US8108176B2 - Method and apparatus for verifying two dimensional mark quality - Google Patents

Method and apparatus for verifying two dimensional mark quality Download PDF

Info

Publication number
US8108176B2
US8108176B2 US11/427,420 US42742006A US8108176B2 US 8108176 B2 US8108176 B2 US 8108176B2 US 42742006 A US42742006 A US 42742006A US 8108176 B2 US8108176 B2 US 8108176B2
Authority
US
United States
Prior art keywords
mark
image
quality
model
reader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/427,420
Other versions
US20080004822A1 (en
Inventor
Sateesha Nadabar
Venkat K. Gopalakrishnan
Carl W. Gerst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognex Corp
Original Assignee
Cognex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognex Corp filed Critical Cognex Corp
Priority to US11/427,420 priority Critical patent/US8108176B2/en
Assigned to COGNEX CORPORATION reassignment COGNEX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GERST, CARL W., GOPALAKRISHNAN, VENTKAT K., NADABAR, SATEESHA
Priority to US11/743,193 priority patent/US8027802B1/en
Publication of US20080004822A1 publication Critical patent/US20080004822A1/en
Priority to US13/270,370 priority patent/US9465962B2/en
Application granted granted Critical
Publication of US8108176B2 publication Critical patent/US8108176B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K5/00Methods or arrangements for verifying the correctness of markings on a record carrier; Column detection devices

Definitions

  • the present invention relates to mark verification systems and more specifically to a mark verification system that uses versatile methods that enable various verification configurations to be employed.
  • jet engines include, among other components, turbines that include turbine blades that are manufactured in various size lots.
  • each turbine blade is marked when manufactured so that the blade can be tracked.
  • the defect Prior to the blade being disposed of, if any defect is ever detected in the blade, the defect can be traced back to a lot and a manufacturing process associated therewith so that any possible defects in other blades of the lot can be identified.
  • DPMs direct part marks
  • a marking station that applies a mark to a component.
  • a marking station will apply a DataMatrix barcode symbol to each manufactured component where a DataMatrix symbol is a two-dimensional barcode that stores from 1 to about 2,000 characters.
  • An exemplary DataMatrix symbol is typically square and can range from 0.001 inch per side up to 14 inches per side. As an example of density, 500 numeric only characters can be encoded in a 1-inch square DataMatrix symbol using a 24-pin dot matrix marking machine.
  • mark application errors occur such that the mark cannot be subsequently consistently read and decoded properly.
  • the surface to which the mark is applied may be somewhat discolored so that the contrast of the mark to the background of the application surface is not optimal.
  • the dot sizes may be too large so that spaces there between are not perfectly discernible or the dot sizes may be too small to be recognized by some types of readers.
  • axial non-uniformity of grid non-uniformity of the applied mark may be too great to reliably read.
  • Many other mark metrics may be imperfect and may render mark difficult if not impossible to decode using many readers.
  • marking systems will include, in addition to a marking station, a stationary verification station and at least a portion of a transfer line to transfer freshly marked components from the marking station to the verification station.
  • the component is transferred via the transfer line to the verification station where the mark is precisely aligned with an ideal stationary light source and a stationary camera/mark reader that is juxtaposed such that a camera field of view is precisely aligned with the mark.
  • the reader reads the mark and attempts to verify code quality.
  • Verification can include several steps including decoding the mark and comparing the decoded information to known correct information associated with the mark that should have been applied.
  • verification may also include detecting mark size, geometric mark characteristics (e.g., squareness of the mark), symbol contrast, quantity of applied ink, axial non-uniformity, grid non-uniformity, extreme reflectance, dot diameter, dot ovality, dot position, background uniformity, etc.
  • the marked component may be scrapped to ensure that the marked component does not enter distribution channels.
  • a marked component passes a verification test at a manufacturing facility and is shipped to a client facility
  • some known facilities include stationary verification systems akin to the verification stations at the component manufacturing facility described above that perform various verification processes including decoding to verify mark quality.
  • known verification systems like the known verification station described above, include some stationary mechanism (e.g., mechanical locking devices, sensors, etc.) for precisely aligning the mark on the component with a stationary ideal light source and a stationary camera so that the camera can generate an image of the mark and a processor can then glean mark verifying information from the mark.
  • some stationary mechanism e.g., mechanical locking devices, sensors, etc.
  • a full blown mark verification station that requires specific lighting, mark and component juxtaposition and reader alignment requires a large amount of hardware dedicated to each verification process.
  • the additional hardware includes an extra transfer line station, a dedicated light source, alignment sensors, etc.
  • the additional hardware includes a dedicated camera, light source and component alignment mechanism. Additional hardware increases costs appreciably.
  • At least some embodiments of the invention include a method for applying a two dimensional mark on a first surface of a component and assessing mark quality, the method comprising the steps of positioning a component with a first surface at a first station, applying a two dimensional mark to the first surface at the first station wherein the applied mark is intended to codify a first information subset, obtaining an image of the applied two dimensional mark at the first station, performing a mark quality assessment on the mark in the obtained image and performing a secondary function as a result of the mark quality assessment.
  • the step of obtaining an image includes providing a stationary camera at the first station that has a field of view that is centered along a trajectory that forms an obtuse angle with at least a portion of the first surface.
  • the of providing a camera includes positioning the camera so that the field of view is centered along a trajectory that forms an obtuse angle with a central portion of the first surface.
  • the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, gleaning other mark quality characteristics from the mark in the obtained image.
  • the step of gleaning other mark quality characteristics includes gleaning at least a subset of geometric characteristics of the mark, mark size, mark color, mark shading, symbol contrast, axial non-uniformity of the mark, grid non-uniformity of the mark, extreme reflectance, angle of distortion, dot diameter, dot ovality, dot position, image sharpness and background uniformity.
  • the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image, the step of performing a mark quality assessment further including, where the degree of the at least one irregularity in the image exceeds a tolerable level, at least in part compensating for the irregularity thereby generating a compensated mark, gleaning mark quality characteristics from the compensated mark and generating an applied mark quality value as a function of the gleaned characteristics from the compensated mark.
  • the step of performing a mark quality assessment further includes comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
  • the secondary function further includes, when the applied mark quality value is at least equal to the baseline value, indicating a high mark quality level.
  • the first surface may be warped, the at least one irregularity including at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
  • the step of compensating including using the decoded information to generate a synthetic ideal mark model and using the ideal mark model to compensate for the geometric distortion.
  • the method further includes the step of providing known mark characteristics, the step of generating a synthetic ideal mark model including using both the provided known mark characteristics and the decoded information.
  • the step of using the ideal mark model includes using the ideal mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate for the irregularity in the mark in the obtained image.
  • the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, unwarping the mark to at least in part compensate for mark distortion thereby generating an unwarped mark, gleaning mark quality characteristics from the unwarped mark, generating an applied mark quality value as a function of the gleaned characteristics from the unwarped mark and comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
  • the step of unwarping the mark thereby generating an unwarped mark includes using the decoded information from the mark to generate a synthetic ideal mark model, comparing the synthetic ideal mark model to the mark in the obtained image to generate a deformation map and unwarping the mark using the deformation map to generate the unwarped mark.
  • the step of obtaining an image at the first station includes supporting a handheld mark reader adjacent the first station.
  • the step of performing a mark quality assessment on the obtained image includes decoding the mark in the obtained image, using the decoded information to generate a synthetic ideal mark model, using the ideal mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate the mark obtained in the image for at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
  • the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image and, when the degree of the at least one irregularity exceeds a tolerable level, providing a feedback signal indicating that the degree or irregularity is intolerable.
  • some embodiments include a method for assessing quality of a two dimensional mark that is applied to a first surface of a component, the method comprising the steps of (a) providing a two dimensional mark on a first surface of a component, (b) providing a handheld mark reader that includes a field of view, (c) positioning the handheld reader with respect to the component such that the first surface is in the field of view, (d) obtaining an image of the two dimensional mark, (e) attempting to decode the image to obtain an applied mark information subset, (f) when the image is successfully decoded: (i) performing a mark quality assessment on the image and (ii) performing a secondary function as a function of the mark quality assessment results.
  • some embodiments include a method for assessing the quality of a two dimensional mark applied to a first surface of a component using a handheld reader that includes a field of view, the method comprising the steps of (a) providing a component with a two dimensional mark on a first surface wherein the applied mark is intended to codify a first information subset, (b) positioning the handheld reader with respect to the component such that the first surface is in the field of view, (c) obtaining an image of the mark using the handheld reader, (d) performing a mark quality assessment on the obtained image to generate an applied mark quality value, (e) where the applied mark quality value is lower than a baseline assessment value, providing at least one of an audible signal and a visual signal to a handheld reader user indicating that the reader should be repositioned, after the reader is repositioned, repeating steps (c) through (e) until an applied mark quality value is at least equal to the baseline assessment value and, when the applied mark quality value is at least equal to the baseline assessment value, providing at least one of an
  • Some embodiments include a system for applying a two dimensional mark on a first surface of a component and assessing mark quality, the system comprising a mark applier positioned proximate a first space for applying a two dimensional mark to a first surface of a first component when the first surface is located in the first space, a stationary camera having a field of view and positioned adjacent the first space so that the first space is in the field of view, the camera for obtaining an image of the two dimensional mark after the mark is applied to the first surface and a processor linked to the camera for receiving the image and performing a mark quality assessment on the obtained image, the processor performing a secondary function as a result of the mark quality assessment.
  • Some embodiments include a system for assessing the quality of a two dimensional mark applied to a first surface of a component, the system comprising a handheld reader including a field of view, the reader for obtaining an image of the two dimensional mark when the mark is within the reader field of view and a processor for receiving reader generated images and programmed to perform a mark quality assessment process on the obtained images to generate quality assessment values associated with the images, when the quality assessment value is lower than a baseline assessment value, the processor providing one of an audible signal and a visual signal to a handheld reader user indicating that the reader should be repositioned so that a new image can be obtained and, when a quality assessment value is at least equal to the baseline assessment value, providing one of an audible signal and a visual signal to the handheld reader user indicating that the quality assessment value is at least equal to the baseline assessment value.
  • Still other embodiments include a method for assessing quality of a two dimensional mark that is applied to a first surface, the method comprising the steps of obtaining an image of the applied two dimensional mark, decoding the mark in the obtained image to generate a first information subset, using the first information subset to generate a synthetic ideal mark model, comparing the synthetic ideal mark model to the mark in the obtained image to generate a difference map, using the difference map to at least in part compensate for at least one irregularity in the mark in the obtained image thereby generating a compensated mark and assessing the quality of the compensated mark.
  • FIG. 1 is a schematic illustrating an exemplary marking and stationary mark verification system that resides at a single station where a mark can be applied to a stationary item and a camera can be used with the stationary item to obtain an image of the applied two dimensional mark for verification purposes;
  • FIG. 2 is a schematic diagram illustrating various components of one of the subassemblies of FIG. 1 ;
  • FIG. 3 is a flowchart illustrating at least one method that may be performed by the processor of FIG. 2 to identify mark quality and provide feedback;
  • FIG. 4 is a flowchart illustrating a subprocess that may be substituted for a portion of the process illustrated in FIG. 3 ;
  • FIG. 5 is a flowchart illustrating a subprocess that may be substituted for one of the process blocks of FIG. 4 ;
  • FIG. 6 is a schematic similar to FIG. 1 , albeit illustrating a second system configuration where a handheld reader as opposed to a stationary camera is employed to obtain an image of a mark;
  • FIG. 7 is similar to FIG. 6 , albeit showing the handheld reader in a second juxtaposition relative to a mark;
  • FIG. 8 is a flowchart illustrating a subprocess that may be substituted for a portion of the process of FIG. 3 where a handheld reader is used instead of a stationary camera to obtain an image of a mark;
  • FIG. 9 is a flowchart illustrating a subprocess that may be substituted for a portion of the process of FIG. 8 for providing more instructive feedback to a handheld reader user regarding quality of imaged marks to aid a user in movement of the handheld reader to a proper location for obtaining a suitable mark image for verification purposes;
  • FIG. 10 is a schematic similar to FIG. 6 , albeit showing a hand held reader with a distance extension member.
  • FIG. 1 one inventive embodiment will be described in a context of an exemplary marking and verification station 10 that includes, among other components, a marker or marking subassembly or machine 12 , a camera subassembly or camera 14 , a marked item support stand 16 and a marker/camera support stand 18 .
  • support stand 16 supports an item 21 to be marked on a top surface and, generally, so that a first surface 20 of item 21 on which a mark is to be applied is within a first area or space 22 .
  • stand 16 may take other forms including a position of a transfer line.
  • Each of the marker 12 and camera 14 are supported by stand 18 adjacent stand 16 and, more specifically, adjacent first area or space 22 .
  • Marker 12 is arranged with respect to first space 22 such that marker 12 can apply a two dimensional DataMatrix or other type of two dimensional mark 19 to surface 20 .
  • marker 12 may move vertically upward and downward at station 10 to apply marks 19 and to move out of the way so that items (e.g., 21 ) can be moved from station 10 to other locations without interference from marker 12 .
  • camera 14 includes optics 26 that focus a field of view 24 along a trajectory such that at least a portion of the field of view 24 forms an obtuse angle with the first surface 20 on which the two dimensional mark 19 is placed when item 21 is supported at station 10 .
  • the entire first surface 20 is within the field of view 24 of camera 14 . In other embodiments, it may be that just the portion of first surface 20 on which the mark 19 is applied is within the field of view of camera 14 .
  • marker 12 applies a two dimensional DataMatrix or other type of two dimensional mark 19 to first surface 20 .
  • camera 14 obtains an image of the mark 19 and the image is processed to verify that the mark is of sufficient quality to be used by mark readers subsequently.
  • camera 14 is linked to a processor 50 which may either be part of camera 14 , locally linked to camera 14 or may be remotely linked (e.g., via a local area network, a wide area network, the Internet, etc.).
  • Processor 50 is linked to one or more visual output devices 15 and/or one or more audio output devices 17 to provide feedback to a system user indicating the results of the verification process (e.g., whether or not the quality of the imaged mark meets or exceeds a baseline quality assessment value.
  • visual feedback devices may include lights or light emitting diodes) 15 and the audio feedback device may include a small speaker or beeper device 17 .
  • one of the visual devices 15 may be illuminated when mark quality is at least equal to the baseline quality value while another of the LEDs 15 may be illuminated when mark quality is below the baseline quality value.
  • different LED colors may be used to indicate whether or not the mark quality passes the baseline value test (e.g., a green LED may indicate high mark quality while a red LED indicates a mark that failed the quality test).
  • known characteristics of the type of symbol e.g., DataMatrix
  • processor 50 via a system interface (not illustrated, e.g. a computer).
  • the known symbol characteristics may include, among others, a symbol affine grid, a symbol size, geometric features (e.g., boundary shape) of a symbol type, etc.
  • a baseline quality value is set.
  • the baseline quality value will, in general, be some percentage assessment of a nominal value corresponding to a minimal resemblance required between an applied mark and what the mark would look like if it were an ideal mark.
  • the baseline quality value may have a value of 80.
  • a baseline value of 80 would correspond to lesser resemblance than a baseline value of 90
  • a baseline value of 90 would correspond to lesser resemblance in a baseline value of 95, and so on.
  • the algorithms used to identify quality values are a matter of designer choice but may take into account, in addition to other mark characteristics, symbol contrast, axial nonuniformity, grid nonuniformity, print growth, extreme reflection, angle of distortion, dot diameter, dot ovality, dot position, cell separability, symbol separability, finder pattern conformity, finder pattern conformity dot, image sharpness and background uniformity.
  • Each factor may be equally weighted or, in at least some cases, factors may be differently weighted.
  • a two dimensional mark is applied to first surface 19 of component 21 at first station 10 via marker 12 .
  • camera 14 obtains an image of the two dimensional mark at first station 10 .
  • processor 50 attempts to decode the image to obtain an applied mark information subset.
  • decoding comprises actually reading out the information that is coded by the mark 19 to provide a first information subset.
  • processor 50 determines whether or not the two dimensional mark has been successfully decoded. Where the mark has not been successfully decoded control passes to block 84 where processor 50 provides at least one of an audible signal and a visual feedback signal indicating that the mark has not been successfully decoded. For instance, to indicate failure to decode, a red LED 15 (see FIGS. 1 and 2 ) may be illuminated. After block 84 , control passes back up to block 66 where item 21 is removed from station 10 and another item to be marked is moved to station for marking and verification. In at least some cases, after one or more mark verification processes result in failed mark verifications, a system operator may adjust marker 12 settings in a manner intended to increase mark quality.
  • processor 50 refines the corner locations of the mark 19 .
  • processor 50 estimates the distortion amount of the mark from the refined corner locations of the mark identified in block 74 . More specifically, for instance, if it is known that the two dimensional mark 19 has a square outer border or boundary, distortion may be estimated by comparing the actual mark boundary to a square shape.
  • processor 50 determines whether or not the mark distortion is less than or greater than a tolerable distortion level.
  • processor 50 may provide the feedback signal by illuminating one of the LEDs 50 or, alternatively, by generating a sound via speaker 17 .
  • processor 50 compares the applied mark quality value to the baseline quality value and, where the applied mark quality value is greater than the baseline value a feedback signal is provided at block 85 and where the applied mark quality value is below the baseline a quality failure signal is generated at block 83 .
  • block 85 the process ends.
  • processor 50 computes a synthetic ideal symbol model from the decoded data and the known symbol characteristics. To this end, processor 50 uses the mark information subset that was identified at process block 70 in FIG. 3 and the known symbol characteristics that were provided at process block 62 in FIG. 3 and generates an ideal synthetic symbol or mark model for the specific symbol or mark 19 that was applied to surface 20 and that was imaged via camera 14 .
  • processor 50 precisely locates the actual mark in the image that corresponds to the synthetic model.
  • processor 50 compares the actual mark image to the ideal synthetic symbol model to generate a deformation map.
  • the deformation map would indicate how the rhombus could be stretched and compressed to result in a square.
  • processor 50 uses the deformation map to unwarp the original mark from the image. (e.g., in the previous example, by stretching and compressing the rhombus into a square).
  • processor 50 gleans additional mark quality characteristics from the unwarped image, and at block 96 processor 50 performs a mark quality assessment as a function of gleaned marked quality characteristics from the unwarped image.
  • the mark quality is again assessed and is compared to the baseline quality value as set at block 64 in FIG. 3 .
  • decision block 98 where mark quality is at an acceptable level, control passes back to block 85 in FIG. 3 where a feedback signal is provided that indicates that mark quality is at least at the baseline after which control again passes back up to block 68 .
  • the subprocess 84 in FIG. 4 can compensate for at least some degree of lens/optical distortion, perspective distortion and nonlinearities of the surface to which the mark 19 is applied (e.g., the surface 20 (see again FIG. 1 ) may be cylindrical, may be formed by a flexible sheet, etc.).
  • irregularities in a mark image other than geometric deformations may be compensated for prior to completing a mark quality assessment.
  • other image irregularities may include non-uniform lighting of a mark that shows up in the obtained image, background texture of the surface (see 20 in FIG. 1 ) to which a mark is applied, etc.
  • the degrees of the other irregularities may be identified and compared to tolerable levels and when intolerable levels are identified, control may pass to the subprocess 84 of FIG. 4 .
  • the subprocess in FIG. 4 would be modified to compensate for the other irregularity.
  • the subprocess 104 of FIG. 5 may be substituted for a portion of the FIG. 4 subprocess 84 .
  • FIG. 4 after the mark is located in the image at block 88 , control passes to block 90 a in FIG. 5 where a difference map is computed that represents the perceived lighting difference between the synthetic ideal mark model (see block 86 ) and the imaged mark.
  • the difference map is used to compensate the imaged mark thereby generating a compensated image.
  • a mark quality characteristics are gleaned from the compensated image and at block 96 a an applied mark quality value is generated after which control passes back to block 98 in FIG. 4 .
  • irregularity compensating processes may be performed on an imaged mark prior to assessing mark quality. For instance, after decoding is successful at block 72 in FIG. 3 , geometric distortions may be compensated first after which the effects of lighting non-uniformity are compensated second, after which the effects of background surface texture are compensated, and so on. In another contemplated case, a single complex compensation algorithm may compensate for two or more irregularities (e.g., geometric distortion and lighting non-uniformity) simultaneously. Moreover, while FIG. 3 and the discussion above generally teach that irregularities are compensated only when they exceed tolerable levels (see block 78 ), in at least some embodiments irregularities may be compensated all the time irrespective of the degree of irregularity level. In this case, in FIG. 3 , control would pass directly from block 72 to block 86 in FIG. 4 where the synthetic ideal mark model is computed.
  • FIG. 6 a second embodiment consistent with at least some aspects of the present invention is illustrated that is used at a station 130 .
  • components that are similar to the components described above with respect to FIG. 1 are not described in detail. Instead, in the interest of simplifying this explanation, components that are similar to or identical to components described above with respect to FIG. 1 are labeled using the same numerals.
  • numeral 16 is used in each of FIGS. 1 and 6 to identify an item support table or structure
  • numeral 24 is used to label a camera field of view, etc.
  • station 130 does not include a marker or marker machine akin to marker 12 in FIG. 1 . While no marker is shown, in some embodiments a marker could be provided at station 130 .
  • a handheld reader or camera device 114 is included for use at station 130 for obtaining images that include images of marks (e.g., see 19 in FIG. 6 ).
  • the handheld device 114 includes optics 26 for focusing the field of view 24 of the reader, a trigger 126 that, when activated, causes the reader 114 to obtain an image, visual feedback devices such as, for instance, LEDs 15 , and an audio output device, in the illustrated embodiment, including a speaker 17 .
  • reader 114 would include a processor 50 linked to each of a camera and the output devices 15 and 17 .
  • Reader 114 may be feathered via a power and data card or may be wireless.
  • device 114 is portable and can be moved about station 130 , device 114 is not stationary and therefore the field of view 24 and its relation to a mark 19 can be and typically is altered during use. Because the orientation of device 114 changes with respect to marks being imaged, the amount of distortion associated with images obtained from different angles with respect to the mark surface 20 should vary. Thus, for instance, while a certain amount of distortion in the image of mark 19 will occur when handheld reader 114 is used to obtain an image from the angle shown in FIG. 6 , another amount of distortion will result when reader 114 is oriented as shown in FIG. 7 when an image of mark 19 is obtained.
  • a slightly different process is performed to verify mark quality wherein, in at least some cases, a handheld reader user can be prompted to change the position of the reader 114 with respect to a mark when mark quality does not exceed a baseline quality value or when decoding fails.
  • FIG. 8 a subprocess 140 that may be substituted for a portion of the process shown in FIG. 3 is illustrated.
  • the process steps 62 and 64 are performed to provide known symbol characteristics and a baseline quality value to the processor 50 (see again FIG. 2 ) that is associated with handheld reader 114 .
  • the two dimensional mark at block 66 is applied either at station 130 or may have previously been applied at some other station or indeed at another facility.
  • control passes to block 141 in FIG. 8 .
  • a handheld reader user aligns the handheld reader at a first angle as shown in FIG.
  • processor 50 estimates the amount of distortion in the imaged mark (or the amount of some other irregularity of interest).
  • processor 50 determines if the distortion amount is at an acceptable level. Where distortion is below a tolerable level, a feedback signal is provided at block 158 .
  • metrics are read from the imaged mark and an applied mark quality value is calculated which is compared to a baseline at block 161 .
  • Appropriate feedback signals are provided at blocks 158 or 160 . Where the feedback signal indicates a low quality mark, at block 150 the user is prompted to reposition the reader 114 to obtain another mark image. After block 160 the process ends.
  • processor 50 may use the feedback devices 15 and/or 17 to provide even more informative clues to a handheld reader user as to whether or not mark quality is increasing or decreasing as the reader is moved about with respect to a mark.
  • a reader user may depress trigger 126 and keep the trigger in the activated position thereby causing reader 114 to continually and quickly obtain new images whenever mark quality falls below the baseline value.
  • the output signals can be modified to indicate whether or not the quality is increasing or decreasing to aid the user in “hunting” for an appropriate juxtaposition between the reader and mark in which the mark is appropriately presented.
  • the duration of beeps generated via speaker 17 may be increased or the periods between beeps may be shortened almost like a Geiger counter to indicate an increase or decrease in quality.
  • more LEDs 15 may be energized until, when all of the LEDs 15 are energized, an image of a mark is obtained with a mark that has a quality level that exceeds the baseline level.
  • FIG. 9 an exemplary method subprocess 162 that may be substituted for process block 158 in FIG. 8 is illustrated.
  • control may pass to block 164 in FIG. 9 where processor 50 determines whether or not the mark quality is better than the previous mark quality associated with the previously obtained image.
  • a feedback signal is provided that indicates unacceptable mark quality and that the quality is decreasing.
  • control passes to block 168 where the feedback signal indicates that the mark quality signal is unacceptable but that the quality is increasing
  • FIG. 10 another exemplary embodiment of a hand held reader 214 is shown for reading a mark 19 on a first surface 20 of an object 21 .
  • the reader 214 is different than the readers described above in that reader 214 includes a range finder or range extension 216 that extends from a front end thereof.
  • Range extensin 216 is a rigid member that extends along a trajectory that is substantially parallel to the central trajectory (not labeled) along which the reader field of view 24 is directed.
  • a reader user positions reader 214 so that a distal end 218 of extension contacts first surface 20 adjacent a mark 19 to be read prior to activating the reader 214 .
  • the length of extensin 216 is designed so that an optimal imaging distance occurs between the reader 214 and surface 20 when distal end 218 contacts surface 20 .
  • extension 216 contains at least one imaging variable in at least some embodiments.
  • extension 216 is shown as rigid and integrally formed with reader 214 , in some cases extension 216 may be flexible, may be telescoping like a radio antenna, may fold into a storage position, etc. In some cases extensin 216 may be removable. For instance, extensin 216 may include an external thread at the proximal end or may otherwise attach at the proximal end (e.g., via a collar or the like that fits over the lateral portion of optics 26 ).

