US8252028B2 - Posterior dynamic stabilization device - Google Patents

Posterior dynamic stabilization device Download PDF

Info

Publication number
US8252028B2
US8252028B2 US11/959,691 US95969107A US8252028B2 US 8252028 B2 US8252028 B2 US 8252028B2 US 95969107 A US95969107 A US 95969107A US 8252028 B2 US8252028 B2 US 8252028B2
Authority
US
United States
Prior art keywords
belt
spacer
retainer
bone anchor
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/959,691
Other versions
US20090163954A1 (en
Inventor
SeungKyu Daniel Kwak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Spine LLC
Original Assignee
DePuy Spine LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DePuy Spine LLC filed Critical DePuy Spine LLC
Priority to US11/959,691 priority Critical patent/US8252028B2/en
Assigned to DEPUY SPINE, INC. reassignment DEPUY SPINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KWAK, SEUNGKYU DANIEL
Priority to PCT/US2008/086971 priority patent/WO2009079500A1/en
Publication of US20090163954A1 publication Critical patent/US20090163954A1/en
Assigned to DEPUY SPINE, INC. reassignment DEPUY SPINE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KWAK, SEUNGKYU DANIEL
Application granted granted Critical
Publication of US8252028B2 publication Critical patent/US8252028B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7007Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7031Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other made wholly or partly of flexible material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/701Longitudinal elements with a non-circular, e.g. rectangular, cross-section

