US8241046B2 - Connector shell with a mounting piece having a sectional reducing part with a groove adjoining an opening - Google Patents

Connector shell with a mounting piece having a sectional reducing part with a groove adjoining an opening Download PDF

Info

Publication number
US8241046B2
US8241046B2 US13/070,765 US201113070765A US8241046B2 US 8241046 B2 US8241046 B2 US 8241046B2 US 201113070765 A US201113070765 A US 201113070765A US 8241046 B2 US8241046 B2 US 8241046B2
Authority
US
United States
Prior art keywords
shell body
mounting piece
sectional area
board
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/070,765
Other versions
US20110237094A1 (en
Inventor
Soichi Takagi
Takaki Tsutsui
Tsuyoshi Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Assigned to MITSUMI ELECTRIC CO., LTD. reassignment MITSUMI ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EGUCHI, TSUYOSHI, Takagi, Soichi, TSUTSUI, TAKAKI
Publication of US20110237094A1 publication Critical patent/US20110237094A1/en
Application granted granted Critical
Publication of US8241046B2 publication Critical patent/US8241046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/707Soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6594Specific features or arrangements of connection of shield to conductive members the shield being mounted on a PCB and connected to conductive members

Definitions

  • the present invention is related to a connector shell which is used in a receptacle into which a plug is to be inserted.
  • a receptacle into which a plug is inserted thereby to establish electrical connection between electronic parts is known.
  • This receptacle is required to be made compact like other electronic parts. Further, the receptacle is surface mounted on a surface of a board by solder reflowing method, in the same manner as the other electronic parts.
  • FIG. 4 A sectional view of a conventional receptacle 100 is shown in FIG. 4 .
  • the receptacle 100 includes a connector shell 101 having a substantially rectangular tubular shape in which a plug insertion space is defined.
  • a plug guiding piece 104 is disposed in the plug insertion space, and connecting terminals 105 which are provided on the plug guiding piece 104 can be electrically continued to terminals at a plug side.
  • the connector shell 101 has a shell body 102 and mounting pieces 103 extended from the shell body 102 toward a board 106 .
  • the receptacle 100 is mounted on the board 106 by fixing the mounting pieces 103 to the board 106 by soldering.
  • solder When the connector shell 101 is fixed by soldering to the board 106 , solder must be adhered to the mounting pieces 103 . This can be accomplished by heating the mounting pieces 103 up to a solder melting temperature. When this is done, the shell body 102 is also heated together with the mounting pieces 103 . During a reflow treatment, more than a required amount of solder 110 may be conveyed to side walls of the shell body 102 along the mounting pieces 103 . Represented by marks A in FIG. 4 are the solders 110 which have crept up to the plug insertion space and have been solidified. When this happens, it has been feared that the solidified solders may interfere with the plug to be inserted, and the plug cannot be inserted up to a determined position.
  • solder wicking prevention layer is formed above a region to be soldered, thereby to prevent the solder from creeping up higher than the solder wicking prevention layer.
  • Patent Document 1 there is disclosed a method for forming a solder wicking prevention zone by applying resin or ceramics having a low wettability with respect to the solder, to a contact part of a connector member.
  • Patent Document 2 there is disclosed such an art that a soldering region is formed in a terminal part to be soldered, by providing a plating layer of gold to which the solder is likely to adhere, on an under layer of nickel, and further, a laser beam is irradiated to an upper part of this soldering region thereby to form a layer of nickel and gold alloy having a low wettability with respect to the solder, and thus, a solder creeping prevention region is formed.
  • Patent Document 1 Japanese Patent Publication No. 2006-246424
  • Patent Document 2 Japanese Patent Publication No. 2005-243468