Abstract

A method and system for applying a two dimensional mark on a first surface of a component and assessing mark quality, the method including the steps of positioning a component with a first surface at a first station, applying a two dimensional mark to the first surface at the first station wherein the applied mark is intended to codify a first information subset, obtaining an image of the applied two dimensional mark at the first station, performing a mark quality assessment on the obtained image and performing a secondary function as a result of the mark quality assessment.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
The present invention relates to mark verification systems and more specifically to a mark verification system that uses versatile methods that enable various verification configurations to be employed.
Many different industries require that marks be applied to manufactured components so that the components can be tracked during distribution, when installed or assembled, during maintenance processes, during use and after use. For instance, in the jet engine industry, jet engines include, among other components, turbines that include turbine blades that are manufactured in various size lots. Here, each turbine blade is marked when manufactured so that the blade can be tracked. Prior to the blade being disposed of, if any defect is ever detected in the blade, the defect can be traced back to a lot and a manufacturing process associated therewith so that any possible defects in other blades of the lot can be identified. Where marks are applied directly to components/parts, the marks are generally referred to as direct part marks (DPMs).
To directly mark components, known marking systems have been set up that include a marking station that applies a mark to a component. For instance, in at least some cases a marking station will apply a DataMatrix barcode symbol to each manufactured component where a DataMatrix symbol is a two-dimensional barcode that stores from 1 to about 2,000 characters. An exemplary DataMatrix symbol is typically square and can range from 0.001 inch per side up to 14 inches per side. As an example of density, 500 numeric only characters can be encoded in a 1-inch square DataMatrix symbol using a 24-pin dot matrix marking machine.
Despite attempts to apply marks that can be read consistently thereafter, sometimes mark application errors occur such that the mark cannot be subsequently consistently read and decoded properly. For instance, in some cases the surface to which the mark is applied may be somewhat discolored so that the contrast of the mark to the background of the application surface is not optimal. As another instance, in some cases where a mark consists of a plurality of dots, the dot sizes may be too large so that spaces there between are not perfectly discernible or the dot sizes may be too small to be recognized by some types of readers. As still other instances, axial non-uniformity of grid non-uniformity of the applied mark may be too great to reliably read. Many other mark metrics may be imperfect and may render mark difficult if not impossible to decode using many readers.
Whether or not a mark that has been applied to a component is readable often depends on the reading and decoding capabilities of a reader used to read and decode the mark. For instance, some relatively complex and expensive readers are capable of reading extremely distorted marks while cannot read marks that are not almost perfect.
To verify that applied marks are of sufficient quality to be read by readers at a specific facility (i.e., by the least sophisticated reader that is used at a specific facility), often marking systems will include, in addition to a marking station, a stationary verification station and at least a portion of a transfer line to transfer freshly marked components from the marking station to the verification station. Here, after a mark is applied to a component, the component is transferred via the transfer line to the verification station where the mark is precisely aligned with an ideal stationary light source and a stationary camera/mark reader that is juxtaposed such that a camera field of view is precisely aligned with the mark. After alignment, the reader reads the mark and attempts to verify code quality.
Verification can include several steps including decoding the mark and comparing the decoded information to known correct information associated with the mark that should have been applied. In addition, verification may also include detecting mark size, geometric mark characteristics (e.g., squareness of the mark), symbol contrast, quantity of applied ink, axial non-uniformity, grid non-uniformity, extreme reflectance, dot diameter, dot ovality, dot position, background uniformity, etc.
When a mark does not pass a verification process (i.e., mark quality is low), the marked component may be scrapped to ensure that the marked component does not enter distribution channels.
When a marked component passes a verification test at a manufacturing facility and is shipped to a client facility, when the component is received at a client's facility, it is often desirable for the client to independently verify that mark quality is sufficient for use with all of the readers at the facility and to decode the mark information to verify component type, to establish a record of received components, to begin a warranty period, etc. To this end, some known facilities include stationary verification systems akin to the verification stations at the component manufacturing facility described above that perform various verification processes including decoding to verify mark quality. To this end, known verification systems, like the known verification station described above, include some stationary mechanism (e.g., mechanical locking devices, sensors, etc.) for precisely aligning the mark on the component with a stationary ideal light source and a stationary camera so that the camera can generate an image of the mark and a processor can then glean mark verifying information from the mark.
While marking/verification systems of the above kind work well to mark components and to verify mark quality, such systems have several shortcomings. First, a full blown mark verification station that requires specific lighting, mark and component juxtaposition and reader alignment requires a large amount of hardware dedicated to each verification process. In the case of a verification station that follows a marking station, the additional hardware includes an extra transfer line station, a dedicated light source, alignment sensors, etc. In the case of a verification system at a client's facility the additional hardware includes a dedicated camera, light source and component alignment mechanism. Additional hardware increases costs appreciably.
Second, stationary verification stations and systems slow down the manufacturing and component use processes as additional component movements and alignment procedures are required at both the manufacturing facility and a client's facility. In addition to requiring more time, additional process steps reduce product throughput and therefore should be avoided whenever possible.
BRIEF SUMMARY OF THE INVENTION
At least some embodiments of the invention include a method for applying a two dimensional mark on a first surface of a component and assessing mark quality, the method comprising the steps of positioning a component with a first surface at a first station, applying a two dimensional mark to the first surface at the first station wherein the applied mark is intended to codify a first information subset, obtaining an image of the applied two dimensional mark at the first station, performing a mark quality assessment on the mark in the obtained image and performing a secondary function as a result of the mark quality assessment.
In some embodiments the step of obtaining an image includes providing a stationary camera at the first station that has a field of view that is centered along a trajectory that forms an obtuse angle with at least a portion of the first surface.
In some cases the of providing a camera includes positioning the camera so that the field of view is centered along a trajectory that forms an obtuse angle with a central portion of the first surface.
In some embodiments the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, gleaning other mark quality characteristics from the mark in the obtained image.
In some cases the step of gleaning other mark quality characteristics includes gleaning at least a subset of geometric characteristics of the mark, mark size, mark color, mark shading, symbol contrast, axial non-uniformity of the mark, grid non-uniformity of the mark, extreme reflectance, angle of distortion, dot diameter, dot ovality, dot position, image sharpness and background uniformity.
In some embodiments the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image, the step of performing a mark quality assessment further including, where the degree of the at least one irregularity in the image exceeds a tolerable level, at least in part compensating for the irregularity thereby generating a compensated mark, gleaning mark quality characteristics from the compensated mark and generating an applied mark quality value as a function of the gleaned characteristics from the compensated mark.
In other embodiments the step of performing a mark quality assessment further includes comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
In some cases the secondary function further includes, when the applied mark quality value is at least equal to the baseline value, indicating a high mark quality level.
In still further embodiments the first surface may be warped, the at least one irregularity including at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
In some cases the at least one irregularity is geometric distortion, the step of compensating including using the decoded information to generate a synthetic ideal mark model and using the ideal mark model to compensate for the geometric distortion.
In some embodiments the method further includes the step of providing known mark characteristics, the step of generating a synthetic ideal mark model including using both the provided known mark characteristics and the decoded information.
In at least some embodiments the step of using the ideal mark model includes using the ideal mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate for the irregularity in the mark in the obtained image.
In some cases the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, unwarping the mark to at least in part compensate for mark distortion thereby generating an unwarped mark, gleaning mark quality characteristics from the unwarped mark, generating an applied mark quality value as a function of the gleaned characteristics from the unwarped mark and comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
In yet other embodiments the step of unwarping the mark thereby generating an unwarped mark includes using the decoded information from the mark to generate a synthetic ideal mark model, comparing the synthetic ideal mark model to the mark in the obtained image to generate a deformation map and unwarping the mark using the deformation map to generate the unwarped mark.
In some cases the step of obtaining an image at the first station includes supporting a handheld mark reader adjacent the first station.
In some embodiments the step of performing a mark quality assessment on the obtained image includes decoding the mark in the obtained image, using the decoded information to generate a synthetic ideal mark model, using the ideal mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate the mark obtained in the image for at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
In still other cases the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image and, when the degree of the at least one irregularity exceeds a tolerable level, providing a feedback signal indicating that the degree or irregularity is intolerable.
In addition, some embodiments include a method for assessing quality of a two dimensional mark that is applied to a first surface of a component, the method comprising the steps of (a) providing a two dimensional mark on a first surface of a component, (b) providing a handheld mark reader that includes a field of view, (c) positioning the handheld reader with respect to the component such that the first surface is in the field of view, (d) obtaining an image of the two dimensional mark, (e) attempting to decode the image to obtain an applied mark information subset, (f) when the image is successfully decoded: (i) performing a mark quality assessment on the image and (ii) performing a secondary function as a function of the mark quality assessment results.
Moreover, some embodiments include a method for assessing the quality of a two dimensional mark applied to a first surface of a component using a handheld reader that includes a field of view, the method comprising the steps of (a) providing a component with a two dimensional mark on a first surface wherein the applied mark is intended to codify a first information subset, (b) positioning the handheld reader with respect to the component such that the first surface is in the field of view, (c) obtaining an image of the mark using the handheld reader, (d) performing a mark quality assessment on the obtained image to generate an applied mark quality value, (e) where the applied mark quality value is lower than a baseline assessment value, providing at least one of an audible signal and a visual signal to a handheld reader user indicating that the reader should be repositioned, after the reader is repositioned, repeating steps (c) through (e) until an applied mark quality value is at least equal to the baseline assessment value and, when the applied mark quality value is at least equal to the baseline assessment value, providing at least one of an audible signal and a visual signal to the reader user indicating that the applied mark quality value is at least equal to the baseline assessment value.
Some embodiments include a system for applying a two dimensional mark on a first surface of a component and assessing mark quality, the system comprising a mark applier positioned proximate a first space for applying a two dimensional mark to a first surface of a first component when the first surface is located in the first space, a stationary camera having a field of view and positioned adjacent the first space so that the first space is in the field of view, the camera for obtaining an image of the two dimensional mark after the mark is applied to the first surface and a processor linked to the camera for receiving the image and performing a mark quality assessment on the obtained image, the processor performing a secondary function as a result of the mark quality assessment.
Some embodiments include a system for assessing the quality of a two dimensional mark applied to a first surface of a component, the system comprising a handheld reader including a field of view, the reader for obtaining an image of the two dimensional mark when the mark is within the reader field of view and a processor for receiving reader generated images and programmed to perform a mark quality assessment process on the obtained images to generate quality assessment values associated with the images, when the quality assessment value is lower than a baseline assessment value, the processor providing one of an audible signal and a visual signal to a handheld reader user indicating that the reader should be repositioned so that a new image can be obtained and, when a quality assessment value is at least equal to the baseline assessment value, providing one of an audible signal and a visual signal to the handheld reader user indicating that the quality assessment value is at least equal to the baseline assessment value.
Still other embodiments include a method for assessing quality of a two dimensional mark that is applied to a first surface, the method comprising the steps of obtaining an image of the applied two dimensional mark, decoding the mark in the obtained image to generate a first information subset, using the first information subset to generate a synthetic ideal mark model, comparing the synthetic ideal mark model to the mark in the obtained image to generate a difference map, using the difference map to at least in part compensate for at least one irregularity in the mark in the obtained image thereby generating a compensated mark and assessing the quality of the compensated mark.
To the accomplishment of the foregoing and related ends, the invention, then, comprises the features hereinafter fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. However, these aspects are indicative of but a few of the various ways in which the principles of the invention can be employed. Other aspects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 is a schematic illustrating an exemplary marking and stationary mark verification system that resides at a single station where a mark can be applied to a stationary item and a camera can be used with the stationary item to obtain an image of the applied two dimensional mark for verification purposes;
FIG. 2 is a schematic diagram illustrating various components of one of the subassemblies of FIG. 1;
FIG. 3 is a flowchart illustrating at least one method that may be performed by the processor of FIG. 2 to identify mark quality and provide feedback;
FIG. 4 is a flowchart illustrating a subprocess that may be substituted for a portion of the process illustrated in FIG. 3;
FIG. 5 is a flowchart illustrating a subprocess that may be substituted for one of the process blocks of FIG. 4;
FIG. 6 is a schematic similar to FIG. 1, albeit illustrating a second system configuration where a handheld reader as opposed to a stationary camera is employed to obtain an image of a mark;
FIG. 7 is similar to FIG. 6, albeit showing the handheld reader in a second juxtaposition relative to a mark;
FIG. 8 is a flowchart illustrating a subprocess that may be substituted for a portion of the process of FIG. 3 where a handheld reader is used instead of a stationary camera to obtain an image of a mark;
FIG. 9 is a flowchart illustrating a subprocess that may be substituted for a portion of the process of FIG. 8 for providing more instructive feedback to a handheld reader user regarding quality of imaged marks to aid a user in movement of the handheld reader to a proper location for obtaining a suitable mark image for verification purposes; and
FIG. 10 is a schematic similar to FIG. 6, albeit showing a hand held reader with a distance extension member.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings wherein like reference numerals correspond to similar elements throughout the several views and, more specifically, referring to FIG. 1, one inventive embodiment will be described in a context of an exemplary marking and verification station 10 that includes, among other components, a marker or marking subassembly or machine 12, a camera subassembly or camera 14, a marked item support stand 16 and a marker/camera support stand 18. As the label implies, support stand 16 supports an item 21 to be marked on a top surface and, generally, so that a first surface 20 of item 21 on which a mark is to be applied is within a first area or space 22. Although shown as a table, stand 16 may take other forms including a position of a transfer line. Each of the marker 12 and camera 14 are supported by stand 18 adjacent stand 16 and, more specifically, adjacent first area or space 22. Marker 12 is arranged with respect to first space 22 such that marker 12 can apply a two dimensional DataMatrix or other type of two dimensional mark 19 to surface 20. Although shown as stationary, marker 12 may move vertically upward and downward at station 10 to apply marks 19 and to move out of the way so that items (e.g., 21) can be moved from station 10 to other locations without interference from marker 12.
Referring still to FIG. 1, camera 14 includes optics 26 that focus a field of view 24 along a trajectory such that at least a portion of the field of view 24 forms an obtuse angle with the first surface 20 on which the two dimensional mark 19 is placed when item 21 is supported at station 10. In the illustrated example, the entire first surface 20 is within the field of view 24 of camera 14. In other embodiments, it may be that just the portion of first surface 20 on which the mark 19 is applied is within the field of view of camera 14.
In operation, when an item 21 is placed and supported at station 10 below marker 12, marker 12 applies a two dimensional DataMatrix or other type of two dimensional mark 19 to first surface 20. After the mark is applied, camera 14 obtains an image of the mark 19 and the image is processed to verify that the mark is of sufficient quality to be used by mark readers subsequently.