Definitions

  • PDS posterior dynamic stabilization
  • FSU functional spinal unit
  • a PDS device may limit the motion of an FSU by providing a limit to flexion (i.e., elongation of PDS) or extension (i.e., compression of PDS).
  • a normal functional spine unit i.e., two adjacent vertebral segment with a disc in between
  • the need for a PDS device that can elongate and compress becomes more important when a disc replacement prosthetic is implanted, since most disc replacement prosthetics are ball and socket type joints that define the center of vertebral rotation to be near the center of disc. With the center of rotation forced to be in the anterior portion by the disc replacement, the PDS device must elongate and compress to allow vertebral motion.
  • U.S. Pat. No. 4,790,303 discloses a fastener for securing bone graft between a pair of bone portions.
  • the fastener includes a curved elongated member having a shank for extending into the bone graft and pair of bone portions.
  • the shank has an end portion which receives a force for driving the shank into the pair of bone portions and the bone graft.
  • the shank has a plurality barbs projecting therefrom for resisting movement of the shank relative to the bone graft and the bone portions.
  • U.S. Pat. No. 5,092,866 (Breard I) discloses an inter-vertebral stabilizer having one or more flexible ligaments. Each flexible ligament can be engaged with two respective vertebrae and/or associated with two retaining elements, such as screws, each of which is suitable for being implanted in a respective vertebra.
  • the present invention also relates to a process, and the associated apparatus, for determining or verifying the tension of such an inter-vertebral stabilizer before it is put into place on the spinal column. This process includes implanting, in each of the vertebrae concerned, a corresponding rigid rod extending outside the patient's body. The rods in each pair of adjacent rods are immobilized in an initial position.
  • the process includes modifying the distance between the rods, then in immobilizing the rods in their new relative positions and in repeating the pain test. This cycle of operations is repeated, if necessary, until the pain disappears. The length to be allocated to the ligament is deduced from the distance then attained between the two rods.
  • U.S. Pat. No. 5,387,213 discloses a surgical implant for connecting two flexible ligaments to vertebrae having an intervertebral stabilizer including an intra-osseous rod having a first end for implanting into a vertebra.
  • the intervertebral stabilizer also includes an extra-osseous head extending outwardly of the vertebrae.
  • the extra-osseous head has two stepped portions, each with a peripheral surface, defining two ligament retaining zones.
  • Each of the two ligament retaining zones has a shoulder, forming an axial ligament abutment on the sides of the ligament retaining zones closest to the first end.
  • the extra-osseous head retains two flexible ligaments spaced from the vertebrae and each other by the shoulders.
  • U.S. Pat. No. 5,725,582 discloses a surgical implant comprises a hank formed from a single strand of flexible biocompatible material (such as polyester) with at least one bight at each end of the hank and a tail extending from one end, and a crimpable sleeve-like element encircling the overlapping end lengths of the strand.
  • the implant is shown in use for the stabilization of the spine, the bights being applied to hooking members engaged respectively with the lamina of one vertebra and the spinous process of an adjacent vertebra, the strand material being tensioned by pulling the tail before crimping the sleeve-like element.
  • U.S. Pat. No. 6,436,099 discloses an apparatus provided to allow for an adjustable length tether for use in the spine and other parts of the body.
  • the tether comprises an artificial strand with an eyelet formed in one end, the other end being looped through the eyelet. The other end is then secured with respect to the eyelet by a crimp, the excess length being cut off after the length of the tether has been given an appropriate tension.
  • the eyelet end may be formed around a grommet.
  • the crimp may be separate from the grommet or a part of the grommet.
  • the mechanism by which the length is adjusted in some cases will take advantage of the shape memory properties of alloys such as nickel-titanium.
  • WO 2001-45576 discloses an assembly used for the stabilisation of two adjacent vertebral bodies of the spine. It comprises two pedicle screws, having a threaded shaft with a tapering first end for introduction into the vertebral bodies and a head portion with a second end. It further comprises a flexible longitudinal fulcrum with two portions, which can be disposed transversely to said pedicle screws, and fixed with its end portions to the head portions of said two pedicle screws at a distance x from said second end. The assembly further comprises an elastic ligament which can be disposed transversely to said two pedicle screws and fixed to the head portions of said two pedicle screws at a distance y ⁇ x from the end portion of the fulcrum.
  • the posteriorly placed ligament distracts the whole disc, and the fulcrum itself becomes a load-bearing structure. This reduces the load over the disc, and makes it an even distribution of load across the end-plate throughout the range of movement of the motion segment, that is allowed by the implant.
  • U.S. Pat. No. 6,783,527 discloses devices, methods and systems for stabilizing at least a portion of the spinal column.
  • Devices include anchors and coupling members for engaging an elongate member.
  • Systems include an elongate member sized to span a distance between at least two vertebral bodies and being at least partially formed of a flexible material.
  • a number of anchors and coupling members are used to secure the elongate member to each of the vertebral bodies.
  • the anchors can be compressed towards one another and the elongate member secured thereto and/or the elongate member can be tensioned to provide corrective forces to the spine.
  • U.S. Pat. No. 7,018,379 discloses Devices, methods and systems for stabilizing at least a portion of the spinal column.
  • Devices include anchors and coupling members for engaging an elongate member.
  • Systems include an elongate member sized to span a distance between at least two vertebral bodies and being at least partially formed of a flexible material.
  • a number of anchors and coupling members are used to secure the elongate member to each of the vertebral bodies.
  • the anchors can be compressed towards one another and the elongate member secured thereto and/or the elongate member can be tensioned to provide corrective forces to the spine.
  • EP Patent No. 0669109 discloses a system to stabilize adjacent vertebrae having a pressure-resistant support body to transfer pressure forces between two screw heads.
  • the strip is of an elastic plastics material with a round cross section to withstand shear forces, fitting into matching drillings to be held on all sides at the support and screw head and to center the support and screw head with each other.
  • the strip is pretensioned to hold the support and screw head together at a support surface round the strip.
  • the elastic material for the support is preferably polyurethane.
  • a posterior dynamic stabilization system comprising:
  • the present invention is posterior dynamic stabilization (PDS) device that allows predetermined a) elongation through a ligament connected to the bone anchors that ultimately reaches its full length to provide a secure flexion limit, and b) compression through a spacer positioned between bone anchors to provide an extension limit.
  • PDS posterior dynamic stabilization
  • FIG. 1 is an exploded version of a first embodiment of the present invention.
  • FIGS. 2 a and 2 b are respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal extension.
  • FIGS. 3 a and 3 b are respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal flexion.
  • FIG. 4 discloses a side view of a functional spinal unit having both a PDS device of the present invention implanted on the posterior side of the spinal cord and a motion disc implanted within the disc space anterior to the spinal cord.
  • FIG. 5 a discloses an exploded view of the spacerless device of the present invention.
  • FIGS. 5 b - 5 c disclose perspective views of the spacerless device of the present invention in extension and flexion.
  • a posterior dynamic stabilization system comprising:
  • the flexible belt ligament serves as an ultimate flexion stop of the functional spinal unit. As a belt, it should bend at least in one direction easily. At the point of maximum allowed flexion, the belt straightens, thereby preventing further separation of the bone anchors and limiting flexion. In a normal setting, the belt does not perform its limiting function, but rather folds in various ways guided by other mechanical components of the PDS device (such as the extension spacer and side springs).
  • the belt can be made of any flexible material including woven fibers (both natural and synthetic), thin metallic band, or polymeric band.
  • each end portion of the flexible belt ligament is attached to a respective bone anchor
  • such attachment may include either direct attachment or indirect attachment through a belt retainer.
  • the belt ligament can be a single strap that connects superior and inferior pedicle screws.
  • the first portion of the belt comprises a first end
  • the second portion of the belt comprises a second end.
  • Each end of this strap belt attaches to a respective bone anchor, preferably the retainer portion of the bone anchor, to provide a simple single strap-like component that resists excessive flexion and elongation.
  • the device further comprises d) a second flexible belt ligament having a first end portion and a second end portion, each end portion contacting the respective bone anchor.
  • a second flexible belt ligament having a first end portion and a second end portion, each end portion contacting the respective bone anchor.
  • Each end of both of these belts is a strap that attaches to each respective bone anchor, preferably the retainer portion of the bone anchor, to provide a dual component system that resists excessive flexion and elongation.
  • the dual ligament nature of this embodiment provides redundancy and load sharing in its resistance to excessive flexion and elongation
  • the continuous belt embodiment has the same load sharing and redundancy advantages provided by the dual strap embodiment, but further has the advantage of having a low stress attachment to the corresponding retainers. This low stress attachment is accomplished by having a high surface area contact between the belt retainers and the continuous belt.
