the media management component index cache 130 may be generally stored on faster media, such as magnetic media, and is thus readily available to the system for use in storage operations and other activities without having to be first retrieved from the storage device 135.

Storage manager 100 may also maintains an index cache 105. Storage manager index data may be used to indicate, track, and associate logical relationships and associations between components of the system, user preferences, management tasks, and other useful data. For example, the storage manager 100 may use its index cache 105 to track logical associations between media management components 125 and storage devices 135. The storage manager 100 may also use its index cache 105 to track the status of storage operations to be performed, storage patterns associated with the system components such as media use, storage growth, network bandwidth, Service Level Agreement (“SLA”) compliance levels, data protection levels, storage policy information, storage criteria associated with user preferences, retention criteria, storage operation preferences, and other storage-related information. Index caches 105 and 130 may typically reside on their corresponding storage component's hard disk or other fixed storage device.

For example, the jobs agent 110 of a storage manager component 100 may retrieve storage manager index 105 data regarding a storage policy and storage operation to be performed or scheduled for a particular client 85. Jobs agent 110, either directly or via the interface module 115, may communicate with the data agent 95 at the client 85 regarding the storage operation. In some embodiments, the jobs agent 110 may also retrieve from the index cache 105 a storage policy associated with the client 85 and uses information from the storage policy to communicate to the data agent 95 one or more media management components 125 associated with performing storage operations for that particular client 85 as well as other information regarding the storage operation to be performed, such as retention criteria, encryption criteria, streaming criteria, etc. The data agent 95 may then package or otherwise manipulate the client data stored in the client data store 90 in accordance with the storage policy information and/or according to a user preference, and communicates this client data to the appropriate media management component(s) 125 for processing. Media management component(s) 125 may store the data according to storage preferences associated with the storage policy including storing the generated index data with the stored data, as well as storing a copy of the generated index data in the media management component index cache 130.

In some embodiments, components of the system may reside and execute on the same computer. In some embodiments, a client computer 85 component such as a data agent 95, a media management component 125, or a storage manager 100 may coordinate and direct storage operations as further described in application Ser. No. 09/610,738. This client computer 85 component can function independently or together with other similar client computer 85 components.

FIG. 2 presents a block diagram of a hierarchically organized group of storage operation cells in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention. As shown, the system may include a master storage manager component 140, a first storage operation cell 145, a second storage operation cell 150, a third storage operation cell 155, a fourth storage operation cell 160, a fifth storage operation cell 165, and an nth storage operation cell 170.

As previously described, storage operation cells may often be communicatively coupled and hierarchically organized. For example, as shown in FIG. 2, master storage manager 140 may be associated with, communicates with, and directs storage operations for a first storage operation cell 145, a second storage operation cell 150, a third storage operation cell 155, a fourth storage operation cell 160, a fifth storage operation cell 165, and an nth storage operation cell 170. In some embodiments, master storage manager 140 may not be part of any particular storage operation cell. In other embodiments (not shown), master storage manager 140 may itself be part of a storage operation cell.

Thus, master storage manager 140 may communicate with the management agent of the storage manager of the first storage operation cell 145 (or directly with the other components of the first cell 145) regarding storage operations performed in the first storage operation cell 145. For example, in some embodiments, the master storage manager 140 may instruct the first storage operation cell 145 how and when to perform storage operations, including the type of operation to perform, and the data on which to perform the operation.

In other embodiments, master storage manager 140 may track the status of its associated storage operation cells, such as the status of jobs, system components, system resources, and other items, by communicating with manager agents (or other components) in the respective storage operation cells. In other embodiments, master storage manager 140 may track the status of its associated storage operation cells by receiving periodic status updates from the manager agents (or other components) in the respective cells regarding jobs, system components, system resources, and other items. For example, in some embodiments, master storage manager 140 may use methods to monitor network resources such as mapping network pathways and topologies to, among other things, physically monitor storage operations and suggest alternate routes for storing data as further described herein. The master storage manager 140 may also use methods to monitor primary and secondary storage trends, storage status, media usage, data protection levels, and other storage-related information as further described herein.

In some embodiments, master storage manager 140 may store status information and other information regarding its associated storage operation cells and the system in an index cache or other data structure accessible to the master storage manager 140. In some embodiments, as further described herein, the presentation interface of the master storage manager 140 accesses this information to present users and system processes with information regarding the status of storage operations, storage operation cells, system components, and other information of the system.

Storage operation cells may thus be organized hierarchically. Thus, storage operation cells may inherit properties from their parents or be controlled by other storage operation cells in the hierarchy. Thus, in some embodiments as shown in FIG. 2, the second storage operation cell 150 controls or is otherwise superior to the third storage operation cell 155, the fourth storage operation cell 160, the fifth storage operation cell 165, and the nth storage operation cell 170. Similarly, the fourth storage operation cell 160 controls the fifth storage operation cell 165, and the nth storage operation cell 170.

Storage operation cells may also be organized hierarchically according to criteria such as function, geography, architectural considerations, or other factors useful in performing storage operations. For example, in one embodiment storage operation cells may be organized according to types of storage operations: the first storage operation cell 145 may be directed to performing snapshot copies of primary copy data, and the second storage operation cell 150 is directed to performing backup copies of primary copy data or other data. For example, in another embodiment, the first storage operation cell 145 may represent a geographic segment of an enterprise, such as a Chicago office, and a second storage operation cell 150 represents a different geographic segment, such as a New York office. In this example, the second storage operation cell 150, the third storage operation cell 155, the fourth storage operation cell 160, the fifth storage operation cell 165, and the nth storage operation cell 170 may represent departments within the New York office. Alternatively, these storage operation cells may be further divided by function performing various types of copies for the New York office or load balancing storage operations for the New York office.