Referring still to FIG. 1 and also FIG. 2, to perform the verification process, camera 14 is linked to a processor 50 which may either be part of camera 14, locally linked to camera 14 or may be remotely linked (e.g., via a local area network, a wide area network, the Internet, etc.). Processor 50 is linked to one or more visual output devices 15 and/or one or more audio output devices 17 to provide feedback to a system user indicating the results of the verification process (e.g., whether or not the quality of the imaged mark meets or exceeds a baseline quality assessment value. For example, visual feedback devices may include lights or light emitting diodes) 15 and the audio feedback device may include a small speaker or beeper device 17. In at least some cases, one of the visual devices 15 may be illuminated when mark quality is at least equal to the baseline quality value while another of the LEDs 15 may be illuminated when mark quality is below the baseline quality value. Here, different LED colors may be used to indicate whether or not the mark quality passes the baseline value test (e.g., a green LED may indicate high mark quality while a red LED indicates a mark that failed the quality test).
Refer now to FIG. 3, an exemplary method 60 that is consistent with at least some inventive embodiments is illustrated. Referring also to FIGS. 1 and 2, at block 62, known characteristics of the type of symbol (e.g., DataMatrix) to be read and verified are provided to processor 50 via a system interface (not illustrated, e.g. a computer). Here, the known symbol characteristics may include, among others, a symbol affine grid, a symbol size, geometric features (e.g., boundary shape) of a symbol type, etc. At block 64, a baseline quality value is set. Here, the baseline quality value will, in general, be some percentage assessment of a nominal value corresponding to a minimal resemblance required between an applied mark and what the mark would look like if it were an ideal mark. For example, where a perfect match between an applied mark and an ideal mark is equal to a nominal value of 100, the baseline quality value may have a value of 80. Here, a baseline value of 80 would correspond to lesser resemblance than a baseline value of 90, and a baseline value of 90 would correspond to lesser resemblance in a baseline value of 95, and so on. The algorithms used to identify quality values are a matter of designer choice but may take into account, in addition to other mark characteristics, symbol contrast, axial nonuniformity, grid nonuniformity, print growth, extreme reflection, angle of distortion, dot diameter, dot ovality, dot position, cell separability, symbol separability, finder pattern conformity, finder pattern conformity dot, image sharpness and background uniformity. Each factor may be equally weighted or, in at least some cases, factors may be differently weighted.
Referring still to FIGS. 1 through 3, at process block 66, a two dimensional mark is applied to first surface 19 of component 21 at first station 10 via marker 12. At block 68, after the two dimensional mark has been applied, camera 14 obtains an image of the two dimensional mark at first station 10. At block 70, processor 50 attempts to decode the image to obtain an applied mark information subset. Here, decoding comprises actually reading out the information that is coded by the mark 19 to provide a first information subset.
Continuing, at decision block 72, processor 50 determines whether or not the two dimensional mark has been successfully decoded. Where the mark has not been successfully decoded control passes to block 84 where processor 50 provides at least one of an audible signal and a visual feedback signal indicating that the mark has not been successfully decoded. For instance, to indicate failure to decode, a red LED 15 (see FIGS. 1 and 2) may be illuminated. After block 84, control passes back up to block 66 where item 21 is removed from station 10 and another item to be marked is moved to station for marking and verification. In at least some cases, after one or more mark verification processes result in failed mark verifications, a system operator may adjust marker 12 settings in a manner intended to increase mark quality.
Referring still to FIGS. 1 through 3, if, at decision block 72, mark 19 is successfully decoded, control passed to block 74 where processor 50 refines the corner locations of the mark 19. At block 76, processor 50 estimates the distortion amount of the mark from the refined corner locations of the mark identified in block 74. More specifically, for instance, if it is known that the two dimensional mark 19 has a square outer border or boundary, distortion may be estimated by comparing the actual mark boundary to a square shape. At decision block 78, processor 50 determines whether or not the mark distortion is less than or greater than a tolerable distortion level. Where the distortion in the mark is greater than the tolerable level, control passes to block 80 where processor 50 provides a feedback signal indicating that distortion in the mark is greater than the tolerable level. Here, again, processor 50 may provide the feedback signal by illuminating one of the LEDs 50 or, alternatively, by generating a sound via speaker 17.
Referring once again to decision block 78, where distortion is less than the tolerable level, control passes to block 82 where a feedback signal is provided that indicates that mark quality is at least at the baseline value after which control passes to block 82 where processor 50 gleans quality metrics from the image of the mark and generates an applied mark quality value. At block 87 processor 50 compares the applied mark quality value to the baseline quality value and, where the applied mark quality value is greater than the baseline value a feedback signal is provided at block 85 and where the applied mark quality value is below the baseline a quality failure signal is generated at block 83. After each of blocks 80 and 83 control passes backup to block 66. After block 85 the process ends.
Referring now to FIG. 4, an exemplary subprocess 84 that may be added to the method 60 of FIG. 3 is illustrated. Referring also to FIGS. 1 through 3, and, specifically to block 78 in FIG. 3, when distortion exceeds the tolerable level, in at least some embodiments, control passes to block 86 in FIG. 4. At block 86, processor 50 computes a synthetic ideal symbol model from the decoded data and the known symbol characteristics. To this end, processor 50 uses the mark information subset that was identified at process block 70 in FIG. 3 and the known symbol characteristics that were provided at process block 62 in FIG. 3 and generates an ideal synthetic symbol or mark model for the specific symbol or mark 19 that was applied to surface 20 and that was imaged via camera 14. At block 88, processor 50 precisely locates the actual mark in the image that corresponds to the synthetic model. At block 90, processor 50 compares the actual mark image to the ideal synthetic symbol model to generate a deformation map. Here, for instance, where the model calls for a square mark and the mark in the image includes a rhombus that has other than 90° angles, the deformation map would indicate how the rhombus could be stretched and compressed to result in a square. At block 92, processor 50 uses the deformation map to unwarp the original mark from the image. (e.g., in the previous example, by stretching and compressing the rhombus into a square). At block 94, processor 50 gleans additional mark quality characteristics from the unwarped image, and at block 96 processor 50 performs a mark quality assessment as a function of gleaned marked quality characteristics from the unwarped image. At block 98, the mark quality is again assessed and is compared to the baseline quality value as set at block 64 in FIG. 3.
Where mark quality is not acceptable, control passes from block 98 to block 83 in FIG. 3 where a feedback signal is generated by processor 50 indicating that the mark quality is below a baseline value. At decision block 98, where mark quality is at an acceptable level, control passes back to block 85 in FIG. 3 where a feedback signal is provided that indicates that mark quality is at least at the baseline after which control again passes back up to block 68. Thus, the subprocess 84 in FIG. 4 can compensate for at least some degree of lens/optical distortion, perspective distortion and nonlinearities of the surface to which the mark 19 is applied (e.g., the surface 20 (see again FIG. 1) may be cylindrical, may be formed by a flexible sheet, etc.).
In at least some cases it is contemplated that irregularities in a mark image other than geometric deformations may be compensated for prior to completing a mark quality assessment. For instance, other image irregularities may include non-uniform lighting of a mark that shows up in the obtained image, background texture of the surface (see 20 in FIG. 1) to which a mark is applied, etc. To compensate for other irregularities, referring again to FIG. 3, at blocks 76 and 78 the degrees of the other irregularities may be identified and compared to tolerable levels and when intolerable levels are identified, control may pass to the subprocess 84 of FIG. 4.
In this case, the subprocess in FIG. 4 would be modified to compensate for the other irregularity. For instance, where the other irregularity is lighting non-uniformity, the subprocess 104 of FIG. 5 may be substituted for a portion of the FIG. 4 subprocess 84. Here, in FIG. 4, after the mark is located in the image at block 88, control passes to block 90 a in FIG. 5 where a difference map is computed that represents the perceived lighting difference between the synthetic ideal mark model (see block 86) and the imaged mark. At block 92 a the difference map is used to compensate the imaged mark thereby generating a compensated image. At block 94 a mark quality characteristics are gleaned from the compensated image and at block 96 a an applied mark quality value is generated after which control passes back to block 98 in FIG. 4.
In at least some cases several different irregularity compensating processes may be performed on an imaged mark prior to assessing mark quality. For instance, after decoding is successful at block 72 in FIG. 3, geometric distortions may be compensated first after which the effects of lighting non-uniformity are compensated second, after which the effects of background surface texture are compensated, and so on. In another contemplated case, a single complex compensation algorithm may compensate for two or more irregularities (e.g., geometric distortion and lighting non-uniformity) simultaneously. Moreover, while FIG. 3 and the discussion above generally teach that irregularities are compensated only when they exceed tolerable levels (see block 78), in at least some embodiments irregularities may be compensated all the time irrespective of the degree of irregularity level. In this case, in FIG. 3, control would pass directly from block 72 to block 86 in FIG. 4 where the synthetic ideal mark model is computed.
Referring now to FIG. 6, a second embodiment consistent with at least some aspects of the present invention is illustrated that is used at a station 130. Here, components that are similar to the components described above with respect to FIG. 1 are not described in detail. Instead, in the interest of simplifying this explanation, components that are similar to or identical to components described above with respect to FIG. 1 are labeled using the same numerals. For example, numeral 16 is used in each of FIGS. 1 and 6 to identify an item support table or structure, numeral 24 is used to label a camera field of view, etc.
There are two primary differences between the station 10 shown in FIG. 1 and the station 130 shown in FIG. 6. In FIG. 6, station 130 does not include a marker or marker machine akin to marker 12 in FIG. 1. While no marker is shown, in some embodiments a marker could be provided at station 130. In addition, instead of including a stationary camera 14, a handheld reader or camera device 114 is included for use at station 130 for obtaining images that include images of marks (e.g., see 19 in FIG. 6). Here, the handheld device 114 includes optics 26 for focusing the field of view 24 of the reader, a trigger 126 that, when activated, causes the reader 114 to obtain an image, visual feedback devices such as, for instance, LEDs 15, and an audio output device, in the illustrated embodiment, including a speaker 17. Referring also to FIG. 2, here, it is contemplated that reader 114 would include a processor 50 linked to each of a camera and the output devices 15 and 17. Reader 114 may be feathered via a power and data card or may be wireless.
Referring still to FIG. 6, here, it should be appreciated that because device 114 is portable and can be moved about station 130, device 114 is not stationary and therefore the field of view 24 and its relation to a mark 19 can be and typically is altered during use. Because the orientation of device 114 changes with respect to marks being imaged, the amount of distortion associated with images obtained from different angles with respect to the mark surface 20 should vary. Thus, for instance, while a certain amount of distortion in the image of mark 19 will occur when handheld reader 114 is used to obtain an image from the angle shown in FIG. 6, another amount of distortion will result when reader 114 is oriented as shown in FIG. 7 when an image of mark 19 is obtained. Here, a slightly different process is performed to verify mark quality wherein, in at least some cases, a handheld reader user can be prompted to change the position of the reader 114 with respect to a mark when mark quality does not exceed a baseline quality value or when decoding fails.
Referring now to FIG. 8, a subprocess 140 that may be substituted for a portion of the process shown in FIG. 3 is illustrated. Referring also to FIG. 3, in the case of a handheld device, the process steps 62 and 64 are performed to provide known symbol characteristics and a baseline quality value to the processor 50 (see again FIG. 2) that is associated with handheld reader 114. The two dimensional mark at block 66 is applied either at station 130 or may have previously been applied at some other station or indeed at another facility. After block 66 in FIG. 3, control passes to block 141 in FIG. 8. Referring also to FIGS. 2 and 6, at block 141, a handheld reader user aligns the handheld reader at a first angle as shown in FIG. 6 so that mark 19 in first space 22 is within the field of view 24 of reader 114. At block 142, trigger 126 is activated causing reader 114 to obtain an image of the two dimensional mark 19 at station 130. At block 144, processor 50 attempts to decode the mark to obtain an applied mark information subset. At block 146, where decoding fails, control passes to block 148 where reader 114 provides a feedback signal indicating that decoding failed. At block 150, prompted by the failed decode feedback signal, the reader user realigns the handheld reader 114 at a new angle (see, for example, FIG. 7) so that mark 19 in the first space 22 is again within the field of view of the reader 114. After block 150, control passes back up to block 142 where a second image of the mark 19 is obtained.
Referring still to FIGS. 2, 6 and 8, at decision block 146, after the mark 19 is successfully decoded, control passes down to block 152 where processor 50 verifies the corner locations of the mark in the obtained image. At block 154, processor 50 estimates the amount of distortion in the imaged mark (or the amount of some other irregularity of interest). At decision block 156, processor 50 determines if the distortion amount is at an acceptable level. Where distortion is below a tolerable level, a feedback signal is provided at block 158. After block 158 control passes to block 150 where, prompted by the feedback signal, the reader user aligns the handheld reader at a new angle (see again FIG. 7) so that the mark 19 in the first space 22 is within the field of view of the reader. After block 150, control passes again back up to block 142 where a new image of the mark is obtained.
Referring yet again to FIGS. 2, 6 and 8, at decision block 156, when the distortion level is acceptable, control passes to block 159. At block 159, metrics are read from the imaged mark and an applied mark quality value is calculated which is compared to a baseline at block 161. Appropriate feedback signals are provided at blocks 158 or 160. Where the feedback signal indicates a low quality mark, at block 150 the user is prompted to reposition the reader 114 to obtain another mark image. After block 160 the process ends.
Although not shown, it should be recognized that the subprocesses described above with respect to FIGS. 4 and 5 may be performed in the context of hand held readers as described with respect to FIGS. 6-8.
In at least some embodiment, it is contemplated that processor 50 may use the feedback devices 15 and/or 17 to provide even more informative clues to a handheld reader user as to whether or not mark quality is increasing or decreasing as the reader is moved about with respect to a mark. For example, in at least some cases, it is contemplated that a reader user may depress trigger 126 and keep the trigger in the activated position thereby causing reader 114 to continually and quickly obtain new images whenever mark quality falls below the baseline value. Here, as the quality of the mark in successive images changes, the output signals can be modified to indicate whether or not the quality is increasing or decreasing to aid the user in “hunting” for an appropriate juxtaposition between the reader and mark in which the mark is appropriately presented. For instance, essentially in real time where the quality between successive mark images is increasing, the duration of beeps generated via speaker 17 may be increased or the periods between beeps may be shortened almost like a Geiger counter to indicate an increase or decrease in quality. Similarly, as quality is increased, more LEDs 15 may be energized until, when all of the LEDs 15 are energized, an image of a mark is obtained with a mark that has a quality level that exceeds the baseline level.
Consistent with the comments in the previous paragraph, referring to FIG. 9, an exemplary method subprocess 162 that may be substituted for process block 158 in FIG. 8 is illustrated. Referring also to FIGS. 2, 6 and 8, when the mark quality at decision block 156 is not acceptable, control may pass to block 164 in FIG. 9 where processor 50 determines whether or not the mark quality is better than the previous mark quality associated with the previously obtained image. As the mark quality is decreasing, at block 166, a feedback signal is provided that indicates unacceptable mark quality and that the quality is decreasing. On the other hand, where the mark quality is increasing, control passes to block 168 where the feedback signal indicates that the mark quality signal is unacceptable but that the quality is increasing
One or more specific embodiments of the present invention have been described above. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers'specific goals, such as compliance with system-related and business related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Referring now to FIG. 10, another exemplary embodiment of a hand held reader 214 is shown for reading a mark 19 on a first surface 20 of an object 21. Here, the reader 214 is different than the readers described above in that reader 214 includes a range finder or range extension 216 that extends from a front end thereof. Range extensin 216 is a rigid member that extends along a trajectory that is substantially parallel to the central trajectory (not labeled) along which the reader field of view 24 is directed. In operation, a reader user positions reader 214 so that a distal end 218 of extension contacts first surface 20 adjacent a mark 19 to be read prior to activating the reader 214. Here, the length of extensin 216 is designed so that an optimal imaging distance occurs between the reader 214 and surface 20 when distal end 218 contacts surface 20. Thus, extension 216 contains at least one imaging variable in at least some embodiments.
Referring still to FIG. 10, while extension 216 is shown as rigid and integrally formed with reader 214, in some cases extension 216 may be flexible, may be telescoping like a radio antenna, may fold into a storage position, etc. In some cases extensin 216 may be removable. For instance, extensin 216 may include an external thread at the proximal end or may otherwise attach at the proximal end (e.g., via a collar or the like that fits over the lateral portion of optics 26).
Thus, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
To apprise the public of the scope of this invention, the following claims are made:

