Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS7966750 B2
Tipo de publicaciónConcesión
Número de solicitudUS 12/756,774
Fecha de publicación28 Jun 2011
Fecha de presentación8 Abr 2010
Fecha de prioridad6 Feb 2007
También publicado comoCN101600364A, CN101600364B, EP2114187A2, EP2114187B1, EP2661974A1, EP2661978A1, EP2661979A2, EP2661979A3, EP2661980A1, EP2661981A1, US7810255, US20080184595, US20100192409, WO2008097408A2, WO2008097408A3
Número de publicación12756774, 756774, US 7966750 B2, US 7966750B2, US-B2-7966750, US7966750 B2, US7966750B2
InventoresEric S. Schindler, John F. Swigart
Cesionario originalNike, Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Interlocking fluid-filled chambers for an article of footwear
US 7966750 B2
Resumen
An article of footwear having an upper and a sole structure secured to the upper. The sole structure includes a first chamber and a second chamber that each enclose a fluid. The first chamber and the second chamber both define a plurality of projections and depressions. At least a portion of the projections of the first chamber are located within the depressions of the second chamber, and at least a portion of the projections of the second chamber are located within the depressions of the first chamber. In some configurations, each of the first chamber and the second chamber may form portions of upper and lower surfaces of a pneumatic component. In addition, colors of the first chamber and the second chamber may be selected such that the colors combine at an interface of the first chamber and the second chamber.
Imágenes(22)
Previous page
Next page
Reclamaciones(15)
1. An article of footwear having an upper and a sole structure secured to the upper, the sole structure comprising:
a first chamber that encloses a fluid, the first chamber having a first central area and a plurality of first lobes extending outward from the first central area to form a periphery of the first chamber, the first lobes defining a plurality of first spaces located around the periphery of the first chamber; and
a second chamber that encloses a fluid and is positioned adjacent the first chamber, the second chamber having a second central area and a plurality of second lobes extending outward from the second central area to form a periphery of the second chamber, the second lobes defining a plurality of second spaces located around the periphery of the second chamber,
the first chamber being in contact with the second chamber such that at least a portion of (a) the first lobes extend into the second spaces and (b) the second lobes extend into the first spaces.
2. The article of footwear recited in claim 1, wherein the periphery of the first chamber and the periphery of the second chamber are exposed to form a portion of an exterior surface of the sole structure.
3. The article of footwear recited in claim 1, wherein the first chamber and the second chamber are located in at least a heel region of the footwear.
4. The article of footwear recited in claim 1, wherein the fluid of at least one of the first chamber and the second chamber has a pressure within a range of zero and thirty-five kilopascals.
5. The article of footwear recited in claim 1, wherein a pressure of the fluid within the first chamber is substantially equal to a pressure of the fluid within the second chamber.
6. The article of footwear recited in claim 1, wherein an upper surface of the first chamber is secured to the upper, and a lower surface of the second chamber is secured to an outsole.
7. An article of footwear having an upper and a sole structure secured to the upper, the sole structure comprising a pneumatic component with an upper surface and an opposite lower surface, the pneumatic component including:
an upper chamber formed of a polymer material that encloses a fluid, the upper chamber forming a central area of an upper surface of the pneumatic component, the upper chamber forming a first portion of a peripheral area of the upper surface, and the upper chamber forming a first portion of a peripheral area of a lower surface of the pneumatic component; and
a lower chamber located below the upper chamber and formed of a polymer material that encloses a fluid, the lower chamber forming a central area of the lower surface, the upper chamber forming a second portion of the peripheral area of the lower surface, and the upper chamber forming a second portion of the peripheral area of the upper surface.
8. The article of footwear recited in claim 7, wherein the central area of the upper surface is positioned above the central area of the lower surface.
9. The article of footwear recited in claim 7, wherein the upper chamber and the lower chamber each form a portion of a sidewall of the pneumatic component.
10. The article of footwear recited in claim 9, wherein the sidewall is exposed to form a portion of an exterior surface of the sole structure.
11. The article of footwear recited in claim 7, wherein the upper chamber defines a plurality of first projections and a plurality of first depressions located between the first projections, and the lower chamber defines a plurality of second projections and a plurality of second depressions located between the second projections, at least a portion of the first projections being located within the second depressions, and at least a portion of the second projections being located within the first depressions.
12. An article of footwear having an upper and a sole structure secured to the upper, the sole structure comprising:
a first chamber that encloses a fluid, at least a portion of the first chamber that is visible from an exterior of the article of footwear having a first color; and
a second chamber that encloses a fluid and is positioned adjacent the first chamber, at least a portion of the second chamber that is visible from the exterior of the article of footwear having a second color, the second color being different than the first color,
wherein the first chamber defines a plurality of first projections and a plurality of first depressions located between the first projections, and the second chamber defines a plurality of second projections and a plurality of second depressions located between the second projections, at least a portion of the first projections being located within the second depressions, and at least a portion of the second projections being located within the first depressions.
13. The article of footwear recited in claim 12, wherein the portion of the first chamber that is visible from the exterior of the article of footwear is positioned adjacent the portion of the second chamber that is visible from the exterior of the article of footwear.
14. The article of footwear recited in claim 12, wherein the first color and the second color combine to form a third color at an interface between the first chamber and the second chamber.
15. The article of footwear recited in claim 12, wherein the first projections form at least a portion of a sidewall of the first chamber, and the second projections form at least a portion of a sidewall of the second chamber, the sidewall being the portion of the first chamber that is visible from the exterior of the article of footwear and the portion of the second chamber that is visible from the exterior of the article of footwear.
Descripción
CROSS-REFERENCE TO RELATED APPLICATION

This U.S. Patent Application is a continuation of and claims priority to U.S. patent application Ser. No. 11/671,970, which was filed in the U.S. Patent and Trademark Office on 6 Feb. 2007 and entitled Interlocking Fluid-Filled Chamber For An Article Of Footwear, such prior U.S. Patent Application being entirely incorporated herein by reference.

BACKGROUND

A conventional article of athletic footwear includes two primary elements, an upper and a sole structure. The upper may be formed from a plurality of material elements (e.g., textiles, leather, and foam materials) defining a void that securely receives and positions the foot with respect to the sole structure. The sole structure is secured to a lower surface of the upper and is generally positioned to extend between the foot and the ground. In addition to attenuating ground reaction forces, the sole structure may provide traction and control various foot motions, such as pronation. Accordingly, the upper and the sole structure operate cooperatively to provide a comfortable structure that is suited for a wide variety of ambulatory activities, such as walking and running.

The sole structure of an article of athletic footwear generally exhibits a layered configuration that includes a comfort-enhancing insole, a resilient midsole formed from a polymer foam, and a ground-contacting outsole that provides both abrasion-resistance and traction. Suitable polymer foam materials for the midsole include ethylvinylacetate or polyurethane that compress resiliently under an applied load to attenuate ground reaction forces. Conventional polymer foam materials compress resiliently, in part, due to the inclusion of a plurality of open or closed cells that define an inner volume substantially displaced by gas. Following repeated compressions, the cell structure of the polymer foam may deteriorate, thereby resulting in an decreased compressibility and decreased force attenuation characteristics of the sole structure.