  • a connector shell to be mounted on a board comprising:
  • a mounting piece which is integral with the shell body, extended from the shell body through the board to be fixed to the board by soldering;
  • a sectional area reducing part provided in the mounting piece between the shell body and a distal end part of the mounting piece, having a sectional area smaller than a sectional area at the distal end part, and disposed so as to face the plug inserting space.
  • the sectional area reducing part may be formed by an opening provided in the mounting piece.
  • the connector shell may be configured such that a groove is formed in the mounting piece and extends from the distal end part to the opening so as to guide solder to the opening.
  • a width of the opening may be larger than a width of the groove.
  • FIG. 1 is a perspective view of a receptacle using a connector shell according to a first embodiment of the invention.
  • FIG. 2 is a sectional view of the receptacle in FIG. 1 .
  • FIG. 3 is a perspective view of a receptacle using a connector shell according to a second embodiment of the invention.
  • FIG. 4 is a sectional view of a conventional receptacle.
  • FIG. 1 is a perspective view of a receptacle 1 to which a connector shell 2 according to a first embodiment of the invention is applied.
  • the receptacle 1 is mounted on a board 5 , and includes the connector shell 2 which has a plug insertion space inside, a plug guiding piece 3 which is disposed in the plug insertion space, and connecting terminals 4 which are provided on the plug guiding piece 3 and can be electrically continued to plug side terminals.
  • the connector shell 2 has a shell body 6 in a substantially rectangular tubular shape, and a pair of mounting pieces 7 which are extended from the shell body 6 toward the board 5 .
  • the shell body 6 is formed into a substantially rectangular tubular shape, by folding a sheet of conductive metal plate which has been stamped out into a substantially rectangular shape.
  • the shell body 6 has a bottom wall 6 b to be brought into contact with the board 5 , a pair of side walls 6 s , and an upper wall 6 u which is opposed to the bottom wall 6 b.
  • a pair of the mounting pieces 7 are integral with the shell body 6 and are projected from a pair of the side walls 6 s . These mounting pieces 7 are integrally formed with the shell body 6 by stamping out the metal plate which is material for the shell body 6 into a substantially U-shape, and subjecting it to a folding work.
  • the mounting piece 7 is extended from the shell body 6 through the board 5 to be fixed to the board by soldering.
  • distal ends of the mounting pieces 7 are extended from the shell body 6 to an opposite side of the plug insertion space, interposing a board mounting base plane, inserted into mounting holes 5 a which are provided in the board 5 , and then, soldered.
  • the board mounting base plane is an inner face of the bottom wall 6 b of the shell body 6 which constitutes a side of the plug insertion space to be opposed to the board 5 .
  • an opening 8 which forms a sectional area reducing part for reducing a sectional area of the mounting piece 7 is formed.
  • the opening 8 is formed by stamping out the metal plate in a round shape, when the shell body 6 is formed out of the metal plate.
  • the sectional area of the mounting piece 7 is reduced from the distal end of the mounting piece 7 to the shell body 6 .
  • the sectional area of the mounting piece 7 in a plane parallel to the board 5 at a position of the opening 8 is made smaller as compared with the sectional area of the mounting piece 7 at the distal end side thereof.
  • the opening 8 is disposed so as to face the plug inserting space.
  • this opening 8 is open to a side more close to the plug insertion space than to the inner face (the board mounting base plane) of the bottom wall 6 b of the shell body 6 . Therefore, it is possible to store the molten solder in the opening 8 , even though the solder creeps up from the board 5 to the plug insertion space. Therefore, it is possible to prevent the solder from intruding into the plug insertion space and being solidified. Thus, it is possible to reliably prevent the plug from interfering with the solder, when the plug is inserted into the plug insertion space.