Claims (26)

1. A method for applying a two dimensional mark on a first surface of a component and assessing mark quality, the method comprising the steps of:
positioning a component with a first surface in a first position at a first station;
applying a two dimensional mark to the first surface at the first station wherein the applied mark is intended to codify a first information subset;
obtaining an image of the applied two dimensional mark while the component remains in the first position at the first station;
performing a mark quality assessment on the mark in the obtained image; and
performing a secondary function as a result of the mark quality assessment.
2. The method of claim 1 wherein the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, gleaning other mark quality characteristics from the mark in the obtained image.
3. The method of claim 1 wherein the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, unwarping the mark to at least in part compensate for mark distortion thereby generating an unwarped mark, gleaning mark quality characteristics from the unwarped mark, generating an applied mark quality value as a function of the gleaned characteristics from the unwarped mark and comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
4. The method of claim 1 wherein the step of performing a mark quality assessment on the obtained image includes decoding the mark in the obtained image, using the decoded information to generate a synthetic mark model, using the mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate the mark obtained in the image for at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
5. The method of claim 1 wherein the step of obtaining an image includes providing a stationary camera at the first station that has a field of view that is centered along a trajectory that forms an obtuse angle with at least a portion of the first surface.
6. The method of claim 1 wherein the step of obtaining an image includes using a reader to obtain the image, and wherein the reader includes a fixed mount reader.
7. The method of claim 2 wherein the step of gleaning other mark quality characteristics includes gleaning at least a subset of geometric characteristics of the mark, mark size, mark color, mark shading, symbol contrast, axial non-uniformity of the mark, grid non-uniformity of the mark, extreme reflectance, angle of distortion, dot diameter, dot ovality, dot position, image sharpness and background uniformity.
8. The method of claim 2 wherein the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image the step of performing a mark quality assessment further including, where the degree of the at least one irregularity in the image exceeds a tolerable level, at least in part compensating for the irregularity thereby generating a compensated mark, gleaning mark quality characteristics from the compensated mark and generating an applied mark quality value as a function of the gleaned characteristerics from the compensated mark.
9. The method of claim 2 wherein the step of gleaning other mark quality characteristics includes obtaining information from the mark in the obtained image indicative of the degree of at least one irregularity in the obtained image and., when the degree of the at least one irregularity exceeds a tolerable level, providing a feedback signal indicating that the degree or irregularity is intolerale.
10. The method of claim 3 wherein the step of unwarping the mark thereby generating an unwarped mark includes using the decoded information from the mark to generate a synthetic mark model, comparing the synthetic mark model to the mark in the obtained image to generate a deformation map and unwarping the mark using the deformation map to generate the unwarped mark.
11. The method of claim 4 wherein the step of using decoded information to generate a mark model includes using the decoded information as well as known characteristics of the mark to generate the mark model.
12. The method of claim 4 wherein the step of generating a mark model includes generating a mark model corresponding to the specific data decoded from the imaged mark.
13. The method of claim 5 wherein the step of providing a camera includes positioning the camera so that the field of view is centered along a trajectory that forms an obtuse angle with a central portion of the first surface.
14. The method of claim 8 wherein the step of performing a mark quality assessment further includes comparing the applied mark quality value to a baseline assessment value, the secondary function including, when the applied mark quality value is below the baseline value, indicating a low mark quality level.
15. The method of claim 8 wherein the first surface may be warped, the at least one irregularity including at least a subset of non-optimal lighting, first surface warping, lens/optical distortion, perspective distortion, and perceived background texture.
16. The method of claim 8 wherein the at least one irregularity is geometric distortion, the step of compensating including using the decoded information to generate a synthetic mark model and using the mark model to compensate for the geometric distortion.
17. The method of claim 14 wherein the secondary function further includes, when the applied mark quality value is at least equal to the baseline value, indicating a high mark quality level.
18. The method of claim 16 further including the step of providing known mark characteristics, the step of generating a synthetic mark model including using both the provided known mark characteristics and the decoded information.
19. The method of claim 16 wherein the step of using the mark model includes using the mark model and the mark in the obtained image to generate a difference map and using the difference map to compensate for the irregularity in the mark in the obtained image.
20. A method for assessing quality of a two dimensional mark that is applied to a first surface, the method comprising the steps of:
obtaining an image of the applied two dimensional mark;
decoding the mark in the obtained image to generate a first information subset wherein the first information subset includes the actual information coded by the mark;
using the first information subset to generate a synthetic mark model;
comparing the synthetic mark model to the mark in the obtained image to generate a difference map;
using the difference map to at least in part compensate for at least one irregularity in the mark in the obtained image thereby generating a compensated mark; and
assessing, with a processor, the quality of the compensated mark.
21. The method of claim 20 wherein the step of using decoded information to generate a mark model includes using the decoded information as well as known characteristics of the mark to generate the mark model.
22. The method of claim 20 wherein the step of generating a mark model includes generating the mark model corresponding to specific data decoded from the imaged mark.
23. The method of claim 20 wherein the step of obtaining an image includes using a reader to obtain the image, and wherein the reader includes a fixed mount reader.
24. A method for applying a two dimensional mark on a first surface of a component and assessing mark quality, the method comprising the steps of:
positioning a component with a first surface in a first position at a first station; applying a two dimensional mark to the first surface at the first station wherein the applied mark is intended to codify a first information subset;
obtaining an image of the applied two dimensional mark while the component remains in the first position at the first station;
performing, with a processor, a mark quality assessment on the mark in the obtained image; and
providing a signal to an external device.
25. The method of claim 24 wherein the step of performing a mark quality assessment includes attempting to decode the image of the mark and when the image is successfully decoded, gleaning other mark quality characteristics from the mark in the obtained image.
26. The method of claim 24 wherein the step of obtaining an image includes using a reader to obtain the image, and wherein the reader includes a fixed mount reader.
US11/427,420 2006-06-29 2006-06-29 Method and apparatus for verifying two dimensional mark quality Expired - Fee Related US8108176B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/427,420 US8108176B2 (en) 2006-06-29 2006-06-29 Method and apparatus for verifying two dimensional mark quality
US11/743,193 US8027802B1 (en) 2006-06-29 2007-05-02 Method and apparatus for verifying two dimensional mark quality
US13/270,370 US9465962B2 (en) 2006-06-29 2011-10-11 Method and apparatus for verifying two dimensional mark quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/427,420 US8108176B2 (en) 2006-06-29 2006-06-29 Method and apparatus for verifying two dimensional mark quality