  • the extension spacer serves as an ultimate extension limit. In maximum allowed extension, it contacts superior and inferior pedicle screws (or other attachment to the screws such as a belt channel).
  • the spacer can be a hollow box where the ligament is located inside the box.
  • the extension spacer can be built into a pedicle screw to limit the motion.
  • the extension spacer can be made of rigid or semi-rigid material such as metal, ceramic, plastic or semi-rigid polymers such as polyurethane, silicone, PEEK or CFRP.
  • the spacer generally has a longitudinal length that is slightly less than the distance between belt retainers. In this condition, the spacer has no function in a neutral setting, but acts as a stop during extreme extension, when the two retainers move towards each other.
  • the spacer has a first end and a second end, wherein the first end contacts the first retainer and the second end contacts the second retainer during extreme extension.
  • each end of the spacer has a shape corresponding to the shape of the retainer it contacts. More preferably, each end of the spacer has a concave shape corresponding to the convex shape of the retainer it contacts. Most preferably, the shape of each end of the spacer is a concave portion of a circle corresponding to the convex circular shape of the retainer it contacts.
  • the spacer generally has a transverse width that is slightly less than the diameter of belt retainers.
  • the side surfaces 23 of the spacer that define the width does not interfere with the extension of the continuous belt around the two retainers.
  • these two side surfaces are parallel to each other and flat.
  • the two side surfaces have concave recesses 25 therein. These apexes of these recesses form positive stops for the contraction of the side springs.
  • the two side surfaces each have a pair of concave recesses 25 therein.
  • the bone anchor can take the form of any typical bone anchor commonly used in the spinal fixation art.
  • the bone anchor takes the form of a screw, more typically a pedicle screw having a distal end having a threadform, an intermediate portion having a transverse ledge 27 , and a proximal end having a post which may form a second threadform.
  • the distal end of the screw is threaded so as to anchor the bone anchor within the vertebra.
  • the first threadedform can take the form of any threadedform commonly used in the spinal fixation art for fixing the anchor within bone.
  • the ledge that separates the two threadforms generally has the functions of limiting penetration of the screw into the bone.
  • the proximal end of the screw is threaded so as to allow fixation of belt retainer thereto.
  • the second threadedform can take the form of any threadform commonly used in the spinal fixation art for fixing a nut to the anchor.
  • a belt retainer such as a locking nut is fitted over the proximal end of each anchor.
  • the belt retainer comprises an annulus having a circumferential channel 21 therein, an inner portion and an outer portion.
  • the circumferential channel 21 is also referred to as a “belt channel”.
  • the belt channel serves as guide for attaching the belt ligament to the bone anchor, so that the belt ligament sits in the belt channel.
  • the spherical front and back surfaces allow for polyaxial alignment of the belt retainer with the bone anchor, which can then be locked with a locking nut.
  • the bottom indentation serves as location to contact the extension spacer.
  • the belt retainer may be considered to be a part of the bone anchor.
  • the distal portion of the belt retainer has a hemispheric shape so that it can mate with a corresponding hemispheric shape on the proximal portion of the bone anchor ledge, so that together the bone anchor and belt retainer form a polyaxial screw.
  • the bone anchor and belt retainer combination may be considered to form a polyaxial screw.
  • each end of the belt ligament is disposed within an outer portion of the channel.
  • a conventional locking nut 31 is used to lock the assembly together. This locking nut is threaded onto the proximal portion of the bone anchor after the belt retainer has been threaded onto the proximal portion of the bone anchor.
  • the device further comprises d) first and second side springs 33 , wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt.
  • the flexible side springs hold the belt ligament and the spacer together. It prevents the spacer from coming out of the device, and holds the belt to hug the spacer.
  • the side spring generates a small tensile force as the belt ligament straightens. Therefore, in the neutral zone near normal motion, small tensile force guides the motion. Near the ultimate flexion limit, the stiffness of the side springs increases to limit the motion.
  • FIGS. 2 a and 2 b there is provided respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal extension.
  • the two bone anchors move closer together as do the two belt retainers 5 , thereby imparting a compressive force on the device.
  • the spacer 15 acts as the ultimate limiting feature of the spinal extension, as its opposite ends come into contact with the inner portions of the respective belt retainers.
  • the belt ligament 9 is in a lax condition, and it conforms to the shape of the spacer side walls due to the tensile forces produced by the side springs 33 .
  • FIGS. 3 a and 3 b there is provided respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal flexion.
  • the two bone anchors move farther apart (as do the two belt retainers 5 ), thereby imparting a tensile force on the ligament 9 .
  • the belt ligament acts as the ultimate limiting feature of the spinal flexion, as it is stretched to its ultimate length.
  • the belt ligament is in a taut condition, and its tautness produces a tensile force on the side springs 33 , which open in response to this tensile force.
  • the spacer 15 does not contact the belt retainers.
  • the PDS device of the present invention is used with an intervertebral disc replacement (motion disc).
  • motion disc intervertebral disc replacement
  • FIG. 4 discloses a side view of a functional spinal unit having both a PDS device 37 of the present invention implanted on the posterior side of the spinal cord and a motion disc 35 implanted within the disc space anterior to the spinal cord.
  • the motion disc component of the present invention can be any prosthetic capable of restoring the natural motions of the intervertebral disc.
  • the motion disc is selected from the group consisting of an articulating disc, a cushion disc and a spring-based disc.
  • the general structure of the articulating motion disc comprises:
  • a) a first prosthetic vertebral endplate comprising:
  • a second prosthetic vertebral endplate comprising:
  • a core member comprising:
  • the core member is oriented to produce a first articulation interface between the first articulation surface of the first endplate and the first articulation surface of the core member, and a second articulation interface between the first articulation surface of the second endplate and the second articulation surface of the core member.
  • the general structure of the articulating motion disc is a two piece design and comprises:
  • a) a first prosthetic vertebral endplate comprising:
  • a second prosthetic vertebral endplate comprising:
  • first and second articulation surfaces are oriented produce an articulation interface.
  • the articulation interfaces form partial spheres.
  • the motion discs of the present invention can be adapted for use any of the lumbar, thoracic or cervical spine regions. In some embodiments wherein the motion disc is adapted for use in the lumbar region, the three-piece design having a core is selected. In some embodiments wherein the motion disc is adapted for use in the cervical region, the two-piece design is selected.
  • the motion disc is implanted from the posterior side of the spine.
  • the motion disc is a ball and socket-based disc.
  • the motion disc takes the form of the motion disc disclosed in U.S. Ser. No. 11/351,710, filed Feb. 10, 2006, entitled “Intervertebral Disc Prosthesis Having Multiple Bearing Surfaces” (First Inventor Name) Kwak et al., the specification of which is hereby incorporated by reference in its entirety.
  • the ball and socket designs disclosed therein are generally capable of withstanding the physiologic axial loads impressed onto a disc, is unconstrained in both flexion and extension, has a controlled axial rotation and lateral bending, and has an anterior-posterior pure shear stop. It is typically adapted for posterior insertion into the anterior disc space, and allows for easy alignment.
  • the PDS device of the present invention When used to augment the ball and socket design in spinal support, the PDS device of the present invention allows for a large flexion/extension range of motion; has controlled stops for both flexion and extension, is pedicle-screw based, and supports AP shear through its ligament tension.
  • the pedicle screws are situated sufficiently close to each other so as to obviate the need for the spacer. Therefore, in some embodiments, the spacer component of the device is eliminated. In this case, the inner portions of the opposing belt retainers oppose each other in the neutral zone and contact each other during spinal extension, thus acting as an extension stop as the spacer did in the first embodiment.
  • a spacerless posterior dynamic stabilization system comprising:
  • each of the inner portions of the belt retainers are flat.
  • FIG. 5 a provides an exploded perspective view of the spacerless device of the present invention.
  • FIG. 5 b there is provided a perspective view of the spacerless device of the present invention, positioned as implanted in a functional spinal unit that is subject to spinal extension.
  • the two bone anchors move closer together as do the two belt retainers 56 , thereby imparting a compressive force on the device.
  • the belt retainers act as the ultimate limiting feature of the spinal extension, as the inner portions 62 of the respective belt retainers come into contact.
  • the belt ligament 68 is in a lax condition.
  • FIG. 5 c there is provided perspective view of the spacerless device of the present invention, positioned as implanted in a functional spinal unit that is subject to spinal flexion.
  • the two bone anchors move farther apart (as do the two belt retainers 5 ), thereby imparting a tensile force on the ligament 68 .
  • the belt ligament acts as the ultimate limiting feature of the spinal flexion, as it is stretched to its ultimate length.
  • the belt ligament is in a taut condition. Also in this condition, there is no contact between the belt retainers.
  • a posterior dynamic stabilization system comprising:

Abstract

A posterior dynamic stabilization system that allows a) elongation through a ligament connected to the bone anchors that ultimately reaches its full length to provide a secure flexion limit, and b) compression through a spacer positioned between bone anchors to provide an extension limit.

Description

BACKGROUND OF THE INVENTION
Most of the currently available posterior dynamic stabilization (PDS) devices accommodate bending of the rod. However, if a functional spinal unit (FSU) rotates about a point away from the rod, the rod should elongate and/or compress in addition to bend. Furthermore, a PDS device may limit the motion of an FSU by providing a limit to flexion (i.e., elongation of PDS) or extension (i.e., compression of PDS).
A normal functional spine unit (i.e., two adjacent vertebral segment with a disc in between) has a center of rotation generally near the center of the disc or at least around the vertebral body column. Therefore, any PDS device that is attached to pedicle screws must not only bend but also elongate and compress to allow motion in an FSU.
Furthermore, the need for a PDS device that can elongate and compress becomes more important when a disc replacement prosthetic is implanted, since most disc replacement prosthetics are ball and socket type joints that define the center of vertebral rotation to be near the center of disc. With the center of rotation forced to be in the anterior portion by the disc replacement, the PDS device must elongate and compress to allow vertebral motion.
U.S. Pat. No. 4,790,303 (Steffee) discloses a fastener for securing bone graft between a pair of bone portions. The fastener includes a curved elongated member having a shank for extending into the bone graft and pair of bone portions. The shank has an end portion which receives a force for driving the shank into the pair of bone portions and the bone graft. The shank has a plurality barbs projecting therefrom for resisting movement of the shank relative to the bone graft and the bone portions.
U.S. Pat. No. 5,092,866 (Breard I) discloses an inter-vertebral stabilizer having one or more flexible ligaments. Each flexible ligament can be engaged with two respective vertebrae and/or associated with two retaining elements, such as screws, each of which is suitable for being implanted in a respective vertebra. The present invention also relates to a process, and the associated apparatus, for determining or verifying the tension of such an inter-vertebral stabilizer before it is put into place on the spinal column. This process includes implanting, in each of the vertebrae concerned, a corresponding rigid rod extending outside the patient's body. The rods in each pair of adjacent rods are immobilized in an initial position. If the pain which is to be removed by the stabilizer persists, the process includes modifying the distance between the rods, then in immobilizing the rods in their new relative positions and in repeating the pain test. This cycle of operations is repeated, if necessary, until the pain disappears. The length to be allocated to the ligament is deduced from the distance then attained between the two rods.
U.S. Pat. No. 5,387,213 (Breard II) discloses a surgical implant for connecting two flexible ligaments to vertebrae having an intervertebral stabilizer including an intra-osseous rod having a first end for implanting into a vertebra. The intervertebral stabilizer also includes an extra-osseous head extending outwardly of the vertebrae. The extra-osseous head has two stepped portions, each with a peripheral surface, defining two ligament retaining zones. Each of the two ligament retaining zones has a shoulder, forming an axial ligament abutment on the sides of the ligament retaining zones closest to the first end. The extra-osseous head retains two flexible ligaments spaced from the vertebrae and each other by the shoulders.
U.S. Pat. No. 5,725,582 (Bevan) discloses a surgical implant comprises a hank formed from a single strand of flexible biocompatible material (such as polyester) with at least one bight at each end of the hank and a tail extending from one end, and a crimpable sleeve-like element encircling the overlapping end lengths of the strand. The implant is shown in use for the stabilization of the spine, the bights being applied to hooking members engaged respectively with the lamina of one vertebra and the spinous process of an adjacent vertebra, the strand material being tensioned by pulling the tail before crimping the sleeve-like element.
U.S. Pat. No. 6,436,099 (Drewry I) discloses an apparatus provided to allow for an adjustable length tether for use in the spine and other parts of the body. The tether comprises an artificial strand with an eyelet formed in one end, the other end being looped through the eyelet. The other end is then secured with respect to the eyelet by a crimp, the excess length being cut off after the length of the tether has been given an appropriate tension. Alternatively, the eyelet end may be formed around a grommet. The crimp may be separate from the grommet or a part of the grommet. The mechanism by which the length is adjusted in some cases will take advantage of the shape memory properties of alloys such as nickel-titanium.
WO 2001-45576 (Mulholland) discloses an assembly used for the stabilisation of two adjacent vertebral bodies of the spine. It comprises two pedicle screws, having a threaded shaft with a tapering first end for introduction into the vertebral bodies and a head portion with a second end. It further comprises a flexible longitudinal fulcrum with two portions, which can be disposed transversely to said pedicle screws, and fixed with its end portions to the head portions of said two pedicle screws at a distance x from said second end. The assembly further comprises an elastic ligament which can be disposed transversely to said two pedicle screws and fixed to the head portions of said two pedicle screws at a distance y<x from the end portion of the fulcrum. By introduction of a fulcrum, lying close to the axis of flexion and extension of the spinal motion segment, the posteriorly placed ligament distracts the whole disc, and the fulcrum itself becomes a load-bearing structure. This reduces the load over the disc, and makes it an even distribution of load across the end-plate throughout the range of movement of the motion segment, that is allowed by the implant.
U.S. Pat. No. 6,783,527 (Drewry II) discloses devices, methods and systems for stabilizing at least a portion of the spinal column. Devices include anchors and coupling members for engaging an elongate member. Systems include an elongate member sized to span a distance between at least two vertebral bodies and being at least partially formed of a flexible material. A number of anchors and coupling members are used to secure the elongate member to each of the vertebral bodies. The anchors can be compressed towards one another and the elongate member secured thereto and/or the elongate member can be tensioned to provide corrective forces to the spine.
U.S. Pat. No. 7,018,379 (Drewry III) discloses Devices, methods and systems for stabilizing at least a portion of the spinal column are provided. Devices include anchors and coupling members for engaging an elongate member. Systems include an elongate member sized to span a distance between at least two vertebral bodies and being at least partially formed of a flexible material. A number of anchors and coupling members are used to secure the elongate member to each of the vertebral bodies. The anchors can be compressed towards one another and the elongate member secured thereto and/or the elongate member can be tensioned to provide corrective forces to the spine.
EP Patent No. 0669109 (Dubois) discloses a system to stabilize adjacent vertebrae having a pressure-resistant support body to transfer pressure forces between two screw heads. The strip is of an elastic plastics material with a round cross section to withstand shear forces, fitting into matching drillings to be held on all sides at the support and screw head and to center the support and screw head with each other. The strip is pretensioned to hold the support and screw head together at a support surface round the strip. The elastic material for the support is preferably polyurethane.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a posterior dynamic stabilization system, comprising:
    • a) first and second bone anchors having a distal end having a threadform and a proximal end,
    • b) a first flexible belt ligament having a first end portion and a second end portion, and
    • c) a spacer having a first end and a second end, the spacer being disposed between the respective bone anchors,
      wherein each end portion of the flexible belt ligament is attached to a respective bone anchor, and
      wherein the spacer is positioned between the two bone anchors to contact each bone anchor during spinal extension.
The present invention is posterior dynamic stabilization (PDS) device that allows predetermined a) elongation through a ligament connected to the bone anchors that ultimately reaches its full length to provide a secure flexion limit, and b) compression through a spacer positioned between bone anchors to provide an extension limit.
In flexion of the spine, the belt (ligament) limits the motion. Hence, in a normal setting, the ligament is lax or loose and only becomes tight at the flexion limit. On the other hand, the spacer is rigid or semi-rigid to stop extension of the spine. In a normal or neutral setting, the spacer does not contact either or both of the superior and inferior pedicle screws.
DESCRIPTION OF THE FIGURES
FIG. 1 is an exploded version of a first embodiment of the present invention.
FIGS. 2 a and 2 b are respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal extension.
FIGS. 3 a and 3 b are respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal flexion.
FIG. 4 discloses a side view of a functional spinal unit having both a PDS device of the present invention implanted on the posterior side of the spinal cord and a motion disc implanted within the disc space anterior to the spinal cord.
FIG. 5 a discloses an exploded view of the spacerless device of the present invention.
FIGS. 5 b-5 c disclose perspective views of the spacerless device of the present invention in extension and flexion.
DETAILED DESCRIPTION OF THE INVENTION
Now referring to FIG. 1 there is provided a posterior dynamic stabilization system, comprising:
    • a) first 1 and second 2 bone anchors having a distal end having a first threadform (not shown) and a proximal end 3 having a second threadform 5,
    • b) first and second belt retainers 5 having a third threadform (not shown) that mates with the second threadform an inner portion 6 and an outer portion 8,
    • c) a first flexible belt ligament 9 having a first end portion 11 and a second end portion 13, and
    • d) a spacer 15 having a first end 17 and a second end 19, each end disposed within the inner portion of the channel of the respective bone anchor,
      wherein the belt retainers are locked onto the second threadform of each bone anchor,
      wherein each end portion of the flexible belt ligament is attached to a respective belt retainer, and
      wherein the spacer is positioned between the two belt retainers to contact each belt retainer during spinal extension and be free of each belt retainer during spinal flexion.
The flexible belt ligament serves as an ultimate flexion stop of the functional spinal unit. As a belt, it should bend at least in one direction easily. At the point of maximum allowed flexion, the belt straightens, thereby preventing further separation of the bone anchors and limiting flexion. In a normal setting, the belt does not perform its limiting function, but rather folds in various ways guided by other mechanical components of the PDS device (such as the extension spacer and side springs). The belt can be made of any flexible material including woven fibers (both natural and synthetic), thin metallic band, or polymeric band.
For the purposes of the present invention, when it is stated that each end portion of the flexible belt ligament is attached to a respective bone anchor, such attachment may include either direct attachment or indirect attachment through a belt retainer.
In some embodiments, the belt ligament can be a single strap that connects superior and inferior pedicle screws. In these strap embodiments, the first portion of the belt comprises a first end, and the second portion of the belt comprises a second end. Each end of this strap belt attaches to a respective bone anchor, preferably the retainer portion of the bone anchor, to provide a simple single strap-like component that resists excessive flexion and elongation.
In some embodiments, the device further comprises d) a second flexible belt ligament having a first end portion and a second end portion, each end portion contacting the respective bone anchor. Each end of both of these belts is a strap that attaches to each respective bone anchor, preferably the retainer portion of the bone anchor, to provide a dual component system that resists excessive flexion and elongation. The dual ligament nature of this embodiment provides redundancy and load sharing in its resistance to excessive flexion and elongation
In some embodiments, the first and second ligaments comprise a single continuous belt. In this embodiment, the retainer preferably has a tranverse channel 21 present on its side facing away from the other retainer (i.e., the first retainer's outer portion), so that a first portion of the belt can fit in that transverse channel and a second portion of the belt can fit in a second channel similarly present on the outer portion of the second retainer. Each retainer preferably has a continuous channel extending around the periphery of the retainer so that the continuous belt can fit into a portion of the channel irrespective of the final position of the tightened retainer. The continuous belt embodiment has the same load sharing and redundancy advantages provided by the dual strap embodiment, but further has the advantage of having a low stress attachment to the corresponding retainers. This low stress attachment is accomplished by having a high surface area contact between the belt retainers and the continuous belt.