In some embodiments, hierarchical organization of storage operation cells facilitates, among other things, system security and other considerations. For example, in some embodiments, only authorized users may be allowed to access or control certain storage operation cells. For example, a network administrator for an enterprise might have access to all storage operation cells including the master storage manager 140. However, a network administrator for only the New York office, according to a previous example, may only satisfy access criteria for gaining access to the second storage operation cell 150, the third storage operation cell 155, the fourth storage operation cell 160, the fifth storage operation cell 165, and the nth storage operation cell 170 which may comprise the New York office storage management system.

In some embodiments, hierarchical organization of storage operation cells facilitates storage management planning and decision-making. For example, in some embodiments, a user of the master storage manager 140 may view the status of all jobs in the associated storage operation cells of the system as well as the status of each component in every storage operation cell of the system. The user can may then plan and make decisions based on this global data. For example, the user may view high-level reports of summary information regarding storage operations for the entire system, such as job completion status, component availability status, resource usage status (such as network pathways, etc.), and other information. The user may also drill down through menus or use other means to obtain more detailed information regarding a particular storage operation cell or group of storage operation cells.

In other embodiments, master storage manager 140 may alert the user when a particular resource is unavailable or congested. A storage device may be full or require additional media. Alternatively, a storage manager in a particular storage operation cell may be unavailable due to hardware failure, software problems, or other reasons. In some embodiments, master storage manager 140 (or another storage manager within the hierarchy of storage operation cells) may utilize the global data regarding its associated storage operation cells at its disposal to suggest solutions to such problems when they occur or even before they occur. For example, the master storage manager 140 might alert the user that a storage device in a particular storage operation cell was full or otherwise congested, and then suggest, based on job and data storage information contained in its index cache, an alternate storage device.

Master storage manager 140 (or other network storage manager) may contain programming directed to analyzing the storage patterns and resources of its associated storage operation cells and which suggests optimal or alternate methods of performing storage operations. Thus, for example, master storage manager 140 may analyze traffic patterns in order to determine that snapshot data should be sent via a different network segment or to a different storage operation cell or storage device. In some embodiments, users may direct specific queries to master storage manager 140 regarding predicting storage operations or regarding storage operation information.

FIG. 3 is a block diagram of a hierarchically organized group of storage operation cells in a system to perform storage operations on electronic data in a computer network according to an embodiment of the invention. As shown, FIG. 3 may include a first storage operation cell 175, a second storage operation cell 180, a third storage operation cell 185, a client 190 in communication with a primary volume 195 storing production or other “live” data, a storage manager component 200 in communication with a storage manager index data store 205, a media management component 210 in communication with a media management component index 215, a secondary storage device or volume 220, and a master storage manager component 225 in communication with a master storage manager index data store 230.

According to an embodiment of the invention, the first storage operation cell 175 maybe directed to a particular type storage operation, such as SRM storage operations. For example, the first storage operation cell 175 may monitor and perform SRM-related calculations and operations associated with primary volume 195 data. Thus, the first storage operation cell 175 may include a client component 190 in communication with a primary volume 195 storing data. For example, client 190 may be directed to using EXCHANGE data, SQL data, ORACLE data, or other types of production data used in business applications or other applications and stored in primary volume 195. Storage manager component 200 in cell 175 may contain SRM modules or other logic directed to monitoring or otherwise interacting with attributes, characteristics, metrics, and other information associated with the data stored in primary volume 195. Storage manager 200 may track and store this information and other information in storage manager index 205. For example, in some embodiments, storage manager component 200 may track the amount of available space and other similar characteristics of data associated with primary volume 195. In some embodiments, as further described herein, storage manager component 200 may also issue alerts or take other actions when the information associated with primary volume 195 satisfies certain criteria, such as alert criteria.

The second storage operation cell 180 may be directed to another type storage operation, such as HSM storage operations. For example, second storage operation cell 180 may perform backups, migrations, snapshots, or other types of HSM-related operations known in the art. For example, in some embodiments, data may be migrated from faster and more expensive storage such as magnetic storage to less expensive storage such as tape storage.

In some embodiments, storage operation cells may also contain logical groupings of the same physical devices. Thus, the second storage operation cell 180 may include client component 190 in communication with primary volume 195 for storing data, and client component 190 and primary volume 195 in the second storage operation cell 180 may be the same physical devices as the client component 190 and primary volume 195 in the first storage operation cell 175. Similarly, in some embodiments, storage manager component 200 and index 205 in the second storage operation cell 180 may be the same physical devices as the storage manager component and index in the first storage operation cell 175. Storage manager component 200 may, however, also contain HSM modules or other logic associated with second storage operation cell 180 that may be directed to performing HSM storage operations on primary volume 195 data.

The second storage operation cell 180, therefore, may also contain a media management component 210, a media management component index 215, and a secondary storage volume 220 directed to performing HSM-related operations on primary copy data. For example, storage manager 200 may migrate primary copy data from primary volume 195 to secondary volume 220 using media management component 210. Storage manager 200 may also track and store information associated with primary copy migration and other similar HSM-related operations in storage manager index 205. For example, in some embodiments, storage manager component 200 may direct HSM storage operations on primary copy data according to a storage policy associated with primary copy 195 and stored in index 205. In some embodiments, storage manager 200 may also track where primary copy information is stored, for example, in secondary storage 220.

The third storage operation cell 185 may contain a master storage manager 225 and a master storage manager index 230. In some embodiments (not shown), additional storage operation cells may be hierarchically located between the third storage operation cell 185 and the first storage operation cell 175 or the second storage operation cell 180. In some embodiments, additional storage operation cells hierarchically superior to the third storage operation cell 185 may also be present in the hierarchy of storage operation cells.