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/743,193 Continuation US8027802B1 (en) 2006-06-29 2007-05-02 Method and apparatus for verifying two dimensional mark quality
US13/270,370 Division US9465962B2 (en) 2006-06-29 2011-10-11 Method and apparatus for verifying two dimensional mark quality

Publications (2)

Publication Number Publication Date
US20080004822A1 US20080004822A1 (en) 2008-01-03
US8108176B2 true US8108176B2 (en) 2012-01-31

Family

ID=38877748

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/427,420 Expired - Fee Related US8108176B2 (en) 2006-06-29 2006-06-29 Method and apparatus for verifying two dimensional mark quality
US11/743,193 Expired - Fee Related US8027802B1 (en) 2006-06-29 2007-05-02 Method and apparatus for verifying two dimensional mark quality
US13/270,370 Active 2026-09-18 US9465962B2 (en) 2006-06-29 2011-10-11 Method and apparatus for verifying two dimensional mark quality

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/743,193 Expired - Fee Related US8027802B1 (en) 2006-06-29 2007-05-02 Method and apparatus for verifying two dimensional mark quality
US13/270,370 Active 2026-09-18 US9465962B2 (en) 2006-06-29 2011-10-11 Method and apparatus for verifying two dimensional mark quality

Country Status (1)

Country Link
US (3) US8108176B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275833A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for detecting and characterizing an object
US20050276461A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for automatic visual detection, recording, and retrieval of events
US20050276460A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for automatic visual event detection
US20120207395A1 (en) * 2011-02-09 2012-08-16 Testo Ag Measuring device set and method for documenting a measurement
US8782553B2 (en) 2004-06-09 2014-07-15 Cognex Corporation Human-machine-interface and method for manipulating data in a machine vision system
US9183443B2 (en) 2004-06-09 2015-11-10 Cognex Technology And Investment Llc Method and apparatus for configuring and testing a machine vision detector
US9292187B2 (en) 2004-11-12 2016-03-22 Cognex Corporation System, method and graphical user interface for displaying and controlling vision system operating parameters
US9651499B2 (en) 2011-12-20 2017-05-16 Cognex Corporation Configurable image trigger for a vision system and method for using the same
US10740582B1 (en) 2019-01-22 2020-08-11 Datalogic IP Tech, S.r.l. Generic shape quality verification process for a mark and read system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963448B2 (en) 2004-12-22 2011-06-21 Cognex Technology And Investment Corporation Hand held machine vision method and apparatus
US9552506B1 (en) 2004-12-23 2017-01-24 Cognex Technology And Investment Llc Method and apparatus for industrial identification mark verification
US8108176B2 (en) 2006-06-29 2012-01-31 Cognex Corporation Method and apparatus for verifying two dimensional mark quality
US7984854B2 (en) * 2006-07-17 2011-07-26 Cognex Corporation Method and apparatus for multiplexed symbol decoding
US8169478B2 (en) * 2006-12-14 2012-05-01 Cognex Corporation Method and apparatus for calibrating a mark verifier
US9734376B2 (en) 2007-11-13 2017-08-15 Cognex Corporation System and method for reading patterns using multiple image frames
AU2009250309A1 (en) * 2008-05-21 2009-11-26 Ferag Ag Optical control method for further print processing
US8740076B2 (en) 2012-07-11 2014-06-03 Linksmart Technologies Pvt. Ltd. Label for enabling verification of an object
JP5708357B2 (en) * 2011-08-09 2015-04-30 株式会社デンソーウェーブ Information code verifier
CN104303192B (en) 2012-03-01 2016-11-23 系统科技解决方案公司 Unique identifying information from the feature of labelling
US10068153B2 (en) 2012-08-21 2018-09-04 Cognex Corporation Trainable handheld optical character recognition systems and methods
US8873892B2 (en) 2012-08-21 2014-10-28 Cognex Corporation Trainable handheld optical character recognition systems and methods
US8998090B1 (en) * 2013-03-15 2015-04-07 Cognex Corporation Standoff for optical imaging system
US9721335B2 (en) 2015-01-25 2017-08-01 Yta Holdings, Llc Method and system for determining quality of markings applied to food products
USD848428S1 (en) * 2017-11-08 2019-05-14 Lee Seng Fook Hand held 3D scanning device
USD848429S1 (en) * 2017-11-08 2019-05-14 Lee Seng Fook Hand held 3D scanning device with feedback system
US10740581B2 (en) * 2018-12-03 2020-08-11 Zebra Technologies Corporation Dual mode reader and method of reading DPM codes therewith