The extension spacer serves as an ultimate extension limit. In maximum allowed extension, it contacts superior and inferior pedicle screws (or other attachment to the screws such as a belt channel). In other embodiments, the spacer can be a hollow box where the ligament is located inside the box. In the extreme case where the space between the pedicle screws is limited (e.g., L5-S1 level), the extension spacer can be built into a pedicle screw to limit the motion. The extension spacer can be made of rigid or semi-rigid material such as metal, ceramic, plastic or semi-rigid polymers such as polyurethane, silicone, PEEK or CFRP.
The spacer generally has a longitudinal length that is slightly less than the distance between belt retainers. In this condition, the spacer has no function in a neutral setting, but acts as a stop during extreme extension, when the two retainers move towards each other. In some preferred embodiments, the spacer has a first end and a second end, wherein the first end contacts the first retainer and the second end contacts the second retainer during extreme extension. Preferably, each end of the spacer has a shape corresponding to the shape of the retainer it contacts. More preferably, each end of the spacer has a concave shape corresponding to the convex shape of the retainer it contacts. Most preferably, the shape of each end of the spacer is a concave portion of a circle corresponding to the convex circular shape of the retainer it contacts.
In some embodiments, the spacer generally has a transverse width that is slightly less than the diameter of belt retainers. In this condition, the side surfaces 23 of the spacer that define the width does not interfere with the extension of the continuous belt around the two retainers. In some embodiments, these two side surfaces are parallel to each other and flat. In other preferred embodiments, the two side surfaces have concave recesses 25 therein. These apexes of these recesses form positive stops for the contraction of the side springs. In more preferred embodiments, the two side surfaces each have a pair of concave recesses 25 therein.
The bone anchor can take the form of any typical bone anchor commonly used in the spinal fixation art. Typically, the bone anchor takes the form of a screw, more typically a pedicle screw having a distal end having a threadform, an intermediate portion having a transverse ledge 27, and a proximal end having a post which may form a second threadform.
Generally, the distal end of the screw is threaded so as to anchor the bone anchor within the vertebra. The first threadedform can take the form of any threadedform commonly used in the spinal fixation art for fixing the anchor within bone.
The ledge that separates the two threadforms generally has the functions of limiting penetration of the screw into the bone.
Generally, the proximal end of the screw is threaded so as to allow fixation of belt retainer thereto. The second threadedform can take the form of any threadform commonly used in the spinal fixation art for fixing a nut to the anchor.
In some embodiments, a belt retainer such as a locking nut is fitted over the proximal end of each anchor. The belt retainer comprises an annulus having a circumferential channel 21 therein, an inner portion and an outer portion. The circumferential channel 21 is also referred to as a “belt channel”. The belt channel serves as guide for attaching the belt ligament to the bone anchor, so that the belt ligament sits in the belt channel. Moreover, the spherical front and back surfaces allow for polyaxial alignment of the belt retainer with the bone anchor, which can then be locked with a locking nut. Furthermore, the bottom indentation serves as location to contact the extension spacer.
The belt retainer may be considered to be a part of the bone anchor. In some embodiments, the distal portion of the belt retainer has a hemispheric shape so that it can mate with a corresponding hemispheric shape on the proximal portion of the bone anchor ledge, so that together the bone anchor and belt retainer form a polyaxial screw. As such the bone anchor and belt retainer combination may be considered to form a polyaxial screw. Thus, when it is stated that each end portion of the flexible belt ligament is attached to a respective bone anchor, such attachment may include either direct attachment or indirect attachment through a belt retainer.
In some embodiments, each end of the belt ligament is disposed within an outer portion of the channel.
Typically, a conventional locking nut 31 is used to lock the assembly together. This locking nut is threaded onto the proximal portion of the bone anchor after the belt retainer has been threaded onto the proximal portion of the bone anchor.
In some embodiments, the device further comprises d) first and second side springs 33, wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt. The flexible side springs hold the belt ligament and the spacer together. It prevents the spacer from coming out of the device, and holds the belt to hug the spacer. Moreover, the side spring generates a small tensile force as the belt ligament straightens. Therefore, in the neutral zone near normal motion, small tensile force guides the motion. Near the ultimate flexion limit, the stiffness of the side springs increases to limit the motion.
Now referring to FIGS. 2 a and 2 b, there is provided respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal extension. During spinal extension, the two bone anchors move closer together as do the two belt retainers 5, thereby imparting a compressive force on the device. In this condition, the spacer 15 acts as the ultimate limiting feature of the spinal extension, as its opposite ends come into contact with the inner portions of the respective belt retainers. The belt ligament 9 is in a lax condition, and it conforms to the shape of the spacer side walls due to the tensile forces produced by the side springs 33.
Now referring to FIGS. 3 a and 3 b, there is provided respective side and posterior views of the device of the present invention implanted in a functional spinal unit that is subject to spinal flexion. During spinal flexion, the two bone anchors move farther apart (as do the two belt retainers 5), thereby imparting a tensile force on the ligament 9. In this condition, the belt ligament acts as the ultimate limiting feature of the spinal flexion, as it is stretched to its ultimate length. The belt ligament is in a taut condition, and its tautness produces a tensile force on the side springs 33, which open in response to this tensile force. Also in this condition, the spacer 15 does not contact the belt retainers.
In some embodiments, the PDS device of the present invention is used with an intervertebral disc replacement (motion disc).
FIG. 4 discloses a side view of a functional spinal unit having both a PDS device 37 of the present invention implanted on the posterior side of the spinal cord and a motion disc 35 implanted within the disc space anterior to the spinal cord.
The motion disc component of the present invention can be any prosthetic capable of restoring the natural motions of the intervertebral disc. In preferred embodiments, the motion disc is selected from the group consisting of an articulating disc, a cushion disc and a spring-based disc.
Preferred articulating motion devices are disclosed in U.S. Pat. Nos. 5,556,431 and 5,674,296, the specifications of which are incorporated by reference.
In some embodiments, the general structure of the articulating motion disc comprises:
a) a first prosthetic vertebral endplate comprising:
    • i) an outer surface adapted to mate with a first vertebral body,
    • ii) an inner surface having a first articulation surface,
    • iii) a body portion connecting the inner and outer surfaces,
b) a second prosthetic vertebral endplate comprising:
    • i) an outer surface adapted to mate with a second vertebral body, and
    • ii) an inner surface comprising a first articulation surface,
c) a core member comprising:
    • i) a first articulation surface adapted for articulation with the first articulation surface of the first endplate, and
    • ii) a second articulation surface adapted for articulation with the first articulation surface of the second endplate,
wherein the core member is oriented to produce a first articulation interface between the first articulation surface of the first endplate and the first articulation surface of the core member, and a second articulation interface between the first articulation surface of the second endplate and the second articulation surface of the core member.
In some embodiments, the general structure of the articulating motion disc is a two piece design and comprises:
a) a first prosthetic vertebral endplate comprising:
    • i) an outer surface adapted to mate with a first vertebral body,
    • ii) an inner surface having a first articulation surface,
    • iii) a body portion connecting the inner and outer surfaces,
b) a second prosthetic vertebral endplate comprising:
    • i) an outer surface adapted to mate with a second vertebral body, and
    • ii) an inner surface comprising a second articulation surface,
wherein the first and second articulation surfaces are oriented produce an articulation interface.
Preferably, the articulation interfaces form partial spheres.
The motion discs of the present invention can be adapted for use any of the lumbar, thoracic or cervical spine regions. In some embodiments wherein the motion disc is adapted for use in the lumbar region, the three-piece design having a core is selected. In some embodiments wherein the motion disc is adapted for use in the cervical region, the two-piece design is selected.
In some embodiments, the motion disc is implanted from the posterior side of the spine. In some embodiments, the motion disc is a ball and socket-based disc. In some embodiments, the motion disc takes the form of the motion disc disclosed in U.S. Ser. No. 11/351,710, filed Feb. 10, 2006, entitled “Intervertebral Disc Prosthesis Having Multiple Bearing Surfaces” (First Inventor Name) Kwak et al., the specification of which is hereby incorporated by reference in its entirety.
The ball and socket designs disclosed therein are generally capable of withstanding the physiologic axial loads impressed onto a disc, is unconstrained in both flexion and extension, has a controlled axial rotation and lateral bending, and has an anterior-posterior pure shear stop. It is typically adapted for posterior insertion into the anterior disc space, and allows for easy alignment.
When used to augment the ball and socket design in spinal support, the PDS device of the present invention allows for a large flexion/extension range of motion; has controlled stops for both flexion and extension, is pedicle-screw based, and supports AP shear through its ligament tension.
In some embodiments, particularly for use in the L5-S1 lumbrosacral area, the pedicle screws are situated sufficiently close to each other so as to obviate the need for the spacer. Therefore, in some embodiments, the spacer component of the device is eliminated. In this case, the inner portions of the opposing belt retainers oppose each other in the neutral zone and contact each other during spinal extension, thus acting as an extension stop as the spacer did in the first embodiment.
Now referring to FIG. 5 a-c, and in accordance with the present invention, there is provided a spacerless posterior dynamic stabilization system, comprising:
    • a) first 51 and second 52 bone anchors having a distal end 53 having a threadform 54 and a proximal end 55,
    • b) first and second belt retainers 56, each retainer comprising an annulus 58 having a circumferential channel 60 therein, an inner portion 62 and an outer portion 64, the annulus fitting over the proximal end of the respective bone anchor, and
    • c) a first flexible belt ligament 66 having a first end portion 68 and a second end portion 69,
      wherein each end portion of the flexible belt ligament is attached to a respective belt retainer (and preferably resides in the circumferential channel), and
      wherein the inner portions of the belt retainers contact each other during spinal extension.
In preferred embodiments, each of the inner portions of the belt retainers are flat.
FIG. 5 a provides an exploded perspective view of the spacerless device of the present invention.
Now referring to FIG. 5 b, there is provided a perspective view of the spacerless device of the present invention, positioned as implanted in a functional spinal unit that is subject to spinal extension. During spinal extension, the two bone anchors move closer together as do the two belt retainers 56, thereby imparting a compressive force on the device. In this condition, the belt retainers act as the ultimate limiting feature of the spinal extension, as the inner portions 62 of the respective belt retainers come into contact. The belt ligament 68 is in a lax condition.
Now referring to FIG. 5 c, there is provided perspective view of the spacerless device of the present invention, positioned as implanted in a functional spinal unit that is subject to spinal flexion. During spinal flexion, the two bone anchors move farther apart (as do the two belt retainers 5), thereby imparting a tensile force on the ligament 68. In this condition, the belt ligament acts as the ultimate limiting feature of the spinal flexion, as it is stretched to its ultimate length. The belt ligament is in a taut condition. Also in this condition, there is no contact between the belt retainers.
As above, the bone anchor and belt retainer combination of FIGS. 5 a-5 c may be considered to form a polyaxial screw. Thus, when it is stated that the bone anchors contact each other, such contact may include either direct contact, or indirect contact through a belt retainer. Therefore, in accordance with the present invention, there is provided a posterior dynamic stabilization system, comprising:
    • a) first and second bone anchors having a distal end having a threadform and a proximal end,
    • b) a first flexible belt ligament having a first end portion and a second end portion, and
      wherein each end portion of the flexible belt ligament is attached to a respective bone anchor, and
      wherein the first bone anchor contacts the second bone anchor during spinal extension.