In some embodiments, the third storage operation cell 185 may also be directed to performing a type of storage operation, such as integration of SRM and HSM data from other storage operation cells, such as first storage operation cell 175 and second storage operation cell 180. In other embodiments, the third storage operation cell 185 may also perform other types of storage operations and may also be directed to HSM, SRM, or other types of storage operations. In some embodiments, the master storage manager 225 of the third storage operation cell 185 may aggregate and process network and storage-related data provided by other manager components 200 in other storage operation cells 175 and 180 in order to provide, among other information, reporting information regarding particular cells, groups of cell, or the system as a whole.

FIG. 4 is a conceptual illustration of a storage operation system simulator according to an embodiment of the invention. Using the systems and components described and illustrated in relation to FIGS. 1-3, a storage operation system may be configured to operate from a single computer or processing device, such as computer device 280. In operation, computer 280 may be configured to include one or more storage operation cells for providing, for example, a sales engineer 285 with the opportunity to demonstrate the capabilities of the configured storage operation system to clients or customers 290. Since, it may be impractical and costly to use actual storage device hardware during such storage operation simulation activities, the storage operation system running on computer 280 may provide a software module such as a storage device emulation module for simulating the characteristics and operation of actual storage devices.

The present embodiment may also be used as a test bed system for evaluating the storage management capabilities of the components within a storage operation system. Thus, the one or more storage operation cells within the storage operation system may be evaluated by performing simulated storage operations prior to installing and configuring the storage operation modules on a live system that may be performing storage operations to actual storage device hardware such as tape libraries.

FIG. 5 is a flow diagram illustrating the general steps used for providing simulated storage operations according to an embodiment of the invention. At step 305, a storage device emulation module may be loaded onto a computer device that includes the necessary software modules and system requirement for configuring a storage operation system that includes one or more storage operation cells. The storage device emulation module may include software (e.g., files) that describes the behavior and characteristics of various storage media devices (e.g., tape library storage), network pathways (e.g., bandwidth characteristics), and/or other components of a storage management system (e.g., media agents). The storage device emulation module may be an independent module that communicates with one or more components of a storage operation cell (e.g., a storage manager component). Alternatively, the storage device emulation module may be a module that resides within one or more components of a storage operation cell (e.g., a storage manager component).

At step 310, one or more storage devices may be selected from a plurality of files associated with the storage device emulation module. For example, the storage device emulation device may include a plurality of files, whereby each file (e.g., an XML file) may describe a storage library and characteristics associated with each storage drive device within the storage library. A storage drive device may, for example, include a tape drive for reading storage data from and writing storage data to tape media. Other storage libraries and media drive devices may also be described in the files associated with the storage device emulation module. Examples of such a XML library file and associated Schemas may be found in the APPENDIX section.

At step 315, using the configured storage operation cell components, the one or more selected storage device characteristics accessed from the storage device emulation module files may be associated with one or more of the components in the storage operation cells. For example, referring to FIG. 1, one of the selected simulation files associated with a storage library may be allocated to media agents 130. Although the selected file or files may, for example, emulate a storage device, the components (e.g., media management components) of the storage operation system may perform the same data input and output operations associated with storage management and storage activities (e.g., data migration, backup, etc.) as the data input and output operations that occur between these components and actual storage device hardware. Once the files emulating the storage devices have been selected (step 315), the storage operation system may simulate various data storage operations (e.g., migration, backup operations, etc.) based on the configured storage operation cells (step 320).

FIG. 6 is a system diagram illustrating the interaction of a storage device emulation module with other components of a storage operation cell according to an embodiment of the invention. Storage device emulation module 350 may include an interface 355 and a library file handler 360. In operation emulation module 350 may communicate with storage manager 100, local computer storage media (e.g., hard drive), and media agents 360, 365, and 370. Storage manager 100 may communicate with interface 255 in order to select one or more files corresponding to storage device characteristics from emulation module 350. Storage manager 100 may include an application program interface within interface module 112 for, among other things, selecting, managing, and/or configuring the files corresponding to storage device characteristics or other files representing characteristics associated with other storage operation components (e.g., media agents, network pathways or communication links etc.) Also, under the direction of storage manager 100, media agent components 360, 365, and 370 may be assigned to manage data storage operations between client 85 and the selected files in the emulation module 350. Storage device emulation module 360 may also include simulation media module 380 for providing actual data storage resources for use in the storage simulation operations performed. The data storage media may include local memory and storage (e.g., hard drive, DVD drive, external USB memory, etc.) that is found on the computer device running the storage operation system components.

The files correspondingly to the storage device characteristics may include information such as an association of selected media agents with the selected files corresponding to the storage device, storage library device type (e.g., tape libraries), storage library device serial number, storage device manufacturer name, storage device model, drive type (e.g., tape drives) characteristics for each storage library device, number or drives, barcode information associated with storage media (e.g., storage tapes), information associated with a robotic arm for manipulating storage media, network address information associated with the storage library device, address or location information associated with slots and drive devices associated with the storage library device, and other information associated with the storage library device and its operation. As previously indicated, the simulation files may include characteristics associated with other storage operation modules such as media agent components and communication links (i.e., network pathways). For example, files describing media agent component characteristics may provide user-definable options of describing the behavior of a plurality of media agents based on a desired storage system configuration. For example, a user demonstrating a storage system may want to compare and contrast a difference in system performance based on the use of a different number of media agents. Also, a file describing the characteristics of a communication link may, for example, provide a user-definable option of setting the bandwidth of a communication link. For example, a user demonstrating a storage system may want to compare and contrast the affect of link bandwidth on a storage system's ability to perform storage operations.

FIG. 7 is a flow diagram illustrating simulated storage operations according to an embodiment of the invention. The process steps illustrated in FIG. 7 may be described in relation to the exemplary embodiment of FIG. 6. At step 405, one or more simulation data files that include characteristic information associated with storage device hardware may be selected from storage emulation module 350 by storage manager 100. Storage manager 100 may select these simulation data files by communicating with interface 355 via, for example, an application program interface (API) associated with interface module 112. Once storage manager 100 selects the simulation data files via interface 355, library handler 360 may access and send these files to the storage manager 100. Storage manager 100 may then assign one or more media agents to each of the selected files based on the type of storage device the media agent is communicating with during the simulated storage operations (step 410).