Citations (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868634A (en) 1972-11-03 1975-02-25 Scanner Reading of contrasting data by means of continuously attempting to decode read signals
US3890597A (en) 1973-09-17 1975-06-17 Taplin Business Machines Bar geometry verification system for bar-coded characters
US4282425A (en) 1979-07-25 1981-08-04 Norand Corporation Instant portable bar code reader
US4308455A (en) 1980-06-26 1981-12-29 E. I. Du Pont De Nemours And Company Method for decoding bar-coded labels
US4421978A (en) 1981-08-20 1983-12-20 International Business Machines Corporation Decoding method for multicharacter labels
US4782220A (en) 1986-09-29 1988-11-01 Mars, Incorporated Method and apparatus for bar code data autodiscrimination
US4866784A (en) 1987-12-02 1989-09-12 Eastman Kodak Company Skew detector for digital image processing system
US4894523A (en) 1981-12-28 1990-01-16 Norand Corporation Instant portable bar code reader
US4948955A (en) 1988-12-22 1990-08-14 The Boeing Company Barcode location determination
US4973829A (en) 1988-11-22 1990-11-27 Eastman Kodak Company Bar code reading method
US5028772A (en) 1988-08-26 1991-07-02 Accu-Sort Systems, Inc. Scanner to combine partial fragments of a complete code
US5120940A (en) 1990-08-10 1992-06-09 The Boeing Company Detection of barcodes in binary images with arbitrary orientation
US5124538A (en) 1988-08-26 1992-06-23 Accu-Sort Systems, Inc. Scanner
US5124537A (en) 1990-10-29 1992-06-23 Omniplanar, Inc. Omnidirectional bar code reader using virtual scan of video raster scan memory
US5155343A (en) 1990-03-28 1992-10-13 Chandler Donald G Omnidirectional bar code reader with method and apparatus for detecting and scanning a bar code symbol
US5163104A (en) 1988-02-24 1992-11-10 Transtechnology Corporation Digital image processing technique including improved gray scale compression
US5166830A (en) 1989-09-29 1992-11-24 Hoya Corporation Aspherical lens system for a bar code sensor
US5187356A (en) 1981-12-28 1993-02-16 Norand Corporation Instant portable bar code reader
US5187355A (en) 1981-12-28 1993-02-16 Norand Corporation Instant portable bar code reader
US5192856A (en) 1990-11-19 1993-03-09 An Con Genetics, Inc. Auto focusing bar code reader
US5262652A (en) 1991-05-14 1993-11-16 Applied Materials, Inc. Ion implantation apparatus having increased source lifetime
US5262626A (en) 1989-12-06 1993-11-16 Symbol Technologies, Inc. Decoding bar codes from multiple scans using element replacement
US5262623A (en) 1991-09-04 1993-11-16 Omniplanar, Inc. Method and apparatus for distinguishing a preferred bar code or the like
US5276315A (en) 1992-05-14 1994-01-04 United Parcel Service Of America, Inc. Method and apparatus for processing low resolution images of degraded bar code symbols
US5276316A (en) 1990-05-02 1994-01-04 Ncr Corporation Method for reconstructing complete bar code signals from partial bar code scans
US5278397A (en) 1991-07-25 1994-01-11 Symbol Technologies, Inc. Multi-resolution bar code reader
US5286960A (en) 1991-11-04 1994-02-15 Welch Allyn, Inc. Method of programmable digitization and bar code scanning apparatus employing same
US5291008A (en) 1992-01-10 1994-03-01 Welch Allyn, Inc. Optical assembly and apparatus employing same using an aspherical lens and an aperture stop
US5296690A (en) 1991-03-28 1994-03-22 Omniplanar, Inc. System for locating and determining the orientation of bar codes in a two-dimensional image
US5304786A (en) 1990-01-05 1994-04-19 Symbol Technologies, Inc. High density two-dimensional bar code symbol
US5332892A (en) 1991-07-25 1994-07-26 Symbol Technologies, Inc. Optical systems for bar code scanners
US5378883A (en) 1991-07-19 1995-01-03 Omniplanar Inc. Omnidirectional wide range hand held bar code reader
US5412197A (en) 1993-01-29 1995-05-02 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols using gradient signals
US5418862A (en) 1992-08-10 1995-05-23 United Parcel Service Of America Method and apparatus for detecting artifact corners in two-dimensional images
US5420409A (en) 1993-10-18 1995-05-30 Welch Allyn, Inc. Bar code scanner providing aural feedback
US5446271A (en) 1993-08-06 1995-08-29 Spectra-Physics Scanning Systems, Inc. Omnidirectional scanning method and apparatus
US5455414A (en) 1994-09-15 1995-10-03 Metanetics Corporation Simplified bar code decoding with dynamically loadable data character sets
US5461417A (en) 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5463214A (en) 1994-03-04 1995-10-31 Welch Allyn, Inc. Apparatus for optimizing throughput in decoded-output scanners and method of using same
US5478999A (en) 1992-08-10 1995-12-26 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols along search steps
US5481098A (en) 1993-11-09 1996-01-02 Spectra-Physics Scanning Systems, Inc. Method and apparatus for reading multiple bar code formats
US5483051A (en) 1993-11-04 1996-01-09 Datalogic S.P.A. Laser bar code reader measuring phase of the pulse laser to determine the distance
US5486689A (en) 1993-01-22 1996-01-23 Intermec Corporation Method and apparatus for decoding unresolved multi-width bar code symbology profiles
US5487115A (en) 1992-05-14 1996-01-23 United Parcel Service Method and apparatus for determining the fine angular orientation of bar code symbols in two-dimensional CCD images
US5507527A (en) 1993-12-30 1996-04-16 Tomioka; Makoto Two dimensional code for processing data
US5514858A (en) 1995-02-10 1996-05-07 Intermec Corporation Method and apparatus for decoding unresolved complex multi-width bar code symbology profiles
US5523552A (en) 1994-10-19 1996-06-04 Symbol Technologies, Inc. Method and apparatus to scan randomly oriented two-dimensional bar code symbols
US5539191A (en) 1995-06-22 1996-07-23 Intermec Corporation Method and apparatus for decoding unresolved bar code profiles using edge finding circuitry
US5550366A (en) 1994-06-20 1996-08-27 Roustaei; Alexander Optical scanner with automatic activation
US5557091A (en) 1994-04-15 1996-09-17 Krummel; Larry Method and system for bar code image processing
US5591956A (en) 1995-05-15 1997-01-07 Welch Allyn, Inc. Two dimensional data encoding structure and symbology for use with optical readers
US5612524A (en) 1987-11-25 1997-03-18 Veritec Inc. Identification symbol system and method with orientation mechanism
US5646391A (en) 1995-05-11 1997-07-08 Psc, Inc. Optical assembly for controlling beam size in bar code scanners
US5657402A (en) 1991-11-01 1997-08-12 Massachusetts Institute Of Technology Method of creating a high resolution still image using a plurality of images and apparatus for practice of the method
US5675137A (en) 1986-04-18 1997-10-07 Cias, Inc. Bar code decoding using moving averages to break the (n,k) code barrier for UPC, EAN Code 128 and others
US5682030A (en) 1993-02-02 1997-10-28 Label Vision Systems Inc Method and apparatus for decoding bar code data from a video signal and application thereof
US5691597A (en) 1995-01-27 1997-11-25 Kabushiki Kaisha Toshiba Color cathode-ray tube and method for manufacturing the same
US5723853A (en) 1995-01-10 1998-03-03 Welch Allyn, Inc. Bar code reader
US5739518A (en) 1995-05-17 1998-04-14 Metanetics Corporation Autodiscrimination for dataform decoding and standardized recording
US5742037A (en) 1996-03-07 1998-04-21 Cognex Corp. Method and apparatus for high speed identification of objects having an identifying feature
US5744790A (en) 1996-01-25 1998-04-28 Symbol Technologies, Inc. Split optics focusing apparatus for CCD-based bar code scanner
US5756981A (en) 1992-02-27 1998-05-26 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and-two-dimensional symbologies at variable depths of field including memory efficient high speed image processing means and high accuracy image analysis means
US5767498A (en) 1996-09-17 1998-06-16 Ncr Corporation Bar code error scanner
US5767497A (en) 1996-12-04 1998-06-16 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols using ratio analysis of module size
US5777309A (en) 1995-10-30 1998-07-07 Intermec Corporation Method and apparatus for locating and decoding machine-readable symbols
US5786586A (en) 1995-01-17 1998-07-28 Welch Allyn, Inc. Hand-held optical reader having a detachable lens-guide assembly
US5814827A (en) 1995-05-19 1998-09-29 Symbol Technologies, Inc. Optical scanner with extended depth of focus
US5821520A (en) 1995-04-28 1998-10-13 Symbol Technologies, Inc. Bar code scanning system with the pre-decoding signal processing and method for bar code candidate selection for decoding
US5825006A (en) 1994-03-04 1998-10-20 Welch Allyn, Inc. Optical reader having improved autodiscrimination features
US5852288A (en) 1994-09-19 1998-12-22 Sumitomo Electric Industries, Ltd. Bar code scanning apparatus
US5872354A (en) 1989-01-31 1999-02-16 Norand Corporation Hand-held data capture system with interchangable modules including autofocusing data file reader using the slope of the image signal to determine focus
US5877486A (en) 1996-10-11 1999-03-02 Intermec Ip Corp. Method and apparatus for enhancing resolution of reflectance signals produced from machine-readable symbols
US5880451A (en) 1997-04-24 1999-03-09 United Parcel Service Of America, Inc. System and method for OCR assisted bar code decoding
US5902988A (en) 1992-03-12 1999-05-11 Norand Corporation Reader for decoding two-dimensional optically readable information
US5914476A (en) 1997-11-04 1999-06-22 Welch Allyn, Inc. Optical reader configured to accurately and rapidly read multiple symbols
US5920060A (en) 1995-09-21 1999-07-06 Symbol Technologies, Inc. Bar code scanner with simplified auto-focus capablilty
US5929418A (en) 1994-03-04 1999-07-27 Welch Allyn, Inc. Optical reader having improved menuing features
US5932862A (en) 1994-03-04 1999-08-03 Welch Allyn, Inc. Optical reader having improved scanning-decoding features
US5936224A (en) 1996-12-11 1999-08-10 Intermec Ip Corporation Method and apparatus for reading machine-readable symbols by employing a combination of multiple operators and/or processors
US5949052A (en) 1997-10-17 1999-09-07 Welch Allyn, Inc. Object sensor system for stationary position optical reader
EP0571892B1 (en) 1992-05-26 1999-10-13 United Parcel Service Of America, Inc. Multiple code camera system
US6000612A (en) 1997-10-10 1999-12-14 Metanetics Corporation Portable data collection device having optical character recognition
US6006990A (en) 1995-09-12 1999-12-28 Telxon Corporation Dataform reader utilizing hand jittering compensation method
US6021946A (en) 1997-03-14 2000-02-08 Sick Ag Self-focusing bar code reader and optical receiving system
US6053407A (en) 1995-05-31 2000-04-25 Metanetics Corporation Maxicode data extraction using spatial domain features
US6056198A (en) 1997-08-07 2000-05-02 Psc Scanning, Inc. Optical scanning system and method including a collection system for range enhancement
US6075883A (en) 1996-11-12 2000-06-13 Robotic Vision Systems, Inc. Method and system for imaging an object or pattern
US6075905A (en) 1996-07-17 2000-06-13 Sarnoff Corporation Method and apparatus for mosaic image construction
US6078251A (en) 1996-03-27 2000-06-20 Intermec Ip Corporation Integrated multi-meter and wireless communication link
US6082619A (en) 1998-12-16 2000-07-04 Matsushita Electric Industrial Co., Ltd. Method for locating and reading a two-dimensional barcode
US6088482A (en) 1998-10-22 2000-07-11 Symbol Technologies, Inc. Techniques for reading two dimensional code, including maxicode
US6095422A (en) 1998-01-14 2000-08-01 Intermec Ip Corp. Method and apparatus of autodiscriminating in symbol reader employing prioritized and updated table of symbologies
DE10012715A1 (en) 1999-03-19 2000-09-21 Joerg Kuechen Scanner positioning to coded surface, to read bar codes has measurement unit to correct distance and measurement unit to correct orientation
US6123261A (en) 1997-05-05 2000-09-26 Roustaei; Alexander R. Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
US6152371A (en) 1998-08-12 2000-11-28 Welch Allyn, Inc. Method and apparatus for decoding bar code symbols
US6158661A (en) 1981-12-28 2000-12-12 Intermec Ip Corp. Instant portable bar code reader
US6161760A (en) 1998-09-14 2000-12-19 Welch Allyn Data Collection, Inc. Multiple application multiterminal data collection network
US6176428B1 (en) 1999-04-07 2001-01-23 Symbol Technologies, Inc. Techniques for reading postal code
US6189792B1 (en) 1999-12-14 2001-02-20 Ncr Corporation System and methods for exemplar based bar code error detection and correction
US6209789B1 (en) 1991-09-17 2001-04-03 Metrologic Instruments, Inc. Optical filtering system for a laser bar code scanner having narrow band-pass characteristics employing spatially separated filtering elements including a scanner window
US6234395B1 (en) 1981-12-28 2001-05-22 Intermec Ip Corp. Instant portable bar code reader
US6250551B1 (en) 1998-06-12 2001-06-26 Symbol Technologies, Inc. Autodiscrimination and line drawing techniques for code readers
US6289113B1 (en) 1998-11-25 2001-09-11 Iridian Technologies, Inc. Handheld iris imaging apparatus and method
US6298176B2 (en) 1997-10-17 2001-10-02 Welch Allyn Data Collection, Inc. Symbol-controlled image data reading system
US20010042065A1 (en) 2000-04-28 2001-11-15 Nec Corporation Appearance inspection apparatus and appearance inspection method
US20010042789A1 (en) 2000-05-17 2001-11-22 Mark Krichever Bioptics bar code reader
US6371373B1 (en) 1999-05-25 2002-04-16 Matsushita Electric Industrial Co., Ltd. Method for reading a two-dimensional barcode
US20020044689A1 (en) 1992-10-02 2002-04-18 Alex Roustaei Apparatus and method for global and local feature extraction from digital images
US6398113B1 (en) 1999-12-23 2002-06-04 Ncr Corporation System and methods for collaborative bar code error detection and correction
US6408429B1 (en) 1997-01-17 2002-06-18 Cognex Corporation Machine vision system for identifying and assessing features of an article
US6446868B1 (en) 1998-11-23 2002-09-10 Informatics, Inc. Scanning system for decoding two-dimensional barcode symbologies with a one-dimensional general purpose scanner
US6454168B1 (en) 1998-09-14 2002-09-24 Psc Scanning, Inc. Correlation and stitching techniques in a bar code scanning system
US20020171745A1 (en) 2001-05-15 2002-11-21 Welch Allyn Data Collection, Inc. Multimode image capturing and decoding optical reader
US6490376B1 (en) 1998-09-17 2002-12-03 Metrologic Instruments, Inc. Skew processing of raster scan images
US6491223B1 (en) 1996-09-03 2002-12-10 Hand Held Products, Inc. Autodiscriminating optical reader
US20030006290A1 (en) 2001-05-02 2003-01-09 Hand Held Products, Inc. Optical reader comprising soft key including permanent graphic indicia
US6505778B1 (en) 1998-07-17 2003-01-14 Psc Scanning, Inc. Optical reader with selectable processing characteristics for reading data in multiple formats
US6512714B2 (en) 2001-02-15 2003-01-28 Hitachi, Ltd. Semiconductor memory device equipped with dummy cells
US6513714B1 (en) 1998-09-14 2003-02-04 Psc Scanning, Inc. Character reconstruction and element level processing in bar code scanning system
US6561427B2 (en) 1998-09-14 2003-05-13 Psc Scanning, Inc. Decoding system and methods in a bar code scanning system
US20030117511A1 (en) 2001-12-21 2003-06-26 Eastman Kodak Company Method and camera system for blurring portions of a verification image to show out of focus areas in a captured archival image
US20030121978A1 (en) 2000-07-14 2003-07-03 Rubin Kim T. Compact matrix code and one-touch device and method for code reading
US6629642B1 (en) 1996-08-02 2003-10-07 Symbol Technologies, Inc. Data system and method for accessing a computer network using a collection of bar code symbols
US6677852B1 (en) 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6681151B1 (en) 2000-12-15 2004-01-20 Cognex Technology And Investment Corporation System and method for servoing robots based upon workpieces with fiducial marks using machine vision
US6728419B1 (en) 2000-02-17 2004-04-27 Xerox Corporation Multi-tasking multi-threaded image processing system and method for image capture devices
US20040091255A1 (en) 2002-11-11 2004-05-13 Eastman Kodak Company Camera flash circuit with adjustable flash illumination intensity
US6761316B2 (en) 2001-03-27 2004-07-13 Symbol Technologies, Inc. Compact auto ID reader and radio frequency transceiver data collection module
EP0896290B1 (en) 1997-08-06 2004-10-20 Sick AG Method and device for reading a barcode consisting of a predetermined number of coding elements
US6816063B2 (en) 1999-01-29 2004-11-09 Intermec Ip Corp Radio frequency identification systems and methods for waking up data storage devices for wireless communication
US6913199B2 (en) 2002-12-18 2005-07-05 Symbol Technologies, Inc. System and method for verifying optical character recognition of optical code reads
US6919793B2 (en) 1994-09-09 2005-07-19 Intermec Ip Corp. Radio frequency identification system write broadcast capability
US20050194447A1 (en) 2004-03-02 2005-09-08 Duanfeng He System and method for illuminating and reading optical codes imprinted or displayed on reflective surfaces
US20050263599A1 (en) 2003-11-13 2005-12-01 Metrologic Instruments, Inc. Digital imaging-based bar code symbol reading system employing a multi-mode image-processing symbol reading subsystem that switches its modes of reading during a single bar code symbol reading cycle, and within each said mode of reading, automatically applies a different image-processing based bar code symbol reading methodology
US20050275897A1 (en) * 2004-06-14 2005-12-15 Xerox Corporation Method for image segmentation to identify regions with constant foreground color
US20060022052A1 (en) 2004-07-29 2006-02-02 Mehul Patel System and method for decoding optical codes read by an imager-based optical code reader
US20060027661A1 (en) 2004-08-09 2006-02-09 Kazukuni Hosoi Method of decoding a symbol with a low contrast
US20060027657A1 (en) 2004-08-04 2006-02-09 Laurens Ninnink Method and apparatus for high resolution decoding of encoded symbols
US20060050961A1 (en) 2004-08-13 2006-03-09 Mohanaraj Thiyagarajah Method and system for locating and verifying a finder pattern in a two-dimensional machine-readable symbol
US7044378B2 (en) 2002-12-18 2006-05-16 Symbol Technologies, Inc. System and method for imaging and decoding optical codes using at least two different imaging settings
US7061524B2 (en) 2001-11-13 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Motion/saturation detection system and method for synthesizing high dynamic range motion blur free images from multiple captures
US20060131418A1 (en) 2004-12-22 2006-06-22 Justin Testa Hand held machine vision method and apparatus
US20060132787A1 (en) * 2004-12-20 2006-06-22 Xerox Corporation Full width array mechanically tunable spectrophotometer
US7070099B2 (en) 2004-09-30 2006-07-04 Symbol Technologies, Inc. Modular architecture for a data capture device
US7121467B2 (en) 2004-05-21 2006-10-17 Intermec Ip Corp. Indicators of optimum positioning of a data collection device for reading data carriers, such as RFID tags and machine-readable symbols
US20060249581A1 (en) 2005-05-03 2006-11-09 Smith Larry J Methods and systems for forming images of moving optical codes
US20060285135A1 (en) * 2005-06-15 2006-12-21 Xerox Corporation System and method for dynamically generated uniform color objects
US7175090B2 (en) 2004-08-30 2007-02-13 Cognex Technology And Investment Corporation Methods and apparatus for reading bar code identifications
US7181066B1 (en) 2002-12-26 2007-02-20 Cognex Technology And Investment Corporation Method for locating bar codes and symbols in an image
US7219841B2 (en) 2004-11-05 2007-05-22 Hand Held Products, Inc. Device and system for verifying quality of bar codes
US20080004822A1 (en) 2006-06-29 2008-01-03 Sateesha Nadabar Method and Apparatus for Verifying Two Dimensional Mark Quality
US20080011855A1 (en) 2006-07-17 2008-01-17 Sateesha Nadabar Method and Apparatus for Multiplexed Symbol Decoding
US20080019615A1 (en) 2002-06-27 2008-01-24 Schnee Michael D Digital image acquisition system capable of compensating for changes in relative object velocity
US20080143838A1 (en) 2006-12-14 2008-06-19 Sateesha Nadabar Method and apparatus for calibrating a mark verifier
WO2008118425A1 (en) 2007-03-23 2008-10-02 Ltt, Ltd Method and apparatus for using a limited capacity portable data carrier
WO2008118419A1 (en) 2007-03-23 2008-10-02 Ltt, Ltd Method and apparatus for reading a printed indicia with a limited field of view sensor
EP1469420B1 (en) 2003-04-17 2009-03-04 Anoto Group AB Method, system and program for reconstructing a bar code
US20090090781A1 (en) * 2005-12-20 2009-04-09 Xiangyun Ye Decoding distorted symbols
US20090121027A1 (en) 2007-11-13 2009-05-14 Cognex Corporation System and method for reading patterns using multiple image frames
US7604174B2 (en) 2003-10-24 2009-10-20 Cognex Technology And Investment Corporation Method and apparatus for providing omnidirectional lighting in a scanning device
EP1975849B1 (en) 2007-03-27 2011-04-27 Casio Computer Co., Ltd. Bar-code reading apparatus and computer-readable medium

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408344A (en) 1981-04-09 1983-10-04 Recognition Equipment Incorporated OCR and Bar code reader using multi port matrix array
IT1150467B (en) 1982-03-17 1986-12-10 Pama Spa PROCEDURE FOR THE FORMATION OF SOLES WITH HEEL AND SUB-HEEL, FOR MAXIMUM FEMALE SHOES WITH SUPPORTING BODY OR INCORPORATED ARMOR AND SHAPED AND ARMED SOLES OBTAINED WITH THAT PROCEDURE
US5053609A (en) 1988-05-05 1991-10-01 International Data Matrix, Inc. Dynamically variable machine readable binary code and method for reading and producing thereof
US5198650A (en) 1991-06-24 1993-03-30 Ncr Corporation Hands free/hand held bar code scanner
US5262625A (en) 1991-11-15 1993-11-16 Ncr Corporation Multiple bar code decoding system and method
JP3238507B2 (en) 1992-12-21 2001-12-17 旭光学工業株式会社 Special symbol reader
US5304787A (en) 1993-06-01 1994-04-19 Metamedia Corporation Locating 2-D bar codes
US5627358A (en) 1994-06-20 1997-05-06 Roustaei; Alexander System and method for reading two-dimensional barcodes
US5811784A (en) 1995-06-26 1998-09-22 Telxon Corporation Extended working range dataform reader
ATE165681T1 (en) 1994-10-25 1998-05-15 United Parcel Service Inc METHOD AND DEVICE FOR A PORTABLE CONTACTLESS IMAGE RECORDING DEVICE
US5780834A (en) 1995-05-15 1998-07-14 Welch Allyn, Inc. Imaging and illumination optics assembly
US6021380A (en) * 1996-07-09 2000-02-01 Scanis, Inc. Automatic semiconductor wafer sorter/prober with extended optical inspection
US5992744A (en) 1997-02-18 1999-11-30 Welch Allyn, Inc. Optical reader having multiple scanning assemblies with simultaneously decoded outputs
US6141033A (en) 1997-05-15 2000-10-31 Cognex Corporation Bandwidth reduction of multichannel images for machine vision
US6334060B1 (en) 1997-10-28 2001-12-25 Acumen, Inc. Multi-channel or split-frequency, low frequency, telemetry circuit and method between transmitters and receivers
US6765606B1 (en) 1997-11-13 2004-07-20 3Dv Systems, Ltd. Three dimension imaging by dual wavelength triangulation
EP1120176B1 (en) 2000-01-24 2005-04-20 Bystronic Laser AG Method for controlling the stroke of a press brake
DE10040899A1 (en) 2000-08-18 2002-02-28 Gavitec Gmbh Method and device for decoding optical codes
AU2001292946A1 (en) 2000-09-26 2002-04-08 Advantage 3D Llc Method and system for generation, storage and distribution of omni-directional object views
US6637658B2 (en) 2001-01-22 2003-10-28 Welch Allyn, Inc. Optical reader having partial frame operating mode
DE10113426A1 (en) 2001-03-19 2002-09-26 Gavitec Gmbh Code reader incorporates illumination device for sidewards illumination of scanned code
US7108184B2 (en) 2001-03-30 2006-09-19 Baxter International, Inc. Coding symbology and a method for printing same
JP3624288B2 (en) * 2001-09-17 2005-03-02 株式会社日立製作所 Store management system
US9092841B2 (en) 2004-06-09 2015-07-28 Cognex Technology And Investment Llc Method and apparatus for visual detection and inspection of objects
GB2387433B (en) 2002-04-08 2005-11-09 Edward Pryor And Son Ltd Improved marking system
US6965862B2 (en) 2002-04-11 2005-11-15 Carroll King Schuller Reading machine
US6824059B2 (en) 2002-04-30 2004-11-30 Hewlett-Packard Development Company, L.P. Apparatus for capturing images and barcodes
US7219843B2 (en) 2002-06-04 2007-05-22 Hand Held Products, Inc. Optical reader having a plurality of imaging modules
JP3516144B1 (en) 2002-06-18 2004-04-05 オムロン株式会社 Optical information code reading method and optical information code reader
US7774075B2 (en) 2002-11-06 2010-08-10 Lin Julius J Y Audio-visual three-dimensional input/output
US7227628B1 (en) * 2003-10-10 2007-06-05 Kla-Tencor Technologies Corp. Wafer inspection systems and methods for analyzing inspection data
US7823789B2 (en) 2004-12-21 2010-11-02 Cognex Technology And Investment Corporation Low profile illumination for direct part mark readers
US7609846B2 (en) 2004-07-13 2009-10-27 Eastman Kodak Company Matching of digital images to acquisition devices
US7204420B2 (en) 2004-08-31 2007-04-17 Symbol Technologies, Inc. Scanner and method for eliminating specular reflection
US7617984B2 (en) 2004-12-16 2009-11-17 Cognex Technology And Investment Corporation Hand held symbology reader illumination diffuser
US7770799B2 (en) 2005-06-03 2010-08-10 Hand Held Products, Inc. Optical reader having reduced specular reflection read failures
US7498566B2 (en) 2005-06-16 2009-03-03 Siemens Medical Solutions Usa, Inc. Automated quality control mechanism for a nuclear detector
US7614554B2 (en) 2006-03-09 2009-11-10 Jadak Technologies, Inc. Electrosurgical device having RFID and optical imaging capabilities