  • the mounting piece 7 is provided with a groove 9 which is extended from the distal end side thereof toward the opening 8 and adapted to guide the molten solder to the opening 8 .
  • This groove 9 is also formed by stamping out the metal plate in a slit-like shape, when the shell body 6 is formed out of the metal plate. The groove 9 can reliably guide the molten solder which creeps up from the board 5 at a time of soldering, and so, it is possible to store the solder in the opening 8 .
  • the distal end of the mounting piece 7 can be heated almost up to the solder melting temperature in a short time, and so, the calories to be transmitted to the shell body 6 can be reduced.
  • the shell body 6 is restrained from being heated up to the solder melting temperature, and hence, it is possible to prevent the solder from creeping up to the shell body 6 .
  • the opening 8 and the groove 9 can be formed simply by stamping out the metal plate in a round shape or in an oblong shape, when the shell body 6 is formed out of the metal plate. Therefore, it is possible to reliably prevent the creeping up of the solder easily and at a lower cost, as compared with a case where resin or ceramics is applied or a laser work is conducted.
  • the sectional area to be reduced by the opening 8 is larger than the sectional area to be reduced by the groove 9 .
  • a width of the opening 8 formed by cutting is made larger than a width of the groove 9 formed by cutting.
  • FIG. 2 is a vertical sectional view of the receptacle 1 which is fixed to the board 5 by soldering, including the opening 8 .
  • the heat transmission from the mounting piece 7 to the shell body 6 is depressed by the opening 8 which is the sectional area reducing part. Therefore, the shell body 6 will not be heated up to the solder melting temperature, even though the mounting piece 7 is heated for soldering. Accordingly, the solder 10 which creeps along the mounting piece 7 from the distal end of the mounting piece 7 up to the plug insertion space will not adhere to the shell body 6 , and the solder 10 which has crept up will not intrude into the plug insertion space. As the results, it is possible to prevent the plug from interfering with the solder 10 .
  • FIG. 3 is a perspective view showing a receptacle 1 A according to a second embodiment of the invention.
  • the shell body 6 in a substantially rectangular tubular shape is used in the first embodiment
  • a shell body 11 in a substantially U-shape in section is used in the second embodiment.
  • the shell body 11 is a member having a substantially U-shape in section which is formed by folding a metal plate, and provided with no bottom wall.
  • this shell body 11 in a substantially U-shape by bringing open end parts 11 s in a U-shape into contact with a mounting face 5 a of the board 5 , the plug insertion space is defined by the board 5 and the shell body 11 .
  • the mounting face 5 a of the board 5 to be opposed to the shell body 11 corresponds to the board mounting base plane
  • the distal end of the mounting piece 7 is extended from a side wall of the shell body 11 at a side of the plug insertion space to the opposite side, interposing the mounting face 5 a of the board 5 which is the board mounting base plane.
  • the shape of the connector shell is not particularly limited, but may be a cylindrical shape and so on.
  • the sectional area reducing part (the opening 8 ) in a round shape is shown.
  • the invention is not limited to this, but the sectional area reducing part may have a rectangular shape or a triangular shape, for example.
  • a case where the single sectional area reducing part is provided is described, but a plurality of the sectional area reducing parts may be provided.
  • a case where the sectional area reducing part is provided at a center of the mounting piece 7 is shown.
  • the sectional area reducing part may be provided in a side part of the mounting piece 7 , as slits in a shape of being cut from both sides of the mounting piece 7 .
  • the shape of the sectional area reducing part is not limited, provided that the sectional area can be reduced so that the heat transmission from the mounting piece 7 to the shell body 6 or 11 may be depressed.