Claims (15)

1. A posterior dynamic stabilization system, comprising:
a) first and second bone anchors having a distal end having a first threadform and a proximal end,
b) a single continuous belt having a first portion and a second portion, and
c) a spacer having a first end and a second end, the spacer being disposed between the respective bone anchors,
d) first and second belt retainers, each retainer comprising an annulus having a circumferential channel therein, the annulus fitting over the proximal end of the respective bone anchor,
e) first and second side springs, wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt,
wherein the spacer is positioned between the two bone anchors to contact each bone anchor during spinal extension,
wherein each belt retainer is locked onto a respective bone anchor,
wherein each circumferential channel has an inner portion and an outer portion,
wherein the belt is disposed within an outer portion of each channel, and
wherein the spacer is disposed within the belt.
2. The system of claim 1, wherein the proximal end of the bone anchors having a second threadform, and further comprising f) first and second threaded locking nuts mating with the second threadforms.
3. The system of claim 2 wherein the spacer has a longitudinal length that is slightly less than a distance between the locking nuts.
4. The system of claim 1 wherein the first end of the spacer contacts the first belt retainer and the second end of the spacer contacts the second belt retainer during spinal extension.
5. The system of claim 1 wherein each end of the spacer has a shape corresponding to a shape of the belt retainer it contacts.
6. The system of claim 1 wherein each end of the spacer has a concave shape corresponding to a convex shape of the belt retainer it contacts.
7. The system of claim 1 wherein each end of the spacer has a concave portion of a circle corresponding to a convex circular shape of the belt retainer it contacts.
8. The system of claim 1 wherein the spacer comprises two side surfaces defining a transverse width that is slightly less than a diameter of the belt retainers.
9. The system of claim 8 wherein the two side surfaces of the spacer are parallel to each other and flat.
10. The system of claim 8 wherein each of the two side surfaces of the spacer has a concave recesses therein.
11. The system of claim 8 wherein each of the two side surfaces of the spacer has a pair of concave recesses therein.
12. A kit for use in spinal stabilization, comprising:
i) a posterior dynamic stabilization system, comprising:
a) first and second bone anchors having a distal end having a first threadform and a proximal end,
b) a single continuous belt having a first portion and a second portion, and
c) a spacer having a first end and a second end, the spacer being disposed between the respective bone anchors,
d) first and second belt retainers, each retainer comprising an annulus having a circumferential channel therein, the annulus fitting over the proximal end of the respective bone anchor,
e) first and second side springs, wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt,
wherein the spacer is positioned between the two bone anchors to contact each bone anchor during spinal extension,
wherein each belt retainer is locked onto a respective bone anchor,
wherein each circumferential channel has an inner portion and an outer portion,
wherein the belt is disposed within an outer portion of each channel, and
wherein the spacer is disposed within the belt,
and
ii) an intervertebral disc replacement.
13. A method of stabilizing the spine comprising the steps of:
i) implanting a posterior dynamic stabilization system on a posterior side of a spinal column, the system comprising:
a) first and second bone anchors having a distal end having a first threadform and a proximal end having a second threadform,
b) a single continuous belt having a first portion and a second portion, and
c) a spacer having a first end and a second end, the spacer being disposed between the respective bone anchors,
d) first and second belt retainers, each retainer comprising an annulus having a circumferential channel therein, the annulus fitting over the proximal end of the respective bone anchor,
e) first and second side springs, wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt,
wherein the spacer is positioned between the two bone anchors to contact each bone anchor during spinal extension,
wherein each belt retainer is locked onto a respective bone anchor,
wherein each circumferential channel has an inner portion and an outer portion,
wherein the belt is disposed within an outer portion of each channel, and
wherein the spacer is disposed within the belt,
and
ii) implanting an intervertebral disc replacement on an anterior side of the spinal column.
14. A posterior dynamic stabilization system, comprising:
a) first and second bone anchors having a distal end having a first threadform and a proximal end,
b) first and second belt retainers, each retainer comprising an annulus having a circumferential channel therein, an inner portion and an outer portion, the annulus fitting over the proximal end of the respective bone anchor, and
c) a single continuous belt having a first portion and a second portion,
d) first and second side springs, wherein the first side spring wraps around the first portion of the belt, and the second side spring wraps around the second portion of the belt,
wherein the inner portions of the belt retainers contact each other during spinal extension,
wherein each belt retainer is locked onto a respective bone anchor,
wherein each circumferential channel has an inner portion and an outer portion,
wherein the belt is disposed within an outer portion of each channel, and
wherein the spacer is disposed within the belt.
15. The system of claim 14 wherein each portion of the belt resides in the respective circumferential channel.
US11/959,691 2007-12-19 2007-12-19 Posterior dynamic stabilization device Active 2029-10-22 US8252028B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/959,691 US8252028B2 (en) 2007-12-19 2007-12-19 Posterior dynamic stabilization device
PCT/US2008/086971 WO2009079500A1 (en) 2007-12-19 2008-12-16 Posterior dynamic stabilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/959,691 US8252028B2 (en) 2007-12-19 2007-12-19 Posterior dynamic stabilization device

Publications (2)

Publication Number Publication Date
US20090163954A1 US20090163954A1 (en) 2009-06-25
US8252028B2 true US8252028B2 (en) 2012-08-28

Family

ID=40789533

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/959,691 Active 2029-10-22 US8252028B2 (en) 2007-12-19 2007-12-19 Posterior dynamic stabilization device

Country Status (2)

Country Link
US (1) US8252028B2 (en)
WO (1) WO2009079500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110118794A1 (en) * 2006-06-26 2011-05-19 Mi4Spine, Llc Self distracting pedicle screw distraction device