For example, based on an accessed file corresponding to a tape library having six tape drives, storage manager 100 may assign media agent 365. Thus, media agent 365 may facilitate and manage communications to the tape library without necessarily being aware that a physical tape library is present. In this manner, storage manager 100 may assign logical associations between media agents and the simulation files accessed from storage device emulation module 360. The simulation files may be accessed from storage or memory available on the same device as the storage device emulation module 360. Alternatively, the simulation files may be accessed from a remote storage device or database 390 over network 395. Storage manager 100 may also access simulation files and other simulation related information from other storage managers at other storage operation cells.

At step 415, one or more storage media devices are emulated based on the characteristic information extracted from the selected one or more simulation files. For example, based on each selected simulation file, the emulation model may allocate a particular directory location or target corresponding to one of the local memory storage devices (e.g., hard drive) associated with a computer device (e.g., laptop computer) on which the storage operation system may be running.

For example, the emulation device may assign a directory called “tape library storage 1” on the C:\ drive. The emulator module may then provide information associated with the location of the target directory (i.e., “tape library storage 1”) to storage manager 100. Storage manager 100 may then provide the information associated with the location of the target directory to the assigned media agent (e.g., media agent 360). Under the direction of storage manager 100 assigned media agent 360 may, for example, send client 85 data to the target directory named “tape library storage 1” via the designated media agent (step 420). For purposes of simulation, the client 85 data may, for example, be accessed from one or more data files containing different data types. A different data agent 87 may then be responsible for handling each of the different data types accessed from each of the data files.

Instead of emulation module 350 writing client 85 data to a location in local memory, emulation module 350 may alternatively provide a target file for write processes. An example of such a file may be a /dev/null or null device used in UNIX operating systems, or an equivalent WINDOWS null. Therefore, although a target for a write operation is provided, data may not be written anywhere. This allows for the emulation module 350 to simulate a storage device without unnecessarily occupying system resources with such-write operations.

The simulation data files that include characteristic information associated with storage device hardware may also include optional fault condition simulation data for testing the storage operation system's fault recovery capabilities. For example, based on information in the simulation files, emulator 350 may generate information that storage manager 100 may receive under fault conditions. For example, a simulation file may include conditional fault generation code, whereby based on a condition such as the target directory (e.g., “tape library storage 1”) receiving a certain threshold of data capacity, emulation module 350 may send storage manager 100 “an out of storage capacity” message to simulate a storage device reaching its data capacity. This may enable storage manager 100 to apply redundancy procedures such as failover conditions, where storage data may be sent to another target directory via, for example, a different media agent in order to simulate sending the data to another redundant storage device.

Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, hardware, or other means suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser or other application in an ASP context, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes, methods, or means, or any combinations thereof, suitable for the-purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, physical interfaces, and other interfaces suitable for the purposes described herein. Screenshots presented and described herein can be displayed differently as known in the art to generally input, access, change, manipulate, modify, alter, and work with information.

While the invention has been described and illustrated in connection with preferred embodiments, many variations and modifications as will be evident to those skilled in this art may be made without departing from the spirit and scope of the invention, and the invention is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the invention.

APPENDIX

Exemplary Library Schema

<?xml version=“1.0” encoding-=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema” elementFormDefault=“qualified”
attributeFormDefault=“unqualified”>
<xs:include schemaLocation=“.\MediaAgents.xsd”/>
<xs:element name=“Devices”>
<xs:annotation>
<xs:documentation>Lists all devices present in a library</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:annotation>
<xs:documentation>Need atleast a library or Drives</xs:documentation>
</xs:annotation>
<xs:element name=“Library” type=“LibraryType” minOccurs=“0”>
<xs:annotation>
<xs:documentation>May not be present</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref=“Drive” minOccurs=“0” maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:element>
<xs:complexType name=“LibraryType”>
<xs:sequence>
<xs:element ref=“SerialNumber”>
<xs:annotation>
<xs:documentation>Uniquely identifies the arm changer</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref=“Manufacturer”/>
<xs:element ref=“Model”/>
<xs:element name=“DriveCount” type=“xs:integer” default=“1” nillable=“false”/>
<xs:element ref=“Drive” maxOccurs=“unbounded”>
<xs:annotation>
<xs:documentation>Are different from drives in the standalone
drives</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name=“Slots” type=“SlotType” maxOccurs=“unbounded”/>
<xs:element ref=“MediaAgents”/>
</xs:sequence>
<xs:attribute name=“Name” type=“xs:string” use=“required”/>
</xs:complexType>
<xs:complexType name=“DriveType”>
<xs:sequence id=“1” minOccurs=“0”>
<xs:element ref=“SerialNumber”/>
<xs:element ref=“Model”/>
<xs:element ref=“Manufacturer”/>
<xs:element ref=“BaseAddress”/>
<xs:element ref=“BarCode”/>
<xs:element ref=“MediaAgents”/>
</xs:sequence>
<xs:attribute name=“Name” type=“xs:string” use=“required”/>
<xs:attribute name=“IsOccupied” type=“xs:boolean” use=“required”/>
</xs:complexType>
<xs:complexType name=“SlotType”>
<xs:sequence>
<xs:element ref=“BaseAddress”/>
<xs:element ref=“BarCode”/>
</xs:sequence>
<xs:attribute name=“IsMailSlot” type=“xs:boolean” use=“required”/>
<xs:attribute name=“Name” type=“xs:string” use=“required”/>
<xs:attribute name=“IsOccupied” type=“xs:boolean” use=“required”/>
</xs:complexType>
<xs:attribute name=“IsMailSlot” type=“xs:boolean”/>
<xs:attribute name=“IsOccupied”/>
<xs:attribute name=“Name” type=“xs:string”>
<xs:element name=“BarCode” type=“xs:string” nillable=“true”/>
<xs:element name=“Manufacturer” type=“xs:string”/>
<xs:element name=“Model” type=“xs:string”/>
<xs:element name=“SerialNumber” type=“xs:string” nillable=“false”>
<xs:annotation>
<xs:documentation>Uniquely identifies the Device</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name=“BaseAddress” type=“xs:string” nillable=“false”/>
<xs:element name=“Drive” type=“DriveType”/>
</xs:schema>

Exemplary MediaAgent List Schema

 <?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”
elementFormDefault=“qualified” attributeFormDefault=“unqualified”>
<xs:element name=“MediaAgents”>
<xs:complexType>
<xs:sequence>
<xs:element name=“MediaAgent” type=“MediaAgent”
maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:attribute name=“MAName” type=“xs:string”/>
<xs:complexType name=“MediaAgent”>
<xs:attribute name=“MAName” type=“xs:string”
use=“required”/>
</xs:complexType>
</xs:schema>

Exemplary XML Document Describing a Library

<?xml version=“1.0” encoding=“UTF-8”?>
<!--Sample XML file generated by XMLSPY v5 rel. 2 U (http://www.xmlspy.com)-->
<Devices xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“E:\XMLSamples\Devices.xsd”>
<Library Name=“LibraryName”>
<SerialNumber>00001</SerialNumber>
<Manufacturer>ADIC</Manufacturer>
<Model>Scalar 100</Model>
<DriveCount>2</DriveCount>
<DriveName=“Drive1” IsOccupied=“0”>
<SerialNumber>0000002</SerialNumber>
<Model>DLT7000</Model>
<Manufacturer>ADIC</Manufacturer>
<BaseAddress>0x01</BaseAddress>
<BarCode></BarCode>
<MediaAgents>
<MediaAgent MAName=“gaul.gp.cv.commvault.com”/>
<MediaAgent MAName=“asterix.gp.cv.commvault.com”/>
</MediaAgents>
</Drive>
<Drive Name=“Drive2” IsOccupied=“0”>
<SerialNumber>0000003</SerialNumber>
<Model>DLT7000<Model>
<Manufacturer>ADIC</Manufacturer>
<BaseAddress>0x02</BaseAddress>
<BarCode></BarCode>
<MediaAgents>
<MediaAgent MAName=“gaul.gp.cv.commvault.com”/>
<MediaAgent MAName=“asterix.gp.cv.commvault.com”/>
<MediaAgents>
</Drive>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“1”>
<BaseAddress>0x05</BaseAddress>
<BarCode>B000001</BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“1”>
<BaseAddress>0x06</BaseAddress>
<BarCode>B000002</BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“1”>
<BaseAddress>0x07</BaseAddress>
<BarCode>B000003</BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“1”>
<BaseAddress>0x08</BaseAddress>
<BarCode>B000004</BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“1”>
<BaseAddress>0x09</BaseAddress>
<BarCode>B000005</BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“false”>
<BaseAddress>0x0A</BaseAddress>
<BarCode><BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“false”>
<BaseAddress>0x0B</BaseAddress>
<BarCode></BarCode>
</Slots>
<Slots IsMailSlot=“false” Name=“Slot1” IsOccupied=“false”>
<BaseAddress>0x0C</BaseAddress>
<BarCode></BarCode>
</Slots>
<Slots IsMailSlot=“true” Name=“Slot1” IsOccupied=“false”>
<BaseAddress>0x0D</BaseAddress>
<BarCode></BarCode>
</Slots>
<Slots IsMailSlot=“true” Name=“Slot1” IsOccupied=“false”>
<BaseAddress>0x0E</BaseAddress>
<BarCode></BarCode>
</Slots>
<MediaAgents>
<MediaAgent MAName=“gaul.gp.cv.commvault.com/>
<MediaAgent MAName=“asterix.gp.cv.commvault.com”/>
</MediaAgents>
</Library>
<DriveName=“Drive5” IsOccupied=“0”>
<SerialNumber>0000010</SerialNumber>
<Model>DLT7000</Model>
<Manufacturer>ADIC</Manufacturer>
<BaseAddress></BaseAddress>
<BarCode></BarCode>
<MediaAgents>
<MediaAgent MAName=“gaul.gp.cv.commvault.com”/>
<MediaAgent MAName=“asterix.gp.cv.commvault.com”/>
<MediaAgents>
</Drive>
<Drive Name=“Drive6” IsOccupied=“0”>
<SerialNumber>0000011</SerialNumber>
<Model>DLT7000</Model>
<Manufacturer>ADIC</Manufacturer>
<BaseAddress></BaseAddress>
<BarCode></BarCode>
<MediaAgents>
<MediaAgent MAName=“gaul.gp.cv.commvault.com”/>
<MediaAgent MAName=“asterix.gp.cv.commvault.com”/>
</MediaAgents>
</Drive>
</Devices>

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US468662026 Jul 198411 Ago 1987American Telephone And Telegraph Company, At&T Bell LaboratoriesDatabase backup method
US499503531 Oct 198819 Feb 1991International Business Machines CorporationCentralized management in a computer network
US50051228 Sep 19872 Abr 1991Digital Equipment CorporationArrangement with cooperating management server node and network service node
US509391226 Jun 19893 Mar 1992International Business Machines CorporationDynamic resource pool expansion and contraction in multiprocessing environments
US513306527 Jul 198921 Jul 1992Personal Computer Peripherals CorporationBackup computer program for networks
US519315425 Oct 19919 Mar 1993Hitachi, Ltd.Buffered peripheral system and method for backing up and retrieving data to and from backup memory device
US521277211 Feb 199118 May 1993Gigatrend IncorporatedSystem for storing data in backup tape device
US52261572 Mar 19896 Jul 1993Hitachi, Ltd.Backup control method and system in data processing system using identifiers for controlling block data transfer
US52396477 Sep 199024 Ago 1993International Business Machines CorporationData storage hierarchy with shared storage level
US524166820 Abr 199231 Ago 1993International Business Machines CorporationMethod and system for automated termination and resumption in a time zero backup copy process
US524167020 Abr 199231 Ago 1993International Business Machines CorporationMethod and system for automated backup copy ordering in a time zero backup copy session
US527686019 Dic 19894 Ene 1994Epoch Systems, Inc.Digital data processor with improved backup storage
US527686719 Dic 19894 Ene 1994Epoch Systems, Inc.Digital data storage system with improved data migration
US52875003 Jun 199115 Feb 1994Digital Equipment CorporationSystem for allocating storage spaces based upon required and optional service attributes having assigned piorities
US53218169 Dic 199214 Jun 1994Unisys CorporationLocal-remote apparatus with specialized image storage modules
US533331527 Jun 199126 Jul 1994Digital Equipment CorporationSystem of device independent file directories using a tag between the directories and file descriptors that migrate with the files
US534765328 Jun 199113 Sep 1994Digital Equipment CorporationSystem for reconstructing prior versions of indexes using records indicating changes between successive versions of the indexes
US53882439 Mar 19907 Feb 1995Mti Technology CorporationData processing system
US54107004 Sep 199125 Abr 1995International Business Machines CorporationComputer system which supports asynchronous commitment of data
US544872417 Mar 19945 Sep 1995Fujitsu LimitedData processing system having double supervising functions
US54653591 Nov 19937 Nov 1995International Business Machines CorporationMethod and system for managing data and users of data in a data processing system
US54918101 Mar 199413 Feb 1996International Business Machines CorporationMethod and system for automated data storage system space allocation utilizing prioritized data set parameters
US549560715 Nov 199327 Feb 1996Conner Peripherals, Inc.Network management system having virtual catalog overview of files distributively stored across network domain
US550487312 Nov 19932 Abr 1996E-Systems, Inc.Mass data storage and retrieval system
US55443458 Nov 19936 Ago 1996International Business Machines CorporationCoherence controls for store-multiple shared data coordinated by cache directory entries in a shared electronic storage
US554434723 Abr 19936 Ago 1996Emc CorporationData storage system controlled remote data mirroring with respectively maintained data indices
US555995731 May 199524 Sep 1996Lucent Technologies Inc.File system for a data storage device having a power fail recovery mechanism for write/replace operations
US561964418 Sep 19958 Abr 1997International Business Machines CorporationSoftware directed microcode state save for distributed storage controller
US563850913 Jun 199610 Jun 1997Exabyte CorporationData storage and protection system
US567338125 Ene 199630 Sep 1997Cheyenne Software International Sales Corp.System and parallel streaming and data stripping to back-up a network
US569936118 Jul 199516 Dic 1997Industrial Technology Research InstituteProcess for communicating in a communications network
US572974330 Nov 199517 Mar 1998Deltatech Research, Inc.Computer apparatus and method for merging system deltas
US573774710 Jun 19967 Abr 1998Emc CorporationPrefetching to service multiple video streams from an integrated cached disk array
US575199719 Ene 199612 May 1998Apple Computer, Inc.Method and apparatus for transferring archival data among an arbitrarily large number of computer devices in a networked computer environment
US575835924 Oct 199626 May 1998Digital Equipment CorporationMethod and apparatus for performing retroactive backups in a computer system
US57616773 Ene 19962 Jun 1998Sun Microsystems, Inc.Computer system method and apparatus providing for various versions of a file without requiring data copy or log operations
US57649727 Jun 19959 Jun 1998Lsc, Inc.Archiving file system for data servers in a distributed network environment
US577839523 Oct 19957 Jul 1998Stac, Inc.System for backing up files from disk volumes on multiple nodes of a computer network
US581239810 Jun 199622 Sep 1998Sun Microsystems, Inc.Method and system for escrowed backup of hotelled world wide web sites
US581300812 Jul 199622 Sep 1998Microsoft CorporationSingle instance storage of information
US581300928 Jul 199522 Sep 1998Univirtual Corp.Computer based records management system method
US58130173 Sep 199622 Sep 1998International Business Machines CorporationSystem and method for reducing storage requirement in backup subsystems utilizing segmented compression and differencing
US582902324 Abr 199627 Oct 1998Cirrus Logic, Inc.Method and apparatus for encoding history of file access to support automatic file caching on portable and desktop computers
US582904610 Jun 199627 Oct 1998Emc CorporationOn-line tape backup using an integrated cached disk array
US58754783 Dic 199623 Feb 1999Emc CorporationComputer backup using a file system, network, disk, tape and remote archiving repository media system
US587548130 Ene 199723 Feb 1999International Business Machines CorporationIn a data processing system
US588713430 Jun 199723 Mar 1999Sun MicrosystemsSystem and method for preserving message order while employing both programmed I/O and DMA operations
US589015910 Nov 199730 Mar 1999International Computers LimitedData transfer mechanism between databases using a separate pipe at each database
US590132717 Mar 19974 May 1999Emc CorporationBundling of write data from channel commands in a command chain for transmission over a data link between data storage systems for remote data mirroring
US59241027 May 199713 Jul 1999International Business Machines CorporationSystem and method for managing critical files
US595020525 Sep 19977 Sep 1999Cisco Technology, Inc.Data transmission over the internet using a cache memory file system
US595800517 Jul 199728 Sep 1999Bell Atlantic Network Services, Inc.Electronic mail security
US59745632 Oct 199826 Oct 1999Network Specialists, Inc.Real time backup system
US602141529 Oct 19971 Feb 2000International Business Machines CorporationStorage management system with file aggregation and space reclamation within aggregated files
US60264145 Mar 199815 Feb 2000International Business Machines CorporationSystem including a proxy client to backup files in a distributed computing environment
US605273510 Abr 199818 Abr 2000Microsoft CorporationElectronic mail object synchronization between a desktop computer and mobile device
US607614826 Dic 199713 Jun 2000Emc CorporationMass storage subsystem and backup arrangement for digital data processing system which permits information to be backed up while host computer(s) continue(s) operating in connection with information stored on mass storage subsystem
US60944169 May 199725 Jul 2000I/O Control CorporationMulti-tier architecture for control network
US610513613 Feb 199815 Ago 2000International Business Machines CorporationComputer system which is disabled when it is disconnected from a network
US613109511 Dic 199610 Oct 2000Hewlett-Packard CompanyMethod of accessing a target entity over a communications network
US61311905 May 199910 Oct 2000Sidwell; Leland P.System for modifying JCL parameters to optimize data storage allocations
US613786425 Jul 199724 Oct 2000Lucent Technologies Inc.Specifiable delete times for voice messaging
US61484123 Sep 199714 Nov 2000International Business Machines CorporationAvailability and recovery of files using copy storage pools
US615478721 Ene 199828 Nov 2000Unisys CorporationGrouping shared resources into one or more pools and automatically re-assigning shared resources from where they are not currently needed to where they are needed
US615485210 Jun 199828 Nov 2000International Business Machines CorporationMethod and apparatus for data backup and recovery
US616111131 Mar 199812 Dic 2000Emc CorporationSystem and method for performing file-handling operations in a digital data processing system using an operating system-independent file map
US616740227 Abr 199826 Dic 2000Sun Microsystems, Inc.High performance message store
US617582922 Abr 199816 Ene 2001Nec Usa, Inc.Method and apparatus for facilitating query reformulation
US62125126 Ene 19993 Abr 2001Hewlett-Packard CompanyIntegration of a database into file management software for protecting, tracking and retrieving data
US626006910 Feb 199810 Jul 2001International Business Machines CorporationDirect data retrieval in a distributed computing system
US626943113 Ago 199831 Jul 2001Emc CorporationVirtual storage and block level direct access of secondary storage for recovery of backup data
US627595326 Sep 199714 Ago 2001Emc CorporationRecovery from failure of a data processor in a network server
US629554118 Ago 199825 Sep 2001Starfish Software, Inc.System and methods for synchronizing two or more datasets
US63015924 Nov 19989 Oct 2001Hitachi, Ltd.Method of and an apparatus for displaying version information and configuration information and a computer-readable recording medium on which a version and configuration information display program is recorded
US630488012 Dic 199716 Oct 2001International Business Machines CorporationAutomated reclamation scheduling override in a virtual tape server
US63245813 Mar 199927 Nov 2001Emc CorporationFile server system using file system storage, data movers, and an exchange of meta data among data movers for file locking and direct access to shared file systems
US632876625 Jun 199811 Dic 2001Overland Data, Inc.Media element library with non-overlapping subset of media elements and non-overlapping subset of media element drives accessible to first host and unaccessible to second host
US633057026 Feb 199911 Dic 2001Hewlett-Packard CompanyData backup system
US633057215 Jul 199911 Dic 2001Imation Corp.Hierarchical data storage management
US633064229 Jun 200011 Dic 2001Bull Hn Informatin Systems Inc.Three interconnected raid disk controller data processing system architecture
US634332413 Sep 199929 Ene 2002International Business Machines CorporationMethod and system for controlling access share storage devices in a network environment by configuring host-to-volume mapping data structures in the controller memory for granting and denying access to the devices
US6343342 *10 Nov 199929 Ene 2002International Business Machiness CorporationStorage and access of data using volume trailer
US635019916 Mar 199926 Feb 2002International Game TechnologyInteractive gaming machine and method with customized game screen presentation
US635387813 Ago 19985 Mar 2002Emc CorporationRemote control of backup media in a secondary storage subsystem through access to a primary storage subsystem
US635680119 May 200012 Mar 2002International Business Machines CorporationHigh availability work queuing in an automated data storage library
US637426624 Jul 199916 Abr 2002Ralph ShnelvarMethod and apparatus for storing information in a data processing system
US63743363 Abr 199816 Abr 2002Avid Technology, Inc.Computer system and process for transferring multiple high bandwidth streams of data between multiple storage units and multiple applications in a scalable and reliable manner
US63856736 Oct 19997 May 2002Sun Microsystems, Inc.System and method for adjusting performance of a media storage by decreasing a maximum throughput by a primary derate parameter to specify available & guaranteed rate parameters and determining ring buffer sizes for streams
US63894325 Abr 199914 May 2002Auspex Systems, Inc.Intelligent virtual volume access
US641847811 Mar 19989 Jul 2002Commvault Systems, Inc.Pipelined high speed data transfer mechanism
US642171129 Jun 199816 Jul 2002Emc CorporationVirtual ports for data transferring of a data storage system
US643858630 Sep 199620 Ago 2002Emc CorporationFile transfer utility which employs an intermediate data storage system
US648756131 Dic 199826 Nov 2002Emc CorporationApparatus and methods for copying, backing up, and restoring data using a backup segment size larger than the storage block size
US648764422 Nov 199626 Nov 2002Veritas Operating CorporationSystem and method for multiplexed data back-up to a storage tape and restore operations using client identification tags
US65053076 Sep 20007 Ene 2003Unisys CorporationMethod and apparatus for ensuring data integrity
US651967911 Jun 199911 Feb 2003Dell Usa, L.P.Policy based storage configuration
US653866915 Jul 199925 Mar 2003Dell Products L.P.Graphical user interface for configuration of a storage system
US654290930 Jun 19981 Abr 2003Emc CorporationSystem for determining mapping of logical objects in a computer system
US654297230 Ene 20011 Abr 2003Commvault Systems, Inc.Logical view and access to physical storage in modular data and storage management system
US6832186 *4 Oct 200014 Dic 2004Hewlett-Packard Development Company, L.P.Persistent emulated data storage using dedicated storage in a target mode disk emulator
US7249347 *16 Sep 200224 Jul 2007Hewlett-Packard Development Company, L.P.Software application domain and storage domain interface process and method
US7315807 *29 Sep 20041 Ene 2008Emc CorporationSystem and methods for storage area network simulation
US7496492 *29 Ago 200324 Feb 2009Microsoft CorporationSoftware-aided storage device emulation in a physical storage device
US20020188592 *11 Jun 200112 Dic 2002Storage Technology CorporationOutboard data storage management system and method
US20040010523 *19 Ago 200315 Ene 2004Charles WuObject synchronization between object stores on different computers
US20040088432 *31 Oct 20026 May 2004Hubbard Eric D.Management of attribute data
US20040193397 *28 Mar 200330 Sep 2004Christopher LumbData storage system emulation
US20050114477 *20 Nov 200326 May 2005International Business Machines CorporationMethod, system, and program for determining information on a storage system in a network
USRE3760115 Nov 199519 Mar 2002International Business Machines CorporationMethod and system for incremental time zero backup copying of data
Otras citas
Referencia
1Armstead, et al., "Implementation of a Campus-wide Distributed Mass Storage Service: The Dream vs. Reality," IEEE, 1995, pp. 190-199.
2Arneson, "Mass Storage Archiving in Network Environments," IEEE, 1998, pp. 45-50.
3Arneson, Control Data Corporation, Development of Omniserver; Mass Storage Systems, 1990, pp. 88-93.
4Ashton, et al., "Two Decades of policy-based storage management for the IBM mainframe computer", www.research.ibm.com , 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009-citied in U.S. Appl. No. 12/276,868., www.research.ibm.com, Apr. 10, 2003, pp. 19.
5Ashton, et al., "Two Decades of policy-based storage management for the IBM mainframe computer", www.research.ibm.com <http://www.research.ibm.com/>, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009—citied in U.S. Appl. No. 12/276,868., www.research.ibm.com, Apr. 10, 2003, pp. 19.
6Cabrera, et al., "ADSM: A Multi-Platform, Scalable, Backup and Archive Mass Storage System," Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5-9, 1995, pp. 420-427, San Francisco, CA.
7Commvault Systems, Inc., Continuous Data Replicator 7.0, Product Data Sheet, 2007.
8Eitel, "Backup and Storage Management in Distributed Heterogeneous Environments," IEEE, 1994, pp. 124-126.
9Farley, "Building Storage Networks," pp. 328-331, Osborne/McGraw-Hill, 2000.
10Gait, "The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks," IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988) (see in particular figure 5 in p. 15 and recitation in claim 5).
11Gibson et al., "Network Attached Storage Architecture," pp. 37-45, ACM, Nov. 2000.
12International Search Report; dated Mar. 1, 2007; 1 page.
13Jander, M., "Launching Storage-Area Net," Data Communications, US, McGraw Hill, NY, vol. 27, No. 4 (Mar. 21, 1998), pp. 64-72.
14Recycle Bin (Windows), Aug. 2007, Wikipedia, pp. 1-3.
15Rosenblum, et al., "The Design and Implementation of a Log-Structured File System," Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
16U.S. Appl. No. 11/269,119, filed Nov. 8, 2005, Amarendran et al.
17U.S. Appl. No. 11/269,136, filed Nov. 8, 2005, Retnamma et al.
18U.S. Appl. No. 11/269,513, filed Nov. 7, 2005, Prahlad et al.
19U.S. Appl. No. 11/269,515, filed Nov. 7, 2005, Gokhale.
20U.S. Appl. No. 11/269,519, filed Nov. 7, 2005, Kavuri et al.
21U.S. Appl. No. 11/269,520, filed Nov. 7, 2005, Gokhale et al.
22U.S. Appl. No. 11/269,521, filed Nov. 7, 2005, Prahlad, et al.
23U.S. Appl. No. 11/950,376, filed Dec. 4, 2007, Bunte, et al.
24U.S. Appl. No. 11/963,623, filed Dec. 21, 2007, Gokhale, et al.
25U.S. Appl. No. 12/058,178, filed Mar. 28, 2008, Prahlad, et al.
26U.S. Appl. No. 12/058,317, filed Mar. 28, 2008, Prahlad, et al.
27U.S. Appl. No. 12/058,367, filed Mar. 28, 2008, Prahlad, et al.
28U.S. Appl. No. 12/145,342, filed Jun. 24, 2008, Gokhale.
29U.S. Appl. No. 12/145,347, filed Jun. 24, 2008, Gokhale.
30U.S. Appl. No. 12/167,933, filed Jul. 3, 2008, Gokhale.
31Written Opinion; International Application No. PCT/US05/40606; mailed Feb. 14, 2007; 5 pages.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US840214710 Abr 200719 Mar 2013Apertio LimitedNomadic subscriber data system
US873216825 Jul 201220 May 2014Deacon JohnsonSystem and method for controlling and organizing metadata associated with on-line content
Clasificaciones
Clasificación de EE.UU.703/24
Clasificación internacionalG06F9/455
Clasificación cooperativaG06F11/1456, G06F11/1458, G06F3/0619, G06F3/0649, G06F3/0685
Clasificación europeaG06F11/14A10H, G06F11/14A10P, G06F3/06A4H2L, G06F3/06A6L4H, G06F3/06A2R6
Eventos legales
FechaCódigoEventoDescripción
13 Jun 2014FPAYFee payment
Year of fee payment: 4
5 Jun 2012CCCertificate of correction