Abstract

A connector shell to be mounted on a board includes a shell body and a mounting piece. In the shell body, a plug inserting space is defined. The mounting piece is integral with the shell body, and is extended from the shell body through the board to be fixed to the board by soldering. A sectional area reducing part is provided in the mounting piece between the shell body and a distal end part of the mounting piece. The sectional area reducing part has a sectional area smaller than a sectional area at the distal end part, and is disposed so as to face the plug inserting space.

Description

BACKGROUND
The present invention is related to a connector shell which is used in a receptacle into which a plug is to be inserted.
A receptacle into which a plug is inserted thereby to establish electrical connection between electronic parts is known. This receptacle is required to be made compact like other electronic parts. Further, the receptacle is surface mounted on a surface of a board by solder reflowing method, in the same manner as the other electronic parts.
A sectional view of a conventional receptacle 100 is shown in FIG. 4. The receptacle 100 includes a connector shell 101 having a substantially rectangular tubular shape in which a plug insertion space is defined. A plug guiding piece 104 is disposed in the plug insertion space, and connecting terminals 105 which are provided on the plug guiding piece 104 can be electrically continued to terminals at a plug side. The connector shell 101 has a shell body 102 and mounting pieces 103 extended from the shell body 102 toward a board 106. The receptacle 100 is mounted on the board 106 by fixing the mounting pieces 103 to the board 106 by soldering.
When the connector shell 101 is fixed by soldering to the board 106, solder must be adhered to the mounting pieces 103. This can be accomplished by heating the mounting pieces 103 up to a solder melting temperature. When this is done, the shell body 102 is also heated together with the mounting pieces 103. During a reflow treatment, more than a required amount of solder 110 may be conveyed to side walls of the shell body 102 along the mounting pieces 103. Represented by marks A in FIG. 4 are the solders 110 which have crept up to the plug insertion space and have been solidified. When this happens, it has been feared that the solidified solders may interfere with the plug to be inserted, and the plug cannot be inserted up to a determined position.
It is necessary to take some countermeasures for reliably preventing the solders from creeping up. As an art for preventing the creeping up of the solders, there has been known such an art that a solder wicking prevention layer is formed above a region to be soldered, thereby to prevent the solder from creeping up higher than the solder wicking prevention layer.
In Patent Document 1, there is disclosed a method for forming a solder wicking prevention zone by applying resin or ceramics having a low wettability with respect to the solder, to a contact part of a connector member.
Moreover, in Patent Document 2, there is disclosed such an art that a soldering region is formed in a terminal part to be soldered, by providing a plating layer of gold to which the solder is likely to adhere, on an under layer of nickel, and further, a laser beam is irradiated to an upper part of this soldering region thereby to form a layer of nickel and gold alloy having a low wettability with respect to the solder, and thus, a solder creeping prevention region is formed.
[Patent Document 1] Japanese Patent Publication No. 2006-246424
[Patent Document 2] Japanese Patent Publication No. 2005-243468
SUMMARY
Although the arts for preventing the creeping up of the solder as described above have been known, working steps are increased in these methods, because the resin or ceramics is applied or a laser work is conducted. It is therefore one advantageous aspect of the present invention to provide a connector shell in which creeping up of solder can be prevented by a simple method and at a low cost.
According to one aspect of the invention, there is provided a connector shell to be mounted on a board, comprising:
a shell body in which a plug inserting space is defined;
a mounting piece which is integral with the shell body, extended from the shell body through the board to be fixed to the board by soldering; and
a sectional area reducing part, provided in the mounting piece between the shell body and a distal end part of the mounting piece, having a sectional area smaller than a sectional area at the distal end part, and disposed so as to face the plug inserting space.
The sectional area reducing part may be formed by an opening provided in the mounting piece.
The connector shell may be configured such that a groove is formed in the mounting piece and extends from the distal end part to the opening so as to guide solder to the opening.
A width of the opening may be larger than a width of the groove.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a perspective view of a receptacle using a connector shell according to a first embodiment of the invention.
FIG. 2 is a sectional view of the receptacle in FIG. 1.
FIG. 3 is a perspective view of a receptacle using a connector shell according to a second embodiment of the invention.
FIG. 4 is a sectional view of a conventional receptacle.
DETAILED DESCRIPTION OF EXEMPLIFIED EMBODIMENTS
Exemplified embodiments of the invention are described below in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view of a receptacle 1 to which a connector shell 2 according to a first embodiment of the invention is applied. The receptacle 1 is mounted on a board 5, and includes the connector shell 2 which has a plug insertion space inside, a plug guiding piece 3 which is disposed in the plug insertion space, and connecting terminals 4 which are provided on the plug guiding piece 3 and can be electrically continued to plug side terminals.
When a plug, which is not shown, is inserted into the plug insertion space in the connector shell 2, while it is guided by the plug guiding piece 3, the plug side terminals are electrically continued to the connecting terminals 4, and thus, electrical connection is established between both the terminals.
The connector shell 2 has a shell body 6 in a substantially rectangular tubular shape, and a pair of mounting pieces 7 which are extended from the shell body 6 toward the board 5. The shell body 6 is formed into a substantially rectangular tubular shape, by folding a sheet of conductive metal plate which has been stamped out into a substantially rectangular shape. The shell body 6 has a bottom wall 6 b to be brought into contact with the board 5, a pair of side walls 6 s, and an upper wall 6 u which is opposed to the bottom wall 6 b.
A pair of the mounting pieces 7 are integral with the shell body 6 and are projected from a pair of the side walls 6 s. These mounting pieces 7 are integrally formed with the shell body 6 by stamping out the metal plate which is material for the shell body 6 into a substantially U-shape, and subjecting it to a folding work.
The mounting piece 7 is extended from the shell body 6 through the board 5 to be fixed to the board by soldering. In other words, distal ends of the mounting pieces 7 are extended from the shell body 6 to an opposite side of the plug insertion space, interposing a board mounting base plane, inserted into mounting holes 5 a which are provided in the board 5, and then, soldered. In this embodiment, the board mounting base plane is an inner face of the bottom wall 6 b of the shell body 6 which constitutes a side of the plug insertion space to be opposed to the board 5.
Between the distal end of each of the mounting pieces 7 and the shell body 6, an opening 8 which forms a sectional area reducing part for reducing a sectional area of the mounting piece 7 is formed. The opening 8 is formed by stamping out the metal plate in a round shape, when the shell body 6 is formed out of the metal plate.
Because the opening 8 is formed, the sectional area of the mounting piece 7 is reduced from the distal end of the mounting piece 7 to the shell body 6. In other words, the sectional area of the mounting piece 7 in a plane parallel to the board 5 at a position of the opening 8 is made smaller as compared with the sectional area of the mounting piece 7 at the distal end side thereof.
On the occasion of soldering, it is necessary to heat a member to be soldered up to a solder melting temperature. When the distal end of the mounting piece 7 is heated, the heat is transmitted to the shell body 6 along the mounting piece 7. Generally, calories which are transmitted through the member in a determined time are proportional to a sectional area of the member. Therefore, in the case where the sectional area of the mounting piece 7 which is a heat transmitting passage from the mounting piece 7 to the shell body 6 is reduced by the opening 8, the calorie to be transmitted from the distal end of the mounting piece 7 to the shell body 6 in a determined time is reduced. In short, heat transmission from the distal end of the mounting piece 7 to the shell body 6 is depressed by the opening 8. Therefore, even though the mounting piece 7 is heated up to the solder melting temperature, the shell body 6 will not be heated up to the solder melting temperature. As the results, it is possible to prevent the solder from adhering to the shell body 6.
Moreover, the opening 8 is disposed so as to face the plug inserting space. In other words, this opening 8 is open to a side more close to the plug insertion space than to the inner face (the board mounting base plane) of the bottom wall 6 b of the shell body 6. Therefore, it is possible to store the molten solder in the opening 8, even though the solder creeps up from the board 5 to the plug insertion space. Therefore, it is possible to prevent the solder from intruding into the plug insertion space and being solidified. Thus, it is possible to reliably prevent the plug from interfering with the solder, when the plug is inserted into the plug insertion space.
Further, the mounting piece 7 is provided with a groove 9 which is extended from the distal end side thereof toward the opening 8 and adapted to guide the molten solder to the opening 8. This groove 9 is also formed by stamping out the metal plate in a slit-like shape, when the shell body 6 is formed out of the metal plate. The groove 9 can reliably guide the molten solder which creeps up from the board 5 at a time of soldering, and so, it is possible to store the solder in the opening 8.
Moreover, because a volume of the mounting piece 7 at the distal end side thereof is partly reduced by the groove 9, and hence, heat capacity of the mounting piece 7 at the distal end side can be decreased. Accordingly, the distal end of the mounting piece 7 can be heated almost up to the solder melting temperature in a short time, and so, the calories to be transmitted to the shell body 6 can be reduced. As the results, the shell body 6 is restrained from being heated up to the solder melting temperature, and hence, it is possible to prevent the solder from creeping up to the shell body 6.
The opening 8 and the groove 9 can be formed simply by stamping out the metal plate in a round shape or in an oblong shape, when the shell body 6 is formed out of the metal plate. Therefore, it is possible to reliably prevent the creeping up of the solder easily and at a lower cost, as compared with a case where resin or ceramics is applied or a laser work is conducted.
It is to be noted that the sectional area to be reduced by the opening 8 is larger than the sectional area to be reduced by the groove 9. In other words, a width of the opening 8 formed by cutting is made larger than a width of the groove 9 formed by cutting. When the molten solder creeps up to the plug insertion space, while it fills the groove 9 at the time of soldering, a liquid level of the molten solder which is stored in the opening 8 is unlikely to rise, because the opening 8 which is provided at a side close to the plug insertion space has the larger width. As the results, it is possible to restrain intrusion of the solder into the plug insertion space.
Advantages of the receptacle 1 according to the above described embodiment will be described referring to FIG. 2. FIG. 2 is a vertical sectional view of the receptacle 1 which is fixed to the board 5 by soldering, including the opening 8.
When the receptacle 1 is soldered to the board 5, the heat transmission from the mounting piece 7 to the shell body 6 is depressed by the opening 8 which is the sectional area reducing part. Therefore, the shell body 6 will not be heated up to the solder melting temperature, even though the mounting piece 7 is heated for soldering. Accordingly, the solder 10 which creeps along the mounting piece 7 from the distal end of the mounting piece 7 up to the plug insertion space will not adhere to the shell body 6, and the solder 10 which has crept up will not intrude into the plug insertion space. As the results, it is possible to prevent the plug from interfering with the solder 10.
FIG. 3 is a perspective view showing a receptacle 1A according to a second embodiment of the invention. Although the shell body 6 in a substantially rectangular tubular shape is used in the first embodiment, a shell body 11 in a substantially U-shape in section is used in the second embodiment.
In the second embodiment, the shell body 11 is a member having a substantially U-shape in section which is formed by folding a metal plate, and provided with no bottom wall. In this shell body 11 in a substantially U-shape, by bringing open end parts 11 s in a U-shape into contact with a mounting face 5 a of the board 5, the plug insertion space is defined by the board 5 and the shell body 11.
In this case, the mounting face 5 a of the board 5 to be opposed to the shell body 11 corresponds to the board mounting base plane, and the distal end of the mounting piece 7 is extended from a side wall of the shell body 11 at a side of the plug insertion space to the opposite side, interposing the mounting face 5 a of the board 5 which is the board mounting base plane.
In this manner, even in the receptacle 1A having no bottom wall, it is possible to prevent the solder from creeping up to the plug insertion space, by the opening 8 which is positioned between the distal end of the mounting piece 7 and the shell body 11, and more close to the plug insertion space than to the board mounting base plane, in the same manner as in the first embodiment.
Although only some exemplary embodiments of the invention have been described in detail above, those skilled in the art will readily appreciated that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the invention.
In the above described first and second embodiments, the description has been made referring to the connector shell in a substantially rectangular tubular shape, as an example. However, the shape of the connector shell is not particularly limited, but may be a cylindrical shape and so on.
Moreover, in the above described embodiments, the sectional area reducing part (the opening 8) in a round shape is shown. However, the invention is not limited to this, but the sectional area reducing part may have a rectangular shape or a triangular shape, for example. Moreover, in the above described embodiments, a case where the single sectional area reducing part is provided is described, but a plurality of the sectional area reducing parts may be provided. Further, in the embodiments, a case where the sectional area reducing part is provided at a center of the mounting piece 7 is shown. However, the sectional area reducing part may be provided in a side part of the mounting piece 7, as slits in a shape of being cut from both sides of the mounting piece 7. In short, the shape of the sectional area reducing part is not limited, provided that the sectional area can be reduced so that the heat transmission from the mounting piece 7 to the shell body 6 or 11 may be depressed.

Claims (1)

1. A connector shell to be mounted on a board, comprising:
a shell body in which a plug inserting space is defined;
a mounting piece which is integral with the shell body, extended from the shell body through the board to be fixed to the board by soldering; and
a sectional area reducing part, provided in the mounting piece between the shell body and a distal end part of the mounting piece, having a sectional area smaller than a sectional area at the distal end part, and disposed so as to face the plug inserting space, wherein
the sectional area reducing part is formed by an opening provided in the mounting piece,
a groove is formed in the mounting piece and extends from the distal end part to the opening so as to guide solder to the opening, and
a sectional area of the sectional area reducing part is smaller than a sectional area of a part of the mounting piece where the groove is formed.
US13/070,765 2010-03-26 2011-03-24 Connector shell with a mounting piece having a sectional reducing part with a groove adjoining an opening Expired - Fee Related US8241046B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071853A JP5668306B2 (en) 2010-03-26 2010-03-26 Connector shell
JPP2010-071853 2010-03-26

Publications (2)

Publication Number Publication Date
US20110237094A1 US20110237094A1 (en) 2011-09-29
US8241046B2 true US8241046B2 (en) 2012-08-14

Family

ID=44656975

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/070,765 Expired - Fee Related US8241046B2 (en) 2010-03-26 2011-03-24 Connector shell with a mounting piece having a sectional reducing part with a groove adjoining an opening

Country Status (3)

Country Link
US (1) US8241046B2 (en)
JP (1) JP5668306B2 (en)
CN (1) CN102214871B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164982A1 (en) * 2011-12-23 2013-06-27 Hon Hai Precision Industry Co., Ltd. Electrical connector with multilayer surface treatment and method for fabricating the same
US20150044904A1 (en) * 2013-08-12 2015-02-12 Askey Computer Corp. Fixing bracket for signal connector
US20150200472A1 (en) * 2014-01-14 2015-07-16 Amphenol East Asia Limited Taiwan Branch (H.K.) Connector having support portions like steps for improving yield rate of soldering
US20180248275A1 (en) * 2015-12-25 2018-08-30 Fujikura Ltd. Charging connector and method of manufacturing charging connector assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557636B2 (en) * 2010-07-22 2014-07-23 富士通株式会社 Electronic components
JP6058771B1 (en) * 2015-10-13 2017-01-11 日本航空電子工業株式会社 Receptacle connector
JP6615578B2 (en) * 2015-10-29 2019-12-04 日本圧着端子製造株式会社 Electrical connector
US11469536B2 (en) * 2020-04-01 2022-10-11 Sony Interactive Entertainment Inc. Shape of connector shells of cables

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784955A (en) * 1971-02-01 1974-01-08 Amp Inc Connecting device for printed circuit board
US4541034A (en) * 1984-04-26 1985-09-10 At&T Technologies, Inc. Electrical terminal and method of securing same in circuit substrate thru-hole
US4575167A (en) * 1984-04-02 1986-03-11 Minter Jerry B Electrical connector for printed circuit boards and the like
US6570280B2 (en) * 2000-08-11 2003-05-27 Asmo Co., Ltd. Solder-bonding structure and brushless motor having the same
JP2005243468A (en) 2004-02-27 2005-09-08 Toshin Kogyo Kk Electronic parts and its manufacturing method
JP2005246424A (en) 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254010A (en) * 1992-09-16 1993-10-19 Amp Incorporated Securing a surface mount electrical connector in a metal shielding shell
DE69317177T2 (en) * 1992-08-27 1998-06-25 Whitaker Corp Shielding a surface mount electrical connector
CN2312531Y (en) * 1997-12-05 1999-03-31 鸿海精密工业股份有限公司 Electric connector
JP2005005091A (en) * 2003-06-11 2005-01-06 Honda Tsushin Kogyo Co Ltd Leg part for fixing/connecting
JP4268460B2 (en) * 2003-06-24 2009-05-27 富士通コンポーネント株式会社 connector
JP2006210517A (en) * 2005-01-26 2006-08-10 Densei Lambda Kk Terminal mounting structure
JP2007242346A (en) * 2006-03-07 2007-09-20 Jst Mfg Co Ltd Article installation device
KR100952322B1 (en) * 2007-12-17 2010-04-09 케이. 에이. 이 (주) A receptacle connector for a battery in the mobile electric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784955A (en) * 1971-02-01 1974-01-08 Amp Inc Connecting device for printed circuit board
US4575167A (en) * 1984-04-02 1986-03-11 Minter Jerry B Electrical connector for printed circuit boards and the like
US4541034A (en) * 1984-04-26 1985-09-10 At&T Technologies, Inc. Electrical terminal and method of securing same in circuit substrate thru-hole
US6570280B2 (en) * 2000-08-11 2003-05-27 Asmo Co., Ltd. Solder-bonding structure and brushless motor having the same
JP2005243468A (en) 2004-02-27 2005-09-08 Toshin Kogyo Kk Electronic parts and its manufacturing method
JP2005246424A (en) 2004-03-03 2005-09-15 Murata:Kk Apparatus and method for forming solder wicking prevention zone and connector member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130164982A1 (en) * 2011-12-23 2013-06-27 Hon Hai Precision Industry Co., Ltd. Electrical connector with multilayer surface treatment and method for fabricating the same
US8764484B2 (en) * 2011-12-23 2014-07-01 Hon Hai Precision Industry Co., Ltd. Electrical connector with multilayer surface treatment and method for fabricating the same
US20150044904A1 (en) * 2013-08-12 2015-02-12 Askey Computer Corp. Fixing bracket for signal connector
US9166311B2 (en) * 2013-08-12 2015-10-20 Askey Computer Corp. Fixing bracket for fixing a signal connector to a printed circuit board
US20150200472A1 (en) * 2014-01-14 2015-07-16 Amphenol East Asia Limited Taiwan Branch (H.K.) Connector having support portions like steps for improving yield rate of soldering
US9263811B2 (en) * 2014-01-14 2016-02-16 Amphenol East Asia Limited Taiwan Branch (H.K.) Connector having a step-like support portion for providing a wicking space
US20180248275A1 (en) * 2015-12-25 2018-08-30 Fujikura Ltd. Charging connector and method of manufacturing charging connector assembly
US10270187B2 (en) * 2015-12-25 2019-04-23 Fujikura Ltd. Charging connector and method of manufacturing charging connector assembly

Also Published As

Publication number Publication date
US20110237094A1 (en) 2011-09-29
CN102214871A (en) 2011-10-12
JP5668306B2 (en) 2015-02-12
JP2011204526A (en) 2011-10-13
CN102214871B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US8241046B2 (en) Connector shell with a mounting piece having a sectional reducing part with a groove adjoining an opening
KR101041656B1 (en) Contact and electrical connector
EP1796449B1 (en) Shield case
US11367992B2 (en) Housing for an electronic component, and laser module
JP2007141570A (en) Mounting structure of female connector
US10312603B2 (en) Fixing structure and fixing method
US20180287276A1 (en) Socket
KR20120079477A (en) Contact device for fastening to a circuit board, method for fastening a contact device to a circuit board, and circuit board
EP2451015A1 (en) Holding member and electronic component
US7207837B2 (en) Connector and a mounting method therefor
JP4560727B2 (en) Board connector
US7309248B2 (en) Connector fixing structure for fixing a connector to a board
EP2239818A1 (en) Holding member, mounting structure having the holding member mounted in electric circuit board, and electronic part having the holding member
EP1850421B1 (en) Reinforcing tab, method of manufacturing the same and structure of connecting connector using the same
JP4187217B2 (en) connector
CN111755884B (en) Connector for printed circuit board
JP2007305542A (en) Lug terminal and fixing structure of plate member using lug terminal
EP0670760B1 (en) Electrical connector
EP3819650B1 (en) Current detection device and manufacturing method thereof
EP3772779A1 (en) Vertical surface mount device pass-through fuse
US20020058428A1 (en) Circuit-board connecting terminal
JP2005149784A (en) Connector for cable connection
EP1850644A1 (en) Surface mount electric part
JP2003229191A (en) Terminal for surface mounting connector
JP2004193386A (en) Device for holding electronic parts

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUMI ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKAGI, SOICHI;TSUTSUI, TAKAKI;EGUCHI, TSUYOSHI;REEL/FRAME:026015/0010

Effective date: 20110324

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200814