One manner of reducing the mass of a polymer foam midsole and decreasing the effects of deterioration following repeated compressions is disclosed in U.S. Pat. No. 4,183,156 to Rudy, in which cushioning is provided by a fluid-filled chamber formed of an elastomeric material. The chamber includes a plurality of subchambers that are in fluid communication and jointly extend along a length and across a width of the footwear. The chamber may be encapsulated in a polymer foam material, as disclosed in U.S. Pat. No. 4,219,945 to Rudy. The combination of the chamber and the encapsulating polymer foam material functions as a midsole. Accordingly, the upper is attached to the upper surface of the polymer foam material and an outsole is affixed to the lower surface.

Fluid-filled chambers suitable for footwear applications may be manufactured by a two-film technique, in which two separate sheets of elastomeric film are formed to exhibit the overall peripheral shape of the chamber. The sheets are then bonded together along their respective peripheries to form a sealed structure, and the sheets are also bonded together at predetermined interior areas to give the chamber a desired configuration. That is, interior bonds (i.e., bonds spaced inward from the periphery) provide the chamber with a predetermined shape and size upon pressurization. In order to pressurize the chamber, a nozzle or needle connected to a fluid pressure source is inserted into a fill inlet formed in the chamber. Following pressurization of the chamber, the fill inlet is sealed and the nozzle is removed. A similar procedure, referred to as thermoforming, may also be utilized, in which a heated mold forms or otherwise shapes the sheets of elastomeric film during the manufacturing process.

Chambers may also be manufactured by a blow-molding technique, wherein a molten or otherwise softened elastomeric material in the shape of a tube is placed in a mold having the desired overall shape and configuration of the chamber. The mold has an opening at one location through which pressurized air is provided. The pressurized air induces the liquefied elastomeric material to conform to the shape of the inner surfaces of the mold. The elastomeric material then cools, thereby forming a chamber with the desired shape and configuration. As with the two-film technique, a nozzle or needle connected to a fluid pressure source is inserted into a fill inlet formed in the chamber in order to pressurize the chamber. Following pressurization of the chamber, the fill inlet is sealed and the nozzle is removed.

SUMMARY

One aspect of the invention relates to an article of footwear having an upper and a sole structure secured to the upper. The sole structure includes a first chamber and a second chamber that each enclose a fluid. The first chamber has a first surface with a first contoured configuration, and the second chamber has a second surface with a second contoured configuration. The first surface is in contact with the second surface, and the first contoured configuration is shaped to mate or join with the second contoured configuration.

Another aspect of the invention relates to an article of footwear having an upper and a sole structure secured to the upper. The sole structure includes a first chamber and a second chamber that each enclose a fluid. The first chamber defines a plurality of first projections and a plurality of first depressions located between the first projections. Similarly, the second chamber defines a plurality of second projections and a plurality of second depressions located between the second projections. At least a portion of the first projections are located within the second depressions, and at least a portion of the second projections are located within the first depressions.

Yet another aspect of the invention is an article of footwear having an upper and a sole structure secured to the upper. The sole structure includes a pneumatic component with an upper surface and an opposite lower surface. The pneumatic component includes an upper chamber that forms a first portion of an upper surface of the pneumatic component, and the upper chamber forms a first portion of a lower surface of the pneumatic component. The pneumatic component also includes a lower chamber located below the upper chamber. The lower chamber forms a second portion of the upper surface of the pneumatic component, and the lower chamber forms a second portion of the lower surface of the pneumatic component.

The advantages and features of novelty characterizing various aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying drawings that describe and illustrate various embodiments and concepts related to the aspects of the invention.

DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following Detailed Description, will be better understood when read in conjunction with the accompanying drawings.

FIG. 1 is a lateral side elevational view of an article of footwear incorporating a first pneumatic component.

FIG. 2 is a medial side elevational view of the article of footwear incorporating the first pneumatic component.

FIG. 3 is a perspective view of the first pneumatic component.

FIGS. 4A and 4B are a cross-sectional views of the first pneumatic component, as defined by section lines 4A and 4B in FIG. 3.

FIG. 5 is an exploded perspective view of the first pneumatic component.

FIG. 6 depicts top plan views of a first chamber and a second chamber of the first pneumatic component.

FIG. 7 depicts bottom plan views of the first chamber and the second chamber of the first pneumatic component.

FIG. 8 depicts side elevational views of the first chamber and the second chamber of the first pneumatic component.

FIGS. 9A-9C are cross-sectional views corresponding with FIG. 4A and depicting alternate configurations of the first pneumatic component.

FIG. 10 is a perspective view of a second pneumatic component that may be utilized with the article of footwear.

FIGS. 11A and 11B are a cross-sectional views of the second pneumatic component, as defined by section lines 11A and 11B in FIG. 10.

FIG. 12 is an exploded perspective view of the second pneumatic component.

FIG. 13 depicts top plan views of a first chamber and a second chamber of the second pneumatic component.

FIG. 14 depicts bottom plan views of the first chamber and the second chamber of the second pneumatic component.

FIG. 15 depicts side elevational views of the first chamber and the second chamber of the second pneumatic component.

FIG. 16 is a perspective view of a third pneumatic component that may be utilized with the article of footwear.

FIGS. 17A and 17B are a cross-sectional views of the third pneumatic component, as defined by section lines 17A and 17B in FIG. 16.

FIG. 18 is an exploded perspective view of the third pneumatic component.

FIG. 19 depicts top plan views of a first chamber and a second chamber of the third pneumatic component.

FIG. 20 depicts bottom plan views of the first chamber and the second chamber of the third pneumatic component.

FIG. 21 depicts side elevational views of the first chamber and the second chamber of the third pneumatic component.

DETAILED DESCRIPTION

The following discussion and accompanying figures disclose various embodiments of interlocking fluid-filled chambers in a sole structure for an article of footwear. Concepts related to the chambers and the sole structure are disclosed with reference to footwear having a configuration that is suitable for running. The sole structure is not limited solely to footwear designed for running, however, and may be utilized with a wide range of athletic footwear styles, including basketball shoes, tennis shoes, football shoes, cross-training shoes, walking shoes, soccer shoes, and hiking boots, for example. The sole structure may also be utilized with footwear styles that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and boots. An individual skilled in the relevant art will appreciate, therefore, that the concepts disclosed herein apply to a wide variety of footwear styles, in addition to the specific style discussed in the following material and depicted in the accompanying figures.

An article of footwear 10 is depicted in FIGS. 1 and 2 as including an upper 20 and a sole structure 30. For reference purposes, footwear 10 may be divided into three general regions: a forefoot region 11, a midfoot region 12, and a heel region 13, as shown in FIGS. 1 and 2. Footwear 10 also includes a lateral side 14 and a medial side 15. Forefoot region 11 generally includes portions of footwear 10 corresponding with the toes and the joints connecting the metatarsals with the phalanges. Midfoot region 12 generally includes portions of footwear 10 corresponding with the arch area of the foot, and heel region 13 corresponds with rear portions of the foot, including the calcaneus bone. Lateral side 14 and medial side 15 extend through each of regions 11-13 and correspond with opposite sides of footwear 10. Regions 11-13 and sides 14-15 are not intended to demarcate precise areas of footwear 10. Rather, regions 11-13 and sides 14-15 are intended to represent general areas of footwear 10 to aid in the following discussion. In addition to footwear 10, regions 11-13 and sides 14-15 may also be applied to upper 20, sole structure 30, and individual elements thereof.