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8926670B2 (en) 2003-06-18 2015-01-06 Roger P. Jackson Polyaxial bone screw assembly
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
AU2004317551B2 (en) 2004-02-27 2008-12-04 Roger P. Jackson Orthopedic implant rod reduction tool set and method
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8556938B2 (en) 2009-06-15 2013-10-15 Roger P. Jackson Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
WO2006057837A1 (en) 2004-11-23 2006-06-01 Jackson Roger P Spinal fixation tool attachment structure
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
CA2670988C (en) 2006-12-08 2014-03-25 Roger P. Jackson Tool system for dynamic spinal implants
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US8979904B2 (en) 2007-05-01 2015-03-17 Roger P Jackson Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
JP2012529969A (en) 2008-08-01 2012-11-29 ロジャー・ピー・ジャクソン Longitudinal connecting member with tensioning cord with sleeve
IT1392200B1 (en) * 2008-12-17 2012-02-22 N B R New Biotechnology Res MODULAR VERTEBRAL STABILIZER.
US20100274285A1 (en) * 2009-04-24 2010-10-28 Medtronic, Inc. Elastomeric spinal implant with limit element
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
CN103826560A (en) 2009-06-15 2014-05-28 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
FR2948554B1 (en) 2009-07-31 2012-12-21 Spineway EXTRA- DISCAL DEVICE FOR INTERVERTEBRAL STABILIZATION
CA2810978A1 (en) 2010-09-08 2012-03-15 Roger P. Jackson Dynamic stabilization members with elastic and inelastic sections
DE102011001016B4 (en) * 2011-03-02 2013-11-07 Hipp Medical Ag Modular fixation device for bone fractures
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB269753A (en) 1926-06-03 1927-04-28 Wilhelm Anton Franz Pfanhauser Improvements relating to galvanic baths
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US5092866A (en) 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5387213A (en) 1991-02-05 1995-02-07 Safir S.A.R.L. Osseous surgical implant particularly for an intervertebral stabilizer
US5423816A (en) 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
EP0669109A1 (en) 1994-02-28 1995-08-30 SULZER Medizinaltechnik AG Stabilizer for adjacent vertebrae
EP0677277A2 (en) 1994-03-18 1995-10-18 Patrice Moreau Spinal prosthetic assembly
US5486174A (en) 1993-02-24 1996-01-23 Soprane S.A. Fastener for the osteosynthesis of the spinal column
US5496318A (en) 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5540688A (en) 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5556431A (en) 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
WO1996041582A1 (en) 1995-06-13 1996-12-27 Societe De Fabrication De Materiel Orthopedique En Abrege - Sofamor Implant for surgically treating a vertebral isthmic fracture
US5658286A (en) 1996-02-05 1997-08-19 Sava; Garard A. Fabrication of implantable bone fixation elements
US5672175A (en) 1993-08-27 1997-09-30 Martin; Jean Raymond Dynamic implanted spinal orthosis and operative procedure for fitting
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US5725582A (en) 1992-08-19 1998-03-10 Surgicraft Limited Surgical implants
USRE36221E (en) 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US6102912A (en) 1997-05-29 2000-08-15 Sofamor S.N.C. Vertebral rod of constant section for spinal osteosynthesis instrumentations
WO2001045576A1 (en) 1999-12-20 2001-06-28 Synthes Ag Chur Device for the stabilisation of two adjacent verterbral bodies of the spine
WO2001056489A1 (en) 2000-02-03 2001-08-09 Aesculap Ag & Co. Kg Bone plate
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
WO2002007622A1 (en) 2000-07-25 2002-01-31 Spine Next Flexible linking piece for stabilising the spine
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6436099B1 (en) 1999-04-23 2002-08-20 Sdgi Holdings, Inc. Adjustable spinal tether
WO2002102259A2 (en) 2001-06-16 2002-12-27 Dilip Kumar Sengupta An assembly for the stabilisation of vertebral bodies of the spine
US20030088251A1 (en) * 2001-11-05 2003-05-08 Braun John T Devices and methods for the correction and treatment of spinal deformities
WO2003047441A1 (en) 2001-12-07 2003-06-12 Mathys Medizinaltechnik Ag Damping element
US20030109880A1 (en) 2001-08-01 2003-06-12 Showa Ika Kohgyo Co., Ltd. Bone connector
US6595993B2 (en) 2000-05-12 2003-07-22 Suler Orthopedics Ltd. Connection of a bone screw to a bone plate
US20030220643A1 (en) * 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US20040002708A1 (en) 2002-05-08 2004-01-01 Stephen Ritland Dynamic fixation device and method of use
EP1388323A1 (en) 2002-08-09 2004-02-11 BIEDERMANN MOTECH GmbH Dynamic stabilising arrangement for bones, in particular for the spinal column
US20040073215A1 (en) 2002-10-14 2004-04-15 Scient ' X Dynamic intervertebral connection device with controlled multidirectional deflection
US6783527B2 (en) 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
US6796984B2 (en) 2000-02-29 2004-09-28 Soubeiran Andre Arnaud Device for relative displacement of two bodies
US20040225289A1 (en) 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US20040267260A1 (en) 2003-06-16 2004-12-30 Thomas Mack Implant for correction and stabilization of the spinal column
US20050065516A1 (en) 2003-09-24 2005-03-24 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050085814A1 (en) 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
US20050085815A1 (en) 2003-10-17 2005-04-21 Biedermann Motech Gmbh Rod-shaped implant element for application in spine surgery or trauma surgery, stabilization apparatus comprising said rod-shaped implant element, and production method for the rod-shaped implant element
US20050113927A1 (en) 2003-11-25 2005-05-26 Malek Michel H. Spinal stabilization systems
US20050124991A1 (en) 2003-12-05 2005-06-09 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050203514A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Adjustable spinal stabilization system
US20050203513A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
WO2005094704A1 (en) 2004-03-30 2005-10-13 Scient'x Intervertebral connecting device with controlled multi-directional movements
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US20050267470A1 (en) * 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
US20060036325A1 (en) 2003-07-31 2006-02-16 Globus Medical Inc. Anterior prosthetic spinal disc replacement
US20060036240A1 (en) 2004-08-09 2006-02-16 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
US20060064090A1 (en) 2004-09-22 2006-03-23 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US7029475B2 (en) 2003-05-02 2006-04-18 Yale University Spinal stabilization method
US20060084991A1 (en) 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US20060142758A1 (en) 2002-09-11 2006-06-29 Dominique Petit Linking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
US20060142760A1 (en) 2004-12-15 2006-06-29 Stryker Spine Methods and apparatus for modular and variable spinal fixation
US20060189983A1 (en) 2005-02-22 2006-08-24 Medicinelodge, Inc. Apparatus and method for dynamic vertebral stabilization
US20060212033A1 (en) 2005-03-03 2006-09-21 Accin Corporation Vertebral stabilization using flexible rods
US7125410B2 (en) 2002-05-21 2006-10-24 Spinelab Gmbh Elastic stabilization system for vertebral columns
US20060247637A1 (en) 2004-08-09 2006-11-02 Dennis Colleran System and method for dynamic skeletal stabilization
US20070005063A1 (en) 2005-06-20 2007-01-04 Sdgi Holdings, Inc. Multi-level multi-functional spinal stabilization systems and methods
US20070016190A1 (en) 2005-07-14 2007-01-18 Medical Device Concepts Llc Dynamic spinal stabilization system
US20070055244A1 (en) 2004-02-27 2007-03-08 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US20070118119A1 (en) 2005-11-18 2007-05-24 Zimmer Spine, Inc. Methods and device for dynamic stabilization
US20070213821A1 (en) 2006-02-10 2007-09-13 Depuy Spine, Inc. Intervertebral disc prosthesis having multiple bearing surfaces
US20070233075A1 (en) 2006-03-16 2007-10-04 Zimmer Spine, Inc. Spinal fixation device with variable stiffness
US20070276380A1 (en) 2003-09-24 2007-11-29 Tae-Ahn Jahng Spinal stabilization device
US7559942B2 (en) 2003-05-23 2009-07-14 Globus Medical, Inc. Spine stabilization system
US7604653B2 (en) 2003-04-25 2009-10-20 Kitchen Michael S Spinal curvature correction device

Patent Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB269753A (en) 1926-06-03 1927-04-28 Wilhelm Anton Franz Pfanhauser Improvements relating to galvanic baths
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
US5092866A (en) 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
USRE36221E (en) 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5387213A (en) 1991-02-05 1995-02-07 Safir S.A.R.L. Osseous surgical implant particularly for an intervertebral stabilizer
US5540688A (en) 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5556431A (en) 1992-03-13 1996-09-17 B+E,Uml U+Ee Ttner-Janz; Karin Intervertebral disc endoprosthesis
US5725582A (en) 1992-08-19 1998-03-10 Surgicraft Limited Surgical implants
US5496318A (en) 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5486174A (en) 1993-02-24 1996-01-23 Soprane S.A. Fastener for the osteosynthesis of the spinal column
US5423816A (en) 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5672175A (en) 1993-08-27 1997-09-30 Martin; Jean Raymond Dynamic implanted spinal orthosis and operative procedure for fitting
EP0669109A1 (en) 1994-02-28 1995-08-30 SULZER Medizinaltechnik AG Stabilizer for adjacent vertebrae
EP0677277A2 (en) 1994-03-18 1995-10-18 Patrice Moreau Spinal prosthetic assembly
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
WO1996041582A1 (en) 1995-06-13 1996-12-27 Societe De Fabrication De Materiel Orthopedique En Abrege - Sofamor Implant for surgically treating a vertebral isthmic fracture
US5658286A (en) 1996-02-05 1997-08-19 Sava; Garard A. Fabrication of implantable bone fixation elements
US6102912A (en) 1997-05-29 2000-08-15 Sofamor S.N.C. Vertebral rod of constant section for spinal osteosynthesis instrumentations
US6436099B1 (en) 1999-04-23 2002-08-20 Sdgi Holdings, Inc. Adjustable spinal tether
WO2001045576A1 (en) 1999-12-20 2001-06-28 Synthes Ag Chur Device for the stabilisation of two adjacent verterbral bodies of the spine
WO2001056489A1 (en) 2000-02-03 2001-08-09 Aesculap Ag & Co. Kg Bone plate
US6796984B2 (en) 2000-02-29 2004-09-28 Soubeiran Andre Arnaud Device for relative displacement of two bodies
US6761719B2 (en) 2000-03-01 2004-07-13 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US20040215192A1 (en) 2000-03-01 2004-10-28 Justis Jeff R Superelastic spinal stabilization system and method
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US20050049708A1 (en) 2000-04-04 2005-03-03 Atkinson Robert E. Devices and methods for the treatment of spinal disorders
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6835205B2 (en) 2000-04-04 2004-12-28 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6595993B2 (en) 2000-05-12 2003-07-22 Suler Orthopedics Ltd. Connection of a bone screw to a bone plate
US20040049189A1 (en) 2000-07-25 2004-03-11 Regis Le Couedic Flexible linking piece for stabilising the spine
WO2002007622A1 (en) 2000-07-25 2002-01-31 Spine Next Flexible linking piece for stabilising the spine
WO2002102259A2 (en) 2001-06-16 2002-12-27 Dilip Kumar Sengupta An assembly for the stabilisation of vertebral bodies of the spine
US20030109880A1 (en) 2001-08-01 2003-06-12 Showa Ika Kohgyo Co., Ltd. Bone connector
US6783527B2 (en) 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
US7018379B2 (en) 2001-10-30 2006-03-28 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
US20030088251A1 (en) * 2001-11-05 2003-05-08 Braun John T Devices and methods for the correction and treatment of spinal deformities
US20050065514A1 (en) 2001-12-07 2005-03-24 Armin Studer Damping element
WO2003047441A1 (en) 2001-12-07 2003-06-12 Mathys Medizinaltechnik Ag Damping element
US7329258B2 (en) 2001-12-07 2008-02-12 Synthes (U.S.A.) Damping element
US20080033435A1 (en) 2001-12-07 2008-02-07 Armin Studer Damping element and device for stabilization of adjacent vertebral bodies
US20050056979A1 (en) 2001-12-07 2005-03-17 Mathys Medizinaltechnik Ag Damping element and device for stabilisation of adjacent vertebral bodies
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US20040002708A1 (en) 2002-05-08 2004-01-01 Stephen Ritland Dynamic fixation device and method of use
US20070016201A1 (en) 2002-05-21 2007-01-18 Spinelab Gmbh Elastic stabilization system for vertebral columns
US7125410B2 (en) 2002-05-21 2006-10-24 Spinelab Gmbh Elastic stabilization system for vertebral columns
US20030220643A1 (en) * 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
EP1388323A1 (en) 2002-08-09 2004-02-11 BIEDERMANN MOTECH GmbH Dynamic stabilising arrangement for bones, in particular for the spinal column
US20040049190A1 (en) 2002-08-09 2004-03-11 Biedermann Motech Gmbh Dynamic stabilization device for bones, in particular for vertebrae
US20060142758A1 (en) 2002-09-11 2006-06-29 Dominique Petit Linking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
US20040073215A1 (en) 2002-10-14 2004-04-15 Scient ' X Dynamic intervertebral connection device with controlled multidirectional deflection
US7604653B2 (en) 2003-04-25 2009-10-20 Kitchen Michael S Spinal curvature correction device
US7029475B2 (en) 2003-05-02 2006-04-18 Yale University Spinal stabilization method
US20040225289A1 (en) 2003-05-07 2004-11-11 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US7559942B2 (en) 2003-05-23 2009-07-14 Globus Medical, Inc. Spine stabilization system
US6989011B2 (en) 2003-05-23 2006-01-24 Globus Medical, Inc. Spine stabilization system
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
US20040267260A1 (en) 2003-06-16 2004-12-30 Thomas Mack Implant for correction and stabilization of the spinal column
US20060036325A1 (en) 2003-07-31 2006-02-16 Globus Medical Inc. Anterior prosthetic spinal disc replacement
US7326210B2 (en) 2003-09-24 2008-02-05 N Spine, Inc Spinal stabilization device
US20060195093A1 (en) 2003-09-24 2006-08-31 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050203514A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Adjustable spinal stabilization system
US20050177157A1 (en) 2003-09-24 2005-08-11 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US20050203513A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US20070123871A1 (en) 2003-09-24 2007-05-31 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20070225710A1 (en) 2003-09-24 2007-09-27 Tae-Ahn Jahng Spinal stabilization device
US20070276380A1 (en) 2003-09-24 2007-11-29 Tae-Ahn Jahng Spinal stabilization device
US20050065516A1 (en) 2003-09-24 2005-03-24 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050085815A1 (en) 2003-10-17 2005-04-21 Biedermann Motech Gmbh Rod-shaped implant element for application in spine surgery or trauma surgery, stabilization apparatus comprising said rod-shaped implant element, and production method for the rod-shaped implant element
US20050085814A1 (en) 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
US20050113927A1 (en) 2003-11-25 2005-05-26 Malek Michel H. Spinal stabilization systems
US20050124991A1 (en) 2003-12-05 2005-06-09 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050149020A1 (en) 2003-12-05 2005-07-07 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20070055244A1 (en) 2004-02-27 2007-03-08 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
WO2005094704A1 (en) 2004-03-30 2005-10-13 Scient'x Intervertebral connecting device with controlled multi-directional movements
US20050267470A1 (en) * 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
US20060036240A1 (en) 2004-08-09 2006-02-16 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
US20060247637A1 (en) 2004-08-09 2006-11-02 Dennis Colleran System and method for dynamic skeletal stabilization
US20060064090A1 (en) 2004-09-22 2006-03-23 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US20060084991A1 (en) 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior dynamic stabilizer devices
US20060142760A1 (en) 2004-12-15 2006-06-29 Stryker Spine Methods and apparatus for modular and variable spinal fixation
US20060189983A1 (en) 2005-02-22 2006-08-24 Medicinelodge, Inc. Apparatus and method for dynamic vertebral stabilization
US7625393B2 (en) 2005-02-22 2009-12-01 Stryker Spine Apparatus and method for dynamic vertebral stabilization
US20060212033A1 (en) 2005-03-03 2006-09-21 Accin Corporation Vertebral stabilization using flexible rods
US20070005063A1 (en) 2005-06-20 2007-01-04 Sdgi Holdings, Inc. Multi-level multi-functional spinal stabilization systems and methods
US20070016190A1 (en) 2005-07-14 2007-01-18 Medical Device Concepts Llc Dynamic spinal stabilization system
US20070118119A1 (en) 2005-11-18 2007-05-24 Zimmer Spine, Inc. Methods and device for dynamic stabilization
US20070213821A1 (en) 2006-02-10 2007-09-13 Depuy Spine, Inc. Intervertebral disc prosthesis having multiple bearing surfaces
US20070233075A1 (en) 2006-03-16 2007-10-04 Zimmer Spine, Inc. Spinal fixation device with variable stiffness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hefti, "Repair of lumbar spondylolysis with a hook-screw", Int Orthop 1992, pp. 81-825, vol. 16(1)-abstract.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110118794A1 (en) * 2006-06-26 2011-05-19 Mi4Spine, Llc Self distracting pedicle screw distraction device
US9730732B2 (en) * 2006-06-26 2017-08-15 Mi4Spine, Llc Self distracting pedicle screw distraction device

Also Published As

Publication number Publication date
US20090163954A1 (en) 2009-06-25
WO2009079500A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US8252028B2 (en) Posterior dynamic stabilization device
US9636145B2 (en) Flexible spine stabilization system
US9931139B2 (en) Dynamic stabilization connecting member with pre-tensioned solid core
US7927356B2 (en) Dynamic constructs for spinal stabilization
US8529626B2 (en) Systems and methods for stabilizing a functional spinal unit
US10729469B2 (en) Flexible spinal stabilization assembly with spacer having off-axis core member
US7806914B2 (en) Dynamic spinal stabilization system
CA2690038C (en) Dynamic stabilization connecting member with pre-tensioned solid core
US8206419B2 (en) Systems and devices for dynamic stabilization of the spine
US20080275504A1 (en) Constructs for dynamic spinal stabilization
US20220133359A1 (en) Dynamic stabilization connecting member with pre-tensioned solid core member
WO2007133939A1 (en) Load bearing flexible spinal connecting element
AU2007249560A1 (en) Dynamic spinal stabilization device with dampener
US20200289164A1 (en) Flexible spine stabilization system
AU2012200187B2 (en) Dynamic stabilization connecting member with pre-tensioned solid core

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEPUY SPINE, INC.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNGKYU DANIEL;REEL/FRAME:020414/0158

Effective date: 20071218

Owner name: DEPUY SPINE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNGKYU DANIEL;REEL/FRAME:020414/0158

Effective date: 20071218

AS Assignment

Owner name: DEPUY SPINE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNGKYU DANIEL;REEL/FRAME:023772/0980

Effective date: 20071218

Owner name: DEPUY SPINE, INC.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNGKYU DANIEL;REEL/FRAME:023772/0980

Effective date: 20071218

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8