Patent Citations (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868634A (en) 1972-11-03 1975-02-25 Scanner Reading of contrasting data by means of continuously attempting to decode read signals
US3890597A (en) 1973-09-17 1975-06-17 Taplin Business Machines Bar geometry verification system for bar-coded characters
US4282425A (en) 1979-07-25 1981-08-04 Norand Corporation Instant portable bar code reader
US4308455A (en) 1980-06-26 1981-12-29 E. I. Du Pont De Nemours And Company Method for decoding bar-coded labels
US4421978A (en) 1981-08-20 1983-12-20 International Business Machines Corporation Decoding method for multicharacter labels
US5187355A (en) 1981-12-28 1993-02-16 Norand Corporation Instant portable bar code reader
US6158661A (en) 1981-12-28 2000-12-12 Intermec Ip Corp. Instant portable bar code reader
US5187356A (en) 1981-12-28 1993-02-16 Norand Corporation Instant portable bar code reader
US4894523A (en) 1981-12-28 1990-01-16 Norand Corporation Instant portable bar code reader
US6234395B1 (en) 1981-12-28 2001-05-22 Intermec Ip Corp. Instant portable bar code reader
US5675137A (en) 1986-04-18 1997-10-07 Cias, Inc. Bar code decoding using moving averages to break the (n,k) code barrier for UPC, EAN Code 128 and others
US4782220A (en) 1986-09-29 1988-11-01 Mars, Incorporated Method and apparatus for bar code data autodiscrimination
US5612524A (en) 1987-11-25 1997-03-18 Veritec Inc. Identification symbol system and method with orientation mechanism
US4866784A (en) 1987-12-02 1989-09-12 Eastman Kodak Company Skew detector for digital image processing system
US5163104A (en) 1988-02-24 1992-11-10 Transtechnology Corporation Digital image processing technique including improved gray scale compression
US5124538A (en) 1988-08-26 1992-06-23 Accu-Sort Systems, Inc. Scanner
US5028772A (en) 1988-08-26 1991-07-02 Accu-Sort Systems, Inc. Scanner to combine partial fragments of a complete code
US6206289B1 (en) 1988-08-26 2001-03-27 Accu-Sort Systems, Inc. Scanner
US5124538B1 (en) 1988-08-26 1995-01-31 Accu Sort Systems Inc Scanner
US4973829A (en) 1988-11-22 1990-11-27 Eastman Kodak Company Bar code reading method
US4948955A (en) 1988-12-22 1990-08-14 The Boeing Company Barcode location determination
US5872354A (en) 1989-01-31 1999-02-16 Norand Corporation Hand-held data capture system with interchangable modules including autofocusing data file reader using the slope of the image signal to determine focus
US5166830A (en) 1989-09-29 1992-11-24 Hoya Corporation Aspherical lens system for a bar code sensor
US5262626A (en) 1989-12-06 1993-11-16 Symbol Technologies, Inc. Decoding bar codes from multiple scans using element replacement
US5304786A (en) 1990-01-05 1994-04-19 Symbol Technologies, Inc. High density two-dimensional bar code symbol
US5155343A (en) 1990-03-28 1992-10-13 Chandler Donald G Omnidirectional bar code reader with method and apparatus for detecting and scanning a bar code symbol
US5276316A (en) 1990-05-02 1994-01-04 Ncr Corporation Method for reconstructing complete bar code signals from partial bar code scans
US5120940A (en) 1990-08-10 1992-06-09 The Boeing Company Detection of barcodes in binary images with arbitrary orientation
US5124537A (en) 1990-10-29 1992-06-23 Omniplanar, Inc. Omnidirectional bar code reader using virtual scan of video raster scan memory
US5192856A (en) 1990-11-19 1993-03-09 An Con Genetics, Inc. Auto focusing bar code reader
US5296690A (en) 1991-03-28 1994-03-22 Omniplanar, Inc. System for locating and determining the orientation of bar codes in a two-dimensional image
US5262652A (en) 1991-05-14 1993-11-16 Applied Materials, Inc. Ion implantation apparatus having increased source lifetime
US5378883A (en) 1991-07-19 1995-01-03 Omniplanar Inc. Omnidirectional wide range hand held bar code reader
US5278397A (en) 1991-07-25 1994-01-11 Symbol Technologies, Inc. Multi-resolution bar code reader
US5332892A (en) 1991-07-25 1994-07-26 Symbol Technologies, Inc. Optical systems for bar code scanners
US5262623A (en) 1991-09-04 1993-11-16 Omniplanar, Inc. Method and apparatus for distinguishing a preferred bar code or the like
US6209789B1 (en) 1991-09-17 2001-04-03 Metrologic Instruments, Inc. Optical filtering system for a laser bar code scanner having narrow band-pass characteristics employing spatially separated filtering elements including a scanner window
US5657402A (en) 1991-11-01 1997-08-12 Massachusetts Institute Of Technology Method of creating a high resolution still image using a plurality of images and apparatus for practice of the method
US5286960A (en) 1991-11-04 1994-02-15 Welch Allyn, Inc. Method of programmable digitization and bar code scanning apparatus employing same
US5291008A (en) 1992-01-10 1994-03-01 Welch Allyn, Inc. Optical assembly and apparatus employing same using an aspherical lens and an aperture stop
US5756981A (en) 1992-02-27 1998-05-26 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and-two-dimensional symbologies at variable depths of field including memory efficient high speed image processing means and high accuracy image analysis means
US5902988A (en) 1992-03-12 1999-05-11 Norand Corporation Reader for decoding two-dimensional optically readable information
US5276315A (en) 1992-05-14 1994-01-04 United Parcel Service Of America, Inc. Method and apparatus for processing low resolution images of degraded bar code symbols
US5487115A (en) 1992-05-14 1996-01-23 United Parcel Service Method and apparatus for determining the fine angular orientation of bar code symbols in two-dimensional CCD images
EP0571892B1 (en) 1992-05-26 1999-10-13 United Parcel Service Of America, Inc. Multiple code camera system
US5889270A (en) 1992-07-24 1999-03-30 Cias, Inc. Bar code decoding using moving averages to break the (N.K.) code barrier for UPC, EAN, code 128 and others
US5478999A (en) 1992-08-10 1995-12-26 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols along search steps
US5418862A (en) 1992-08-10 1995-05-23 United Parcel Service Of America Method and apparatus for detecting artifact corners in two-dimensional images
US20020044689A1 (en) 1992-10-02 2002-04-18 Alex Roustaei Apparatus and method for global and local feature extraction from digital images
US5486689A (en) 1993-01-22 1996-01-23 Intermec Corporation Method and apparatus for decoding unresolved multi-width bar code symbology profiles
US5412197A (en) 1993-01-29 1995-05-02 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols using gradient signals
US5682030A (en) 1993-02-02 1997-10-28 Label Vision Systems Inc Method and apparatus for decoding bar code data from a video signal and application thereof
US5461417A (en) 1993-02-16 1995-10-24 Northeast Robotics, Inc. Continuous diffuse illumination method and apparatus
US5446271A (en) 1993-08-06 1995-08-29 Spectra-Physics Scanning Systems, Inc. Omnidirectional scanning method and apparatus
US5635699A (en) 1993-08-06 1997-06-03 Spectra-Physics Scanning Systems, Inc. Omnidirectional scanning method and apparatus
US5420409A (en) 1993-10-18 1995-05-30 Welch Allyn, Inc. Bar code scanner providing aural feedback
US5483051A (en) 1993-11-04 1996-01-09 Datalogic S.P.A. Laser bar code reader measuring phase of the pulse laser to determine the distance
US5481098A (en) 1993-11-09 1996-01-02 Spectra-Physics Scanning Systems, Inc. Method and apparatus for reading multiple bar code formats
US5507527A (en) 1993-12-30 1996-04-16 Tomioka; Makoto Two dimensional code for processing data
US5932862A (en) 1994-03-04 1999-08-03 Welch Allyn, Inc. Optical reader having improved scanning-decoding features
US5929418A (en) 1994-03-04 1999-07-27 Welch Allyn, Inc. Optical reader having improved menuing features
US5825006A (en) 1994-03-04 1998-10-20 Welch Allyn, Inc. Optical reader having improved autodiscrimination features
US5463214A (en) 1994-03-04 1995-10-31 Welch Allyn, Inc. Apparatus for optimizing throughput in decoded-output scanners and method of using same
US5557091A (en) 1994-04-15 1996-09-17 Krummel; Larry Method and system for bar code image processing
US5550366A (en) 1994-06-20 1996-08-27 Roustaei; Alexander Optical scanner with automatic activation
US6919793B2 (en) 1994-09-09 2005-07-19 Intermec Ip Corp. Radio frequency identification system write broadcast capability
US5455414A (en) 1994-09-15 1995-10-03 Metanetics Corporation Simplified bar code decoding with dynamically loadable data character sets
US5852288A (en) 1994-09-19 1998-12-22 Sumitomo Electric Industries, Ltd. Bar code scanning apparatus
US5523552A (en) 1994-10-19 1996-06-04 Symbol Technologies, Inc. Method and apparatus to scan randomly oriented two-dimensional bar code symbols
US5723853A (en) 1995-01-10 1998-03-03 Welch Allyn, Inc. Bar code reader
US5786586A (en) 1995-01-17 1998-07-28 Welch Allyn, Inc. Hand-held optical reader having a detachable lens-guide assembly
US5691597A (en) 1995-01-27 1997-11-25 Kabushiki Kaisha Toshiba Color cathode-ray tube and method for manufacturing the same
US5514858A (en) 1995-02-10 1996-05-07 Intermec Corporation Method and apparatus for decoding unresolved complex multi-width bar code symbology profiles
US5821520A (en) 1995-04-28 1998-10-13 Symbol Technologies, Inc. Bar code scanning system with the pre-decoding signal processing and method for bar code candidate selection for decoding
US5646391A (en) 1995-05-11 1997-07-08 Psc, Inc. Optical assembly for controlling beam size in bar code scanners
US5591956A (en) 1995-05-15 1997-01-07 Welch Allyn, Inc. Two dimensional data encoding structure and symbology for use with optical readers
US5739518A (en) 1995-05-17 1998-04-14 Metanetics Corporation Autodiscrimination for dataform decoding and standardized recording
US5814827A (en) 1995-05-19 1998-09-29 Symbol Technologies, Inc. Optical scanner with extended depth of focus
US6053407A (en) 1995-05-31 2000-04-25 Metanetics Corporation Maxicode data extraction using spatial domain features
US5539191A (en) 1995-06-22 1996-07-23 Intermec Corporation Method and apparatus for decoding unresolved bar code profiles using edge finding circuitry
US6006990A (en) 1995-09-12 1999-12-28 Telxon Corporation Dataform reader utilizing hand jittering compensation method
US5920060A (en) 1995-09-21 1999-07-06 Symbol Technologies, Inc. Bar code scanner with simplified auto-focus capablilty
US5777309A (en) 1995-10-30 1998-07-07 Intermec Corporation Method and apparatus for locating and decoding machine-readable symbols
US5744790A (en) 1996-01-25 1998-04-28 Symbol Technologies, Inc. Split optics focusing apparatus for CCD-based bar code scanner
US5742037A (en) 1996-03-07 1998-04-21 Cognex Corp. Method and apparatus for high speed identification of objects having an identifying feature
US6078251A (en) 1996-03-27 2000-06-20 Intermec Ip Corporation Integrated multi-meter and wireless communication link
US6075905A (en) 1996-07-17 2000-06-13 Sarnoff Corporation Method and apparatus for mosaic image construction
US6629642B1 (en) 1996-08-02 2003-10-07 Symbol Technologies, Inc. Data system and method for accessing a computer network using a collection of bar code symbols
US7059525B2 (en) 1996-09-03 2006-06-13 Hand Held Products, Inc. Apparatus processing two dimensional image representations for optical reading
US6698656B2 (en) 1996-09-03 2004-03-02 Hand Held Products, Inc. Scanning and decoding control for an optical reader
US6491223B1 (en) 1996-09-03 2002-12-10 Hand Held Products, Inc. Autodiscriminating optical reader
US5767498A (en) 1996-09-17 1998-06-16 Ncr Corporation Bar code error scanner
US5877486A (en) 1996-10-11 1999-03-02 Intermec Ip Corp. Method and apparatus for enhancing resolution of reflectance signals produced from machine-readable symbols
US6075883A (en) 1996-11-12 2000-06-13 Robotic Vision Systems, Inc. Method and system for imaging an object or pattern
US5767497A (en) 1996-12-04 1998-06-16 United Parcel Service Of America, Inc. Method and apparatus for decoding bar code symbols using ratio analysis of module size
US5936224A (en) 1996-12-11 1999-08-10 Intermec Ip Corporation Method and apparatus for reading machine-readable symbols by employing a combination of multiple operators and/or processors
US6408429B1 (en) 1997-01-17 2002-06-18 Cognex Corporation Machine vision system for identifying and assessing features of an article
US6021946A (en) 1997-03-14 2000-02-08 Sick Ag Self-focusing bar code reader and optical receiving system
US5880451A (en) 1997-04-24 1999-03-09 United Parcel Service Of America, Inc. System and method for OCR assisted bar code decoding
US6123261A (en) 1997-05-05 2000-09-26 Roustaei; Alexander R. Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
EP0896290B1 (en) 1997-08-06 2004-10-20 Sick AG Method and device for reading a barcode consisting of a predetermined number of coding elements
US6056198A (en) 1997-08-07 2000-05-02 Psc Scanning, Inc. Optical scanning system and method including a collection system for range enhancement
US6000612A (en) 1997-10-10 1999-12-14 Metanetics Corporation Portable data collection device having optical character recognition
US5949052A (en) 1997-10-17 1999-09-07 Welch Allyn, Inc. Object sensor system for stationary position optical reader
US6298176B2 (en) 1997-10-17 2001-10-02 Welch Allyn Data Collection, Inc. Symbol-controlled image data reading system
US5914476A (en) 1997-11-04 1999-06-22 Welch Allyn, Inc. Optical reader configured to accurately and rapidly read multiple symbols
US6095422A (en) 1998-01-14 2000-08-01 Intermec Ip Corp. Method and apparatus of autodiscriminating in symbol reader employing prioritized and updated table of symbologies
US6405925B2 (en) 1998-06-12 2002-06-18 Symbol Technologies, Inc. Autodiscrimination and line drawing techniques for code readers
US6250551B1 (en) 1998-06-12 2001-06-26 Symbol Technologies, Inc. Autodiscrimination and line drawing techniques for code readers
US6505778B1 (en) 1998-07-17 2003-01-14 Psc Scanning, Inc. Optical reader with selectable processing characteristics for reading data in multiple formats
US6152371A (en) 1998-08-12 2000-11-28 Welch Allyn, Inc. Method and apparatus for decoding bar code symbols
US6513714B1 (en) 1998-09-14 2003-02-04 Psc Scanning, Inc. Character reconstruction and element level processing in bar code scanning system
US6161760A (en) 1998-09-14 2000-12-19 Welch Allyn Data Collection, Inc. Multiple application multiterminal data collection network
US6561427B2 (en) 1998-09-14 2003-05-13 Psc Scanning, Inc. Decoding system and methods in a bar code scanning system
US6454168B1 (en) 1998-09-14 2002-09-24 Psc Scanning, Inc. Correlation and stitching techniques in a bar code scanning system
US6490376B1 (en) 1998-09-17 2002-12-03 Metrologic Instruments, Inc. Skew processing of raster scan images
US6340119B2 (en) 1998-10-22 2002-01-22 Symbol Technologies, Inc. Techniques for reading two dimensional code, including MaxiCode
US6088482A (en) 1998-10-22 2000-07-11 Symbol Technologies, Inc. Techniques for reading two dimensional code, including maxicode
US6234397B1 (en) 1998-10-22 2001-05-22 Symbol Technologies, Inc. Techniques for reading two dimensional code, including maxicode
US6446868B1 (en) 1998-11-23 2002-09-10 Informatics, Inc. Scanning system for decoding two-dimensional barcode symbologies with a one-dimensional general purpose scanner
US6289113B1 (en) 1998-11-25 2001-09-11 Iridian Technologies, Inc. Handheld iris imaging apparatus and method
US6082619A (en) 1998-12-16 2000-07-04 Matsushita Electric Industrial Co., Ltd. Method for locating and reading a two-dimensional barcode
US6816063B2 (en) 1999-01-29 2004-11-09 Intermec Ip Corp Radio frequency identification systems and methods for waking up data storage devices for wireless communication
DE10012715A1 (en) 1999-03-19 2000-09-21 Joerg Kuechen Scanner positioning to coded surface, to read bar codes has measurement unit to correct distance and measurement unit to correct orientation
US6176428B1 (en) 1999-04-07 2001-01-23 Symbol Technologies, Inc. Techniques for reading postal code
US6371373B1 (en) 1999-05-25 2002-04-16 Matsushita Electric Industrial Co., Ltd. Method for reading a two-dimensional barcode
US6677852B1 (en) 1999-09-22 2004-01-13 Intermec Ip Corp. System and method for automatically controlling or configuring a device, such as an RFID reader
US6189792B1 (en) 1999-12-14 2001-02-20 Ncr Corporation System and methods for exemplar based bar code error detection and correction
US6513715B2 (en) 1999-12-23 2003-02-04 Ncr Corporation System and methods for collaborative bar code error detection and correction
US6398113B1 (en) 1999-12-23 2002-06-04 Ncr Corporation System and methods for collaborative bar code error detection and correction
US6728419B1 (en) 2000-02-17 2004-04-27 Xerox Corporation Multi-tasking multi-threaded image processing system and method for image capture devices
US20010042065A1 (en) 2000-04-28 2001-11-15 Nec Corporation Appearance inspection apparatus and appearance inspection method
US20010042789A1 (en) 2000-05-17 2001-11-22 Mark Krichever Bioptics bar code reader
US20030121978A1 (en) 2000-07-14 2003-07-03 Rubin Kim T. Compact matrix code and one-touch device and method for code reading
US6681151B1 (en) 2000-12-15 2004-01-20 Cognex Technology And Investment Corporation System and method for servoing robots based upon workpieces with fiducial marks using machine vision
US6512714B2 (en) 2001-02-15 2003-01-28 Hitachi, Ltd. Semiconductor memory device equipped with dummy cells
US6761316B2 (en) 2001-03-27 2004-07-13 Symbol Technologies, Inc. Compact auto ID reader and radio frequency transceiver data collection module
US20030006290A1 (en) 2001-05-02 2003-01-09 Hand Held Products, Inc. Optical reader comprising soft key including permanent graphic indicia
US20020171745A1 (en) 2001-05-15 2002-11-21 Welch Allyn Data Collection, Inc. Multimode image capturing and decoding optical reader
US7061524B2 (en) 2001-11-13 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Motion/saturation detection system and method for synthesizing high dynamic range motion blur free images from multiple captures
US20030117511A1 (en) 2001-12-21 2003-06-26 Eastman Kodak Company Method and camera system for blurring portions of a verification image to show out of focus areas in a captured archival image
US20080019615A1 (en) 2002-06-27 2008-01-24 Schnee Michael D Digital image acquisition system capable of compensating for changes in relative object velocity
US20040091255A1 (en) 2002-11-11 2004-05-13 Eastman Kodak Company Camera flash circuit with adjustable flash illumination intensity
US6913199B2 (en) 2002-12-18 2005-07-05 Symbol Technologies, Inc. System and method for verifying optical character recognition of optical code reads
US7044378B2 (en) 2002-12-18 2006-05-16 Symbol Technologies, Inc. System and method for imaging and decoding optical codes using at least two different imaging settings
US7181066B1 (en) 2002-12-26 2007-02-20 Cognex Technology And Investment Corporation Method for locating bar codes and symbols in an image
EP1469420B1 (en) 2003-04-17 2009-03-04 Anoto Group AB Method, system and program for reconstructing a bar code
US7604174B2 (en) 2003-10-24 2009-10-20 Cognex Technology And Investment Corporation Method and apparatus for providing omnidirectional lighting in a scanning device
US20050263599A1 (en) 2003-11-13 2005-12-01 Metrologic Instruments, Inc. Digital imaging-based bar code symbol reading system employing a multi-mode image-processing symbol reading subsystem that switches its modes of reading during a single bar code symbol reading cycle, and within each said mode of reading, automatically applies a different image-processing based bar code symbol reading methodology
US20050194447A1 (en) 2004-03-02 2005-09-08 Duanfeng He System and method for illuminating and reading optical codes imprinted or displayed on reflective surfaces
US7121467B2 (en) 2004-05-21 2006-10-17 Intermec Ip Corp. Indicators of optimum positioning of a data collection device for reading data carriers, such as RFID tags and machine-readable symbols
US20050275897A1 (en) * 2004-06-14 2005-12-15 Xerox Corporation Method for image segmentation to identify regions with constant foreground color
US20060022052A1 (en) 2004-07-29 2006-02-02 Mehul Patel System and method for decoding optical codes read by an imager-based optical code reader
US20060027657A1 (en) 2004-08-04 2006-02-09 Laurens Ninnink Method and apparatus for high resolution decoding of encoded symbols
US20060027661A1 (en) 2004-08-09 2006-02-09 Kazukuni Hosoi Method of decoding a symbol with a low contrast
US20060050961A1 (en) 2004-08-13 2006-03-09 Mohanaraj Thiyagarajah Method and system for locating and verifying a finder pattern in a two-dimensional machine-readable symbol
US7175090B2 (en) 2004-08-30 2007-02-13 Cognex Technology And Investment Corporation Methods and apparatus for reading bar code identifications
US7070099B2 (en) 2004-09-30 2006-07-04 Symbol Technologies, Inc. Modular architecture for a data capture device
US7219841B2 (en) 2004-11-05 2007-05-22 Hand Held Products, Inc. Device and system for verifying quality of bar codes
US20060132787A1 (en) * 2004-12-20 2006-06-22 Xerox Corporation Full width array mechanically tunable spectrophotometer
US20060131418A1 (en) 2004-12-22 2006-06-22 Justin Testa Hand held machine vision method and apparatus
US20060249581A1 (en) 2005-05-03 2006-11-09 Smith Larry J Methods and systems for forming images of moving optical codes
US20060285135A1 (en) * 2005-06-15 2006-12-21 Xerox Corporation System and method for dynamically generated uniform color objects
US20090090781A1 (en) * 2005-12-20 2009-04-09 Xiangyun Ye Decoding distorted symbols
US20080004822A1 (en) 2006-06-29 2008-01-03 Sateesha Nadabar Method and Apparatus for Verifying Two Dimensional Mark Quality
US20080011855A1 (en) 2006-07-17 2008-01-17 Sateesha Nadabar Method and Apparatus for Multiplexed Symbol Decoding
US20080143838A1 (en) 2006-12-14 2008-06-19 Sateesha Nadabar Method and apparatus for calibrating a mark verifier
WO2008118419A1 (en) 2007-03-23 2008-10-02 Ltt, Ltd Method and apparatus for reading a printed indicia with a limited field of view sensor
WO2008118425A1 (en) 2007-03-23 2008-10-02 Ltt, Ltd Method and apparatus for using a limited capacity portable data carrier
EP1975849B1 (en) 2007-03-27 2011-04-27 Casio Computer Co., Ltd. Bar-code reading apparatus and computer-readable medium
US20090121027A1 (en) 2007-11-13 2009-05-14 Cognex Corporation System and method for reading patterns using multiple image frames