Upper 20 is depicted as having a substantially conventional configuration incorporating a plurality material elements (e.g., textiles, foam, leather, and synthetic leather) that are stitched or adhesively bonded together to form an interior void for securely and comfortably receiving a foot. The material elements may be selected and located with respect to upper 20 in order to selectively impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort, for example. An ankle opening 21 in heel region 13 provides access to the interior void. In addition, upper 20 may include a lace 22 that is utilized in a conventional manner to modify the dimensions of the interior void, thereby securing the foot within the interior void and facilitating entry and removal of the foot from the interior void. Lace 22 may extend through apertures in upper 20, and a tongue portion of upper 20 may extend between the interior void and lace 22. Given that various aspects of the present application primarily relate to sole structure 30, upper 20 may exhibit the general configuration discussed above or the general configuration of practically any other conventional or non-conventional upper. Accordingly, the structure of upper 20 may vary significantly within the scope of the present invention.

Sole structure 30 is secured to upper 20 and has a configuration that extends between upper 20 and the ground. In forefoot region 11 and midfoot region 12, sole structure 30 includes a midsole element 31 and an outsole 32. Midsole element 31 may be formed from a polymer foam material, such as polyurethane or ethylvinylacetate, that attenuates ground reaction forces when sole structure 30 is compressed between the foot and the ground. In addition to the polymer foam material, midsole element 31 may incorporate a fluid-filled chamber to further enhance the ground reaction force attenuation characteristics of sole structure 30. Outsole 32, which may be absent in some configurations of footwear 10, is secured to a lower surface of midsole element 31 and may extend onto side areas of midsole element 31. Outsole 32 may be formed from a rubber material that provides a durable and wear-resistant surface for engaging the ground. In addition, outsole 32 may be textured to enhance the traction (i.e., friction) properties between footwear 10 and the ground.

In addition to midsole element 31 and outsole 32, sole structure 30 includes a pneumatic component 33 located within heel region 13. Although sole structure 30 may incorporate other elements (e.g., polymer foam elements, plates, moderators, reinforcing structures) in heel region 13, pneumatic component 33 is depicted as extending between upper 20 and outsole 32. Accordingly, an upper surface of pneumatic component 33 may be secured to upper 20, and a lower surface of pneumatic component 33 may be secured to outsole 32.

First Component Configuration

The primary elements of pneumatic component 33, which is depicted separate from footwear 10 in FIGS. 3-5, are a first chamber 40 and a second chamber 50. Each of chambers 40 and 50 are formed from an exterior barrier that encloses a fluid. More particularly, chambers 40 and 50 are formed from a polymer material that is sealed to enclose a gas. As described in greater detail below, portions of chambers 40 and 50 have corresponding configurations that interlock or otherwise mate to join chambers 40 and 50 to each other. Although the corresponding configurations of chambers 40 and 50 may be sufficient to join chambers 40 and 50 to each other when incorporated into footwear 10, various adhesives, thermobonding processes, or other joining techniques may be utilized to further secure chamber 40 to chamber 50. Alternately, the polymer foam material of midsole element 31 may encapsulate portions of chambers 40 and 50 to effectively secure chamber 40 to chamber 50.

First chamber 40 is depicted in FIGS. 6-8 and has an upper surface 41 and an opposite lower surface 42. Whereas upper surface 41 exhibits a generally concave configuration with a relatively planar central area, lower surface 42 is contoured to define four projections 43 and four depressions 44 located between projections 43. Relative to the plane defined by the central area of upper surface 41, projections 43 extend (a) radially-outward from the central area of first chamber 40 and in a direction that is parallel to the plane defined by upper surface 41 and (b) downward and away from the plane defined by the central area of upper surface 41. That is, projections 43 extend both radially-outward and downward to impart a three-dimensional structure to first chamber 40. In effect, therefore, projections 43 form lobes that extend from the central area, and depressions 44 are spaces located between the lobes.

Second chamber 50 is also depicted in FIGS. 6-8 and has a lower surface 51 and an opposite upper surface 52. Whereas lower surface 51 exhibits a generally planar configuration, upper surface 52 is contoured to define four projections 53 and four depressions 54 located between projections 53. Relative to the plane defined by lower surface 51, projections 53 extend (a) radially-outward from a central area of second chamber 50 and in a direction that is parallel to the plane defined by lower surface 51 and (b) upward and away from the plane defined by lower surface 51. That is, projections 53 extend both radially-outward and upward to impart a three-dimensional structure to second chamber 50. In effect, therefore, projections 53 form lobes that extend from the central area, and depressions 54 are spaces located between the lobes.

Each of chambers 40 and 50 are depicted in FIGS. 6-8 as having x-shaped configurations, but are oriented differently within footwear 10. Whereas projections 43 of first chamber 40 extend downward, projections 53 of second chamber 50 extend upward. In this configuration, and as generally depicted in FIGS. 3 and 5, projections 43 respectively extend into depressions 54, and projections 53 respectively extend into depressions 44. Lower surface 42 and upper surface 52 form, therefore, oppositely-contoured surfaces that interlock or otherwise mate to join chambers 40 and 50 to each other.

Chambers 40 and 50 may be pressurized between zero and three-hundred-fifty kilopascals (i.e., approximately fifty-one pounds per square inch) or more. As discussed in the Background of the Invention section above, interior bonds (i.e., bonds spaced inward from a periphery of a chamber) provide a chamber with a predetermined shape and size upon pressurization with a fluid. That is, the interior bonds prevent a chamber from ballooning or otherwise expanding outward during pressurization. In contrast with some conventional fluid-filled chambers, however, chambers 40 and 50 are depicted as having a configuration that does not include interior bonds. In order to limit the degree to which chambers 40 and 50 expand outward due to the action of the fluid within chambers 40 and 50, therefore, a suitable fluid pressure for chambers 40 and 50 is between zero and thirty-five kilopascals (i.e., approximately five pounds per square inch). In other configurations, however, interior bonds may be utilized to accommodate greater fluid pressures, the material selected for chambers 40 and 50 may be modified (i.e., in thickness or type) to accommodate greater fluid pressures, or tensile members formed from textiles or foam materials, for example, may be incorporated into chambers 40 and 50. Although the fluid pressures within chambers 40 and 50 may be different, chambers 40 and 50 may have substantially equal fluid pressures in some configurations of footwear 10.

Due to the relatively low pressure that may be utilized for chambers 40 and 50, the materials forming chambers 40 and 50 need not provide barrier characteristics that operate to retain the relatively high fluid pressures of some conventional chambers. A wide range of polymeric materials, including thermoplastic urethane, may be utilized to form chambers 40 and 50, and a variety of fluids (e.g., air or nitrogen) may be utilized within chambers 40 and 50. Furthermore, the polymeric material of chambers 40 and 50 may be selected based upon the engineering properties of the material (e.g., tensile strength, stretch properties, fatigue characteristics, dynamic modulus, and loss tangent), rather than the ability of the material to prevent the diffusion of the fluid contained by chambers 40 and 50. That is, a wider range of materials are suitable for chambers 40 and 50 due to the lower fluid pressures within chambers 40 and 50. When formed of thermoplastic urethane, the walls of chambers 40 and 50 may have a thickness of approximately 0.040 inches, but the thickness may range from 0.010 inches to 0.080 inches, for example.

In addition to thermoplastic urethane, a variety of other polymeric materials may be utilized for chambers 40 and 50. Examples of thermoplastic elastomer materials include polyurethane, polyester, polyester polyurethane, and polyether polyurethane. In addition, chambers 40 and 50 may be formed from a material that includes alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell, et al. A variation upon this material may also be utilized, wherein a center layer is formed of ethylene-vinyl alcohol copolymer, layers adjacent to the center layer are formed of thermoplastic polyurethane, and outer layers are formed of a regrind material of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer. Another suitable material for chambers 40 and 50 is a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Pat. Nos. 6,082,025 and 6,127,026 to Bonk, et al. Additional suitable materials are disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Pat. Nos. 4,936,029 and 5,042,176 to Rudy, and polyurethane including a polyester polyol, as disclosed in U.S. Pat. Nos. 6,013,340; 6,203,868; and 6,321,465 to Bonk, et al. In addition to air and nitrogen, the fluid contained by chambers 40 and 50 may be any of the gasses disclosed in U.S. Pat. No. 4,340,626 to Rudy, such as hexafluoroethane and sulfur hexafluoride, for example. In addition, the fluid may include octafluorapropane.

Each of chambers 40 and 50 may be manufactured through a variety of manufacturing techniques, including blowmolding, thermoforming, and rotational molding, for example. With regard to the blowmolding technique, thermoplastic material is placed in a mold having the general shape of chambers 40 and 50 and pressurized air is utilized to induce the material to coat surfaces of the mold. Given the configuration of chambers 40 and 50, wherein projections 43 and 53 effectively form lobes that extend outward from a central area of chambers 40 and 50, the general manufacturing process discussed in U.S. Pat. No. 7,000,335 to Swigart, et al., which is incorporated herein by reference, may be utilized to form one or both of chambers 40 and 50. In the thermoforming technique, layers of thermoplastic material are placed between corresponding portions of a mold, and the mold is utilized to compress the layers together at peripheral locations of chamber 40. A positive pressure may be applied between the layers of thermoplastic material to induce the layers into the contours of the mold. In addition, a vacuum may be induced in the area between the layers and the mold to draw the layers into the contours of the mold. In the rotational molding technique, thermoplastic material is placed in a mold that subsequently rotates to induce the thermoplastic material to coat or otherwise form a layer upon surfaces of the mold.

Pneumatic component 33 produces a relatively large deflection during initial stages of compression when compared to the fluid-filled chambers discussed in the Background of the Invention section. As the compression of chambers 40 and 50 increases, however, the stiffness of pneumatic component 33 increases in a corresponding manner due to the structure of chambers 40 and 50 and the manner in which chambers 40 and 50 are incorporated into sole structure 30. Three phenomena operate simultaneously to produce the effect described above and include pressure ramping, film tensioning, and the interlocking of chambers 40 and 50. Each of these phenomena will be described in greater detail below.

Pressure ramping is the increase in pressure within chambers 40 and 50 that occurs as a result of compressing pneumatic component 33. In effect, chambers 40 and 50 have an initial pressure and initial volume when not being compressed within sole structure 30. As pneumatic component 33 is compressed, however, the effective volume of chambers 40 and 50 decrease, thereby increasing the pressure of the fluid within chambers 40 and 50. The increase in pressure operates to provide a portion of the cushioning response of pneumatic component 33.

The concept of film tensioning also has an effect upon the cushioning response of pneumatic component 33. This effect is best understood when compared to pressurized prior art chambers. In the prior art chambers, the pressure within the chambers places the outer layers in tension. As the prior art chambers are compressed, however, the tension in the outer layers is relieved or lessened. Accordingly, compression of the prior art chambers operates to lessen the tension in the outer layers. In contrast with the pressurized prior art chambers, the tension in the polymer material forming chambers 40 and 50 increases in response to compression due to bending of the polymer material (e.g., in upper surface 41). This increase in tension contributes to the cushioning response of pneumatic component 33.

Finally, the interlocking of chambers 40 and 50 contributes to the cushioning response of pneumatic component 33. When pneumatic component 33 is compressed, the fluid pressures within chambers 40 and 50 increase proportionally. As the pressures increase, the tension in the polymer material forming chambers 40 and 50 also increases proportionally and portions of the polymer material stretch or otherwise expand. In areas where chambers 40 and 50 are in contact with each other (e.g., surfaces 42 and 52), the opposing forces counteract expansion. That is, lower surface 42 of chamber 40 presses against upper surface 52 of chamber 50, and upper surface 52 of chamber 50 presses against lower surface 42 of chamber 40. These opposing forces counteract, therefore, a tendency for portions of surfaces 42 and 52 to stretch or otherwise expand. Other areas of chambers 40 and 50 are placed in tension (see film tensioning discussion above) and contribute to the cushioning response of pneumatic component 33.

Based upon the considerations of pressure ramping, film tensioning, and the interlocking of chambers 40 and 50 discussed above, the cushioning response of pneumatic component 33 is modifiable to provide a desired degree of force attenuation in sole structure 30. For example, the volume of chambers 40 and 50, the number and shape of projections 43 and 53, the thickness of the polymer material forming chambers 40 and 50, the material utilized to form chambers 40 and 50, the relative surface areas of contact between chambers 40 and 50, and the position and orientation of chambers 40 and 50 within sole structure 30 may be varied to modify the cushioning response. By varying these and other parameters, therefore, sole structure 30 may be custom tailored to a specific individual or to provide a specific cushioning response during compression.

Another factor that may be utilized to affect the cushioning response of pneumatic component 33 relates to the relative volumes of chambers 40 and 50. In general, as the volume of chambers 40 and 50 increases, the compliance (i.e., compressibility) of chambers 40 and 50 increases. Similarly, as the volume of chambers 40 and 50 decreases, the compliance of chambers 40 and 50 decreases. In order to impart different degrees of compliance to different portions of sole structure 30, chambers 40 and 50 may be structured to have different volumes. For example, chamber 40 may have a volume that is relatively large in comparison with chamber 50, thereby imparting relatively large compliance. In addition, chamber 50 may have a volume that is relatively small in comparison with chamber 40, thereby imparting relatively small compliance. When chambers 40 and 50 have different volumes and are utilized in combination, the different degrees of compliance may provide different cushioning responses during walking (wherein forces upon sole structure 30 are relatively small) and running (wherein forces upon sole structure 30 are relatively large).

In addition to the relative volumes of chambers 40 and 50, the relative shapes and sizes of various portions of chambers 40 and 50 may also affect the cushioning response of pneumatic component 33. As an example, the sizes of projections 43 and 53 have an effect upon the cushioning response. As the sizes of projections 43 and 53 increase, the compliance of chambers 40 and 50 generally increase. Similarly, as the sizes of projections 43 and 53 decrease, the compliance of chambers 40 and 50 generally decreases. In configurations where greater stability is desired, projections 43 and 53 may be shaped to impart the stability. Accordingly, modifying the volume of chambers 40 and 50 and also modifying the shapes for various portion of chambers 40 and 50 may be utilized to modify the cushioning response of pneumatic component 33.

A majority of an exterior of pneumatic component 33 is formed from a single layer of polymer material because each of chambers 40 and 50 are formed from a single layer of polymer material. At the interface between chambers 40 and 50 (i.e., where surfaces 42 and 52 make contact), which is located in the interior of pneumatic component 33, two coextensive layers of the polymer material subdivide the fluid of first chamber 40 from the fluid of second chamber 50. Whereas the exterior of pneumatic component 33 is a single layer of the polymer material, the interior of pneumatic component 33 is two coextensive layers of the polymer material. In some configurations of pneumatic component 33, however, chambers 40 and 50 may be secured together such that only one layer of the polymer material subdivides the fluids within chambers 40 and 50.

Although first chamber 40 is generally positioned above second chamber 50 in footwear 10, both chambers 40 and 50 form upper and lower surfaces of pneumatic component 33. A majority of the upper surface of pneumatic component 33 is formed from upper surface 41 of first chamber 40. Distal ends of projections 53, however, also form a portion of the upper surface of pneumatic component 33. Similarly, a majority of the lower surface of pneumatic component 33 is formed is formed from lower surface 51 of second chamber 50. Distal ends of projections 43, however, also form a portion of the lower surface of pneumatic component 33. Accordingly, the upper and lower surfaces of pneumatic component 33 are cooperatively formed from each of chambers 40 and 50. In some configurations, however, the upper surface of pneumatic component 33 may be formed from only chamber 40 and the lower surface of pneumatic component 33 may be formed from only chamber 50.

The configuration of pneumatic component 33 discussed above and depicted in the figures may vary significantly to impart different properties to footwear 10. As depicted in FIG. 9A, for example, one or both of chambers 40 and 50 may be tapered to control or otherwise minimize pronation (i.e., rolling of the foot from lateral side 14 to medial side 15). In order to provide positive placement of the foot with respect to pneumatic component 33, upper surface 41 of first chamber 40 is concave, as depicted in FIGS. 4A and 4B. That is, upper surface 41 may be concave in some configurations of pneumatic component 33 to provide an area that receives the foot. As an alternative, however, upper surface 41 may also be planar, as depicted in FIG. 9B. As another variation, a plate or other sole element may extend between chambers 40 and 50, as depicted in FIG. 9C. In areas where greater stability is desired, pneumatic component 33 may define apertures that are filled with foam or other materials that compress less than pneumatic component 33. For example, portions of pneumatic component 33 corresponding with medial side 15 may define apertures that receive foam to limit the degree of pronation in the foot.

The coloring of chambers 40 and 50 may be utilized to impart pneumatic component 33 with unique aesthetic properties. In some configurations, the polymer materials of chambers 40 and 50 may be both transparent and colored. If, for example, chamber 40 has a blue coloring and chamber 50 has a yellow coloring, the interface between chambers 40 and 50 may appear to have a green coloring. That is, each of projections 43 and 53 may have different colors, but the colors may appear to combine where projections 43 and 53 make contact with each other. Accordingly, the portions of first chamber 40 and second chamber 50 that are visible from the exterior of article of footwear 10 may have different colors, and the different colors may combine to produce a third color at the interface between chambers 40 and 50.

Second Component Configuration

Another pneumatic component 33′ that may be incorporated into footwear 10 is depicted in FIGS. 10-12. Whereas, pneumatic component 33 is primarily located in heel region 13, pneumatic component 33′ has greater overall length and may extend through heel region 13 and into portions of midfoot region 12. The primary elements of pneumatic component 33′ are a first chamber 40′ and a second chamber 50′. Each of chambers 40′ and 50′ are formed from an exterior barrier that encloses a fluid. More particularly, chambers 40′ and 50′ are formed from a polymer material that is sealed to enclose a gas. As with chambers 40 and 50, portions of chambers 40′ and 50′ have corresponding configurations that interlock or otherwise mate to join chambers 40′ and 50′ to each other. Although the corresponding configurations of chambers 40′ and 50′ are sufficient to join chambers 40′ and 50′ to each other when incorporated into footwear 10, various adhesives, thermobonding processes, or other joining techniques may be utilized to further secure chamber 40′ to chamber 50′. Alternately, the polymer foam material of midsole element 31 may encapsulate portions of chambers 40′ and 50′ to effectively secure chamber 40′ to chamber 50′.

First chamber 40′ is depicted in FIGS. 13-15 and has an upper surface 41′ and an opposite lower surface 42′. Although upper surface 41′ exhibits a somewhat concave configuration, lower surface 42′ is significantly contoured to define five projections 43′ and five depressions 44′ located between projections 43′. Relative to upper surface 41′, projections 43′ extend (a) radially-outward from a central area of first chamber 40′ and in a direction that is generally parallel to upper surface 41′ and (b) downward and away from upper surface 41′. That is, projections 43′ extend both radially-outward and downward to impart a three-dimensional structure to first chamber 40′. In effect, therefore, projections 43′ form lobes that extend from the central area, and depressions 44′ are spaces located between the lobes.

Second chamber 50′ is also depicted in FIGS. 13-15 and has a lower surface 51′ and an opposite upper surface 52′. Whereas lower surface 51 exhibits a generally planar configuration, upper surface 52′ is contoured to define five projections 53′ and five depressions 54′ located between projections 53′. Relative to the plane defined by lower surface 51′, projections 53′ extend (a) radially-outward from a central area of second chamber 50′ and in a direction that is parallel to the plane defined by lower surface 51′ and (b) upward and away from the plane defined by lower surface 51′. That is, projections 53′ extend both radially-outward and upward to impart a three-dimensional structure to second chamber 50′. In effect, therefore, projections 53′ form lobes that extend from the central area, and depressions 54′ are spaces located between the lobes.

Each of chambers 40′ and 50′ may be oriented differently when incorporated into footwear 10. Whereas projections 43′ of first chamber 40′ extend downward, projections 53′ of second chamber 50′ extend upward. In this configuration, and as generally depicted in FIGS. 10 and 12, projections 43′ respectively extend into depressions 54′, and projections 53′ respectively extend into depressions 44′. Lower surface 42′ and upper surface 52′ form, therefore, oppositely-contoured surfaces that interlock or otherwise mate to join chambers 40′ and 50′ to each other.

Chambers 40′ and 50′ may be pressurized in the manner discussed above for chambers 40 and 50. The fluids within chambers 40′ and 50′, the polymeric materials forming chambers 40′ and 50′, and the thicknesses of the polymeric materials, may also be the same as the fluids, materials, and thicknesses discussed above for chambers 40 and 50. In addition, the variety of manufacturing techniques discussed above for chambers 40 and 50 may also be utilized for chambers 40′ and 50′. With the exception of the structural differences discussed above, therefore, chambers 40′ and 50′ may be substantially similar to chambers 40 and 50. Furthermore, the concepts of pressure ramping, film tensioning, the interlocking of chambers 40′ and 50′, and relative volumes of chambers 40′ and 50′ may operate simultaneously to affect the cushioning response of pneumatic component 33′.

A majority of an exterior of pneumatic component 33′ is formed from a single layer of polymer material because each of chambers 40′ and 50′ are formed from a single layer of polymer material. At the interface between chambers 40′ and 50′ (i.e., where surfaces 42′ and 52′ make contact), which is located in the interior of pneumatic component 33′, two coextensive layers of the polymer material subdivide the fluid of first chamber 40′ from the fluid of second chamber 50′. Whereas the exterior of pneumatic component 33′ is a single layer of the polymer material, therefore, the interior of pneumatic component 33′ is two coextensive layers of the polymer material. In some configurations of pneumatic component 33′, however, chambers 40′ and 50′ may be secured together such that only one layer of the polymer material subdivides the fluids within chambers 40′ and 50′.

Although first chamber 40′ is generally positioned above second chamber 50′ in footwear 10′, both chambers 40′ and 50′ form upper and lower surfaces of pneumatic component 33′. A majority of the upper surface of pneumatic component 33′ is formed is formed from upper surface 41′ of first chamber 40′. Distal ends of projections 53′, however, also form a portion of the upper surface of pneumatic component 33′. Similarly, a majority of the lower surface of pneumatic component 33′ is formed from lower surface 51′ of second chamber 50′. Distal ends of projections 43′, however, also form a portion of the lower surface of pneumatic component 33′. Accordingly, the upper and lower surfaces of pneumatic component 33′ are cooperatively formed from each of chambers 40′ and 50′. In some configurations, however, the upper surface of pneumatic component 33′ may be formed from only chamber 40′ and the lower surface of pneumatic component 33′ may be formed from only chamber 50′.

The coloring of chambers 40′ and 50′ may be utilized to impart pneumatic component 33′ with unique aesthetic properties. In some configurations, the polymer materials of chambers 40′ and 50′ may be both transparent and colored. If, for example, chamber 40′ has a blue coloring and chamber 50′ has a yellow coloring, the interface between chambers 40′ and 50′ may appear to have a green coloring. That is, each of projections 43′ and 53′ may have different colors, but the colors may appear to combine where projections 43′ and 53′ make contact with each other. Accordingly, the portions of first chamber 40′ and second chamber 50′ that are visible from the exterior of article of footwear 10 may have different colors, and the different colors may combine to produce a third color at the interface between chambers 40′ and 50′.

Third Component Configuration

Another pneumatic component 33″ that may be incorporated into footwear 10 is depicted in FIGS. 16-18. Whereas, pneumatic component 33 is primarily located in heel region 13, pneumatic component 33″ has greater overall length and may extend through heel region 13 and into portions of midfoot region 12 and forefoot region 11. The primary elements of pneumatic component 33″ are a first chamber 40″ and a second chamber 50″. Each of chambers 40″ and 50″ are formed from an exterior barrier that encloses a fluid. More particularly, chambers 40″ and 50″ are formed from a polymer material that is sealed to enclose a gas. As with chambers 40 and 50, portions of chambers 40″ and 50″ have corresponding configurations that interlock or otherwise mate to join chambers 40″ and 50″ to each other. Although the corresponding configurations of chambers 40″ and 50″ are sufficient to join chambers 40″ and 50″ to each other when incorporated into footwear 10, various adhesives, thermobonding processes, or other joining techniques may be utilized to further secure chamber 40″ to chamber 50″. Alternately, the polymer foam material of midsole element 31 may encapsulate portions of chambers 40″ and 50″ to effectively secure chamber 40″ to chamber 50″.

First chamber 40″ is depicted in FIGS. 19-21 and has an upper surface 41″ and an opposite lower surface 42″. Although upper surface 41″ exhibits a somewhat concave configuration, lower surface 42″ is significantly contoured to define eight projections 43″ and eight depressions 44″ located between projections 43″. Relative to upper surface 41″, projections 43″ extend (a) radially-outward from a central area of first chamber 40″ and in a direction that is generally parallel to upper surface 41″ and (b) downward and away from upper surface 41″. That is, projections 43″ extend both radially-outward and downward to impart a three-dimensional structure to first chamber 40″. In effect, therefore, projections 43″ form lobes that extend from the central area, and depressions 44″ are spaces located between the lobes.

Second chamber 50″ is also depicted in FIGS. 19-21 and has a lower surface 51″ and an opposite upper surface 52″. Whereas lower surface 51 exhibits a generally planar configuration, upper surface 52″ is contoured to define eight projections 53″ and eight depressions 54″ located between projections 53″. Relative to the plane defined by lower surface 51″, projections 53″ extend (a) radially-outward from a central area of second chamber 50″ and in a direction that is parallel to the plane defined by lower surface 51″ and (b) upward and away from the plane defined by lower surface 51″. That is, projections 53″ extend both radially-outward and upward to impart a three-dimensional structure to second chamber 50″. In effect, therefore, projections 53″ form lobes that extend from the central area, and depressions 54″ are spaces located between the lobes.

Each of chambers 40″ and 50″ may be oriented differently when incorporated into footwear 10. Whereas projections 43″ of first chamber 40″ extend downward, projections 53″ of second chamber 50″ extend upward. In this configuration, and as generally depicted in FIGS. 16 and 18, projections 43″ respectively extend into depressions 54″, and projections 53″ respectively extend into depressions 44″. Lower surface 42″ and upper surface 52″ form, therefore, oppositely-contoured surfaces that interlock or otherwise mate to join chambers 40″ and 50″ to each other.

Chambers 40″ and 50″ may be pressurized in the manner discussed above for chambers 40 and 50. The fluids within chambers 40″ and 50″, the polymeric materials forming chambers 40″ and 50″, and the thicknesses of the polymeric materials, may also be the same as the fluids, materials, and thicknesses discussed above for chambers 40 and 50. In addition, the variety of manufacturing techniques discussed above for chambers 40 and 50 may also be utilized for chambers 40″ and 50″. With the exception of the structural differences discussed above, therefore, chambers 40″ and 50″ may be substantially similar to chambers 40 and 50. Furthermore, the concepts of pressure ramping, film tensioning, the interlocking of chambers 40″ and 50″, and relative volumes of chambers 40″ and 50″ may operate simultaneously to affect the cushioning response of pneumatic component 33″.

A majority of an exterior of pneumatic component 33″ is formed from a single layer of polymer material because each of chambers 40″ and 50″ are formed from a single layer of polymer material. At the interface between chambers 40″ and 50″ (i.e., where surfaces 42″ and 52″ make contact), which is located in the interior of pneumatic component 33″, two coextensive layers of the polymer material subdivide the fluid of first chamber 40″ from the fluid of second chamber 50″. Whereas the exterior of pneumatic component 33″ is a single layer of the polymer material, therefore, the interior of pneumatic component 33″ is two coextensive layers of the polymer material. In some configurations of pneumatic component 33″, however, chambers 40″ and 50″ may be secured together such that only one layer of the polymer material subdivides the fluids within chambers 40″ and 50″.

Although first chamber 40″ is generally positioned above second chamber 50″ in footwear 10″, both chambers 40″ and 50″ form upper and lower surfaces of pneumatic component 33″. A majority of the upper surface of pneumatic component 33″ is formed is formed from upper surface 41″ of first chamber 40″. Distal ends of projections 53″, however, also form a portion of the upper surface of pneumatic component 33″. Similarly, a majority of the lower surface of pneumatic component 33″ is formed from lower surface 51″ of second chamber 50″. Distal ends of projections 43″, however, also form a portion of the lower surface of pneumatic component 33″. Accordingly, the upper and lower surfaces of pneumatic component 33″ are cooperatively formed from each of chambers 40″ and 50″. In some configurations, however, the upper surface of pneumatic component 33″ may be formed from only chamber 40″ and the lower surface of pneumatic component 33″ may be formed from only chamber 50″.

The coloring of chambers 40″ and 50″ may be utilized to impart pneumatic component 33″ with unique aesthetic properties. In some configurations, the polymer materials of chambers 40″ and 50″ may be both transparent and colored. If, for example, chamber 40″ has a blue coloring and chamber 50″ has a yellow coloring, the interface between chambers 40″ and 50″ may appear to have a green coloring. That is, each of projections 43″ and 53″ may have different colors, but the colors may appear to combine where projections 43″ and 53″ make contact with each other. Accordingly, the portions of first chamber 40″ and second chamber 50″ that are visible from the exterior of article of footwear 10 may have different colors, and the different colors may combine to produce a third color at the interface between chambers 40″ and 50″.

The invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to aspects of the invention, not to limit the scope of aspects of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the invention, as defined by the appended claims.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US267790614 Ago 195211 May 1954Arnold ReedCushioned inner sole for shoes and meth od of making the same
US270377015 Abr 19528 Mar 1955Melzer JeanManufacture of flat inflatable objects
US303064013 Ene 196024 Abr 1962Air Pillow & Cushions IncInflated articles
US360821516 Sep 196928 Sep 1971Tatsuo FukuokaFootwear
US36851762 Jul 197022 Ago 1972Bogert Robert CInflatable article of footwear
US37589648 Mar 197218 Sep 1973Onitsuka Co LtdSports shoe
US418762015 Jun 197812 Feb 1980Selner Allen JBiomechanical shoe
US421770527 Jul 197819 Ago 1980Donzis Byron ASelf-contained fluid pressure foot support device
US43589022 Abr 198016 Nov 1982Cole George SThrust producing shoe sole and heel
US450646025 May 198326 Mar 1985Rudy Marion FSpring moderator for articles of footwear
US454791917 Feb 198322 Oct 1985Cheng Chung WangInflatable article with reforming and reinforcing structure
US469886425 Nov 198513 Oct 1987Graebe Robert HCellular cushion
US472213116 Mar 19872 Feb 1988Huang Ing ChungAir cushion shoe sole
US478260226 May 19878 Nov 1988Nikola LakicShoe with foot warmer including an electrical generator
US480302928 Ene 19867 Feb 1989Pmt CorporationProcess for manufacturing an expandable member
US481730431 Ago 19874 Abr 1989Nike, Inc. And Nike International Ltd.Footwear with adjustable viscoelastic unit
US48234824 Sep 198725 Abr 1989Nikola LakicInner shoe with heat engine for boot or shoe
US484586117 Jul 198711 Jul 1989Armenak MoumdjianInsole and method of and apparatus for making same
US48746407 Ene 198817 Oct 1989Donzis Byron AImpact absorbing composites and their production
US489185514 Nov 19889 Ene 1990Team Worldwide CorporationInflatable suntanner with speedy and homogeneous suntan effect
US49065025 Feb 19886 Mar 1990Robert C. BogertPressurizable envelope and method
US491286111 Abr 19883 Abr 1990Huang Ing ChungRemovable pressure-adjustable shock-absorbing cushion device with an inflation pump for sports goods
US4970807 *16 Dic 198820 Nov 1990Adidas AgOutsole for sports shoes
US499131714 Mar 198912 Feb 1991Nikola LakicInflatable sole lining for shoes and boots
US499993121 Feb 198919 Mar 1991Vermeulen Jean PierreShock absorbing system for footwear application
US502210911 Jun 199011 Jun 1991Dielectrics IndustriesMattresses
US502557527 Oct 198925 Jun 1991Nikola LakicInflatable sole lining for shoes and boots
US504217628 Dic 198927 Ago 1991Robert C. BogertLoad carrying cushioning device with improved barrier material for control of diffusion pumping
US50440306 Jun 19903 Sep 1991Fabrico Manufacturing CorporationMultiple layer fluid-containing cushion
US515876730 Ago 199027 Oct 1992Reebok International Ltd.Athletic shoe having inflatable bladder
US51797925 Abr 199119 Ene 1993Brantingham Charles RShoe sole with randomly varying support pattern
US519324623 Jul 199116 Mar 1993Huang Ing ChungAir cushion grip with a cubic supporting structure and shock-absorbing function
US51991914 Jun 19916 Abr 1993Armenak MoumdjianAthletic shoe with inflatable mobile inner sole
US522427723 Abr 19926 Jul 1993Kim Sang DoFootwear sole providing ventilation, shock absorption and fashion
US522427818 Sep 19926 Jul 1993Jeon Pil DMidsole having a shock absorbing air bag
US52281563 Ago 199220 Jul 1993John WangFluid operated device
US523571516 Ene 199017 Ago 1993Donzis Byron AImpact asborbing composites and their production
US524576627 Mar 199221 Sep 1993Nike, Inc.Improved cushioned shoe sole construction
US525343519 Ago 199119 Oct 1993Nike, Inc.Pressure-adjustable shoe bladder assembly
US525747019 Feb 19912 Nov 1993Nike, Inc.Shoe bladder system
US533538223 Nov 19929 Ago 1994Huang Yin JunInflatable cushion device
US53374926 May 199316 Ago 1994Adidas AgShoe bottom, in particular for sports shoes
US53534591 Sep 199311 Oct 1994Nike, Inc.Method for inflating a bladder
US53677914 Feb 199329 Nov 1994Asahi, Inc.Shoe sole
US54067198 Sep 199418 Abr 1995Nike, Inc.Shoe having adjustable cushioning system
US542518429 Mar 199320 Jun 1995Nike, Inc.Athletic shoe with rearfoot strike zone
US549379217 Oct 199427 Feb 1996Asics CorporationShoe comprising liquid cushioning element
US55728043 May 199312 Nov 1996Retama Technology Corp.Shoe sole component and shoe sole component construction method
US55927069 Nov 199314 Ene 1997Teksource, LcCushioning device formed from separate reshapable cells
US559500430 Mar 199421 Ene 1997Nike, Inc.Shoe sole including a peripherally-disposed cushioning bladder
US566916115 Nov 199623 Sep 1997Huang; Ing-JingShock-absorbing cushion
US56861675 Jun 199511 Nov 1997Robert C. BogertFatigue resistant fluid containing cushioning device for articles of footwear
US570413722 Dic 19956 Ene 1998Brooks Sports, Inc.Shoe having hydrodynamic pad
US574156818 Ago 199521 Abr 1998Robert C. BogertShock absorbing cushion
US57716063 Sep 199630 Jun 1998Reebok International Ltd.Support and cushioning system for an article of footwear
US583263023 Jul 199310 Nov 1998Nike, Inc.Bladder and method of making the same
US58460639 Ene 19978 Dic 1998Nikola LakicMiniature universal pump and valve for inflatable liners
US590791116 Jun 19971 Jun 1999Huang; Ing JingCombinable sneaker with a replaceable male cushion
US591666424 Jun 199629 Jun 1999Robert C. BogartElastomeric cushioning device used in footwear, helmets, tennis racquet handles, gloves, bicycle seats
US592530616 Jun 199720 Jul 1999Huang; Ing ChungMethod of manufacturing an air cushion
US595206531 Ago 199414 Sep 1999Nike, Inc.Multilayer of polyurethane and ethylene-vinyl alcohol copolymer, a hydrogen bonding between polyurethane layer and ethylene-vinyl alcohol copolymer layer along entire surface; used in footware product
US597645124 Jun 19962 Nov 1999Retama Technology CorporationManufacturing shoe soles and shoe sole components. more particularly, the invention relates to a flexible high polymer resin shoe sole.
US597907814 Oct 19979 Nov 1999Nike, Inc.Cushioning device for a footwear sole and method for making the same
US59935859 Ene 199830 Nov 1999Nike, Inc.Resilient bladder for use in footwear and method of making the bladder
US60096372 Mar 19984 Ene 2000Pavone; Luigi AlessioHelium footwear sole
US601334012 Dic 199511 Ene 2000Nike, Inc.Membranes which, under certain embodiments, serve to selectively control the diffusion of gases through the membrane; cushioning devices useful in footwear
US602768316 Jun 199722 Feb 2000Huang; Ing ChungExtrusion molding process and apparatus
US602996224 Oct 199729 Feb 2000Retama Technology CorporationShock absorbing component and construction method
US606515016 Jun 199723 May 2000Huang; Ing ChungProtective air cushion gloves
US609831323 Ene 19958 Ago 2000Retama Technology CorporationShoe sole component and shoe sole component construction method
US612701020 Abr 19983 Oct 2000Robert C. BogertShock absorbing cushion
US612883716 Jun 199710 Oct 2000Huang; Ing JingThree dimensional shoe vamp air cushion
US619260624 Mar 200027 Feb 2001Luigi Alessio PavoneHelium filled sole
US625346624 May 19993 Jul 2001New Balance Athletic Shoe, Inc.Shoe sloe cushion
US62584215 Nov 199810 Jul 2001Nike, Inc.Bladder and method of making the same
US637451416 Mar 200023 Abr 2002Nike, Inc.Footwear having a bladder with support members
US638586416 Mar 200014 May 2002Nike, Inc.Footwear bladder with controlled flex tensile member
US640287916 Mar 200011 Jun 2002Nike, Inc.Method of making bladder with inverted edge seam
US643084318 Abr 200013 Ago 2002Nike, Inc.Dynamically-controlled cushioning system for an article of footwear
US645726216 Mar 20001 Oct 2002Nike, Inc.Article of footwear with a motion control device
US646361228 Nov 200015 Oct 2002Nike, Inc.Bladder and method of making the same
US6510624 *8 Sep 200028 Ene 2003Nikola LakicInflatable lining for footwear with protective and comfortable coatings or surrounds
US655008513 Nov 199722 Abr 2003Georges M. RouxSupport for expansible cells
US657149016 Mar 20003 Jun 2003Nike, Inc.Bladder with multi-stage regionalized cushioning
US666595817 Sep 200123 Dic 2003Nike, Inc.Protective cage for footwear bladder
US6751892 *18 Mar 200222 Jun 2004Achidatex Nazareth Elite (1977) Ltd.Minefield shoe and method for manufacture thereof
US6754981 *20 May 200229 Jun 2004Energaire CorporationFootwear structure with outsole bulges and midsole bladder
US678318417 Ene 200231 Ago 2004Bayer Polymers LlcMolded article having a rigid support and a flexible hollow member
US67960569 May 200228 Sep 2004Nike, Inc.Footwear sole component with a single sealed chamber
US683795126 Nov 20014 Ene 2005Nike, Inc.Method of thermoforming a bladder structure
US689247723 Jul 200217 May 2005Nike, Inc.Dynamically-controlled cushioning system for an article of footwear
US691819818 Ago 200319 Jul 2005Cheng-Hsian ChiFootwear with an air cushion and a method for making the same
US69317644 Ago 200323 Ago 2005Nike, Inc.Footwear sole structure incorporating a cushioning component
US69711936 Mar 20026 Dic 2005Nike, Inc.Bladder with high pressure replenishment reservoir
US700033516 Jul 200321 Feb 2006Nike, Inc.Footwear with a sole structure incorporating a lobed fluid-filled chamber
US702098829 Ago 20034 Abr 2006Pierre Andre SenizerguesFootwear with enhanced impact protection
US705145629 Jul 200330 May 2006Nike, Inc.Article of footwear incorporating an inflatable chamber
US707084518 Ago 20034 Jul 2006Nike, Inc.Fluid-filled bladder for an article of footwear
US707689112 Nov 200318 Jul 2006Nike, Inc.Flexible fluid-filled bladder for an article of footwear
US708617928 Ene 20048 Ago 2006Nike, Inc.Article of footwear having a fluid-filled bladder with a reinforcing structure
US712879616 Jul 200331 Oct 2006Nike, Inc.Footwear with a sole structure incorporating a lobed fluid-filled chamber
US713121823 Feb 20047 Nov 2006Nike, Inc.Fluid-filled bladder incorporating a foam tensile member
US714113128 Ene 200428 Nov 2006Nike, Inc.Method of making article of footwear having a fluid-filled bladder with a reinforcing structure
US7810255 *6 Feb 200712 Oct 2010Nike, Inc.Interlocking fluid-filled chambers for an article of footwear
US20060096125 *8 Nov 200411 May 2006Yen Chao HShoe sole having heel cushioning member
Otras citas
Referencia
1International Search Report and Written Opinion in PCT/US2007/088586, mailed Aug. 27, 2008.
2Notice of Allowance Mailed Jul. 6, 2010 for U.S. Appl. No. 11/671,970.
3Office Action Mailed Jan. 12, 2010 for U.S. Appl. No. 11/671,970.
4Office Action Mailed Mar. 19, 2010 for U.S. Appl. No. 11/671,970.
Clasificaciones
Clasificación de EE.UU.36/29, 36/35.00B
Clasificación internacionalA43B13/20
Clasificación cooperativaA43B1/0027, A43B13/20, A43B21/28, A43B3/0036
Clasificación europeaA43B13/20, A43B3/00S, A43B1/00C, A43B21/28