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
Advisory Action for co-pending continuation case U.S. Appl. No. 11/743,193, dated Oct. 30, 2009.
Cognex, Vision for Industry, Implementing Direct part Mark Identification: 10 Important Considerations, 2004, p. 1-12. *
Final Rejection for co-pending continuation case U.S. Appl. No. 11/743,193, dated Jun. 16, 2009.
Final Rejection for co-pending continuation case U.S. Appl. No. 11/743,193, dated Nov. 6, 2008.
http://www.merriam-webster.com/dictionary/optimal, 1 page, Oct. 27, 2008.
International Standard, ISO/IEC 16022 First Edition Jan. 5, 2000-Reference No. ISO/IEC 16022:2000(E) Information Technology-International symbology Specification-Data Matrix.
Non-Final Rejection for co-pending continuation case U.S. Appl. No. 11/743,193, dated Apr. 8, 2010.
Non-Final Rejection for co-pending continuation case U.S. Appl. No. 11/743,193, dated Jun. 4, 2008.
Notice of Allowance for co-pending continuation case U.S. Appl. No. 11/743,193, dated Dec. 30, 2009.
Restriction Requirement for co-pending continuation case U.S. Appl. No. 11/743,193, dated Mar. 17, 2008.
Rolls-Royce Direct part Marking, Issue 1, Jun. 2004-Vcom 9897, p. 1-15. *
SAE Aerospace Standard AS9132, International Aerospace Quality Group (IAQG), Verification Standard, Feb. 2002.
Taniguchi, R-I, et al, A Distributed-Memory Multi-Thread Multiprocessor Architecture for Computer Vision and Image Processing: Optimized Version of AMP, System Sciences, Los Alamitos, CA, pp. 151-160, 1993.
US 6,768,414, 07/2004, Francis (withdrawn)
Wittenburg, J.P., et al, A Multithreaded Architecture Approach to Parallel DSP's for High Performance Image Processing Applications, Signal Processing Systems, Piscataway, NJ, pp. 241-250, 1999.

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249296B2 (en) 2004-06-09 2012-08-21 Cognex Technology And Investment Corporation Method and apparatus for automatic visual event detection
US20050276461A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for automatic visual detection, recording, and retrieval of events
US8422729B2 (en) 2004-06-09 2013-04-16 Cognex Corporation System for configuring an optoelectronic sensor
US8630478B2 (en) 2004-06-09 2014-01-14 Cognex Technology And Investment Corporation Method and apparatus for locating objects
US20080036873A1 (en) * 2004-06-09 2008-02-14 Cognex Corporation System for configuring an optoelectronic sensor
US8243986B2 (en) 2004-06-09 2012-08-14 Cognex Technology And Investment Corporation Method and apparatus for automatic visual event detection
US20050275833A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for detecting and characterizing an object
US8249329B2 (en) 2004-06-09 2012-08-21 Cognex Technology And Investment Corporation Method and apparatus for detecting and characterizing an object
US9183443B2 (en) 2004-06-09 2015-11-10 Cognex Technology And Investment Llc Method and apparatus for configuring and testing a machine vision detector
US20050275831A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for visual detection and inspection of objects
US20050276460A1 (en) * 2004-06-09 2005-12-15 Silver William M Method and apparatus for automatic visual event detection
US8782553B2 (en) 2004-06-09 2014-07-15 Cognex Corporation Human-machine-interface and method for manipulating data in a machine vision system
US9094588B2 (en) 2004-06-09 2015-07-28 Cognex Corporation Human machine-interface and method for manipulating data in a machine vision system
US9092841B2 (en) 2004-06-09 2015-07-28 Cognex Technology And Investment Llc Method and apparatus for visual detection and inspection of objects
US9292187B2 (en) 2004-11-12 2016-03-22 Cognex Corporation System, method and graphical user interface for displaying and controlling vision system operating parameters
US20120207395A1 (en) * 2011-02-09 2012-08-16 Testo Ag Measuring device set and method for documenting a measurement
US9651499B2 (en) 2011-12-20 2017-05-16 Cognex Corporation Configurable image trigger for a vision system and method for using the same
US10740582B1 (en) 2019-01-22 2020-08-11 Datalogic IP Tech, S.r.l. Generic shape quality verification process for a mark and read system

Also Published As

Publication number Publication date
US20120116704A1 (en) 2012-05-10
US20080004822A1 (en) 2008-01-03
US9465962B2 (en) 2016-10-11
US8027802B1 (en) 2011-09-27

Similar Documents

Publication Publication Date Title
US8108176B2 (en) Method and apparatus for verifying two dimensional mark quality
US8169478B2 (en) Method and apparatus for calibrating a mark verifier
US7295948B2 (en) Laser system for marking tires
CN107851203B (en) Two-dimensional bar code
JP5414685B2 (en) System and method for reading a pattern using a plurality of image frames
US20190220629A1 (en) Method and apparatus for industrial identification mark verification
US7963448B2 (en) Hand held machine vision method and apparatus
US6856843B1 (en) Method and apparatus for displaying an image of a sheet material and cutting parts from the sheet material
US20120145779A1 (en) Two-dimensional symbol code and method for reading the symbol code
US20060226244A1 (en) Redundant two-dimensional code and a decoding method
US20170060494A1 (en) Methods and arrangements relating to printing process
TWM568427U (en) Online data validator of the printing unit
JP3691022B2 (en) Method and apparatus for displaying a copy of a sheet member and cutting fragments from the sheet member
US20090108073A1 (en) Method and apparatus for aligning a code and a reader without displaying a background image
US20160263763A1 (en) Vision system
JP4682842B2 (en) Evaluation method of component recognition condition in electronic component mounting apparatus
CN1179752A (en) Machine-readable label
CN112313659B (en) Optical mark reading device and electronic device manufacturing apparatus provided with the same
CN112132244A (en) Identification code conversion apparatus and identification code conversion method
US20230289922A1 (en) Glare Mitigation Techniques in Symbologies
KR102545222B1 (en) Print error character inspection system by image comparison solution of variable print printouts
EP3746253B1 (en) System and method for monitoring direct part marking (dpm) processes and generating visual notifications on parts for operators
US11250228B2 (en) Reading of optical codes
KR102577055B1 (en) Error checking device for variable printing substrates
WO2022211064A1 (en) Information reading device

Legal Events

Date Code Title Description
AS Assignment

Owner name: COGNEX CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NADABAR, SATEESHA;GOPALAKRISHNAN, VENTKAT K.;GERST, CARL W.;REEL/FRAME:018301/0012;SIGNING DATES FROM 20060919 TO 20060922

Owner name: COGNEX CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NADABAR, SATEESHA;GOPALAKRISHNAN, VENTKAT K.;GERST, CARL W.;SIGNING DATES FROM 20060919 TO 20060922;REEL/FRAME:018301/0012

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY