US8309593B2 - 2-acylaminopropoanol-type glucosylceramide synthase inhibitors - Google Patents

2-acylaminopropoanol-type glucosylceramide synthase inhibitors Download PDF

Info

Publication number
US8309593B2
US8309593B2 US13/122,135 US200913122135A US8309593B2 US 8309593 B2 US8309593 B2 US 8309593B2 US 200913122135 A US200913122135 A US 200913122135A US 8309593 B2 US8309593 B2 US 8309593B2
Authority
US
United States
Prior art keywords
group
hydroxy
halogen
alkyl
haloalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/122,135
Other versions
US20110184021A1 (en
Inventor
Craig Siegel
Cecilia M. Bastos
David J. Harris
Angeles Dios
Edward Lee
Richard Silva
Lisa M. Cuff
Mikaela Levine
Cassandra A. Celatka
Thomas H. Jozafiak
Frederic Vinick
Yibin Xiang
John Kane
Junkai Liao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genzyme Corp
Original Assignee
Genzyme Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genzyme Corp filed Critical Genzyme Corp
Priority to US13/122,135 priority Critical patent/US8309593B2/en
Assigned to GENZYME CORPORATION reassignment GENZYME CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEGEL, CRAIG, SILVA, RICHARD, HARRIS, DAVID J., LEVINE, MIKAELA, BASTOS, CECILIA M., LEE, EDWARD, LIAO, JUNKAI, CELATKA, CASSANDRA A., DIOS, ANGELES, KANE, JOHN, CUFF, LISA M., JOZAFIAK, THOMAS H., VINICK, FREDERIC, XIANG, YIBIN
Publication of US20110184021A1 publication Critical patent/US20110184021A1/en
Assigned to GENZYME CORPORATION reassignment GENZYME CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEGEL, CRAIG, SILVA, RICHARD, HARRIS, DAVID J., LEVINE, MIKAELA, BASTOS, CECILIA M., LEE, EDWARD, LIAO, JUNKAI, CELATKA, CASSANDRA A., DIOS, ANGELES, KANE, JOHN, CUFF, LISA M., JOZAFIAK, THOMAS H., VINICK, FREDERIC, XIANG, YIBIN
Application granted granted Critical
Publication of US8309593B2 publication Critical patent/US8309593B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/10Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/125Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/13Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/58Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/60Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • C07D319/161,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D319/18Ethylenedioxybenzenes, not substituted on the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • C07D319/161,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D319/201,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring with substituents attached to the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/06Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • Gangliosides such as GM1, GM2 and GM3, are glycosphingolipids (GSLs) comprised of ceramide and at least one acidic sugar. Gangliosides are generally found in the outer leaflet of the plasma membrane (Nojri et al., Proc. Natl. Acad. ScL USA 83:782 (1986)). Gangliosides are involved in cell signaling and act as modulators of receptor activity (Yamashita et al., Proc. Natl. Acad. ScL USA 100(6):3445 (2003)).
  • a number of GSLs are derived from glucosylceramide, which is enzymatically formed from ceramide and UDP-glucose. The formation of glucosylceramide is catalyzed by glucosylceramide synthase.
  • GSLs controls a variety of cell functions, such as growth, differentiation, adhesion between cells or between cells and matrix proteins, binding of microorganisms and viruses to cells, and metastasis of tumor cells.
  • the glucosylceramide precursor, ceramide may cause differentiation or inhibition of cell growth and be involved in the functioning of vitamin D 3 , tumor necrosis factor- ⁇ , interleukins, and apoptosis.
  • Sphingols, precursors of ceramide, and products of ceramide catabolism have also been shown to influence many cell systems, possibly by inhibiting protein kinase C.
  • GSL metabolizing enzymes can cause serious disorders.
  • Tay-Sachs, Gaucher's, and Fabry's diseases result from enzymatic defects in the GSL degradative pathway and the accumulation of GSL.
  • GM1 accumulates in the nervous system leading to mental retardation and liver enlargement.
  • GM2 accumulates in brain tissue leading to mental retardation and blindness.
  • agents which inhibit glucosylceramide synthesis, or reduce intracellular content of GSLs have the potential to treat conditions associated with altered GSL levels and/or GSL precursor levels.
  • agents which can act as glucosylceramide synthase inhibitors There is a need for additional agents which can act as glucosylceramide synthase inhibitors.
  • 2-acylaminopropoanol derivatives represented by Structural Formula (I) below can effectively inhibit glycosphingolipid synthesis, such as GM3 synthesis.
  • these compounds can be used for treating diabetes or lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease.
  • diabetes or lysosomal storage diseases such as Tay-Sachs, Gaucher's or Fabry's disease.
  • a number of these compounds were tested and found to significantly inhibit glycosphingolipid synthesis in animal tissues and to have high metabolic stability at the liver.
  • PTD polycystic kidney disease
  • the present invention is directed to compounds represented by Structural Formula (I):
  • R 1 is a substituted or unsubstituted aryl group
  • Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.
  • R 2 and R 3 are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a substituted or unsubstituted non-aromatic heterocyclic ring;
  • X is —(CR 5 R 6 ) n -Q-;
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 7 —, —NR 7 —, —NR 7 C(O)—, —NR 7 C(O)NR 7 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 7 —, or —NR 7 SO 2 —; and R 4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group;
  • X is —O—, —S— or —NR 7 —; and R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group;
  • X is —(CR 5 R 6 ) n —; and R 4 is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO 2 or a halogen;
  • X is a covalent bond
  • R 4 is a substituted or unsubstituted aryl group
  • R 5 and R 6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group;
  • n 1, 2, 3, 4, 5 or 6;
  • Each R 7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R 7 and R 4 taken together with the nitrogen atom of NR 7 R 4 form a substituted or unsubstituted non-aromatic heterocyclic group.
  • the present invention is directed to a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • the present invention is directed to a method of treating a subject having type 2 diabetes, comprising administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of treating a subject having renal hypertrophy or hyperplasia associated with diabetic nephropathy is also included in the invention.
  • the method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of decreasing plasma TNF- ⁇ in a subject in need thereof comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of lowering blood glucose levels in a subject in need thereof comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of decreasing glycated hemoglobin levels in a subject in need thereof comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof is also included in the present invention.
  • the method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention.
  • the method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • a method of treating a subject with polycystic kidney disease is also included in the present invention.
  • the method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
  • the medicament is for treating a subject having type 2 diabetes; for treating a subject having renal hypertrophy or hyperplasia associated with diabetic nephropathy; for decreasing plasma TNF- ⁇ in a subject in need thereof; for lowering blood glucose levels in a subject in need thereof; for decreasing glycated hemoglobin levels in a subject in need thereof; for inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof; or for treating a subject with Tay-Sachs, Gaucher's or Fabry's disease.
  • the medicament is for treating a subject having polycystic kidney disease.
  • the compounds of the invention are inhibitors of glucosylceramide synthesis. As such, they can be used for treating various disorders associated with GSL metabolism, including diabetes and lysosomal storage diseases.
  • the compounds of the invention can effectively inhibit glucosylceramide synthesis and at the same time have high metabolic stability at the liver.
  • the compounds of the invention can have a clearance value of less than 50%, and commonly less than 30%, at the liver relative to hepatic blood flow.
  • the present invention has many advantages.
  • the present invention provides a treatment for PKD that addresses the underlying disease state, rather than simply ameliorating symptoms that are associated with PKD.
  • Such compounds may reduce the need for kidney dialysis or transplant in patients suffering from PKD.
  • the invention is directed to a compound represented by Structural Formula (I), or a pharmaceutically acceptable salt thereof.
  • Structural Formula (I) A first set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:
  • R 1 is a substituted or unsubstituted aryl group, such as a substituted or unsubstituted phenyl group.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —
  • R 1 is an aryl group, such as a phenyl group, optionally substituted with one or more halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, and —[CH 2 ] q —. Even more preferably, R 1 is a phenyl group optionally substituted with —OH, —OCH 3 , —OC 2 H 5 or —O—[CH 2 ] p —O—. Even more preferably, R 1 is
  • r is 1, 2, 3 or 4, preferably 1 or 2.
  • Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.
  • hydrolyzable groups include —C(O)R, —C(O)OR, —C(O)NRR′, C(S)R, —C(S)OR, —C(O)SR or —C(S)NRR′.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′; more preferably, —H.
  • R 2 and R 3 are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a substituted or unsubstituted non-aromatic heterocyclic ring.
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • —N(R 2 R 3 ) is an optionally substituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group. Even more preferably, —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.
  • Suitable substituents for the aliphatic and aryl groups represented by R 2 and R 3 , and suitable substituents for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, alkyl, haloalkyl, —OR 40 , —O(haloalkyl), —SR 40 , —NO 2 , —CN, —N(R 41 ) 2 , —NR 41 C(O)R 40 , —NR 41 C(O)OR 42 , —N(R 41 )C(O)N(R 41 ) 2 , —C(O)R 40 , —C(S)R 40 , —C(O)OR 40 , —OC(O)R 40 , —C(O)N(R 41 ) 2 , —S(O) 2 R 40 , —SO 2 N(R 41 ) 2 , —S(O)R 42 , —SO 3 R 40
  • suitable substituents for the aliphatic and aryl groups represented by R 2 and R 3 , and suitable substituents for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, alkyl, haloalkyl, —OR 40 , —O(haloalkyl), —SR 40 , —NO 2 , —CN, —N(R 41 ) 2 , —C(O)R 40 , —C(S)R 40 , —C(O)OR 40 , —OC(O)R 40 , —C(O)N(R 41 ) 2 , Ar 2 , V 2 —Ar 2 , —V 2 —OR 40 , —V 2 —O(haloalkyl), —V 2 —SR 40 , —V 2 —NO 2 , —V 2 —CN, —V 2 —N(R 41 ) 2 , —V 2
  • suitable substituents for the aliphatic and aryl groups represented by R 2 and R 3 , and suitable substituents for the non-aromatic heterocyclic ring represented by N(R 2 R 3 ) each independently include halogen, C1-C10 alkyl, C1-C10 haloalkyl, —O(C1-C10 alkyl), —O(phenyl), —O(C1-C10 haloalkyl), —S(C1-C10 alkyl), —S(phenyl), —S(C1-C10 haloalkyl), —NO 2 , —CN, —NH(C1-C10 alkyl), —N(C1-C10 alkyl) 2 , —NH(C1-C10 haloalkyl), —N(C1-C10 haloalkyl) 2 , —NH(phenyl), —N(phenyl) 2 , —C(O
  • suitable substituents for the aliphatic and aryl groups represented by R 2 and R 3 each independently include halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxy, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl, C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • X is —(CR 5 R 6 ) n -Q-;
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 7 —, —NR 7 —, —NR 7 C(O)—, —NR 7 C(O)NR 7 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 7 —, or —NR 7 SO 2 —; and R 4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 7 —, —NR 7 C(O)NR 7 —, —OC(O)—, —SO 3 —, —SO—, —S(O) 2 —, —SO 2 NR 7 — or —NR 7 SO 2 —.
  • Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR 7 — or —OC(O)—.
  • Q is —O—, —S—, —C(O)— or —C(S)—.
  • X is —O—, —S— or —NR 7 —; and R 4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group.
  • X is —(CR 5 R 6 ) n —; and R 4 is a substituted or unsubstituted cyclic alkyl (e.g., C3-C8) group, or a substituted or unsubstituted cyclic alkenyl (C3-C8) group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO 2 or a halogen.
  • R 4 is a substituted or unsubstituted cyclic alkyl (e.g., C3-C8) group, or a substituted or unsubstituted cyclic alkenyl (C3-C8) group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO 2 or a halogen.
  • X is a covalent bond; and R 4 is a substituted or unsubstituted aryl group.
  • R 4 is an optionally substituted aliphatic, such as a lower alkyl, or aryl group. More preferably, R 4 is an optionally substituted aryl or lower arylalkyl group. Even more preferably, R 4 is selected from the group consisting of:
  • each of rings A-Z5 is optionally and independently substituted; and each x is independently 0 or 1, specifically x is 0. Even more preferably, R 4 is an optionally substituted
  • rings A-Z5 can be attached to variable “X” of Structural Formula (I) through —(CH 2 ) x — at any ring carbon of rings A-Z5 which is not at a position bridging two aryl groups.
  • R 4 represented by
  • R 4 is attached to variable “X” through either ring J or ring K.
  • Preferred substituents for each of the aliphatic group and the aryl group represented by R 4 include halogen, alkyl, haloalkyl, Ar 3 , Ar 3 —Ar 3 , —OR 50 , —O(haloalkyl), —SR 50 , —NO 2 , —CN, —NCS, —N(R 51 ) 2 , —NR 51 C(O)R 50 , —NR 51 C(O)OR 52 , —N(R 51 )C(O)N(R 51 ) 2 , —C(O)R 50 , —C(S)R 50 , —C(O)OR 50 , —OC(O)R 50 , —C(O)N(R 51 ) 2 , —S(O) 2 R 50 , —SO 2 N(R 51 ) 2 , —S(O)R 52 ,
  • substituents for each of the aliphatic group and the aryl group represented by R 4 include halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar 3 , Ar 3 —Ar 3 , —OR 50 , —O(haloalkyl), —SR 50 , —NO 2 , —CN, —N(R 51 ) 2 , —NR 51 C(O)R 50 , —C(O)R 50 , —C(O)OR 50 , —OC(O)R 50 , —C(O)N(R 51 ) 2 , —V 4 —Ar 3 , —V—OR 50 , —V 4 —O(haloalkyl), —V 4 —SR 50 , —V 4 —NO 2 , —V 4 —CN, —V 4 —N(R
  • substituents for each of the aliphatic group and the aryl group represented by R 4 include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C 1-10 alkoxy, —O—[CH 2 ] p —O— or —[CH 2 ] q —.
  • substituents for each of the aliphatic group and the aryl group represented by R 4 include halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • substituents for each of the aliphatic and aryl groups represented by R 4 include —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ] p′ —O—.
  • phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR 50 , —Ar 3 , —V—OR 50 , —O(C1-C10 haloalkyl), —V 4 —O(C1-C10 haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR 50 ,
  • phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 and —OC 2 H 5 . Specifically, when R 4 is phenyl ring A, at least one of the substituents of ring A is at the para position.
  • R 5 and R 6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group.
  • R 5 and R 6 are each independently —H; —OH; a halogen; or a lower alkoxy or lower alkyl group. More preferably, R 5 and R 6 are each independently —H, —OH or a halogen. Even more preferably, R 5 and R 6 are each independently —H.
  • Each R 7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R 7 and R 4 taken together with the nitrogen atom of NR 7 R 4 form a substituted or unsubstituted non-aromatic heterocyclic group.
  • each R 7 is independently —H, an aliphatic group or phenyl. Even more preferably, each R 7 is independently —H or C1-C6 alkyl.
  • Each n is independently 1, 2, 3, 4, 5 or 6.
  • each n is independently 1, 2, 3 or 4.
  • each n is independently 2, 3, 4 or 5.
  • Each p is independently 1, 2, 3 or 4, preferably 1 or 2.
  • Each q is independently 3, 4, 5 or 6, preferably 3 or 4.
  • Each p′ is independently 1, 2, 3 or 4, preferably 1 or 2.
  • Each q′ is independently 3, 4, 5 or 6, preferably 3 or 4.
  • Each V o is independently a C1-C10 alkylene group, preferably C1-C4 alkylene group.
  • Each V 1 is independently a C2-C10 alkylene group, specifically C2-C4 alkylene group.
  • Each V 2 is independently a C1-C4 alkylene group.
  • Each V 4 is independently a C1-C10 alkylene group, preferably a C1-C4 alkylene group.
  • Each V 5 is independently a C2-C10 alkylene group, preferably a C2-C4 alkylene group.
  • Each Ar 1 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl.
  • Ar 1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each Ar 2 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
  • Each Ar 3 is independently an aryl group, such as phenyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl.
  • Ar 3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • Ar 3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • Each R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl.
  • each R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
  • each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
  • Each R 31 is independently R 30 , —CO 2 R 30 , —SO 2 R 30 or —C(O)R 30 ; or —N(R 31 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • Each R 32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl.
  • each R 32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
  • substituents selected from the group
  • each R 32 is independently a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C
  • Each R 40 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 al
  • Each R 41 is independently R 40 , —CO 2 R 40 , —SO 2 R 40 or —C(O)R 40 ; or —N(R 41 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • Each R 42 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkyla
  • Each R 50 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl.
  • each R 50 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-
  • Each R 51 is independently R 50 , —CO 2 R 50 , —SO 2 R 50 or —C(O)R 50 , or —N(R 51 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • each R 51 is independently R 50 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • Each R 52 is independently an aryl group optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl.
  • each R 52 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6
  • R and R′ are each independently —H; a lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , lower alkoxy, lower haloalkoxy and aryl; or an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO 2 , —NH 2 , lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group; or R and R′ taken together with the nitrogen atom of NRR′ form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO 2 ; —NH 2 ; lower alkoxy; lower haloalkoxy
  • R and R′ are each independently —H; a lower aliphatic group; a lower aliphatic group substituted with phenyl; or an aryl group. More preferably, R and R′ are each independently —H, C1-C4 alkyl, phenyl or benzyl.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —S(O)R 32 , —SO 3 R 30 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31
  • a third set of values for the variables in Structural Formula (I) is provided in the following four paragraphs.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 NR 31 ) 2 , —S(O)R 32 , —SO 3 R 30 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31 SO
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described in the first set of values for Structural Formula (I).
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —S(O)R 32 , —SO 3 R 30 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • R 5 and R 6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —S(O)R 32 , —SO 3 R 30 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • R 4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are as described above for the first set of values.
  • R 5 and R 6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar 1 , —OR 30 , —O(haloalkyl), —SR 30 , —NO 2 , —CN, —NCS, —N(R 31 ) 2 , —NR 31 C(O)R 30 , —NR 31 C(O)OR 32 , —N(R 31 )C(O)N(R 31 ) 2 , —C(O)R 30 , —C(S)R 30 , —C(O)OR 30 , —OC(O)R 30 , —C(O)N(R 31 ) 2 , —S(O) 2 R 30 , —SO 2 N(R 31 ) 2 , —S(O)R 32 , —SO 3 R 30 , —NR 31 SO 2 N(R 31 ) 2 , —NR 31
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • R 4 is an optionally substituted cyclic alkyl group, or an optionally substituted cyclic alkenyl group, an optionally substituted aryl group, —CN, —NCS, —NO 2 or a halogen. Examples of suitable substituents are as described above for the first set.
  • R 5 and R 6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 1 , Y, R 2 , R 3 , R 5 and R 6 are each independently as described above for the sixth set.
  • R 4 is an optionally substituted cyclic alkyl group, or an optionally substituted cyclic alkenyl group, or an optionally substituted aryl group, specifically optionally substituted aryl group. Examples of suitable substituents are as described above for the first set.
  • the compound of the invention is represented by Structural Formula (II), (III), (IV), (V), (VI), (VII) or (VIII):
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V, —V, —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ], —O— and and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ], —O— and and —[CH 2 ] q —.
  • Ar 1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C 6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C 6 haloalkyl.
  • R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 halo
  • R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1--C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • suitable substituents are as described above in the first set of values for Structural Formula (I).
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents for the non-aromatic heterocyclic ring represented by —NR 2 R 3 are as described above in the first set of values for Structural Formula (I).
  • R 4 is an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
  • R 5 and R 6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 7 is —H or C1-C6 alkyl, preferably —H.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • Ar 1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 halo
  • R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1--C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • R 4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are described above in the first set of values for Structural Formula (I).
  • R 5 and R 6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 7 is —H or C1-C6 alkyl, preferably —H.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • Ar 1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloal
  • R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1--C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • R 4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group.
  • Example of suitable substituents are as described in the first set of values for Structural Formula (I).
  • R 5 and R 6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 7 is —H.
  • Q in Structural Formula (II) is —O—, —S—, —C(O)—, —C(S)—, —NR 7 (CO)— or —C(O)NR 7
  • Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).
  • Q is —O—, —S—, —C(O)—, —C(S)—, —NR 7 (CO)— or —C(O)NR 7 —.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 —NR 31 ) 2 , —O—[CH 2 ] p —O—, —S—[CH 2 ] p
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl
  • R 4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group.
  • suitable substitutents for R 4 are as provided above in the first set of values for Structural Formula (I).
  • R 4 is selected from the group consisting of:
  • Each of rings A-Z5 is optionally and independently substituted.
  • R 7 is —H.
  • a fifth set of values for the variables in Structural Formulas (II)-(VIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I).
  • the compound of the invention is represented by Structural Formula (IX) or (X):
  • R 1 is a phenyl group optionally substituted with one or more substituents.
  • suitable substituents include halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V 1 —N
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino; preferably, —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
  • Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR 50 , —Ar 3 , —V 4 —Ar 3 , —V—OR 50 , —O(C1-C10 haloalkyl), —V 4 —O(C1-C10 haloalkyl), —O—V 4 —Ar 3 , —O—[CH 2 ] p′ —O— and —[CH 2 ] q′ —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C
  • Ar 3 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 50 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • n is 1, 2, 3 or 4.
  • n is 3, 4 or 5.
  • a second set of values and preferred values for the variables in Structural Formulas (IX) and (X) is as defined in the following paragraphs:
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ]—O—.
  • Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-C10 alkoxy, —O—[CH 2 ] p′ —O— and —[CH 2 ] q′ —.
  • phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 or —OC 2 H 5 .
  • n is 1, 2, 3 or 4.
  • n is 3, 4 or 5.
  • a third set of values for the variables in Structural Formulas (IX) and (X) independently is as defined in the first set, second set, third set, fourth set or fifth set, of values for Structural Formulas (II)-(VIII).
  • the compound of the invention is represented by Structural Formula (XI), (XII) or (XIII):
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O— and —[CH 2 ] q —.
  • Ar 1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 halo
  • R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1--C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • suitable substituents are as described above in the first set of values for Structural Formula (I).
  • R 2 and R 3 taken together with the nitrogen atom of N(R 2 R 3 ) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
  • suitable substituents for the non-aromatic heterocyclic group represented by —NR 2 R 3 are as described above in the first set of values for Structural Formula (I).
  • R 4 is an optionally substituted aryl group.
  • suitable substituents for R 4 are as provided above in the first set of values for Structural Formula (I).
  • R 5 and R 6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino; aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino; aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl
  • R 4 is an optionally substituted aryl group. Suitable substituents and preferred substitutents are as provided above in the first set of values for Structural Formula (I). Preferably, R 4 is selected from the group consisting of:
  • each of rings A-Z5 is optionally and independently substituted.
  • each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar 3 and Ar 3 —Ar 3 wherein values and preferred values of Ar 3 are as described above for the first set of values for Structural Formula (I).
  • Ar 3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • Ar 3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • R 5 and R 6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
  • R 4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • R 5 and R 6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ] P —O—,
  • R 1 is
  • r is 1, 2, 3 or 4, preferably 1 or 2.
  • —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl group.
  • R 4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • R 5 and R 6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
  • n is an integer from 1 to 4.
  • a fifth set of values preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ] p —O—.
  • R 1 is
  • r is 1, 2, 3 or 4, preferably 1 or 2.
  • substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • n 1.
  • R 5 and R 6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
  • a sixth set of values for the variables in Structural Formulas (XI)-(XIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for Structural Formula (I).
  • the compound of the invention is represented by Structural Formula (XIV) or (XV):
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V o —OR 30 , —V o —N(R 31 ) 2 , —V o —Ar 1 , —O—V o —Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V o —Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—V o —Ar 1 , —N(R 31 )—
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH 2 ] p —O—, and —[CH 2 ] q —.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C 105 alkylamino and C1-C5 dialkylamino.
  • k 0, 1, 2, 3, 4, 5 or 6.
  • R 8 is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, R 8 is selected from the group consisting of:
  • Each of rings A-Z5 is optionally and independently substituted.
  • suitable substituents for R 8 are as provided above in the first set of values for R 4 in Structural Formula (I). More preferably, R 8 is a
  • R 8 is an aryl group substituted with Ar 3 , such as a phenyl group substituted with Ar 3 , where values and preferred values of Ar 3 are as described above in Structural Formula (I).
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31 ) 2 , Ar 1 , —V—OR 30 , —V—N(R 31 ) 2 , —O—V—Ar 1 , —O—V 1 —N(R 31 ) 2 , —S—V—Ar 1 , —S—V 1 —N(R 31 ) 2 , —N(R 31 )—V—Ar 1 , —N(R 31 )—V 1 —N(R 31 ) 2 , —O—[CH 2 ] p —O—, —S—[CH 2 ] p S— and —[CH 2 ] q —.
  • Ar 1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbon
  • Each R 31 is independently R 30 , or —N(R 31 ) 2 is an optionally substituted non-aromatic heterocyclic group.
  • —N(R 2 R 3 ) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.
  • R 1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH 3 , —OC 2 H 5 and —O—[CH 2 ] p —O—.
  • R 1 is
  • r is 1, 2, 3 or 4, preferably 1 or 2.
  • Values and preferred values for k and R 8 are each independently as provided above in the first set of values for Structural Formulas (XIV) and (XV).
  • a fourth set of values for the variables in Structural Formulas (XIV)-(XV) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set for Structural Formula (I).
  • a first set of values and preferred values for the variables in Structural Formula (XXI) is as defined in the following paragraphs:
  • Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
  • k′ 0, 1 or 2.
  • k′′ is 0, 1 or 2.
  • k′′ is 0 or 1. More preferably k′′ is 1.
  • n′ is 0, 1 or 2.
  • m′ is 1.
  • Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
  • R 30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 halo
  • R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1--C6
  • R 30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
  • Y is —H.
  • R 30 , A, B, k′, k′′ and m′ are each independently as described above in the third set of values for Structural Formula (XXI).
  • the compound of the invention is represented by Structural Formula (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXVII), (XXVIII), (XXIX), (XXX) or (XXXI):
  • a first set of values and preferred values for the variables in Structural Formulas (XXII)-(XXXI) is as defined in the following paragraphs:
  • Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • R 30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
  • Each k′ is independently 0, 1 or 2.
  • Each k′′ is independently 0, 1 or 2.
  • each m′ is independently 0, 1 or 2.
  • each m′ is 1.
  • each n is independently 1, 2, 3, 4, 5 or 6.
  • each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4
  • each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
  • Each R 4 in Structural Formulas (XXII)-(XXVIII) is independently an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
  • each R 4 in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substituents are as described in the first set of values for Structural Formula (I).
  • Each R 4 in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
  • R 5 and R 6 in Structural Formulas (XXII), (XXIII), (XV) and (XXIX) are each independently —H, —OH, a halogen, a C1-C6 alkoxy group or a C1-C6 alkyl group.
  • R 7 is —H or C1-C6 alkyl, preferably —H.
  • each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4
  • each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
  • Each R 4 in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group.
  • Example of suitable substituents are as described in the first set of values for Structural Formula (I).
  • Each R 4 in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
  • R 5 and R 6 for Structural Formulas (XXII), (XXIII), (XXV) and (XXIX) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
  • R 7 is —H.
  • Q in Structural Formula (XXII) is —O—, —S—, —C(O)—, —C(S)—, —NR 7 (CO)— or —C(O)NR 7 —.
  • each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4
  • each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
  • R 4 in Structural Formulas (XXII)-(XXVIII) is independently selected from the group consisting of:
  • each x is independently 0 or 1
  • each of rings A-Z5 is optionally and independently substituted.
  • Each R 4 in Structural Formulas (XXIX)-(XXXI) is independently selected from the group consisting of:
  • each of rings A-Z5 is optionally and independently substituted.
  • each R 4 in Structural Formulas (XXII)-(XXXI) is independently monocyclic.
  • each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar 3 and Ar 3 —Ar 3 wherein values and preferred values of Ar 3 are as described above for the first set of values for Structural Formula (I).
  • Ar 3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino.
  • Ar 3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
  • x is 0 or 1.
  • Each ring A is optionally substituted.
  • suitable substituents for rings A are as described in the first set of values for Structural Formula (I).
  • ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar 3 , C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
  • Ar 3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
  • a sixth set of values for the variables other than A, B, k′, k′′ and m′ in Structural Formulas (XXII)-(XXXI) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I), and values and preferred values for A, B, k′, k′′ and m′ are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI).
  • the compound of the invention is represented by Structural Formula (XXXII) or (XXXIII):
  • Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
  • Each R 30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6
  • R 30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
  • R 30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
  • Each k′ is independently 0, 1 or 2.
  • Each k′′ is independently 0, 1 or 2.
  • Each m′ is independently 0, 1 or 2.
  • Each q is independently 0, 1, 2, 3, 4, 5 or 6.
  • Each R 8 independently is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, each R 8 independently is selected from the group consisting of:
  • Each of rings A-Z5 is optionally and independently substituted.
  • suitable substituents for R 8 are as provided above in the first set of values for R 4 in Structural Formula (I). More preferably, each R 8 is independently a
  • each R 8 is independently an aryl group substituted with Ar 3 , such as a phenyl group substituted with Ar 3 , where values and preferred values of Ar 3 are as described above in Structural Formula (I).
  • each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1.
  • each A independently is positioned at a meta position of the phenyl ring.
  • each k′′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1.
  • each m′ in Structural Formulas (XXI)-(XXXIII) is independently 1.
  • each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1; and each k′′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1.
  • Each R 30 is independently hydrogen or a C1-C6 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C3 alkylamino, C1-C3 dialkylamino, C1-C3 alkoxy, nitro, cyano, hydroxy, C1-C3 haloalkoxy, C1-C3 alkoxycarbonyl and C1-C3 alkylcarbonyl;
  • each k′ in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1.
  • each A independently is positioned at a meta position of the phenyl ring;
  • each k′′ in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1, preferably 1.
  • Each —OR 30 is independently —OH or —O—C1-C6 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C3 C1-C3 alkoxy, hydroxy and C1-C3 haloalkoxy;
  • each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1.
  • each A is independently positioned at a meta position of the phenyl ring;
  • each k′′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, preferably 1.
  • the compound of the invention is represented by Structural Formula (XVIA) or (XVIB):
  • Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—; r and s are each independently 1, 2, 3 or 4; each n independently is 1, 2, 3, 4, 5 or 6; and R 4 has values and preferred values provided above in the first set of values for Structural Formula (I).
  • the compound of the invention is represented by Structural Formula (XVIC) or (XVID):
  • Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—;
  • r and s are each independently 1, 2, 3 or 4;
  • each n independently is 1, 2, 3, 4, 5 or 6;
  • R 4 has values and preferred values provided above in the first set of values for Structural Formula (I).
  • B is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
  • B is halogen, hydroxy, C1-C5 alkoxy or C1-C5 haloalkoxy.
  • the compound of the invention is represented by Structural Formula (XVII), (XVIII), (XIX) or (XIX):
  • phenyl ring A is optionally substituted; each n is 1, 2, 3, 4, 5, or 6; and k is 0, 1 or 2.
  • Values and preferred values of suitable substituents of phenyl ring A are as described above in the first set of values for Structural Formula (I).
  • the invention also includes compounds represented by Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID) with this replacement of
  • the non-aromatic heterocyclic ring represented by —NR 2 R 3 can be a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms.
  • bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms.
  • the bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
  • substituents selected from the group consisting of halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1
  • the bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl).
  • the bridged bicyclic ring nitrogen atoms can be optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl and phenyl, the alkyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), phenyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino, and the phenyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-
  • the bridged bicyclic ring nitrogen atoms can be optionally substituted with C1-C6 alkyl that is optionally substituted with halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl).
  • the compound of the invention is represented by a structural formula selected from Structural Formulas (I)-(VIII) and (XI)-(XV), wherein values, including preferred values, of the variables in the structural formulas, other than R 30 , R 31 and R 32 for the substituents of R 1 , are independently as defined in each embodiment described above for Structural Formulas (I)-(VIII) and (XI)-(XV).
  • each R 30 is independently: i) hydrogen; ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl.
  • Each R 31 is independently R 30 , —CO 2 R 30 , —SO 2 R 30 or —C(O)R 30 ; or —N(R 31 ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • Each R 32 is independently: i) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkylcarbonyl and haloalkoxy and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alk
  • Each of the phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl for the substituents of the alkyl group represented by R 30 and R 32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, C1-C5 alkyl, C1-C5 haloalkyl, C1-C5 alkoxy, C1-C5 haloalkoxy, C1-C5 alkylamino, C1-C5 dialkylamino, (C 1 -C5 alkoxy)carbonyl and (C1-C5 alkyl)carbonyl.
  • Each of the alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl for the substituents of the alkyl group represented by R 30 and R 32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, phenyl, C1-C5 alkoxy, C1-C5 haloalkoxy, phenylamino, C1-C5 alkylamino, C1-C5 dialkylamino, diphenylamino, (C1-C8 alkoxy)carbonyl, (C1-C8 alkyl)carbonyl, benzoyl and phenoxycarbonyl.
  • solvates, hydrates or polymorphs of the disclosed compounds herein are included.
  • solvates, hydrates and polymorphs thereof are included.
  • the compounds of the invention may contain one or more chiral centers and/or double bonds and, therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
  • stereoisomers such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
  • stereoisomers such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
  • stereoisomers such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers.
  • the compound represented by Structural Formula (I) below has chiral centers 1 and 2.
  • the compounds of the invention depicted by Structural Formula (I) include (1R,2R), (1R,2S), (1S,2R) and (1S,2S) stereoisomers and mixtures thereof
  • a racemic mixture means about 50% of one enantiomer and about 50% of is corresponding enantiomer relative to all chiral centers in the molecule.
  • the invention encompasses all enantiomerically-pure, enantiomerically-enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.
  • the compounds of the invention are (1R, 2R) stereoisomers.
  • Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent.
  • Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.
  • Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention include salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, p-toluenesulfonic, and tartaric acids).
  • inorganic acids such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids
  • organic acids such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic,
  • Compounds of the invention with acidic groups such as carboxylic acids can form pharmaceutically acceptable salts with pharmaceutically acceptable base(s).
  • suitable pharmaceutically acceptable basic salts include ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts).
  • Compounds with a quaternary ammonium group also contain a counteranion such as chloride, bromide, iodide, acetate, perchlorate and the like.
  • Other examples of such salts include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates [e.g. (+)-tartrates, ( ⁇ )-tartrates or mixtures thereof including racemic mixtures], succinates, benzoates and salts with amino acids such as glutamic acid.
  • the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers.
  • the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight optically pure. Percent optical purity by weight is the ratio of the weight of the enantiomer over the weight of the enantiomer plus the weight of its optical isomer.
  • hydrolyzable group means an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as improved water solubility, improved circulating half-life in the blood (e.g., because of reduced metabolism of the prodrug), improved uptake, improved duration of action, or improved onset of action; or 2) is itself biologically inactive but is converted to a biologically active compound.
  • hydrolyzable amides include, but are not limited to, lower alkyl amides, ⁇ -amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides.
  • biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters.
  • biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
  • An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds.
  • An aliphatic group may be straight chained, branched or cyclic. When straight chained or branched, an aliphatic group typically contains between about one and about twenty carbon atoms, typically between about one and about ten carbon atoms, more typically between about one and about six carbon atoms. When cyclic, an aliphatic group typically contains between about three and about ten carbon atoms, more typically between about three and about seven carbon atoms.
  • a “substituted aliphatic group” is substituted at any one or more “substitutable carbon atom”.
  • a “substitutable carbon atom” in an aliphatic group is a carbon in an aliphatic group that is bonded to one or more hydrogen atoms.
  • One or more hydrogen atoms can be optionally replaced with a suitable substituent group.
  • a “haloaliphatic group” is an aliphatic group, as defined above, substituted with one or more halogen atoms. Suitable substituents on a substitutable carbon atom of an aliphatic group are the same as those for an alkyl group.
  • alkyl used alone or as part of a larger moiety, such as “alkoxy”, “haloalkyl”, “arylalkyl”, “alkylamine”, “cycloalkyl”, “dialkyamine”, “alkylamino”, “dialkyamino” “alkylcarbonyl”, “alkoxycarbonyl” and the like, includes as used herein means saturated straight-chain, cyclic or branched aliphatic group.
  • a C1-C6 alkyl group is referred to “lower alkyl.”
  • the terms “lower alkoxy”, “lower haloalkyl”, “lower arylalkyl”, “lower alkylamine”, “lower cycloalkylalkyl”, “lower dialkyamine”, “lower alkylamino”, “lower dialkyamino” “lower alkylcarbonyl”, “lower alkoxycarbonyl” include straight and branched saturated chains containing one to six carbon atoms.
  • alkoxy means —O-alkyl
  • hydroxyalkyl means alkyl substituted with hydroxy
  • aralkyl means alkyl substituted with an aryl group
  • alkoxyalkyl mean alkyl substituted with an alkoxy group
  • alkylamine means amine substituted with an alkyl group
  • cycloalkylalkyl means alkyl substituted with cycloalkyl
  • dialkylamine means amine substituted with two alkyl groups
  • alkylcarbonyl means —C(O)—R*, wherein R* is alkyl
  • alkoxycarbonyl means —C(O)—OR*, wherein R* is alkyl; and where alkyl is as defined above.
  • amine and “amino” are used interchangeably throughout herein and mean —NH 2 , —NHR or —NR 2 , wherein R is alkyl.
  • Cycloalkyl means a saturated carbocyclic ring, with from three to eight carbons.
  • haloalkyl and haloalkoxy mean alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • halogen means F, Cl, Br or I.
  • the halogen in a haloalkyl or haloalkoxy is F.
  • acyl group means —C(O)R, wherein R is an optionally substituted alkyl group or aryl group (e.g., optionally substituted phenyl). R is preferably an unsubstituted alkyl group or phenyl.
  • alkylene group is represented by —[CH 2 ] z —, wherein z is a positive integer, preferably from one to eight, more preferably from one to four.
  • alkenyl refers to a straight or branched hydrocarbon group that contains one or more double bonds between carbon atoms. Suitable alkenyl groups include, e.g., n-butenyl, cyclooctenyl and the like. An alkenyl group may be substituted.
  • aryl group used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, includes carbocyclic aromatic rings and heteroaryl rings.
  • aromatic group may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”.
  • An aromatic group typically has six-fourteen ring atoms.
  • a “substituted aryl group” is substituted at any one or more substitutable ring atom.
  • Carbocyclic aromatic rings have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are fused to one another. Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl.
  • heteroaryl refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1-4, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen or sulfur). They include monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings.
  • Examples of monocyclic heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl), imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), isoxazolyl(e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl), pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyr
  • Examples of monocyclic six-membered nitrogen-containing heteraryl groups include pyrimidinyl, pyridinyl and pyridazinyl.
  • Examples of polycyclic aromatic heteroaryl groups include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl.
  • non-aromatic heterocyclic group used alone or as part of a larger moiety as in “non-aromatic heterocyclylalkyl group”, refers to non-aromatic ring systems typically having five to twelve members, preferably five to seven, in which one or more ring carbons, preferably one or two, are each replaced by a heteroatom such as N, O, or S.
  • a non-aromatic heterocyclic group can be monocyclic or fused bicyclic.
  • a “nitrogen-containing non-aromatic heterocyclic group” is a non-aromatic heterocyclic group with at least one nitrogen ring atom.
  • non-aromatic heterocyclic groups include (tetrahydrofuranyl (e.g., 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl), [1,3]-dioxalanyl, [1,3]-dithiolanyl, [1,3]-dioxanyl, tetrahydrothienyl (e.g., 2-tetrahydrothienyl, 3-tetrahydrothieneyl), azetidinyl (e.g., N-azetidinyl, 1-azetidinyl, 2-azetidinyl), oxazolidinyl (e.g., N-oxazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl), morpholinyl (e.g., N-morpholinyl, 2-morpholinyl, 3-morpholinyl (
  • N N-morpholinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-piperazinyl, N-piperidinyl and the like indicates that the non-aromatic heterocyclic group is attached to the remainder of the molecule at the ring nitrogen atom.
  • a “substitutable ring atom” in an aromatic group is a ring carbon or nitrogen atom bonded to a hydrogen atom.
  • the hydrogen can be optionally replaced with a suitable substituent group.
  • substituted ring atom does not include ring nitrogen or carbon atoms which are shared when two aromatic rings are fused.
  • substituted ring atom does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to a moiety other than hydrogen.
  • An aryl group may contain one or more substitutable ring atoms, each bonded to a suitable substituent.
  • Suitable substituents on a substitutable ring carbon atom of an aryl group include halogen, alkyl, haloalkyl, Ar A , —OR A , —O(haloalkyl), —SR A , —NO 2 , —CN, —N(R B ) 2 , —NR B C(O)R A , —NR B CO 2 R C , —N(R B )C(O)N(R B ) 2 , —C(O)R A , —CO 2 R A , —S(O) 2 R A , —SO 2 N(R B ) 2 , —S(O)R C , —NR B SO 2 N(R B ) 2 , —NR B SO 2 R C , —V A —Ar A , —V A —OR A , —V—O(haloalkyl), —V A —SR A , —V A —NO
  • Each V A is independently a C1-C10 alkylene group.
  • Each V B is independently a C2-C10 alkylene group.
  • Ar A is a monocyclic aromatic group each substituted with zero, one or two groups independently selected from halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl.
  • Each R A is independently i) hydrogen; ii) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or iii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.
  • Each R B is independently R A , —CO 2 R A , —SO 2 R A or —C(O)R A ; or N(R B ) 2 taken together is an optionally substituted non-aromatic heterocyclic group.
  • Each R C is independently: i) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or ii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.
  • An alkyl or a non-aromatic heterocyclic group may contain one or more substituents.
  • Suitable substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include those listed above for a substitutable carbon of an aryl and the following: ⁇ O, ⁇ S, ⁇ NNHR C , ⁇ NN(R C ) 2 , ⁇ NNHC(O)R C , ⁇ NNHCO 2 (alkyl), ⁇ NNHSO 2 (alkyl), ⁇ NR C , Spiro cycloalkyl group, fused cycloalkyl group or a monocyclic non-aromatic nitrogen-containing heterocyclic group attached by a ring nitrogen atom (e.g., N-piperidinyl, N-pyrrolidinyl, N-azepanyl, N-morpholinyl, N-thiomorphinyl, N-piperazinyl or N-diazepanyl group).
  • a ring nitrogen atom e.g., N-piperidinyl, N-pyrrolidin
  • Each R C is independently selected from hydrogen, an unsubstituted alkyl group or a substituted alkyl group.
  • substituents on the alkyl group represented by R C include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl.
  • Preferred substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include C1-C2 alkyl, —OH, N-pyrrolidinyl, N-piperidinyl, N-(4-alkyl)piperazinyl, N-morpholinyl or N-pyrrolyl.
  • Suitable substituents on the nitrogen of a non-aromatic heterocyclic group or heteroaryl group include —R D , —N(R D ) 2 , —C(O)R D , —CO 2 R D , —C(O)C(O)R D , —C(O)CH 2 C(O)R D , —SO 2 R D , —SO 2 N(R D ) 2 , —C( ⁇ S)N(R D ) 2 , —C( ⁇ NH)—N(R D ) 2 , and NR D SO 2 R D ; wherein R D is hydrogen, an alkyl group, a substituted alkyl group, phenyl (Ph), substituted Ph, —O(Ph), substituted —OPh), CH 2 (Ph), substituted CH 2 (Ph), or an unsubstituted heteroaryl or heterocyclic ring.
  • substituents on the alkyl group or the phenyl ring represented by R D include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl.
  • Preferred substituents on a substitutable nitrogen atom of a nitrogen-containing heteroaryl or nitrogen-containing non-aromatic heterocyclic group include C1-C2 alkyl, C1-C2 hydroxyalkyl, or benzyl optionally substituted with halogen, nitro, cyano, C1-C2 alkyl, C1-C2 haloalkyl, C1-C2 alkoxy or C1-C2 haloalkoxy.
  • non-aromatic heterocyclic groups (including, but not limited to, non-aromatic heterocyclic groups represented by —N(R 31 ) 2 , —N(R 41 ) 2 , —N(R 51 ) 2 and —N(R B ) 2 ) each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, ⁇ O, ⁇ S, ⁇ N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • substituents selected from the group consisting of halogen, ⁇ O, ⁇ S, ⁇ N
  • the non-aromatic heterocyclic groups each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
  • substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)a
  • Inhibitors of glucosylceramide synthase can be used to treat diabetes, such as type 2 diabetes (see WO 2006/053043, the entire teachings of which are incorporated herein by reference).
  • the disclosed compounds, which are inhibitors of glucosylceramide synthase can be used to treat diabetes, e.g., type 2 diabetes and renal hypertrophy or hyperplasia associated with diabetic nephropathy, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.
  • Inhibitors of glucosylceramide synthase have been shown to be useful for treating lysosomal storage diseases (see, for example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616, the entire teachings of which are incorporated herein by reference).
  • the disclosed compounds which are inhibitors of glucosylceramide synthase, can be used to treat lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.
  • lysosomal storage diseases such as Tay-Sachs, Gaucher's or Fabry's disease
  • the compounds of the present invention can be used for: treating disorders involving cell growth and division, including cancer, collagen vascular diseases, atherosclerosis, and the renal hypertrophy of diabetic patients (see U.S. Pat. Nos. 6,916,802 and 5,849,326, the entire teachings of which are incorporated herein by reference); inhibiting the growth of arterial epithelial cells (see U.S. Pat. Nos. 6,916,802 and 5,849,326); treating patients suffering from infections (see Svensson, M. et al., “Epithelial Glucosphingolipid Expression as a Determinant of Bacterial Adherence and Cytokine Production,” Infect.
  • the compounds of the invention can be used for a vaccine-like preparation (see, for example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616).
  • cancer cells are removed from the patient (preferably as completely as possible), and the cells are grown in culture in order to obtain a large number of the cancer cells. The cells are then exposed to the inhibitor for a time sufficient to deplete the cells of their GSLs (generally 1 to 5 days) and are reinjected into the patient. These reinjected cells act like antigens and are destroyed by the patient's immunodefense system.
  • the remaining cancer cells (which could not be physically removed) will also be attacked by the patient's immunodefense system.
  • the patient's circulating gangliosides in the plasma are removed by-plasmapheresis, since the circulating gangliosides would tend to block the immunodefense system.
  • the compounds of the present invention can be used for treating a subject having polycystic kidney disease (PKD).
  • PPD polycystic kidney disease
  • Example 4 Applicants have discovered that a certain glucosylceramide synthase inhibitors can reduce the growth of cyst formation and/or growth in an animal modeled PKD (see for example, U.S. Provisional Application No. 60/997,803, filed Oct. 5, 2007, the entire teachings of which are incorporated herein by reference).
  • a subject is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, such as a companion animal (e.g., dogs, cats, and the like), a farm animal (e.g., cows, sheep, pigs, horses, and the like) or a laboratory animal (e.g., rats, mice, guinea pigs, and the like).
  • a companion animal e.g., dogs, cats, and the like
  • a farm animal e.g., cows, sheep, pigs, horses, and the like
  • laboratory animal e.g., rats, mice, guinea pigs, and the like.
  • a subject “in need of treatment” includes a subject with chronic renal failure.
  • Treatment or “treating” refers to both therapeutic and prophylactic treatment.
  • an “effective amount” of a pharmaceutical composition disclosed above is a quantity that results in a beneficial clinical outcome of or exerts an influence on, the condition being treated with the pharmaceutical composition compared with the absence of treatment.
  • the administering amount of a pharmaceutical composition disclosed above to the subject will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical composition. It will also depend on the subject's health, size, weight, age, sex, and tolerance to drugs.
  • An effective amount of an active agent is an amount sufficient to have the desired effect for the condition being treated, which can either be treatment of an active disease state or prophylactically inhibiting the active disease state from appearing or progessing.
  • an effective amount of a compound for treating a polycystic kidney disease is the quantity of compound that results in a slowing in the progression of the polycystic kidney disease, a reversal of the polycystic kidney disease state, the reduction of new cyst formation (partial or complete inhibition of cystogenesis), a reduction in cyst mass, a reduction in the size and number of cysts, and/or a reduction in the severity of the symptoms associated with the polycystic kidney disease (PDK).
  • PDK polycystic kidney disease
  • the pharmaceutical compositions of the invention are administered for a sufficient period of time to achieve the desired therapeutic effect.
  • Dosages may range from 0.1 to 500 mg/kg body weight per day. In one embodiment, the dosing range is 1-20 mg/kg/day.
  • the compound of the invention may be administered continuously or at specific timed intervals. For example, the compound of the invention may be administered 1, 2, 3, or 4 times per day, such as, e.g., a daily or twice-daily formulation.
  • Commercially available assays may be employed to determine optimal dose ranges and/or schedules for administration. For example, assays for measuring blood glucose levels are commercially available (e.g., OneTouch® Ultra®, Lifescan, Inc. Milpitas, Calif.).
  • Kits to measure human insulin levels are also commercially available (Linco Research, Inc. St. Charles, Mo.). Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models (see, e.g., Comuzzie et al., Obes. Res. 11 (1):75 (2003); Rubino et al., Ann. Surg. 240(2):389 (2004); Gill-Randall et al., Diabet. Med. 21 (7):759 (2004), the entire teachings of which are incorporated herein by reference).
  • Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports 50(4):219 (1996), the entire teachings of which are incorporated herein by reference) and Table A below for equivalent surface area dosage factors.
  • the pharmaceutical compositions of the invention can be administered before or after a meal, or with a meal.
  • “before” or “after” a meal is typically within two hours, preferably within one hour, more preferably within thirty minutes, most preferably within ten minutes of commencing or finishing a meal, respectively.
  • the method of the present invention is a mono-therapy where the pharmaceutical compositions of the invention are administered alone. Accordingly, in this embodiment, the compound of the invention is the only pharmaceutically active ingredient in the pharmaceutical compositions.
  • the method of the invention is a co-therapy with other therapeutically active drugs known in the art for treating the desired diseases or indications, such as one or more known drugs for treating, diabetes, lysosomal diseases, tumors, etc.
  • the method of the invention is a combination therapy for treating diabetes, such as Type 2 diabetes.
  • the combination therapy comprise any of the compounds of the invention described herein and at least one other compound suitable for treating diabetes.
  • drugs or compounds used to treat type 2 diabetes include: insulin (e.g., Novolin®, Novolog®, Velosulin®); sulfonylureas (e.g., Diabinese®, Glucotrol®, Glucotrol XL®, (Diabeta®, Amaryl®, Orinase®, Tolinase®, Micronase® and Glynase®); metformin; [alpha]-glucosidase inhibitors (e.g., Glyset®); thiazolidinediones (e.g., Actos® and AvandiaTM); nateglinide (Starlix®); repaglinide (Prandin®) and combination drugs such as Avandamet® (Avand
  • the method of the invention is a combination therapy for treating polycystic kidney disease (PDK).
  • PDK polycystic kidney disease
  • Any of the compounds of the invention described herein are co-administered either simultaneously as a single dosage form or consecutively as separate dosage forms with other agents that ease the symptoms and/or complications associated with PKD.
  • the associated symptoms with PKD include pain, headaches, urinary tract infections and high blood pressure.
  • the agents that can be co-administered with the compounds of the invention include, but are not limited to, over-the counter pain medications, antibiotics, antimicrobials, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II antagonists such as losartan, and calcium channel blockers such as diltiazem.
  • Examples of pain medications include acetaminophen, aspirin, naproxen, ibuprofen and COX-2 selective inhibitors such as rofecoxib, celecoxib and valdecoxib.
  • antibiotics and antimicrobials include cephalosporins, penicillin derivatives, aminoglycosidesm ciprofloxacin, erythromycin, chloramphemicol, tetracycline, ampicillin, gentamicin, sulfamethoxazole, trimethoprim and ciprofloxacin, streptomycin, rifamycin, amphotericin B, griseofulvin, cephalothin, cefazolin, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin and fusidic acid
  • thiazide diuretics include bendroflumethiazide, chlorothiazide, chlorthalidone, hydrochlorothiazide,
  • angiotensin-converting enzyme inhibitors examples include benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandolapril.
  • compositions of the invention optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose and dextrose.
  • pharmaceutically acceptable carriers and/or diluents therefor such as lactose, starch, cellulose and dextrose.
  • Other excipients such as flavoring agents; sweeteners; and preservatives, such as methyl, ethyl, propyl and butyl parabens, can also be included. More complete listings of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5 th Ed., Pharmaceutical Press (2005)).
  • the carriers, diluents and/or excipients are “acceptable” in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof.
  • the pharmaceutical compositions can conveniently be presented in unit dosage form and can be prepared by any suitable method known to the skilled artisan. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing into association the compounds disclosed herein with the carriers, diluents and/or excipients and then, if necessary, dividing the product into unit dosages thereof.
  • compositions of the invention can be formulated as a tablet, sachet, slurry, food formulation, troche, capsule, elixir, suspension, syrup, wafer, chewing gum or lozenge.
  • a syrup formulation will generally consist of a suspension or solution of the compounds of the invention described herein or salt in a liquid carrier, for example, ethanol, glycerine or water, with a flavoring or coloring agent.
  • a liquid carrier for example, ethanol, glycerine or water
  • a flavoring or coloring agent for example, ethanol, glycerine or water
  • one or more pharmaceutical carriers routinely used for preparing solid formulations can be employed. Examples of such carriers include magnesium stearate, starch, lactose and sucrose.
  • compositions are in the form of a capsule
  • use of routine encapsulation is generally suitable, for example, using the aforementioned carriers in a hard gelatin capsule shell.
  • composition is in the form of a soft gelatin shell capsule
  • pharmaceutical carriers routinely used for preparing dispersions or suspensions can be considered, for example, aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.
  • compositions of the invention may also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • pharamceutical compositions of the invention can be formulated for injection, or for transdermal or trnasmucosal administration.
  • Illustrative of various modes of administration methods, vehicles and carriers are those described, for example, in Remington's Pharmaceutical Sciences, 18 th ed. (1990), the disclosure of which is incorporated herein by reference.
  • a general method for the synthesis of final compounds is depicted in Scheme 1.
  • a general method for the preparation of the compounds of the invention involves the reaction of the amine of type EVII with the appropriate reagent.
  • the amine type EVII such as (1R,2R)-2-amino-(2,3-dihydrobenzo[ ⁇ ][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, can be prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference), or by using the general synthetic procedures depicted in schemes 2-5.
  • Final amide compounds, EIX can be prepared by reaction of the amine EVII with the corresponding acylating agent using standard reaction conditions for the formation of an amide.
  • the urea compounds, EIIX can be prepared by reaction of the amine EVII with the corresponding isocyanate.
  • the carbamates, EX can be prepared by reaction of the amine EVII with the corresponding chloroformate.
  • Compound EVII such as (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, was coupled with a variety of N-hydroxysuccinamide esters in methylene chloride under an atmosphere of nitrogen, for example, for 18 to 24 hours depending on the ester used.
  • the pure compound EVI was then de-protected by hydrolysis in the microwave, using aqueous NaOH (40% in weight)/methanol solution as solvent and heating the mixture to 150° C. for about 15 minutes to give the free amines of the type EVI.
  • the final product was purified by silica-gel column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide.
  • Step 1 a mixture of 4-(p-hydroxyphenol)-2-butanone (1.032 g), triton B (400 ⁇ L), acrylonitrile (4 mL) and MeOH (0.8 mL) was heated at 70° C. for 20 hours. The mixture was cooled to room temperature and the solvent was removed to dryness. 3-(4-(3-oxobutyl)phenoxy)propanenitrile was obtained as a white solid (0.572 g) after purification by column chromatography using ethyl acetate/hexane.
  • Step 1 a mixture of 4-(2-methoxy ethyl)phenol (1.547 g, 10.3 mmol), propiolic acid tert-butyl ester (1.367 g, 10.8 mmol) and N-methyl morpholine (1.18 mL, 10.8 mmol) in CH 2 Cl 2 (15 mL) was stirred at room temperature for 24 hours. The mixture was absorbed on SiO 2 (20 g) and purified by column chromatography using a mixture of methylene chloride/hexane. The product was obtained as a two to one mixture of (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate isomers (2.0 g).
  • Step 3 (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid (0.3 g) was dissolved in EtOH (10 mL) and Pd/C (5%, degussa type E101, 40 mg) was added. The mixture was hydrogenated at atmospheric pressure for 2 hours and then filtered and the solvent removed to dryness. After purification by column chromatography using a mixture of hexane/ethyl acetate, 3-(4-(2-methoxyethyl)phenoxy)propanoic acid was obtained as a white solid (0.236 g).
  • Step 1 3-phenoxypropionic acid (5.0 g, 30 mmol) was dissolved in MeOH (12 mL) and H 2 SO 4 (18 M, 3 drops) was added. The mixture was place in the microwave reactor (T: 140° C., t: 5 min). The solvent was evaporated, the mixture was partitioned in EtOAc (30 mL) and NaOH (2N, 20 mL). The organic phase was dried over MgSO 4 , filtered, and evaporated to give methyl 3-phenoxypropanoate (5.0 g, 27.7 mmol, 92.5%).
  • Step 2 aluminum chloride (1.1 g, 8.34 mmol) was added to a cold solution (0° C.) solution of methyl 3-phenoxypropanoate (1.0 g, 5.56 mmol) and tert-butylacetyl chloride (1.25 mL, 8.34 mmol) in CH 2 Cl 2 (9 mL) and the reaction mixture was stirred overnight. The mixture was evaporated and the residue was diluted with EtOAc (30 mL) and then washed with water (2 ⁇ 20 mL). The organic phase was removed and purified with silica chromatography using of a gradient hexanes/EtOAc (100:0 ⁇ 0:100) to give methyl 3-phenoxypropanoate (600 mg, 2.27 mmol, 40%).
  • Step 3 a solution of methyl 3-phenoxypropanoate (200 mg, 0.76 mmol) in 2 mL of HCl (37%) was placed in a microwave reactor (T: 120° C., t: 5 min). The mixture was poured into iced water (2 g) and washed with EtOH (3 ⁇ 10 mL). The organic phase was combined and evaporated. The crude product was purified with silica gel chromatography using of a gradient hexanes/EtOAc (100:0 ⁇ 0:100) to give 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid (120 mg, 0.48 mmol, 63%).
  • Example 2 The exemplary compounds shown in Example 2 and Tables 1-3 can be prepared by following scheme 1 described above, Detailed synthetic description of certain compounds also are described below as examples.
  • the resultant biphasic solution was poured into an Erlenmeyer flask and cautiously neutralized to a pH of 7.2-7.4 with a saturated solution of sodium bicarbonate (approx 200 mL of solution).
  • the organic layer was separated from the aqueous layer, dried over sodium sulfate and evaporated to yield 83.6 g of yellow oil (theoretical yield: 77.03 g).
  • the oil was dissolved in isopropyl alcohol (500 mL) with heating and transferred to a 1 L round bottom flask equipped with a mechanical stirrer and heating mantel. The solution was heated to 50° C. and the mechanical stirrer was set to a rate of 53-64 rpm. Tartaric acid (25.33 g, 168 mmol) was dissolved in deionized water (50 mL) and added to the stirred solution at 50° C. Once the solution turned from milky white to clear, seed crystals were added to the mixture and crystallization immediately began (temperature jumped to 56° C.). After 20 minutes, the mixture was set to cool to a temperature of 35° C. (cooling took 1.15 hours).
  • Compound 247 was prepared by reaction of (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine, prepared according to scheme 3 with 3-(4-methylphenoxy)propionic acid using method 1.
  • N,O-dimethylhydroxylamine hydrochloride 45 g, 0.46 mmol, 1.5 eq
  • N-methyl morpholine 84 mL, 0.765 mol, 2.5 eq.
  • EDCI 62 g, 0.323 mol, 1.05 eq
  • the solvent was removed by rotary evaporation and the mixture was partitioned between HCl (1 M, 300 mL) and EtOAc (500 mL). The organic layer was separated and washed with HCl (1 M, 2 ⁇ 100 mL) and then sat. NaHCO 3 (2 ⁇ 150 mL). The mixture was dried over MgSO 4 , filtered and then the solvent was removed by rotary evaporation.
  • 1,2-dibromoethane (0.2 mL) was added slowly to a hot (65° C.) solution of magnesium turnings (0.91 g, 37 mmol) in THF (14 mL), followed by the dropwise addition of a solution of 4-bromo anisole (4 mL, 32 mmol) in THF (14 mL). The mixture was refluxed for 2 hours and then cooled to room temperature. The grignard solution was added dropwise to a suspension of CuI (6.8 g, 36 mmol) in a mixture of Me 2 S (20 mL)/THF (100 mL) at ⁇ 78° C. The mixture was warmed slowly to ⁇ 45° C.

Abstract

A compound for use in treating polycystic kidney disease is represented by Structural Formula (I): or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating polycystic kidney disease in a subject in need thereof comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. Methods of treating in polycystic kidney disease in a subject in need thereof respectively comprise administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
Figure US08309593-20121113-C00001

Description

RELATED APPLICATIONS
This application is the U.S. National Stage of International Application No. PCT/US2009/005435, filed Oct. 2, 2009, which designates the U.S., published in English, and claims the benefit of U.S. Provisional Application No. 61/102,541, filed Oct. 3, 2008. The entire teachings of the above applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION
Gangliosides, such as GM1, GM2 and GM3, are glycosphingolipids (GSLs) comprised of ceramide and at least one acidic sugar. Gangliosides are generally found in the outer leaflet of the plasma membrane (Nojri et al., Proc. Natl. Acad. ScL USA 83:782 (1986)). Gangliosides are involved in cell signaling and act as modulators of receptor activity (Yamashita et al., Proc. Natl. Acad. ScL USA 100(6):3445 (2003)). A number of GSLs are derived from glucosylceramide, which is enzymatically formed from ceramide and UDP-glucose. The formation of glucosylceramide is catalyzed by glucosylceramide synthase.
It has been found that the level of GSLs controls a variety of cell functions, such as growth, differentiation, adhesion between cells or between cells and matrix proteins, binding of microorganisms and viruses to cells, and metastasis of tumor cells. In addition, the glucosylceramide precursor, ceramide, may cause differentiation or inhibition of cell growth and be involved in the functioning of vitamin D3, tumor necrosis factor-α, interleukins, and apoptosis. Sphingols, precursors of ceramide, and products of ceramide catabolism have also been shown to influence many cell systems, possibly by inhibiting protein kinase C.
Defects in GSL metabolizing enzymes can cause serious disorders. For example, Tay-Sachs, Gaucher's, and Fabry's diseases result from enzymatic defects in the GSL degradative pathway and the accumulation of GSL. In particular, GM1 accumulates in the nervous system leading to mental retardation and liver enlargement. In Tay-Sachs, GM2 accumulates in brain tissue leading to mental retardation and blindness. These observations suggest that inhibitors of glycosylceramide synthase can be effective in treating lysosomal diseases such as Tay-Sachs, Gaucher's, and Fabry's diseases. Indeed, glucosylceramide synthase inhibitors have been described for this purpose (see U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6610,703; 5,472,969; and 5,525,616).
Recently it has been disclosed that the interruption of the insulin induced signaling cascade may be associated with elevated levels of GM3. It has also been suggested that the cytokine tumor necrosis factor-α (TNF-α), implicated in insulin resistance, results in increased expression of GM3 (Tagami et al., J. Biol. Chem. 277(5):3085 (2002)). Also, it has been disclosed that mutant mice lacking GM3 synthase, and thus lacking in GM3, are protected from insulin resistance caused by a high-fat diet (Yamashita et al., Proc. Natl. Acad. Sc. USA 100:3445-3449 (2003)). These observations suggest that inhibitors of glycosylceramide synthase can be effective in treating diabetes. Indeed, inhibitors of glucosylceramide synthase have been proposed for treating Type 2 diabetes (see WO 2006/053043).
Therefore, agents which inhibit glucosylceramide synthesis, or reduce intracellular content of GSLs, such as GM3, have the potential to treat conditions associated with altered GSL levels and/or GSL precursor levels. There is a need for additional agents which can act as glucosylceramide synthase inhibitors.
SUMMARY OF THE INVENTION
It has now been discovered that 2-acylaminopropoanol derivatives represented by Structural Formula (I) below can effectively inhibit glycosphingolipid synthesis, such as GM3 synthesis. As such, these compounds can be used for treating diabetes or lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease. In addition, a number of these compounds were tested and found to significantly inhibit glycosphingolipid synthesis in animal tissues and to have high metabolic stability at the liver. These compounds can also be used for a subject having polycystic kidney disease (PKD). Based upon this discovery, novel 2-acylaminopropoanol derivatives, pharmaceutical compositions comprising the 2-acylaminopropoanol derivatives, and methods of treatment using the 2-acylaminopropoanol derivatives are disclosed herein.
In one embodiment, the present invention is directed to compounds represented by Structural Formula (I):
Figure US08309593-20121113-C00002
and pharmaceutically acceptable salts thereof, wherein:
R1 is a substituted or unsubstituted aryl group;
Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.
R2 and R3 are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R2 and R3 taken together with the nitrogen atom of N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring;
X is —(CR5R6)n-Q-; Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7—, —NR7C(O)—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7—, or —NR7SO2—; and R4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group;
Alternatively, X is —O—, —S— or —NR7—; and R4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group;
Alternatively, X is —(CR5R6)n—; and R4 is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO2 or a halogen;
Alternatively, X is a covalent bond; and R4 is a substituted or unsubstituted aryl group;
R5 and R6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group;
n is 1, 2, 3, 4, 5 or 6;
Each R7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R7 and R4 taken together with the nitrogen atom of NR7R4 form a substituted or unsubstituted non-aromatic heterocyclic group.
In another embodiment, the present invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
In yet another embodiment, the present invention is directed to a method of treating a subject having type 2 diabetes, comprising administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of treating a subject having renal hypertrophy or hyperplasia associated with diabetic nephropathy is also included in the invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of decreasing plasma TNF-α in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of lowering blood glucose levels in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of decreasing glycated hemoglobin levels in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
A method of treating a subject with polycystic kidney disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.
Also, included in the present invention is the use of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament. The medicament is for treating a subject having type 2 diabetes; for treating a subject having renal hypertrophy or hyperplasia associated with diabetic nephropathy; for decreasing plasma TNF-α in a subject in need thereof; for lowering blood glucose levels in a subject in need thereof; for decreasing glycated hemoglobin levels in a subject in need thereof; for inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof; or for treating a subject with Tay-Sachs, Gaucher's or Fabry's disease. Alternatively, the medicament is for treating a subject having polycystic kidney disease.
The compounds of the invention are inhibitors of glucosylceramide synthesis. As such, they can be used for treating various disorders associated with GSL metabolism, including diabetes and lysosomal storage diseases. The compounds of the invention can effectively inhibit glucosylceramide synthesis and at the same time have high metabolic stability at the liver. For example, the compounds of the invention can have a clearance value of less than 50%, and commonly less than 30%, at the liver relative to hepatic blood flow.
The present invention has many advantages. In particular, the present invention provides a treatment for PKD that addresses the underlying disease state, rather than simply ameliorating symptoms that are associated with PKD. Such compounds may reduce the need for kidney dialysis or transplant in patients suffering from PKD.
DETAILED DESCRIPTION OF THE INVENTION
In one embodiment, the invention is directed to a compound represented by Structural Formula (I), or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:
R1 is a substituted or unsubstituted aryl group, such as a substituted or unsubstituted phenyl group. Preferably, R1 is an aryl group optionally substituted with one or more substituents selected from halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR—Vo—N(R31)2, —NR—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2], —O—, —S—[CH2]p—S—, or —[CH2]q—. More preferably, R1 is an aryl group, such as a phenyl group, optionally substituted with one or more halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. More preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, and —[CH2]q—. Even more preferably, R1 is a phenyl group optionally substituted with —OH, —OCH3, —OC2H5 or —O—[CH2]p—O—. Even more preferably, R1 is
Figure US08309593-20121113-C00003

where r is 1, 2, 3 or 4, preferably 1 or 2.
Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group. Examples of hydrolyzable groups include —C(O)R, —C(O)OR, —C(O)NRR′, C(S)R, —C(S)OR, —C(O)SR or —C(S)NRR′. Preferably, Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′; more preferably, —H.
R2 and R3 are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R2 and R3 taken together with the nitrogen atom of N(R2R3) form a substituted or unsubstituted non-aromatic heterocyclic ring. Preferably, R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring. More preferably, —N(R2R3) is an optionally substituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group. Even more preferably, —N(R2R3) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.
Suitable substituents for the aliphatic and aryl groups represented by R2 and R3, and suitable substituents for the non-aromatic heterocyclic ring represented by N(R2R3) each independently include halogen, alkyl, haloalkyl, —OR40, —O(haloalkyl), —SR40, —NO2, —CN, —N(R41)2, —NR41C(O)R40, —NR41C(O)OR42, —N(R41)C(O)N(R41)2, —C(O)R40, —C(S)R40, —C(O)OR40, —OC(O)R40, —C(O)N(R41)2, —S(O)2R40, —SO2N(R41)2, —S(O)R42, —SO3R40, Ar2, V2—Ar2, —V2—OR40, —V2—O(haloalkyl), —V2—SR40, —V2—NO2, —V2—CN, —V2—N(R41)2, —V2—NR41C(O)R40, —V2—NR41CO2R42, —V2—N(R41)C(O)N(R41)2, —V2—C(O)R40, —V2—C(S)R40, —V2—CO2R40, —V2—OC(O)R40, —V2—C(O)N(R41)2—, —V2—S(O)2R40, —V2—SO2N(R41)2, —V2—S(O)R42, —V2—SO3R40, —O—V2—Ar2 and —S—V2—Ar2. Preferably, suitable substituents for the aliphatic and aryl groups represented by R2 and R3, and suitable substituents for the non-aromatic heterocyclic ring represented by N(R2R3) each independently include halogen, alkyl, haloalkyl, —OR40, —O(haloalkyl), —SR40, —NO2, —CN, —N(R41)2, —C(O)R40, —C(S)R40, —C(O)OR40, —OC(O)R40, —C(O)N(R41)2, Ar2, V2—Ar2, —V2—OR40, —V2—O(haloalkyl), —V2—SR40, —V2—NO2, —V2—CN, —V2—N(R41)2, —V2—C(O)R40, —V2—C(S)R40, —V2—CO2R40, —V2—OC(O)R40, —O—V2—Ar2 and —S—V2—Ar2. More preferably, suitable substituents for the aliphatic and aryl groups represented by R2 and R3, and suitable substituents for the non-aromatic heterocyclic ring represented by N(R2R3) each independently include halogen, C1-C10 alkyl, C1-C10 haloalkyl, —O(C1-C10 alkyl), —O(phenyl), —O(C1-C10 haloalkyl), —S(C1-C10 alkyl), —S(phenyl), —S(C1-C10 haloalkyl), —NO2, —CN, —NH(C1-C10 alkyl), —N(C1-C10 alkyl)2, —NH(C1-C10 haloalkyl), —N(C1-C10 haloalkyl)2, —NH(phenyl), —N(phenyl)2, —C(O)(C1-C10 alkyl), —C(O)(C1-C10 haloalkyl), —C(O)(phenyl), —C(S)(C1-C10 alkyl), —C(S)(C1-C10 haloalkyl), —C(S)(phenyl), —C(O)O(C1-C10 alkyl), —C(O)O(C1-C10 haloalkyl), —C(O)O(phenyl), phenyl, —V2-phenyl, —V2—O-phenyl, —V2—O(C1-C10 alkyl), —V2—O(C1-C10 haloalkyl), —V2—S-phenyl, —V2—S(C1-C10 alkyl), —V2—S(C1-C10 haloalkyl), —V2—NO2, —V2—CN, —V2—NH(C1-C10 alkyl), —V2—N(C1-C10 alkyl)2, —V2—NH(C1-C10 haloalkyl), —V2—N(C1-C10 haloalkyl)2, —V2—NH(phenyl), —V2—N(phenyl)2, —V2—C(O)(C1-C10 alkyl), —V2—C(O)(C1-C10 haloalkyl), —V2—C(O)(phenyl), —V2—C(S)(C1-C10 alkyl), —V2—C(S)(C1-C10 haloalkyl), —V2—C(S)(phenyl), —V2—C(O)O(C1-C10 alkyl), —V2—C(O)O(C1-C10 haloalkyl), —V2—C(O)O(phenyl), —V2—OC(O)(C1-C10 alkyl), —V2—OC(O)(C1-C10 haloalkyl), —V2—OC(O)(phenyl), —O—V2-phenyl and —S—V2-phenyl. Even more preferably, suitable substituents for the aliphatic and aryl groups represented by R2 and R3, and suitable substituents for the non-aromatic heterocyclic ring represented by N(R2R3) each independently include halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxy, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl, C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
X is —(CR5R6)n-Q-; Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7—, —NR7C(O)—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7—, or —NR7SO2—; and R4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group. Preferably, Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7— or —NR7SO2—. More Preferably, Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7— or —OC(O)—. Even more preferably, Q is —O—, —S—, —C(O)— or —C(S)—.
Alternatively, X is —O—, —S— or —NR7—; and R4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group.
In another alternative, X is —(CR5R6)n—; and R4 is a substituted or unsubstituted cyclic alkyl (e.g., C3-C8) group, or a substituted or unsubstituted cyclic alkenyl (C3-C8) group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO2 or a halogen.
In another alternative, X is a covalent bond; and R4 is a substituted or unsubstituted aryl group.
Preferably, R4 is an optionally substituted aliphatic, such as a lower alkyl, or aryl group. More preferably, R4 is an optionally substituted aryl or lower arylalkyl group. Even more preferably, R4 is selected from the group consisting of:
Figure US08309593-20121113-C00004

wherein each of rings A-Z5 is optionally and independently substituted; and each x is independently 0 or 1, specifically x is 0. Even more preferably, R4 is an optionally substituted
Figure US08309593-20121113-C00005

group. Alternatively, R4 is an optionally substituted phenyl group. Alternatively, R4 is an aryl group substituted with Ar3, such as a phenyl group substituted with Ar3. It is noted that, as shown above, rings A-Z5 can be attached to variable “X” of Structural Formula (I) through —(CH2)x— at any ring carbon of rings A-Z5 which is not at a position bridging two aryl groups. For example, R4 represented by
Figure US08309593-20121113-C00006

means that R4 is attached to variable “X” through either ring J or ring K.
Preferred substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, alkyl, haloalkyl, Ar3, Ar3—Ar3, —OR50, —O(haloalkyl), —SR50, —NO2, —CN, —NCS, —N(R51)2, —NR51C(O)R50, —NR51C(O)OR52, —N(R51)C(O)N(R51)2, —C(O)R50, —C(S)R50, —C(O)OR50, —OC(O)R50, —C(O)N(R51)2, —S(O)2R50, —SO2N(R51)2, —S(O)R52, —SO3R50, —NR51SO2N(R51)2, —NR51SO2R52, —V4—Ar3, —V—OR50, —V4—O(haloalkyl), —V4—SR50, —V4—NO2, —V4—CN, —V4—N(R51)2, —V4—NR51C(O)R50, —V4—NR51CO2R52, —V4—N(R51)C(O)N(R51)2, —V4—C(O)R50, —V4—C(S)R50, —V4—CO2R50, —V4—OC(O)R50, —V4—C(O)N(R51)2—, —V4—S(O)2R50, —V4—SO2N(R51)2, —V4—S(O)R52, —V4—SO3R50, —V4—NR51SO2N(R51)2, —V4—NR51SO2R52, —O—V4—Ar3, —O—V5—N(R51)2, —S—V4—Ar3, —S—V5—N(R51)2, —N(R51)—V4—Ar3, —N(R51)—V5—N(R51)2, —NR51C(O)—V4—N(R51)2, —NR51C(O)—V4—Ar3, —C(O)—V4—N(R51)2, —C(O)—V4—Ar3, —C(S)—V4—N(R51)2, —C(S)—V4—Ar3, —C(O)O—V5—N(R51)2, —C(O)O—V4—Ar3, —O—C(O)—V5—N(R51)2, —O—C(O)—V4—Ar3, —C(O)N(R51)—V5—N(R51)2, —C(O)N(R51)—V4—Ar3, —S(O)2—V4—N(R51)2, —S(O)2—V4—Ar3, —SO2N(R51)—V5—N(R51)2, —SO2N(R51)—V4—Ar3, —S(O)—V4—N(R51)2, —S(O)—V4—Ar3, —S(O)2—O—V5—N(R51)2, —S(O)2—O—V4—Ar3, —NR51SO2—V4—N(R51)2, —NR51SO2—V4—Ar3, —O—[CH2]p′—O—, —S—[CH2]p′—S—, and —[CH2]q′—. More preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar3, Ar3—Ar3, —OR50, —O(haloalkyl), —SR50, —NO2, —CN, —N(R51)2, —NR51C(O)R50, —C(O)R50, —C(O)OR50, —OC(O)R50, —C(O)N(R51)2, —V4—Ar3, —V—OR50, —V4—O(haloalkyl), —V4—SR50, —V4—NO2, —V4—CN, —V4—N(R51)2, —V4—NR51C(O)R50, —V4—C(O)R50, —V4—CO2R50, —V4—OC(O)R50, —V4—C(O)N(R51)2—, —O—V4—Ar3, —O—V5—N(R51)2, —S—V4—Ar3, —S—V5—N(R51)2, —N(R51)—V4—Ar3, —N(R51)—V5—N(R51)2, —NR51C(O)—V4—N(R51)2, —NR51C(O)—V4—Ar3, —C(O)—V4—N(R51)2, —C(O)—V4—Ar3, —C(O)O—V5—N(R51)2, —C(O)O—V4—Ar3, —O—C(O)—V5—N(R51)2, —O—C(O)—V4—Ar3, —C(O)N(R51)—V5—N(R51)2, —C(O)N(R51)—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—. More preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O—[CH2]p—O— or —[CH2]q—. Even more preferably, substituents for each of the aliphatic group and the aryl group represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy. Even more preferably, substituents for each of the aliphatic and aryl groups represented by R4, including lower alkyl, arylalkyl and rings A-Z5, include —OH, —OCH3, —OC2H5 and —O—[CH2]p′—O—.
Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR50, —Ar3, —V—OR50, —O(C1-C10 haloalkyl), —V4—O(C1-C10 haloalkyl), —O—V4—Ar3, —O—[CH2]p—O— and —[CH2]q—. More preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O—[CH2]p—O— and —[CH2]q—. Even more preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3 and —OC2H5. Specifically, when R4 is phenyl ring A, at least one of the substituents of ring A is at the para position.
R5 and R6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group. Preferably, R5 and R6 are each independently —H; —OH; a halogen; or a lower alkoxy or lower alkyl group. More preferably, R5 and R6 are each independently —H, —OH or a halogen. Even more preferably, R5 and R6 are each independently —H.
Each R7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R7 and R4 taken together with the nitrogen atom of NR7R4 form a substituted or unsubstituted non-aromatic heterocyclic group. Preferably, each R7 is independently —H, an aliphatic group or phenyl. Even more preferably, each R7 is independently —H or C1-C6 alkyl.
Each n is independently 1, 2, 3, 4, 5 or 6. Preferably, each n is independently 1, 2, 3 or 4. Alternatively, each n is independently 2, 3, 4 or 5.
Each p is independently 1, 2, 3 or 4, preferably 1 or 2.
Each q is independently 3, 4, 5 or 6, preferably 3 or 4.
Each p′ is independently 1, 2, 3 or 4, preferably 1 or 2.
Each q′ is independently 3, 4, 5 or 6, preferably 3 or 4.
Each Vo is independently a C1-C10 alkylene group, preferably C1-C4 alkylene group.
Each V1 is independently a C2-C10 alkylene group, specifically C2-C4 alkylene group.
Each V2 is independently a C1-C4 alkylene group.
Each V4 is independently a C1-C10 alkylene group, preferably a C1-C4 alkylene group.
Each V5 is independently a C2-C10 alkylene group, preferably a C2-C4 alkylene group.
Each Ar1 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl. Preferably, Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each Ar2 is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
Each Ar3 is independently an aryl group, such as phenyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl. Preferably, Ar3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. Even more preferably, Ar3 is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
Each R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
Each R31 is independently R30, —CO2R30, —SO2R30 or —C(O)R30; or —N(R31)2 taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
Each R32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R32 is independently a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.
Each R40 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
Each R41 is independently R40, —CO2R40, —SO2R40 or —C(O)R40; or —N(R41)2 taken together is an optionally substituted non-aromatic heterocyclic group.
Each R42 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
Each R50 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R50 is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
Each R51 is independently R50, —CO2R50, —SO2R50 or —C(O)R50, or —N(R51)2 taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R51 is independently R50, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
Each R52 is independently an aryl group optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R52 is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.
R and R′ are each independently —H; a lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy and aryl; or an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group; or R and R′ taken together with the nitrogen atom of NRR′ form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO2; —NH2; lower alkoxy; lower haloalkoxy; lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy and aryl; and aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, —NCS, —NO2, —NH2, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group. Preferably, R and R′ are each independently —H; a lower aliphatic group; a lower aliphatic group substituted with phenyl; or an aryl group. More preferably, R and R′ are each independently —H, C1-C4 alkyl, phenyl or benzyl.
A second set of values for the variables in Structural Formula (I) is provided in the following paragraphs:
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—NR31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—NR31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]P—O—, —S—[CH2]p—S— and —[CH2]q—.
Values and preferred values for the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.
A third set of values for the variables in Structural Formula (I) is provided in the following four paragraphs.
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2NR31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring. Examples of suitable substituents for the non-aromatic heterocyclic ring represented by —NR2R3 are as described in the first set of values for Structural Formula (I).
Values and preferred values for the remainder of the variables of Structural Formula (I) are as described above for the first set of values.
A fourth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
R5 and R6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.
A fifth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —S—[CH2]p—S— and —[CH2]q—.
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
R4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are as described above for the first set of values.
R5 and R6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.
A sixth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
R1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar1, —OR30, —O(haloalkyl), —SR30, —NO2, —CN, —NCS, —N(R31)2, —NR31C(O)R30, —NR31C(O)OR32, —N(R31)C(O)N(R31)2, —C(O)R30, —C(S)R30, —C(O)OR30, —OC(O)R30, —C(O)N(R31)2, —S(O)2R30, —SO2N(R31)2, —S(O)R32, —SO3R30, —NR31SO2N(R31)2, —NR31SO2R32, —Vo—Ar1, —Vo—OR30, —Vo—O(haloalkyl), —Vo—SR30, —Vo—NO2, —Vo—CN, —Vo—N(R31)2, —Vo—NR31C(O)R30, —Vo—NR31CO2R32, —Vo—N(R31)C(O)N(R31)2, —Vo—C(O)R30, —Vo—C(S)R30, —Vo—CO2R30, —Vo—OC(O)R30, —Vo—C(O)N(R31)2—, —Vo—S(O)2R30, —Vo—SO2N(R31)2, —Vo—S(O)R32, —Vo—SO3R30, —Vo—NR31SO2N(R31)2, —Vo—NR31SO2R32, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —NR31C(O)—Vo—N(R31)2, —NR31C(O)—Vo—Ar1, —C(O)—Vo—N(R31)2, —C(O)—Vo—Ar1, —C(S)—Vo—N(R31)2, —C(S)—Vo—Ar1, —C(O)O—V1—N(R31)2, —C(O)O—Vo—Ar1, —O—C(O)—V1—N(R31)2, —O—C(O)—Vo—Ar1, —C(O)N(R31)—V1—N(R31)2, —C(O)N(R31)—Vo—Ar1, —S(O)2—Vo—N(R31)2, —S(O)2—Vo—Ar1, —SO2N(R31)—V1—N(R31)2, —SO2N(R31)—Vo—Ar1, —S(O)—Vo—N(R31)2, —S(O)—Vo—Ar1, —S(O)2—O—V1—N(R31)2, —S(O)2—O—Vo—Ar1, —NR31SO2—Vo—N(R31)2, —NR31SO2—Vo—Ar1, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—.
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.
R4 is an optionally substituted cyclic alkyl group, or an optionally substituted cyclic alkenyl group, an optionally substituted aryl group, —CN, —NCS, —NO2 or a halogen. Examples of suitable substituents are as described above for the first set.
R5 and R6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.
A seventh set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:
Values and preferred values of R1, Y, R2, R3, R5 and R6 are each independently as described above for the sixth set.
R4 is an optionally substituted cyclic alkyl group, or an optionally substituted cyclic alkenyl group, or an optionally substituted aryl group, specifically optionally substituted aryl group. Examples of suitable substituents are as described above for the first set.
Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.
In a second embodiment, the compound of the invention is represented by Structural Formula (II), (III), (IV), (V), (VI), (VII) or (VIII):
Figure US08309593-20121113-C00007

or a pharmaceutically acceptable salt thereof. A first set of values for the variables of Structural Formulas (II)-(VIII) is provided in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V, —N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S— and —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2], —O— and and —[CH2]q—.
Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group. Examples of suitable substituents are as described above in the first set of values for Structural Formula (I).
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring. Examples of suitable substituents for the non-aromatic heterocyclic ring represented by —NR2R3 are as described above in the first set of values for Structural Formula (I).
R4 is an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
For Structural Formula (VIII), R7 is —H or C1-C6 alkyl, preferably —H.
Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).
A second set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.
Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
R4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are described above in the first set of values for Structural Formula (I).
R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
For Structural Formula (VIII), R7 is —H or C1-C6 alkyl, preferably —H.
Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.
Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
R4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Example of suitable substituents are as described in the first set of values for Structural Formula (I).
R5 and R6 for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
For Structural Formula (VIII), R7 is —H.
Preferably, Q in Structural Formula (II) is —O—, —S—, —C(O)—, —C(S)—, —NR7(CO)— or —C(O)NR7
Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). Preferably, for Structural Formula (II), Q is —O—, —S—, —C(O)—, —C(S)—, —NR7(CO)— or —C(O)NR7—.
A fourth set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—NR31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.
Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
R4 is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substitutents for R4 are as provided above in the first set of values for Structural Formula (I). Preferably, R4 is selected from the group consisting of:
Figure US08309593-20121113-C00008

Each of rings A-Z5 is optionally and independently substituted.
For Structural Formula (VIII), R7 is —H.
Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). When the compound of the invention is represented by Structural Formula (III) or (IV), or a pharmaceutically acceptable salt thereof, n is 1, 2, 3 or 4. Alternatively, when the compound of the invention is represented by Structural Formula (V) or (VI), or a pharmaceutically acceptable salt thereof, n is 3, 4 or 5.
A fifth set of values for the variables in Structural Formulas (II)-(VIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I).
In a third embodiment, the compound of the invention is represented by Structural Formula (IX) or (X):
Figure US08309593-20121113-C00009

or a pharmaceutically acceptable salt thereof. A first set of values for the variables in Structural Formulas (IX) and (X) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents. Examples of suitable substituents include halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, and —[CH2]q-; preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]P—O—.
—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino; preferably, —N(R2R3) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR50, —Ar3, —V4—Ar3, —V—OR50, —O(C1-C10 haloalkyl), —V4—O(C1-C10 haloalkyl), —O—V4—Ar3, —O—[CH2]p′—O— and —[CH2]q′—.
Ar3 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R50 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.
Values and preferred values of the remainder of the variables of Structural Formulas (IX) and (X) are each independently as defined above in the first set of values for Structural Formula (I).
A second set of values and preferred values for the variables in Structural Formulas (IX) and (X) is as defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]—O—.
—N(R2R3) is pyrrolidinyl.
Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-C10 alkoxy, —O—[CH2]p′—O— and —[CH2]q′—. Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3 or —OC2H5.
For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.
Values and preferred values of the remaining variables of Structural Formulas (IX) and (X) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables in Structural Formulas (IX) and (X) independently is as defined in the first set, second set, third set, fourth set or fifth set, of values for Structural Formulas (II)-(VIII).
In a fourth embodiment, the compound of the invention is represented by Structural Formula (XI), (XII) or (XIII):
Figure US08309593-20121113-C00010

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O— and —[CH2]q—.
Ar1 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group. Examples of suitable substituents are as described above in the first set of values for Structural Formula (I).
R2 and R3 taken together with the nitrogen atom of N(R2R3) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring. Examples of suitable substituents for the non-aromatic heterocyclic group represented by —NR2R3 are as described above in the first set of values for Structural Formula (I).
R4 is an optionally substituted aryl group. Examples of suitable substituents for R4 are as provided above in the first set of values for Structural Formula (I).
R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).
A second set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]pS—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino; aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.
Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
R4 is an optionally substituted aryl group. Suitable substituents and preferred substitutents are as provided above in the first set of values for Structural Formula (I). Preferably, R4 is selected from the group consisting of:
Figure US08309593-20121113-C00011

Each of rings A-Z5 is optionally and independently substituted. Preferably, each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar3 and Ar3—Ar3 wherein values and preferred values of Ar3 are as described above for the first set of values for Structural Formula (I). Preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. More preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]q—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.
Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.
R4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).
A fourth set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]P—O—, Preferably, R1 is
Figure US08309593-20121113-C00012

where r is 1, 2, 3 or 4, preferably 1 or 2.
—N(R2R3) is an unsubstituted pyrrolidinyl group.
R4 is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
n is an integer from 1 to 4.
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).
A fifth set of values preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—. Preferably R1 is
Figure US08309593-20121113-C00013

where r is 1, 2, 3 or 4, preferably 1 or 2.
—N(R2R3) is pyrrolidinyl.
R4 is
Figure US08309593-20121113-C00014

optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
n is 1.
R5 and R6 for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).
A sixth set of values for the variables in Structural Formulas (XI)-(XIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for Structural Formula (I).
In a fifth embodiment, the compound of the invention is represented by Structural Formula (XIV) or (XV):
Figure US08309593-20121113-C00015

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XIV) and (XV) is as defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —Vo—OR30, —Vo—N(R31)2, —Vo—Ar1, —O—Vo—Ar1, —O—V1—N(R31)2, —S—Vo—Ar1, —S—V1—N(R31)2, —N(R31)—Vo—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]p—S—, or —[CH2]1—. Preferably, R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH2]p—O—, and —[CH2]q—.
Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group. —N(R2R3) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C105 alkylamino and C1-C5 dialkylamino.
k is 0, 1, 2, 3, 4, 5 or 6.
R8 is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, R8 is selected from the group consisting of:
Figure US08309593-20121113-C00016

Each of rings A-Z5 is optionally and independently substituted. Examples of suitable substituents for R8 are as provided above in the first set of values for R4 in Structural Formula (I). More preferably, R8 is a
Figure US08309593-20121113-C00017

group. Alternatively, R8 is an aryl group substituted with Ar3, such as a phenyl group substituted with Ar3, where values and preferred values of Ar3 are as described above in Structural Formula (I).
Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).
A second set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, —SR30, —N(R31)2, Ar1, —V—OR30, —V—N(R31)2, —O—V—Ar1, —O—V1—N(R31)2, —S—V—Ar1, —S—V1—N(R31)2, —N(R31)—V—Ar1, —N(R31)—V1—N(R31)2, —O—[CH2]p—O—, —S—[CH2]pS— and —[CH2]q—.
Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
Each R31 is independently R30, or —N(R31)2 is an optionally substituted non-aromatic heterocyclic group.
—N(R2R3) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.
Values and preferred values for k and R8 are as provided above in the first set of values for Structural Formulas (XIV) and (XV).
Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs:
R1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH3, —OC2H5 and —O—[CH2]p—O—. Preferably R1 is
Figure US08309593-20121113-C00018

where r is 1, 2, 3 or 4, preferably 1 or 2.
—N(R2R3) is pyrrolidinyl.
Values and preferred values for k and R8 are each independently as provided above in the first set of values for Structural Formulas (XIV) and (XV).
Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).
A fourth set of values for the variables in Structural Formulas (XIV)-(XV) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set for Structural Formula (I).
In a sixth embodiment, the compound of the invention is represented by Structural Formula (XXI):
Figure US08309593-20121113-C00019

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formula (XXI) is as defined in the following paragraphs:
Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
k′ is 0, 1 or 2.
k″ is 0, 1 or 2. Preferably, k″ is 0 or 1. More preferably k″ is 1.
m′ is 0, 1 or 2. Preferably, m′ is 1.
Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).
A second set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:
Y is —H, —C(O)R, —C(O)OR or —C(O)NRR′, preferably —H.
Values and preferred values for A, B, k′, k″ and m′ are each independently as described above in the first set of values for Structural Formula (XXI).
Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:
R30 is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Even more preferably, R30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
Values and preferred values for A, B, Y, k′, k″ and m′ are each independently as described above in the second set of values for Structural Formula (XXI).
Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).
A fourth set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:
Y is —H.
Values and preferred values for R30, A, B, k′, k″ and m′ are each independently as described above in the third set of values for Structural Formula (XXI).
Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).
In a seventh embodiment, the compound of the invention is represented by Structural Formula (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXVII), (XXVIII), (XXIX), (XXX) or (XXXI):
Figure US08309593-20121113-C00020
Figure US08309593-20121113-C00021

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XXII)-(XXXI) is as defined in the following paragraphs:
Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
Each k′ is independently 0, 1 or 2.
Each k″ is independently 0, 1 or 2.
Each m′ is independently 0, 1 or 2. Preferably, each m′ is 1.
Each n is independently 1, 2, 3, 4, 5 or 6. Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).
A second set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:
Each R4 in Structural Formulas (XXII)-(XXVIII) is independently an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I). Preferably, each R4 in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substituents are as described in the first set of values for Structural Formula (I).
Each R4 in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
R5 and R6 in Structural Formulas (XXII), (XXIII), (XV) and (XXIX) are each independently —H, —OH, a halogen, a C1-C6 alkoxy group or a C1-C6 alkyl group.
For Structural Formula (XXVIII), R7 is —H or C1-C6 alkyl, preferably —H.
Values and preferred values for A, B, R30, k′, k″, m′ and n are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).
A third set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:
Each R4 in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group. Example of suitable substituents are as described in the first set of values for Structural Formula (I). Each R4 in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).
R5 and R6 for Structural Formulas (XXII), (XXIII), (XXV) and (XXIX) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.
For Structural Formula (XXVIII), R7 is —H.
Q in Structural Formula (XXII) is —O—, —S—, —C(O)—, —C(S)—, —NR7(CO)— or —C(O)NR7—.
Values and preferred values for A, B, R30, k′, k″, m′ and n are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).
A fourth set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:
Each R4 in Structural Formulas (XXII)-(XXVIII) is independently selected from the group consisting of:
Figure US08309593-20121113-C00022

wherein each x is independently 0 or 1, and each of rings A-Z5 is optionally and independently substituted.
Each R4 in Structural Formulas (XXIX)-(XXXI) is independently selected from the group consisting of:
Figure US08309593-20121113-C00023

wherein each of rings A-Z5 is optionally and independently substituted. Preferably, each R4 in Structural Formulas (XXII)-(XXXI) is independently monocyclic.
Example of suitable substituents for rings A-Z5 are as described in the first set of values for Structural Formula (I).
Preferably, in Structural Formulas (XXIX)-(XXXI), each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar3 and Ar3—Ar3 wherein values and preferred values of Ar3 are as described above for the first set of values for Structural Formula (I). Preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. More preferably, Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
Values and preferred values for R5, R6, R7, R30, Q, k′, k″, m′ and n are each independently as described above in the third set of values for the variables in Structural Formulas (XXII)-(XXXII). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.
Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).
A fifth set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:
Each R4 in Structural Formulas (XXII)-(XXVIII) is independently
Figure US08309593-20121113-C00024

wherein x is 0 or 1.
Each R4 in Structural Formulas (XXIX)-(XXXI) is independently
Figure US08309593-20121113-C00025
Each ring A is optionally substituted. Example of suitable substituents for rings A are as described in the first set of values for Structural Formula (I). Preferably, ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar3, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.
Ar3 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.
Values and preferred values for A, B, R5, R6, R7, R30, Q, k′, k″, m′ and n are each independently as described above in the fourth set of values for the variables in Structural Formulas (XXII)-(XXXI).
Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).
A sixth set of values for the variables other than A, B, k′, k″ and m′ in Structural Formulas (XXII)-(XXXI) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I), and values and preferred values for A, B, k′, k″ and m′ are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI).
In an eighth embodiment, the compound of the invention is represented by Structural Formula (XXXII) or (XXXIII):
Figure US08309593-20121113-C00026

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XXXII)-(XXXII') is as defined in the following paragraphs:
Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.
Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R30 is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R30 is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
Each k′ is independently 0, 1 or 2.
Each k″ is independently 0, 1 or 2.
Each m′ is independently 0, 1 or 2.
Each q is independently 0, 1, 2, 3, 4, 5 or 6.
Each R8 independently is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, each R8 independently is selected from the group consisting of:
Figure US08309593-20121113-C00027

Each of rings A-Z5 is optionally and independently substituted. Examples of suitable substituents for R8 are as provided above in the first set of values for R4 in Structural Formula (I). More preferably, each R8 is independently a
Figure US08309593-20121113-C00028

group. Alternatively, each R8 is independently an aryl group substituted with Ar3, such as a phenyl group substituted with Ar3, where values and preferred values of Ar3 are as described above in Structural Formula (I).
Values and preferred values for the remainder of the variables of Structural Formulas (XXXII)-(XXXIII) are each independently as described above in the first set of values for Structural Formula (I).
In one preferred embodiment, each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1. Preferably, when k′ is 1, each A independently is positioned at a meta position of the phenyl ring.
In another preferred embodiment, each k″ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1.
In yet another preferred embodiment, each m′ in Structural Formulas (XXI)-(XXXIII) is independently 1.
In yet another preferred embodiment, each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1; and each k″ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1.
In yet another preferred embodiment, in Structural Formulas (XXI)-(XXXIII):
Each R30 is independently hydrogen or a C1-C6 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C3 alkylamino, C1-C3 dialkylamino, C1-C3 alkoxy, nitro, cyano, hydroxy, C1-C3 haloalkoxy, C1-C3 alkoxycarbonyl and C1-C3 alkylcarbonyl;
each k′ in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1. Preferably, when k′ is 1, each A independently is positioned at a meta position of the phenyl ring; and
each k″ in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1, preferably 1.
In yet another preferred embodiment, in Structural Formulas (XXI)-(XXXIII):
Each —OR30 is independently —OH or —O—C1-C6 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C3 C1-C3 alkoxy, hydroxy and C1-C3 haloalkoxy;
each k′ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1. Preferably, when k′ is 1, each A is independently positioned at a meta position of the phenyl ring; and
each k″ in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, preferably 1.
In one more preferred embodiment, the compound of the invention is represented by Structural Formula (XVIA) or (XVIB):
Figure US08309593-20121113-C00029

or a pharmaceutically acceptable salt thereof, wherein: Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—; r and s are each independently 1, 2, 3 or 4; each n independently is 1, 2, 3, 4, 5 or 6; and R4 has values and preferred values provided above in the first set of values for Structural Formula (I).
In another more preferred embodiment, the compound of the invention is represented by Structural Formula (XVIC) or (XVID):
Figure US08309593-20121113-C00030

or a pharmaceutically acceptable salt thereof, wherein:
Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—;
r and s are each independently 1, 2, 3 or 4;
each n independently is 1, 2, 3, 4, 5 or 6;
R4 has values and preferred values provided above in the first set of values for Structural Formula (I); and
B is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. Preferably, B is halogen, hydroxy, C1-C5 alkoxy or C1-C5 haloalkoxy.
In another more preferred embodiment, the compound of the invention is represented by Structural Formula (XVII), (XVIII), (XIX) or (XIX):
Figure US08309593-20121113-C00031

or a pharmaceutically acceptable salt thereof, wherein phenyl ring A is optionally substituted; each n is 1, 2, 3, 4, 5, or 6; and k is 0, 1 or 2. Values and preferred values of suitable substituents of phenyl ring A are as described above in the first set of values for Structural Formula (I).
In all of the embodiments described above for Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID), the heterocyclic ring represented by
Figure US08309593-20121113-C00032

can be replaced with a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms. The invention also includes compounds represented by Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID) with this replacement of
Figure US08309593-20121113-C00033

with a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms. Values, including preferred values, for the variables other than B, k″ and m′ in Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID) are as defined above with respect to Structural Formulas (XXI)-(XXXIIII) and (XVIC)-(XVID).
Similarly, in all of the embodiments described above for Structural Formulas (I)-(XX), the non-aromatic heterocyclic ring represented by —NR2R3 can be a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms.
Examples of bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms include
Figure US08309593-20121113-C00034

The bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl). The bridged bicyclic ring nitrogen atoms can be optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl and phenyl, the alkyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), phenyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino, and the phenyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, —O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring nitrogen atoms can be optionally substituted with C1-C6 alkyl that is optionally substituted with halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl).
In another embodiment, the compound of the invention is represented by a structural formula selected from Structural Formulas (I)-(VIII) and (XI)-(XV), wherein values, including preferred values, of the variables in the structural formulas, other than R30, R31 and R32 for the substituents of R1, are independently as defined in each embodiment described above for Structural Formulas (I)-(VIII) and (XI)-(XV). In this embodiment, each R30 is independently: i) hydrogen; ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl. Each R31 is independently R30, —CO2R30, —SO2R30 or —C(O)R30; or —N(R31)2 taken together is an optionally substituted non-aromatic heterocyclic group. Each R32 is independently: i) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkylcarbonyl and haloalkoxy and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl. Each of the phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl for the substituents of the alkyl group represented by R30 and R32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, C1-C5 alkyl, C1-C5 haloalkyl, C1-C5 alkoxy, C1-C5 haloalkoxy, C1-C5 alkylamino, C1-C5 dialkylamino, (C1-C5 alkoxy)carbonyl and (C1-C5 alkyl)carbonyl. Each of the alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl for the substituents of the alkyl group represented by R30 and R32 is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, phenyl, C1-C5 alkoxy, C1-C5 haloalkoxy, phenylamino, C1-C5 alkylamino, C1-C5 dialkylamino, diphenylamino, (C1-C8 alkoxy)carbonyl, (C1-C8 alkyl)carbonyl, benzoyl and phenoxycarbonyl.
Specific examples of the compounds of the invention are shown below:
Figure US08309593-20121113-C00035
Figure US08309593-20121113-C00036
Figure US08309593-20121113-C00037
Figure US08309593-20121113-C00038
Figure US08309593-20121113-C00039
Figure US08309593-20121113-C00040

and pharmaceutically acceptable salts thereof.
Other specific examples of the compounds of the invention include compounds shown in Tables 1 and 2 and those exemplified in the examples below, stereoisomers thereof, and pharmaceutically acceptable salts thereof.
Also included are solvates, hydrates or polymorphs of the disclosed compounds herein. Thus, it is to be understood that when any compound is referred to herein by name and structure, solvates, hydrates and polymorphs thereof are included.
The compounds of the invention may contain one or more chiral centers and/or double bonds and, therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers. When compounds of the invention are depicted or named without indicating the stereochemistry, it is to be understood that both stereomerically pure forms (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and stereoisomeric mixtures are encompassed. For example, the compound represented by Structural Formula (I) below has chiral centers 1 and 2. Accordingly, the compounds of the invention depicted by Structural Formula (I) include (1R,2R), (1R,2S), (1S,2R) and (1S,2S) stereoisomers and mixtures thereof
Figure US08309593-20121113-C00041
As used herein, a racemic mixture means about 50% of one enantiomer and about 50% of is corresponding enantiomer relative to all chiral centers in the molecule. The invention encompasses all enantiomerically-pure, enantiomerically-enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.
In some preferred embodiments, the compounds of the invention are (1R, 2R) stereoisomers.
Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.
Included in the invention are pharmaceutically acceptable salts of the compounds disclosed herein. The disclosed compounds have basic amine groups and therefore can form pharmaceutically acceptable salts with pharmaceutically acceptable acid(s). Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention include salts of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, p-toluenesulfonic, and tartaric acids). Compounds of the invention with acidic groups such as carboxylic acids can form pharmaceutically acceptable salts with pharmaceutically acceptable base(s). Suitable pharmaceutically acceptable basic salts include ammonium salts, alkali metal salts (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts). Compounds with a quaternary ammonium group also contain a counteranion such as chloride, bromide, iodide, acetate, perchlorate and the like. Other examples of such salts include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates [e.g. (+)-tartrates, (−)-tartrates or mixtures thereof including racemic mixtures], succinates, benzoates and salts with amino acids such as glutamic acid.
When the stereochemistry of the disclosed compounds is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight optically pure. Percent optical purity by weight is the ratio of the weight of the enantiomer over the weight of the enantiomer plus the weight of its optical isomer.
As used herein, the term “hydrolyzable group” means an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as improved water solubility, improved circulating half-life in the blood (e.g., because of reduced metabolism of the prodrug), improved uptake, improved duration of action, or improved onset of action; or 2) is itself biologically inactive but is converted to a biologically active compound. Examples of hydrolyzable amides include, but are not limited to, lower alkyl amides, α-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.
An “aliphatic group” is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic. When straight chained or branched, an aliphatic group typically contains between about one and about twenty carbon atoms, typically between about one and about ten carbon atoms, more typically between about one and about six carbon atoms. When cyclic, an aliphatic group typically contains between about three and about ten carbon atoms, more typically between about three and about seven carbon atoms. A “substituted aliphatic group” is substituted at any one or more “substitutable carbon atom”. A “substitutable carbon atom” in an aliphatic group is a carbon in an aliphatic group that is bonded to one or more hydrogen atoms. One or more hydrogen atoms can be optionally replaced with a suitable substituent group. A “haloaliphatic group” is an aliphatic group, as defined above, substituted with one or more halogen atoms. Suitable substituents on a substitutable carbon atom of an aliphatic group are the same as those for an alkyl group.
The term “alkyl” used alone or as part of a larger moiety, such as “alkoxy”, “haloalkyl”, “arylalkyl”, “alkylamine”, “cycloalkyl”, “dialkyamine”, “alkylamino”, “dialkyamino” “alkylcarbonyl”, “alkoxycarbonyl” and the like, includes as used herein means saturated straight-chain, cyclic or branched aliphatic group. As used herein, a C1-C6 alkyl group is referred to “lower alkyl.” Similarly, the terms “lower alkoxy”, “lower haloalkyl”, “lower arylalkyl”, “lower alkylamine”, “lower cycloalkylalkyl”, “lower dialkyamine”, “lower alkylamino”, “lower dialkyamino” “lower alkylcarbonyl”, “lower alkoxycarbonyl” include straight and branched saturated chains containing one to six carbon atoms.
The term “alkoxy” means —O-alkyl; “hydroxyalkyl” means alkyl substituted with hydroxy; “aralkyl” means alkyl substituted with an aryl group; “alkoxyalkyl” mean alkyl substituted with an alkoxy group; “alkylamine” means amine substituted with an alkyl group; “cycloalkylalkyl” means alkyl substituted with cycloalkyl; “dialkylamine” means amine substituted with two alkyl groups; “alkylcarbonyl” means —C(O)—R*, wherein R* is alkyl; “alkoxycarbonyl” means —C(O)—OR*, wherein R* is alkyl; and where alkyl is as defined above.
The terms “amine” and “amino” are used interchangeably throughout herein and mean —NH2, —NHR or —NR2, wherein R is alkyl.
“Cycloalkyl” means a saturated carbocyclic ring, with from three to eight carbons.
The terms “haloalkyl” and “haloalkoxy” mean alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term “halogen” means F, Cl, Br or I. Preferably the halogen in a haloalkyl or haloalkoxy is F.
The term “acyl group” means —C(O)R, wherein R is an optionally substituted alkyl group or aryl group (e.g., optionally substituted phenyl). R is preferably an unsubstituted alkyl group or phenyl.
An “alkylene group” is represented by —[CH2]z—, wherein z is a positive integer, preferably from one to eight, more preferably from one to four.
As used herein, the term “alkenyl” refers to a straight or branched hydrocarbon group that contains one or more double bonds between carbon atoms. Suitable alkenyl groups include, e.g., n-butenyl, cyclooctenyl and the like. An alkenyl group may be substituted.
The term “aryl group” used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, includes carbocyclic aromatic rings and heteroaryl rings. The term “aromatic group” may be used interchangeably with the terms “aryl”, “aryl ring” “aromatic ring”, “aryl group” and “aromatic group”. An aromatic group typically has six-fourteen ring atoms. A “substituted aryl group” is substituted at any one or more substitutable ring atom.
Carbocyclic aromatic rings have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are fused to one another. Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl.
The term “heteroaryl”, “heteroaromatic”, “heteroaryl ring”, “heteroaryl group” and “heteroaromatic group”, used alone or as part of a larger moiety as in “heteroaralkyl” or “heteroarylalkoxy”, refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1-4, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen or sulfur). They include monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic ring is fused to one or more other carbocyclic aromatic or heteroaromatic rings. Examples of monocyclic heteroaryl groups include furanyl (e.g., 2-furanyl, 3-furanyl), imidazolyl (e.g., N-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), isoxazolyl(e.g., 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl), oxadiazolyl (e.g., 2-oxadiazolyl, 5-oxadiazolyl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl), pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl), pyridazinyl (e.g., 3-pyridazinyl), thiazolyl (e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), triazolyl (e.g., 2-triazolyl, 5-triazolyl), tetrazolyl (e.g., tetrazolyl) and thienyl (e.g., 2-thienyl, 3-thienyl. Examples of monocyclic six-membered nitrogen-containing heteraryl groups include pyrimidinyl, pyridinyl and pyridazinyl. Examples of polycyclic aromatic heteroaryl groups include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or benzisoxazolyl.
The term “non-aromatic heterocyclic group”, used alone or as part of a larger moiety as in “non-aromatic heterocyclylalkyl group”, refers to non-aromatic ring systems typically having five to twelve members, preferably five to seven, in which one or more ring carbons, preferably one or two, are each replaced by a heteroatom such as N, O, or S. A non-aromatic heterocyclic group can be monocyclic or fused bicyclic. A “nitrogen-containing non-aromatic heterocyclic group” is a non-aromatic heterocyclic group with at least one nitrogen ring atom.
Examples of non-aromatic heterocyclic groups include (tetrahydrofuranyl (e.g., 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl), [1,3]-dioxalanyl, [1,3]-dithiolanyl, [1,3]-dioxanyl, tetrahydrothienyl (e.g., 2-tetrahydrothienyl, 3-tetrahydrothieneyl), azetidinyl (e.g., N-azetidinyl, 1-azetidinyl, 2-azetidinyl), oxazolidinyl (e.g., N-oxazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl), morpholinyl (e.g., N-morpholinyl, 2-morpholinyl, 3-morpholinyl), thiomorpholinyl (e.g., N-thiomorpholinyl, 2-thiomorpholinyl, 3-thiomorpholinyl), pyrrolidinyl (e.g., N-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl)piperazinyl (e.g., N-piperazinyl, 2-piperazinyl), piperidinyl (e.g., N-piperidinyl), 2-piperidinyl, 3-piperidinyl, 4-piperidinyl), thiazolidinyl (e.g., 4-thiazolidinyl), diazolonyl and N-substituted diazolonyl. The designation “N” on N-morpholinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-piperazinyl, N-piperidinyl and the like indicates that the non-aromatic heterocyclic group is attached to the remainder of the molecule at the ring nitrogen atom.
A “substitutable ring atom” in an aromatic group is a ring carbon or nitrogen atom bonded to a hydrogen atom. The hydrogen can be optionally replaced with a suitable substituent group. Thus, the term “substitutable ring atom” does not include ring nitrogen or carbon atoms which are shared when two aromatic rings are fused. In addition, “substitutable ring atom” does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to a moiety other than hydrogen. An aryl group may contain one or more substitutable ring atoms, each bonded to a suitable substituent. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group include halogen, alkyl, haloalkyl, ArA, —ORA, —O(haloalkyl), —SRA, —NO2, —CN, —N(RB)2, —NRBC(O)RA, —NRBCO2RC, —N(RB)C(O)N(RB)2, —C(O)RA, —CO2RA, —S(O)2RA, —SO2N(RB)2, —S(O)RC, —NRBSO2N(RB)2, —NRBSO2RC, —VA—ArA, —VA—ORA, —V—O(haloalkyl), —VA—SRA, —VA—NO2, —VA—CN, —VA—N(RB)2, —VA—NRBC(O)RA, —VA—NRBCO2RC, —VA—N(RB)C(O)N(RB)2, —VA—C(O)RA, —VA—CO2RA, —VA—S(O)2RA, —VA—SO2N(RB)2, —VA—S(O)RC, —VA—NRBSO2N(RB)2, —VA—NRBSO2RC, —O—VA—ArA, —O—VB—N(RB)2, —S—VA—ArA, —S—VB—N(RB)2, —N(RB)—VB—ArA, —N(RB)—VB—N(RB)2, —NRBC(O)—VA—N(RB)2, —NRBC(O)—VA—ArA, —C(O)—VA—N(RB)2, —C(O)—VA—ArA, —CO2—VB—N(RB)2, —CO2—VA—ArA, —C(O)N(RB)—VB—N(RB)2, —C(O)N(RB)—VA—ArA, —S(O)2—VA—N(RB)2, —S(O)2—VA—ArA, —SO2N(RB)—VB—N(RB)2, —SO2N(Rb)—VA—ArA, —S(O)—VA—N(RB)2, —S(O)—VA—ArA, —NRBSO2—VA—N(RB)2 or —NRBSO2—VA—ArA; or two adjacent substituents, taken together, form a methylenedioxy, ethylenedioxy or —[CH2]4— group.
Each VA is independently a C1-C10 alkylene group.
Each VB is independently a C2-C10 alkylene group.
ArA is a monocyclic aromatic group each substituted with zero, one or two groups independently selected from halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl.
Each RA is independently i) hydrogen; ii) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or iii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.
Each RB is independently RA, —CO2RA, —SO2RA or —C(O)RA; or N(RB)2 taken together is an optionally substituted non-aromatic heterocyclic group.
Each RC is independently: i) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or ii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.
An alkyl or a non-aromatic heterocyclic group (including, but not limited to, non-aromatic heterocyclic groups represented by —N(R31)2, —N(R41)2, —N(R51)2 and —N(RB)2) may contain one or more substituents. Examples of suitable substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include those listed above for a substitutable carbon of an aryl and the following: ═O, ═S, ═NNHRC, ═NN(RC)2, ═NNHC(O)RC, ═NNHCO2 (alkyl), ═NNHSO2 (alkyl), ═NRC, Spiro cycloalkyl group, fused cycloalkyl group or a monocyclic non-aromatic nitrogen-containing heterocyclic group attached by a ring nitrogen atom (e.g., N-piperidinyl, N-pyrrolidinyl, N-azepanyl, N-morpholinyl, N-thiomorphinyl, N-piperazinyl or N-diazepanyl group). Each RC is independently selected from hydrogen, an unsubstituted alkyl group or a substituted alkyl group. Examples of substituents on the alkyl group represented by RC include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyloxy, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include C1-C2 alkyl, —OH, N-pyrrolidinyl, N-piperidinyl, N-(4-alkyl)piperazinyl, N-morpholinyl or N-pyrrolyl.
Suitable substituents on the nitrogen of a non-aromatic heterocyclic group or heteroaryl group include —RD, —N(RD)2, —C(O)RD, —CO2RD, —C(O)C(O)RD, —C(O)CH2 C(O)RD, —SO2RD, —SO2N(RD)2, —C(═S)N(RD)2, —C(═NH)—N(RD)2, and NRDSO2RD; wherein RD is hydrogen, an alkyl group, a substituted alkyl group, phenyl (Ph), substituted Ph, —O(Ph), substituted —OPh), CH2(Ph), substituted CH2(Ph), or an unsubstituted heteroaryl or heterocyclic ring. Examples of substituents on the alkyl group or the phenyl ring represented by RD include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents on a substitutable nitrogen atom of a nitrogen-containing heteroaryl or nitrogen-containing non-aromatic heterocyclic group include C1-C2 alkyl, C1-C2 hydroxyalkyl, or benzyl optionally substituted with halogen, nitro, cyano, C1-C2 alkyl, C1-C2 haloalkyl, C1-C2 alkoxy or C1-C2 haloalkoxy.
In some specific embodiments, non-aromatic heterocyclic groups (including, but not limited to, non-aromatic heterocyclic groups represented by —N(R31)2, —N(R41)2, —N(R51)2 and —N(RB)2) each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, ═O, ═S, ═N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino. In some more specific embodiments, the non-aromatic heterocyclic groups each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.
Inhibitors of glucosylceramide synthase can be used to treat diabetes, such as type 2 diabetes (see WO 2006/053043, the entire teachings of which are incorporated herein by reference). As such, the disclosed compounds, which are inhibitors of glucosylceramide synthase, can be used to treat diabetes, e.g., type 2 diabetes and renal hypertrophy or hyperplasia associated with diabetic nephropathy, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.
Inhibitors of glucosylceramide synthase, such as GM3 synthase, have been shown to be useful for treating lysosomal storage diseases (see, for example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616, the entire teachings of which are incorporated herein by reference). As such, the disclosed compounds, which are inhibitors of glucosylceramide synthase, can be used to treat lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.
In an alternative embodiment of the present invention, the compounds of the present invention can be used for: treating disorders involving cell growth and division, including cancer, collagen vascular diseases, atherosclerosis, and the renal hypertrophy of diabetic patients (see U.S. Pat. Nos. 6,916,802 and 5,849,326, the entire teachings of which are incorporated herein by reference); inhibiting the growth of arterial epithelial cells (see U.S. Pat. Nos. 6,916,802 and 5,849,326); treating patients suffering from infections (see Svensson, M. et al., “Epithelial Glucosphingolipid Expression as a Determinant of Bacterial Adherence and Cytokine Production,” Infect. and Immun., 62:4404-4410 (1994), the entire teachings of which are incorporated herein by reference); preventing the host, i.e., patient, from generating antibodies against the tumor (see Inokuchi, J. et al., “Antitumor Activity in Mice of an Inhibitor of Glycosphingolipid Biosynthesis,” Cancer Lett., 38:23-30 (1987), the entire teachings of which are incorporated herein by reference); and treating tumors (see Hakomori, S. “New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy,” Cancer Cells 3:461-470 (1991), Inokuchi, J. et al., “Inhibition of Experimental Metastasis of Murine Lewis Long Carcinoma by an Inhibitor of Glucosylceramide Synthase and its Possible Mechanism of Action,” Cancer Res., 50:6731-6737 (1990) and Ziche, M. et al., “Angiogenesis Can Be Stimulated or Repressed in In Vivo by a Change in GM3:GD3 Ganglioside Ratio,” Lab. Invest., 67:711-715 (1992), the entire teachings of which are incorporated herein by reference).
In an alternative embodiment, the compounds of the invention can be used for a vaccine-like preparation (see, for example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616). Here, cancer cells are removed from the patient (preferably as completely as possible), and the cells are grown in culture in order to obtain a large number of the cancer cells. The cells are then exposed to the inhibitor for a time sufficient to deplete the cells of their GSLs (generally 1 to 5 days) and are reinjected into the patient. These reinjected cells act like antigens and are destroyed by the patient's immunodefense system. The remaining cancer cells (which could not be physically removed) will also be attacked by the patient's immunodefense system. In a preferred embodiment, the patient's circulating gangliosides in the plasma are removed by-plasmapheresis, since the circulating gangliosides would tend to block the immunodefense system.
In an alternative embodiment of the present invention, the compounds of the present invention can be used for treating a subject having polycystic kidney disease (PKD). As shown in Example 4, Applicants have discovered that a certain glucosylceramide synthase inhibitors can reduce the growth of cyst formation and/or growth in an animal modeled PKD (see for example, U.S. Provisional Application No. 60/997,803, filed Oct. 5, 2007, the entire teachings of which are incorporated herein by reference).
As used herein a subject is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, such as a companion animal (e.g., dogs, cats, and the like), a farm animal (e.g., cows, sheep, pigs, horses, and the like) or a laboratory animal (e.g., rats, mice, guinea pigs, and the like). Subject and patient are used interchangeably. A subject “in need of treatment” includes a subject with chronic renal failure.
“Treatment” or “treating” refers to both therapeutic and prophylactic treatment.
An “effective amount” of a pharmaceutical composition disclosed above is a quantity that results in a beneficial clinical outcome of or exerts an influence on, the condition being treated with the pharmaceutical composition compared with the absence of treatment. The administering amount of a pharmaceutical composition disclosed above to the subject will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release characteristics of the pharmaceutical composition. It will also depend on the subject's health, size, weight, age, sex, and tolerance to drugs. An effective amount of an active agent is an amount sufficient to have the desired effect for the condition being treated, which can either be treatment of an active disease state or prophylactically inhibiting the active disease state from appearing or progessing. For example, an effective amount of a compound for treating a polycystic kidney disease is the quantity of compound that results in a slowing in the progression of the polycystic kidney disease, a reversal of the polycystic kidney disease state, the reduction of new cyst formation (partial or complete inhibition of cystogenesis), a reduction in cyst mass, a reduction in the size and number of cysts, and/or a reduction in the severity of the symptoms associated with the polycystic kidney disease (PDK).
Typically, the pharmaceutical compositions of the invention are administered for a sufficient period of time to achieve the desired therapeutic effect. Dosages may range from 0.1 to 500 mg/kg body weight per day. In one embodiment, the dosing range is 1-20 mg/kg/day. The compound of the invention may be administered continuously or at specific timed intervals. For example, the compound of the invention may be administered 1, 2, 3, or 4 times per day, such as, e.g., a daily or twice-daily formulation. Commercially available assays may be employed to determine optimal dose ranges and/or schedules for administration. For example, assays for measuring blood glucose levels are commercially available (e.g., OneTouch® Ultra®, Lifescan, Inc. Milpitas, Calif.). Kits to measure human insulin levels are also commercially available (Linco Research, Inc. St. Charles, Mo.). Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models (see, e.g., Comuzzie et al., Obes. Res. 11 (1):75 (2003); Rubino et al., Ann. Surg. 240(2):389 (2004); Gill-Randall et al., Diabet. Med. 21 (7):759 (2004), the entire teachings of which are incorporated herein by reference). Therapeutically effective dosages achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports 50(4):219 (1996), the entire teachings of which are incorporated herein by reference) and Table A below for equivalent surface area dosage factors.
From:
Mouse Rat Monkey Dog Human
(20 g) (150 g) (3.5 kg) (8 kg) (60 kg)
To: Mouse 1 ½ ¼   1/12
To: Rat 2 1 ½ ¼ 1/7
To: Monkey 4 2 1
To: Dog 6 4 1 ½
To: Human 12 7 3 2 1
Typically, the pharmaceutical compositions of the invention can be administered before or after a meal, or with a meal. As used herein, “before” or “after” a meal is typically within two hours, preferably within one hour, more preferably within thirty minutes, most preferably within ten minutes of commencing or finishing a meal, respectively.
In one embodiment, the method of the present invention is a mono-therapy where the pharmaceutical compositions of the invention are administered alone. Accordingly, in this embodiment, the compound of the invention is the only pharmaceutically active ingredient in the pharmaceutical compositions.
In another embodiment, the method of the invention is a co-therapy with other therapeutically active drugs known in the art for treating the desired diseases or indications, such as one or more known drugs for treating, diabetes, lysosomal diseases, tumors, etc.
In a particular embodiment, the method of the invention is a combination therapy for treating diabetes, such as Type 2 diabetes. The combination therapy comprise any of the compounds of the invention described herein and at least one other compound suitable for treating diabetes. Examples of drugs or compounds used to treat type 2 diabetes include: insulin (e.g., Novolin®, Novolog®, Velosulin®); sulfonylureas (e.g., Diabinese®, Glucotrol®, Glucotrol XL®, (Diabeta®, Amaryl®, Orinase®, Tolinase®, Micronase® and Glynase®); metformin; [alpha]-glucosidase inhibitors (e.g., Glyset®); thiazolidinediones (e.g., Actos® and Avandia™); nateglinide (Starlix®); repaglinide (Prandin®) and combination drugs such as Avandamet® (Avandia® and metformin).
In another embodiment, the method of the invention is a combination therapy for treating polycystic kidney disease (PDK). Any of the compounds of the invention described herein are co-administered either simultaneously as a single dosage form or consecutively as separate dosage forms with other agents that ease the symptoms and/or complications associated with PKD. The associated symptoms with PKD include pain, headaches, urinary tract infections and high blood pressure. Examples of the agents that can be co-administered with the compounds of the invention include, but are not limited to, over-the counter pain medications, antibiotics, antimicrobials, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II antagonists such as losartan, and calcium channel blockers such as diltiazem. Examples of pain medications include acetaminophen, aspirin, naproxen, ibuprofen and COX-2 selective inhibitors such as rofecoxib, celecoxib and valdecoxib. Examples of antibiotics and antimicrobials include cephalosporins, penicillin derivatives, aminoglycosidesm ciprofloxacin, erythromycin, chloramphemicol, tetracycline, ampicillin, gentamicin, sulfamethoxazole, trimethoprim and ciprofloxacin, streptomycin, rifamycin, amphotericin B, griseofulvin, cephalothin, cefazolin, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin and fusidic acid Examples of thiazide diuretics include bendroflumethiazide, chlorothiazide, chlorthalidone, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, metolazone, polythiazide, quinethazone and trichlormethiazide. Examples of angiotensin-converting enzyme inhibitors include benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandolapril.
The pharmaceutical compositions of the invention optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose and dextrose. Other excipients, such as flavoring agents; sweeteners; and preservatives, such as methyl, ethyl, propyl and butyl parabens, can also be included. More complete listings of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5th Ed., Pharmaceutical Press (2005)).
The carriers, diluents and/or excipients are “acceptable” in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof. The pharmaceutical compositions can conveniently be presented in unit dosage form and can be prepared by any suitable method known to the skilled artisan. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing into association the compounds disclosed herein with the carriers, diluents and/or excipients and then, if necessary, dividing the product into unit dosages thereof.
The pharmaceutical compositions of the invention can be formulated as a tablet, sachet, slurry, food formulation, troche, capsule, elixir, suspension, syrup, wafer, chewing gum or lozenge. A syrup formulation will generally consist of a suspension or solution of the compounds of the invention described herein or salt in a liquid carrier, for example, ethanol, glycerine or water, with a flavoring or coloring agent. Where the composition is in the form of a tablet, one or more pharmaceutical carriers routinely used for preparing solid formulations can be employed. Examples of such carriers include magnesium stearate, starch, lactose and sucrose. Where the composition is in the form of a capsule, the use of routine encapsulation is generally suitable, for example, using the aforementioned carriers in a hard gelatin capsule shell. Where the composition is in the form of a soft gelatin shell capsule, pharmaceutical carriers routinely used for preparing dispersions or suspensions can be considered, for example, aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.
Though the above description is directed toward routes of oral administration of pharmaceutical compositions consistent with embodiments of the invention, it is understood by those skilled in the art that other modes of administration using vehicles or carriers conventionally employed and which are inert with respect to the compounds of the invention may be utilized for preparing and administering the pharmaceutical compositions. For example, the pharmaceutical compositions of the invention may also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. Also, the pharamceutical compositions of the invention can be formulated for injection, or for transdermal or trnasmucosal administration. Illustrative of various modes of administration methods, vehicles and carriers are those described, for example, in Remington's Pharmaceutical Sciences, 18th ed. (1990), the disclosure of which is incorporated herein by reference.
The invention is illustrated by the following examples which are not intended to be limiting in any way.
EXEMPLIFICATION Example 1 General Methods for the Preparation of Compounds of the Invention
A general method for the synthesis of final compounds is depicted in Scheme 1. A general method for the preparation of the compounds of the invention involves the reaction of the amine of type EVII with the appropriate reagent. The amine type EVII, such as (1R,2R)-2-amino-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, can be prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference), or by using the general synthetic procedures depicted in schemes 2-5. Final amide compounds, EIX can be prepared by reaction of the amine EVII with the corresponding acylating agent using standard reaction conditions for the formation of an amide. The urea compounds, EIIX can be prepared by reaction of the amine EVII with the corresponding isocyanate. The carbamates, EX can be prepared by reaction of the amine EVII with the corresponding chloroformate.
Figure US08309593-20121113-C00042
Example 1A Synthesis of the Compounds of the Invention: General Methods for the Preparation of Amide Analogs
Method 1
A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2,3,4 and 5, an acid (1.2 mmol), DCC (dicyclohexylcarbodiimide, 1.2 mmol) and HOBT (1-hydroxy benzotriazole, 1.2 mmol) was dissolved in CH2Cl2 (5 ml). The mixture was stirred at room temperature and monitored by TLC (thin liquid chromatography) for completion. After completion the mixture was filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).
Method 2
A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid and DCC (dicyclohexylcarbodiimide, 1.2 mmol) was dissolved in CHCl3 (5 ml). The mixture was placed in the microwave reactor (T=120° C., time=1 min) and it was then filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).
Method 3
A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid chloride (1.2 mmol) and K2CO3 (2 mmol) was suspended in THF (5 ml). The mixture was stirred at room temperature and monitored by TLC for completion. After completion, the mixture was filtered and purified by column chromatography using, for example, a mixture of (CH2Cl2/MeOH/NH4OH).
Method 4
Compound EVII, such as (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, was coupled with a variety of N-hydroxysuccinamide esters in methylene chloride under an atmosphere of nitrogen, for example, for 18 to 24 hours depending on the ester used.
Preparation of N-Hydroxysuccinamide Esters
Various mono- and di-keto acids were coupled with N-hydroxysuccinamide in the presence of N,N1-dicyclohexylcarbodiimide in ethyl acetate under an atmosphere of nitrogen for 18 hours. The products were filtered to remove the dicyclohexylurea. The identity of these esters was confirmed by 1H NMR and the crude material was then used in the preparation of amide analogs without further purification.
Example 1B Alternative Synthetic Method for the Preparation of Intermediate EVIL Synthetic Route 1
An alternative general synthesis of Compound EVII is depicted in Scheme 2. Treatment of (R)-2-(benzyloxycarbonylamino)-3-hydroxypropanoic acid with EDCI and N,O-dimethylhydroxyamine gave the weinreb amide EI in excellent yield. The primary alcohol was protected as the TBDMS ether EII in excellent yield by reaction with TBDMSCl in DMF. Reaction of EII with a grignard at low temperature gave EIII in good to excellent yields. Stereoselective reduction of EIII and with L-selectride at −70 C gave EIV in good to excellent yield and selectivity. Compound EV was obtained in good to excellent yields after deprotection with acetic acid. Reaction with mesylate chloride and a suitable amine produced EVI in good to excellent yield. Finally, deprotection to the primary amine EVII was done in the microwave oven using NaOH aqueous solution in methanol at 150° C. for one to three minutes depending on the specific compound.
Figure US08309593-20121113-C00043
Example 1B Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 2
An alternative general synthesis of Compound EVII is depicted in Scheme 3. Intermediate AI was obtained with excellent diastereoselectivity (96:4) by reduction of compound A with LiAlH4 followed by reaction with an aldehyde in the presence of CuI and Me2S. Mesylate intermediate AIII was obtained by reaction with Amberlyst 15 followed by reaction with MSCI in pyridine. The final compound EVII was obtained by reaction with pyrrolidine and removal of the CBz by hydrogenation.
Figure US08309593-20121113-C00044
Example 1B Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 3
A general alternative route for synthesis of compound EVII is depicted in Scheme 4. Intermediate EIV was obtain as shown in Scheme 4 was cycled into oxazolidinone B using sodium hydride in a DMF/THF solution. Deprotection of the primary alcohol by reaction with nBu4NF, followed by formation of the tosylate by reaction with tosyl chloride in pyridine, finally, displacement of the tosylate by an appropriate amine afforded compound B1 in good to excellent yield. Hydrolysis of the oxazolidinone with LiOH in a water ethanol mixture gave compound EVII.
Figure US08309593-20121113-C00045
Example 1B Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 4
An alternative general synthesis of Compound EVII is depicted in Scheme 5. An aldehyde (2 equiv) is condensed with the chiral morpholinone in toluene with removal of water to provide the fused cycloadduct 2. Treatment of 2 with hydrogen chloride in an alcohol solvent such as methanol provides amino acid 3. Removal of the N-benzyl functionality can be accomplished with hydrogen in the presence of a palladium catalyst to afford 4. Cyclization of 4 with triphosgene and base provides ester 5. The ester functionality can be reduced with sodium borohydride, and the resulting alcohol converted to an appropriate leaving group (i.e. tosylate or iodide). Reaction of 6 with a suitable amine in the presence of excess base (e.g. K2CO3) in a polar solvent (e.g. DMSO or CH3CN) affords 7. Final deprotection under basic conditions affords Compound EVII analogs suitable for conversion to the desired amide final products.
Figure US08309593-20121113-C00046
Example 1C Preparation of Compound EVII using Scheme 2 Preparation of EII: (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcarbamate
Imidazole (1.8 g, 26.5 mmol) was added to a solution of (R)-benzyl 3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate (3 g, 10.6 mmol) in DMF (dimethyl formamide, 15 mL) followed by TBDMSiCl (tert-butyldimethylsilyl chloride, 2.4 g, 15.95 mmol). The reaction stirred for 12 hrs at room temperature under nitrogen atmosphere and was quenched with aqueous ammonium chloride (100 ml). The aqueous layer was extracted with methylene chloride (200 mL) and ethyl acetate (100 mL) and the organic layers were washed with brine and concentrated. The crude product was purified by column chromatography using 10% EtOAc (ethylacetate)-hexanes to give an oil (3 g, 74% yield). 1H NMR (400 MHz, CDCl3) δ═O (s, 6H), 0.9 (s, 9H), 3.2 (s, 3H), 3.8 (s, 3H), 3.8-3.9 (m, 2H), 4.8 (broad s, 1H), 5.1 (q, 2H), 5.7 (d, 1H), 7.2-7.4 (m, 5H).
Preparation of EIII: (R)-benzyl 3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate
(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)magnesium bromide (26 g, 78 mmol) dissolved in 40 mL of THF (tetrahydrofuran) under a nitrogen atmosphere was cooled down to −70° C. and (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcarbamate (12.3 g, 31 mmol) dissolved in THF (13 ml) were added dropwise. The reaction mixture was allowed to warm up to −15° C. and left to react for 12 hrs followed by stirring at room temperature for 2 hrs. After cooling the reaction mixture to −40° C. it was quenched using aqueous ammonium chloride and the aqueous layer was extracted with EtOAc dried over magnesium sulfate and concentrated. The crude product was purified by column chromatography using 25% EtOAc-hexanes to give pure product (13 g, 88% yield). 1H NMR (400 MHz, CDCl3) δ=0 (d, 6H), 0.9 (s, 9H), 4.0-4.2 (m, 2H), 4.4 (s, 2H), 4.5 (s, 2H), 5.2 (s, 2H), 5.4 (m, 1H), 6.1 (d, 1H), 7 (d, 1H), 7.4-7.7 (m, 7H).
Preparation of EIV: benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxypropan-2-ylcarbamate
(R)-benzyl 3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate (3.1 g, 6.6 mmol) were dissolved in THF (25 ml) and cooled down to −70° C. under nitrogen atmosphere. L Selectride (13.2 ml of 1M solution in THF, 13 mmol) was added dropwise while keeping the temperature at −70° C. After 1 hour, the reaction was quenched with a 1M aqueous solution of potassium tartrate (13 ml) and extracted with EtOAc. The organic layer was evaporated down and the product was purified by column chromatography using 2.5% EtOAc-2% acetone-methylene chloride. The desired diastereomer was obtained in 80% yield (2.5 g). NMR (400 MHz, CDCl3) δ=0 (d, 6H), 0.9 (s, 9H), 3.5 (broad s, 1H), 3.7-3.9 (m, 2H), 4.2 (s, 4H), 4.9 (broad s, 1H), 5.0 (d, 2H), 5.4 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).
Preparation of EV: benzyl (1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1,3-dihydroxypropan-2-ylcarbamate
Benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxypropan-2-ylcarbamate (0.5 g) was dissolved in a 4 ml mixture of Acetic acid/THF/water (3/1/1) and left to stir over night. The crude was evaporated down and the product azeotropically dried with EtOAc (10 ml). The crude product was purified by column chromatography using 50% EtOAc-hexane. The pure product was obtained in 74% yield (0.28 g). 1H NMR (400 MHz, CDCl3) δ=3.4-3.8 (m, 4H), 4.1 (broad s, 4H), 4.8 (s, 1H), 4.9 (broad s, 2H), 5.7 (broad s, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).
General Procedure for Preparation of EVI and EVII
Benzyl (1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1,3-dihydroxypropan-2-ylcarbamate was dissolved in excess pyridine, cooled to −15° C. and one equivalent of methanosulfonyl chloride was added to the mixture. Mixture was stirred about half an hour, and ten equivalents of the amine were added. The reaction mixture was allowed to warm up to room temperature and then heated at 50° C. overnight. The crude was evaporated down and the product was purified by column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide. The pure compound EVI was then de-protected by hydrolysis in the microwave, using aqueous NaOH (40% in weight)/methanol solution as solvent and heating the mixture to 150° C. for about 15 minutes to give the free amines of the type EVI. The final product was purified by silica-gel column chromatography using a mixture of methanol/methylene chloride/ammonium hydroxide.
Examples of EVII Compounds i) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-morpholinopropan-1-ol
Figure US08309593-20121113-C00047
1H NMR (400 MHz, CDCl3) δ=2.3 (dd, 2H), 2.4 (dd, 2H), 2.5-2.6 (m, 2H), 3.2 (m, 1H), 3.6-3.7 (m, 4H), 4.2 (s, 4H), 4.4 (d, 1H), 6.5-6.9 (m, 3H); MS for C15H22N2O4 m/z 294.8 [M+H].
ii) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(piperidin-1-yl)propan-1-ol
Figure US08309593-20121113-C00048
1H NMR (400 MHz, CDCl3) δ=1.4 (broad s, 2H), 1.7 (m, 4H), 2.2-2.6 (m, 6H), 3.2 (m, 1H), 4.2 (s, 4H), 4.5 (s, 1H), 6.7-6.9 (m, 3H).
Example 1D Preparation of Substituted Phenoxy Propionic Acids Example 1D1 Preparation of 3-(4-methoxyphenoxy)propionic acid i) 3-(4-methoxyphenoxy)propionitrile
A 740 g (5.96 mol, 1 eq.) sample of 4-methoxyphenol was charged to a 3 necked 5 L flask under nitrogen. Triton B (50 mL of a 30% wt. solution in methanol) was charged to the flask, and stirring initiated via an overhead stirrer. Acrylonitrile (2365 mL, 35.76 mol, 6 eq.) was then charged to the reaction flask in a single portion, and the reaction mixture heated at 78° C. for 36 h. HPLC analysis indicated that the reaction was complete at this point. Solvents were removed via rotary evaporation, and the resulting oil was chased with toluene to remove excess acrylonitrile. The crude material was recrystallized from TBME (tert-butyl methyl ether)10 volumes relative to the crude weight), and dried in a vacuum oven to give 945 g of 3-(4-methoxyphenoxy)propionitrile as white crystals (Yield: 89.48%). 1H NMR (450 MHz, CDCl3): δ=2.72 (t, 2H; CH2CN); δ=3.83 (s, 3H; OCH3); δ=4.05 (t, 2H; OCH2); δ=6.70 (m, 4H; Ar—H); 13C NMR (112.5 MHz, CDCl3): δ=18.843 (CH2CN); 55.902 (OCH3); 63.699 (OCH2); 114.947 (CH3OCCH); 116.183 (CH2OCCH); 117.716 (CN); 151.983 (CH3OC); 154.775 (CH2OC).
ii) 3-(4-methoxyphenoxy)propionic acid
A 945 g (5.34 mol, 1 eq.) sample of 1 (3-(4-methoxyphenoxy)propionitrile was charged to a 22 L round bottom flask equipped with an overhead stirrer under N2. To the stirred solids, 4 L of concentrated HCl was slowly added, followed by 2 L of H2O. The reaction mixture was heated to 100° C. for 3.5 h, at which point the reaction was complete by HPLC analysis. The reaction was cooled to 10° C. by the addition of ice to the reaction mixture, and was filtered. The dried solids gave 920 g of crude 3-(4-methoxyphenoxy)propionic acid. The crude material was dissolved in 5 L of 6 wt. % sodium carbonate (such that pH=9), and 2 L of DCM (dichloromethane) was added to the reaction vessel. After stirring thoroughly, the organic layer was separated and discarded via a separatory funnel, and the aqueous layer charged back into the 22 L flask. The pH of the aqueous layer was carefully adjusted to 4.0, by slow addition of 6 M HCl. The precipitated solids were filtered, and dried in a vacuum oven to give 900 g of 3-(4-methoxyphenoxy)propionic acid as a white solid (Yield: 86.04%). 1H NMR (450 MHz, CDCl3); δ=2.78 (t, 2H; CH2COOH); 3.70 (s, 3H; OCH3); 4.18 (t, 2H; OCH2); 6.78 (m, 4H; Ar—H); 13C NMR (112.5 MHz, CDCl3): δ=34.703 (CH2COOH); 55.925 (OCH3); 64.088 (OCH2); 114.855 (CH3OCCH); 115.984 (CH2OCCH); 152.723 (CH3OC); 154.302 (CH2OC); 177.386 (COOH).
Example 1D2 Preparation of 3-(4-(3-oxobutyl)phenoxy)propanoic acid
Figure US08309593-20121113-C00049
Step 1: a mixture of 4-(p-hydroxyphenol)-2-butanone (1.032 g), triton B (400 μL), acrylonitrile (4 mL) and MeOH (0.8 mL) was heated at 70° C. for 20 hours. The mixture was cooled to room temperature and the solvent was removed to dryness. 3-(4-(3-oxobutyl)phenoxy)propanenitrile was obtained as a white solid (0.572 g) after purification by column chromatography using ethyl acetate/hexane.
Step 2: 3-(4-(3-oxobutyl)phenoxy)propanenitrile (0.478 g) was suspended in HCl (37%, 5 mL) and placed in the microwave reactor (T=110° C., 5 min). The mixture was poured onto iced water (20 g), filtered, and the solid was washed with water (2×5 mL). After column chromatography purification using a mixture of methylene chloride/methanol, 3-(4-(3-oxobutyl)phenoxy)propanoic acid was obtained as a white solid (0.3 g). 1H NMR (CDCl3, 400 mHz, ppm); 2.2 (s, 3H), 2.7 (t, 2H), 2.85 (m, 4H), 4.25 (t, 2H), 6.8 (d, 2H), 7.1 (d, 2H).
Example 1D3 Preparation of 3-(4-(2-methoxyethyl)phenoxy)propanoic acid
Figure US08309593-20121113-C00050
Step 1: a mixture of 4-(2-methoxy ethyl)phenol (1.547 g, 10.3 mmol), propiolic acid tert-butyl ester (1.367 g, 10.8 mmol) and N-methyl morpholine (1.18 mL, 10.8 mmol) in CH2Cl2(15 mL) was stirred at room temperature for 24 hours. The mixture was absorbed on SiO2 (20 g) and purified by column chromatography using a mixture of methylene chloride/hexane. The product was obtained as a two to one mixture of (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate isomers (2.0 g).
Step 2: (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate (0.57 g) was suspended in a mixture of THF (5 mL)/HCl (2 M, 5 mL) and placed in the microwave reactor (T=100° C., 15 sec). THF was removed by rotary evaporation and the mixture was extracted with CH2Cl2 (10 mL). (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid was obtained as a white solid after purification by column chromatography using a mixture of hexane/ethyl acetate.
Step 3: (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid (0.3 g) was dissolved in EtOH (10 mL) and Pd/C (5%, degussa type E101, 40 mg) was added. The mixture was hydrogenated at atmospheric pressure for 2 hours and then filtered and the solvent removed to dryness. After purification by column chromatography using a mixture of hexane/ethyl acetate, 3-(4-(2-methoxyethyl)phenoxy)propanoic acid was obtained as a white solid (0.236 g). NMR (CDCl3, 400 mHz, ppm); 2.85 (t, 4H), 3.35 (s, 3H), 3.55 (t, 2H), 4.25 (t, 2H), 6.85 (d, 2H), 7.1 (d, 2H).
Example 1D4 Preparation of 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid
Step 1: 3-phenoxypropionic acid (5.0 g, 30 mmol) was dissolved in MeOH (12 mL) and H2SO4 (18 M, 3 drops) was added. The mixture was place in the microwave reactor (T: 140° C., t: 5 min). The solvent was evaporated, the mixture was partitioned in EtOAc (30 mL) and NaOH (2N, 20 mL). The organic phase was dried over MgSO4, filtered, and evaporated to give methyl 3-phenoxypropanoate (5.0 g, 27.7 mmol, 92.5%).
Step 2: aluminum chloride (1.1 g, 8.34 mmol) was added to a cold solution (0° C.) solution of methyl 3-phenoxypropanoate (1.0 g, 5.56 mmol) and tert-butylacetyl chloride (1.25 mL, 8.34 mmol) in CH2Cl2 (9 mL) and the reaction mixture was stirred overnight. The mixture was evaporated and the residue was diluted with EtOAc (30 mL) and then washed with water (2×20 mL). The organic phase was removed and purified with silica chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give methyl 3-phenoxypropanoate (600 mg, 2.27 mmol, 40%).
Step 3: a solution of methyl 3-phenoxypropanoate (200 mg, 0.76 mmol) in 2 mL of HCl (37%) was placed in a microwave reactor (T: 120° C., t: 5 min). The mixture was poured into iced water (2 g) and washed with EtOH (3×10 mL). The organic phase was combined and evaporated. The crude product was purified with silica gel chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid (120 mg, 0.48 mmol, 63%).
Example 2 Preparation of Compounds of the Invention
The exemplary compounds shown in Example 2 and Tables 1-3 can be prepared by following scheme 1 described above, Detailed synthetic description of certain compounds also are described below as examples.
Example 2E1 Preparation of Hemi-Hydrate of Compound 163 N-[2-Hydroxy-2-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide
Figure US08309593-20121113-C00051
Compound 163 was prepared by following Scheme 1A above. 3-(4-methoxyphenoxy)propanoic acid (see Example 1D1, 34.47 g, 169 mmol, 96% purity by HPLC), DCC (34.78 g, 169 mmol) and N-hydroxysuccinimide (19.33, 169 mmol) were combined as dry powders and methylene chloride (500 mL) was added. The suspension was mechanically stirred overnight, ambient temperature, under a nitrogen atmosphere. HPLC analysis showed complete conversion of the acid to the NHS ester (N-hydroxy succinyl ester). To the mixture was added (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol (50 g, 169 mmol) and stirring continued for 2.5 hours. HPLC showed conversion to the product and loss of both the NHS ester and step 5 amine. The reaction mixture was vacuum filtered on a Büchner funnel to remove DCC urea. The solid urea was washed with 500 mL of methylene chloride. The organic layers were combined, placed in a separatory funnel, and treated with 500 mL of 1.0M NaOH. The layers were separated, and the cloudy organic layer was recharged into a separatory funnel and treated with a 6% HCl solution (adjusted to pH=0.03-0.34, 100 mL of solution). Two clear layers formed. The resultant biphasic solution was poured into an Erlenmeyer flask and cautiously neutralized to a pH of 7.2-7.4 with a saturated solution of sodium bicarbonate (approx 200 mL of solution). The organic layer was separated from the aqueous layer, dried over sodium sulfate and evaporated to yield 83.6 g of yellow oil (theoretical yield: 77.03 g). The oil was dissolved in isopropyl alcohol (500 mL) with heating and transferred to a 1 L round bottom flask equipped with a mechanical stirrer and heating mantel. The solution was heated to 50° C. and the mechanical stirrer was set to a rate of 53-64 rpm. Tartaric acid (25.33 g, 168 mmol) was dissolved in deionized water (50 mL) and added to the stirred solution at 50° C. Once the solution turned from milky white to clear, seed crystals were added to the mixture and crystallization immediately began (temperature jumped to 56° C.). After 20 minutes, the mixture was set to cool to a temperature of 35° C. (cooling took 1.15 hours). Heating was removed and the solution was allowed to stir for 12 hours. The resulting thick slurry was filtered on a Büchner funnel. Any remaining solid in the flask was washed onto the funnel using ice-cold isopropyl alcohol (100 mL). The material was transferred to a drying tray and heated to 48° C. under vacuum for 3 days (after two days the material weighed 76 g and after three days it weighed 69.3 g). The solid was analyzed by LC and shown to be 98.1% pure (AUC), the residual solvent analysis showed the material to possess 3472 ppm of isopropyl alcohol, and the DSC (differential scanning calorimetery) showed a melting point of 134.89° C. A total of 69.3 g of white solid was collected (65.7% overall yield). 1H NMR (400 MHz, CDCl3) δ=1.8 (M, 4H), 2.4-2.6 (m, 4H), 2.6 (m, 1H), 2.85 (m, 2H), 3.0 (m, 1H), 3.65 (s, 3H), 3.8 (m, 2H), 3.86 (2, 2H), 4.18 (br s, 5H), 4.6 (s, 1H), 6.6-6.8 (m, 7H), 7.8 (d, 1H); MS for C29H40N2O13 m/z 457.3 [M+H] for main peak (free-base).
Example 2E2 Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide
Compound 247 was prepared by reaction of (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine, prepared according to scheme 3 with 3-(4-methylphenoxy)propionic acid using method 1.
Preparation of A: (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate
Figure US08309593-20121113-C00052
N,O-dimethylhydroxylamine hydrochloride (45 g, 0.46 mmol, 1.5 eq) and N-methyl morpholine (84 mL, 0.765 mol, 2.5 eq.) were added slowly to a cold (−15° C.) suspension of d-CBz serine (73.0 g, 0.305 mol) in CH2Cl2 (560 mL) keeping the temperature below −5° C. The mixture was cooled back to ˜−15° C. and EDCI (62 g, 0.323 mol, 1.05 eq) was added. The mixture was stirred for 5 hours keeping the temperature below 5° C. The solvent was removed by rotary evaporation and the mixture was partitioned between HCl (1 M, 300 mL) and EtOAc (500 mL). The organic layer was separated and washed with HCl (1 M, 2×100 mL) and then sat. NaHCO3 (2×150 mL). The mixture was dried over MgSO4, filtered and then the solvent was removed by rotary evaporation. (R)-benzyl 3-hydroxy-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate was re-dissolved in a mixture of acetone (375 mL) and 2,2-dimethoxy propane (375 mL) and boron trifluoride etherate (3 mL) was added. The mixture was stirred at room temperature for 5 hours and then triethyl amine (3 mL) was added. The solvent was removed to dryness and (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate was obtained as a white solid (73.0 g, 74% yield from both steps) after purification by column chromatography using a mixture of hexane/EtOAc/acetone.
1H NMR (CDCl3, 400 mHz, ppm); 1.5 (s, 2H), 1.6 (s, 3H), 1.7 (s, 2H), 1.75 (s, 3H), 3.14 (s, 3H), 3.24 (2H), 3.4 (3H), 3.76 (s, 2H), 4.0 (m, 1.7H), 4.16 (m, 1H), 4.2 (m, 1.7), 4.78 (m, 1H), 4.88 (m, 0.6H), 5.06 (q, 2H), 5.18 (q, 1H), 7.4 (m, 8H).
Preparation of AI: (R)-benzyl 4-((R)-hydroxy(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate
Figure US08309593-20121113-C00053
A solution of LiALH4 (1 M, 20 mL, 20 mmol) was added dropwise to a cold (−15° C.) solution of (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate (12.2 g, 37.9 mmol) in THF (75 mL). The mixture was stirred for 30 min keeping the temperature below 0° C. A saturated solution of KHSO4 (100 mL) was added slowly to the mixture and it was warmed to room temperature. The mixture was filtered and the solvent was removed to dryness. (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate was obtained as a clear oil (9.161 g, 92% yield) after purification by column chromatography (SiO2, using a mixture of hexane/EtOAc). 1H NMR (CDCl3, 400 mHz, ppm); 1.7 (m, 6H), 4.15 (m, 2H), 4.4 (m, 1H), 5.15, (s, 1H), 5.2 (m, 1H), 7.3 (m, 5H), 9.6 (m, 1H).
1,2-dibromoethane (0.2 mL) was added slowly to a hot (65° C.) solution of magnesium turnings (0.91 g, 37 mmol) in THF (14 mL), followed by the dropwise addition of a solution of 4-bromo anisole (4 mL, 32 mmol) in THF (14 mL). The mixture was refluxed for 2 hours and then cooled to room temperature. The grignard solution was added dropwise to a suspension of CuI (6.8 g, 36 mmol) in a mixture of Me2S (20 mL)/THF (100 mL) at −78° C. The mixture was warmed slowly to −45° C. and stirred for 30 min keeping the temperature between −45 to −35° C. The mixture was cooled back to −78° C., and a solution of the Garner's aldehyde [(R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate](3.20 g, 12.6 mmol) in THF (15 mL) was added dropwise. The mixture was stirred at low temperature overnight (15 h, T max=10° C.). The reaction mixture was quenched with NH4O (sat. 100 mL) and extracted with EtOAc (50 mL). The solvent was removed to dryness and the mixture was purified by column chromatography (SiO2, using a mixture of hexane/EtOAc/acetone) and the product was obtained as a colorless oil (1.697 g, 36% yield).
Preparation of AII: benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate
Figure US08309593-20121113-C00054
A mixture of benzyl 4-(hydroxy-(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate (1.679 g, 4.5 mmol) and amberlyst 15 (1.85 g) in MeOH (20 mL) was stirred at room temperature for 2 days. The mixture was centrifuged and the solid was washed with MeOH (2×40 mL). The solvent was removed to dryness and after purification by column chromatography (SiO2 using a mixture of CH2Cl2/EtOAc) the product was obtained as a white solid (1.26 g, 84% yield).
Preparation of AIV: Synthesis of Compound 289: benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate
Figure US08309593-20121113-C00055
Mesityl chloride (0.28 mL, 3.6 mmol) was added slowly to a cold (−10° C.) solution of benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate (1.07 g, 3.23 mmol) in pyridine (1.5 mL). The mixture was stirred for 30 min and then pyrrolidine (2.7 mL, 33 mmol) was added slowly to the mixture. The mixture was heated to 45° C. for 6 hours and then the solvent was removed to dryness. After purification by column chromatography (SiO2, using a mixture of CH2Cl2, MeOH, NH4OH), the product was obtained as a clear oil (0.816 g, 66% yield).
Preparation of EVII: (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine was prepared by the procedures described below
Figure US08309593-20121113-C00056
A mixture of benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate (0.10 g, 0.26 mmol) and Pd/C (5%, 21 mg) in EtOH (1 mL)/HCl (1 M, 50 μL) was degassed and hydrogen gas was added. The mixture was hydrogenated at atmospheric pressure for two hours. The mixture was filtered over celite and the solvent was removed to dryness. The product was obtained as a colorless oil (63.5 mg, 85% yield).
Figure US08309593-20121113-C00057
Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.85 (m, 2H), 3.75 (s, 3H), 4.1 (m, 2H), 4.25 (m, 1H), 5.05 (sd, 1H), 6.5 (br, 1H), 6.8 (m, 4H), 7.1 (d, 2H), 7.2 (d, 2H). M/Z for C24H32N2O4 [M−H]=413.
Example 2E3 Preparation of Compound 251: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethyl)phenyl)acetamide
Figure US08309593-20121113-C00058
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.5 (s, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 5.05 (sd, 1H), 5.8 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.2 (d, 2H), 7.55 (d, 2H). M/Z for C23H27F3N2O3 [M−H]=437.
Example 2E4 Preparation of Compound 5: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-2-carboxamide
Figure US08309593-20121113-C00059
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.45 (m, 1H), 5.05 (sd, 1H), 6.6 (br, 1H), 6.85 (s, 2H), 6.95 (s, 1H), 7.4 (m, 2H), 7.7 (s, 1H), 7.85 (m, 2H). M/Z for C24H26N2O4S [M−H]=439.
Example 2E5 Preparation of Compound 11: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(phenylthio)acetamide
Figure US08309593-20121113-C00060
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (br, 2H), 3.6 (q, 2H), 4.1.5 (m, 1H), 4.2 (s, 4H), 5.9 (sd, 1H), 6.7 (m, 2H), 6.8 (s, 1H), 7.2 (m, 7H). M/Z for C23H28N2O4S [M−H]=429.
Example 2E6 Preparation of Compound 12: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)biphenyl-4-carboxamide
Figure US08309593-20121113-C00061
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.4 (br, 1H), 5.05 (sd, 1H), 6.6 (sd, 1H), 6.85 (m, 2H), 6.95 (s, 1H), 7.45 (m, 3H), 7.6 (m, 4H), 7.75 (m, 2H). M/Z for C28H30N2O4 [M−H]=459.
Example 2E7 Preparation of Compound 19: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-5-carboxamide
Figure US08309593-20121113-C00062
1H NMR (d6-dmso, 400 mHz, ppm); 1.6 (br, 4H), 2.4 (br, 5H), 2.65 (m, 1H), 4.15 (s, 4H), 4.25 (m, 1H), 4.75 (sd, 1H), 5.6 (br, 1H), 6.7 (m, 3H), 7.5 (sd, 1H), 7.7 (sd, 1H), 7.8 (sd, 1H), 7.85 (sd, 1H), 8.0 (sd, 1H), 8.2 (s, 1H). M/Z for C24H26N2O4S [M−H]=439.
Example 2E8 Preparation of Compound 23: 2-(biphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00063
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (d, 2H), 3.55 (s, 2H), 4.2 (m, 5H), 4.85 (sd, 1H), 5.95 (br, 1H), 6.6 (m, 1H), 6.75 (m, 2H), 7.2 (sd, 2H), 7.4 (m, 1H), 7.5 (st, 2H), 7.6 (m, 4H). M/Z for C29H32N2O4 [M−H]=473.
Example 2E9 Preparation of Compound 24: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-phenoxyphenyl)acetamide
Figure US08309593-20121113-C00064
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.45 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.9 (br, 1H), 6.6 (m, 1H), 6.7 (s, 1H), 6.8 (m, 1H), 7.15 (m, 7H), 7.4 (m, 2H). M/Z for C29H32N2O5 [M−H]=489.
Example 2E10 Preparation of Compound 25: (S)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-hydroxy-3-phenylpropanamide
Figure US08309593-20121113-C00065
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 7H), 3.1 (dd, 2H), 4.2 (m, 6H), 4.8 (sd, 1H), 6.6 (m, 1H), 6.8 (m, 3H), 7.3 (m, 5H). M/Z for C24H30N2O5 [M−H]=427.
Example 2E11 Preparation of Compound 27: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-phenoxypropanamide
Figure US08309593-20121113-C00066
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 2.9 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 1H), 6.75 (s, 1H), 6.85 (m, 3H), 6.95 (t, 1H), 7.2 (m, 3H). M/Z for C24H30N2O5 [M−H]=427.
Example 2E12 Preparation of Compound 31: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-oxo-2-phenylacetamide
Figure US08309593-20121113-C00067
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.8 (br, 4H), 3.0 (m, 2H), 4.2 (s, 4H), 4.3 (m, 1H), 5.05 (sd, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.35 (m, 1H), 7.45 (t, 2H), 7.6 (t, 1H) 8.2 (d, 2H). M/Z for C23H26N2O5 [M−H]=411.
Example 2E13 Preparation of Compound 32: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(phenylthio)propanamide
Figure US08309593-20121113-C00068
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.4 (t, 2H), 2.7 (br, 4H), 2.8 (m, 2H), 3.1 (m, 2H), 4.2 (m, 5H), 4.9 (sd, 1H), 5.95 (br, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.3 (m, 3H). M/Z for C24H30N2O4S [M−H]=443.
Example 2E14 Preparation of Compound 35: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-o-tolylacetamide
Figure US08309593-20121113-C00069
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.1 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (s, 2H), 4.1 (m, 1H), 4.25 (s, 4H), 4.8 (sd, 1H), 5.75 (br, 1H), 6.5 (d, 1H), 6.65 (s, 1H), 6.75 (d, 1H), 7.1 (d, 1H), 7.2 (m, 3H). M/Z for C24H30N2O4 [M−H]=411.
Example 2E15 Preparation of Compound 36: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-m-tolylacetamide
Figure US08309593-20121113-C00070
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.35 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.55 (d, 1H), 6.75 (m, 2H), 6.9 (d, 2H), 7.1 (sd, 1H), 7.2 (m, 1H). M/Z for C24H30N2O4 [M−H]=411.
Example 2E16 Preparation of Compound 39: 2-(benzylthio)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00071
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 2.9 (m, 2H), 3.0 (m, 2H), 3.3 (d, 1H), 3.55 (d, 1H), 4.2 (m, 5H), 5.05 (sd, 1H), 6.85 (s, 2H), 6.9 (s, 1H), 7.1 (sd, 2H), 7.3 (m, 3H). M/Z for C24H30N2O4S [M−H]=443.
Example 2E17 Preparation of Compound 47: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(pyridin-3-yl)phenyl)acetamide
Figure US08309593-20121113-C00072
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85 (sd, 1H), 5.85 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.25 (d, 3H), 7.4 (m, 1H), 7.6 (sd, 2H), 7.9 (sd, 1H), 8.6 (sd, 1H), 8.85 (s, 1H). M/Z for C28H31N3O4 [M−H]=474.
Example 2E18 Preparation of Compound 48: 2-(4′-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00073
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.2 (d, 2H), 7.4 (m, 2H), 7.55 (sd, 4H). M/Z for C29H31ClN2O4 [M−H]=508.
Example 2E19 Preparation of Compound 51: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-(trifluoromethyl)phenyl)acetamide
Figure US08309593-20121113-C00074
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.35 (d, 1H), 7.45 (m, 2H), 7.55 (sd, 1H). M/Z for C24H27F3N2O4=465.
Example 2E20 Preparation of Compound 53: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-fluorophenyl)acetamide
Figure US08309593-20121113-C00075
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.50 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 1H), 6.8 (d, 1H), 6.85 (d, 1H), 6.9 (d, 1H), 7.0 (t, 1H), 7.3 (sq, 1H). M/Z for C23H27FN2O4[M−H]=415.
Example 2E21 Preparation of Compound 54: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00076
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.65 (br, 6H), 2.85 (m, 2H), 3.80 (s, 3H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 4H), 6.75 (s, 2H), 6.85 (s, 1H), 7.2 (t, 1H). M/Z for C25H32N2O6[M−H]=457.
Example 2E22 Preparation of Compound 55: 3-(2,5-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide
Figure US08309593-20121113-C00077
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.1 (m, 1H), 4.25 (m, 6H), 4.95 (sd, 1H), 6.3 (br, 1H), 6.75 (s, 2H), 6.8 (s, 1H), 6.9 (m, 2H), 7.25 (m, 1H). M/Z for C24H28Cl2N2O5 [M−H]=496.
Example 2E23 Preparation of Compound 57: 3-(4-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide
Figure US08309593-20121113-C00078
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.3 (br, 1H), 6.8 (m, 5H), 7.2 (m, 2H). M/Z for C24H29ClN2O5 [M−H]=461.
Example 2E24 Preparation of Compound 58: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-fluorophenoxy)propanamide
Figure US08309593-20121113-C00079
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.4 (br, 1H), 6.8 (m, 5H), 7.0 (m, 2H). M/Z for C24H29FN2O5 [M−H]=445.
Example 2E25 Preparation of Compound 59: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide
Figure US08309593-20121113-C00080
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.75 (m, 4H), 6.85 (s, 1H), 7.1 (m, 2H). M/Z for C25H32N2O5 [M−H]=441.
Example 2E26 Preparation of Compound 60: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(2-fluorophenoxy)propanamide
Figure US08309593-20121113-C00081
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.35 (br, 1H), 6.7 (s, 2H), 6.85 (s, 1H), 6.95 (m, 2H), 7.05 (m, 2H). M/Z for C24H29FN2O5 [M−H]=445.
Example 2E27 Preparation of Compound 61: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00082
1H NMR (CDCl3, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 3.8 (s, 3H), 4.1 (m, 2H), 4.2 (br, 5H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.8 (m, 7H). M/Z for C25H32N2O6 [M−H]=457.
Example 2E28 Preparation of Compound 188: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-ethylphenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00083
1H NMR (D2O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.35 (q, 2H), 2.4 (br, 2H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C26H34N2O5.C4H6O6 [M−H]=454.
Example 2E29 Preparation of Compound 189: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-propionylphenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00084
1H NMR (D2O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.45 (br, 2H), 2.8 (q, 2H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.5 (d, 1H), 6.5 (d, 2H), 6.7 (d, 2H), 7.7 (d, 2H). M/Z for C27H34N2O6.C4H6O6 [M−H]=483.
Example 2E30 Preparation of Compound 193: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-oxobutyl)phenoxy)propanamide (2R,3R)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00085
1H NMR (D2O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 2H), 1.94 (s, 3H), 2.45 (br, 2H), 2.6 (m, 4H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C28H36N2O6.C4H6O6 [M−H]=497.
Example 2E31 Preparation of Compound 202: N-((1R,R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methoxyethyl)phenoxy)propanamide (2R,R)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00086
1H NMR (D2O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 2H), 2.45 (br, 2H), 2.62 (t, 2H), 2.9 (br, 2H), 3.1 (s, 3H), 3.25 (m, 2H), 3.4 (br, 4H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C27H36N2O6.C4H6O6 [M−H]=485.
Example 2E32 Preparation of Compound 63: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3′-methoxybiphenyl-4-yl)acetamide
Figure US08309593-20121113-C00087
1H NMR (CDCl3, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (br, 2H), 3.9 (sd, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 5.9 (br, 1H), 6.5-7.6 (m, 11H). M/Z for C30H34N2O5 [M−H]=503.
Example 2E33 Preparation of Compound 127: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-ethoxyphenyl)-4-oxobutanamide
Figure US08309593-20121113-C00088
1H NMR (CDCl3, 400 mHz, ppm); 1.4 (t, 3H), 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 2H), 4.05 (q, 2H), 4.2 (m, 2H), 4.25 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C27H34N2O6 [M−H]=483.
Example 2E34 Preparation of Compound 154: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenyl)-4-oxobutanamide
Figure US08309593-20121113-C00089
1H NMR (CDCl3, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 1H), 3.45 (s, 3H), 3.9 (s, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C26H32N2O6 [M−H]=469.
Example 2E35 Preparation of Compound 181: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-isopropoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00090
1H NMR (CDCl3, 400 mHz, ppm); 1.4 (d, 6H), 1.8 (br, 8H), 2.15 (br, 2H), 2.8 (br, 10H), 4.25 (m, 5H), 4.65 (m, 1H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for C30H40N2O6 [M−H]=525.
Example 2E36 Preparation of Compound 191: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentanamide (2R,3R)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00091
1H NMR (D2O, 400 mHz, ppm); 1.40 (br, 1H), 1.53 (br, 1H), 1.75 (br, 2H), 1.91 (br, 2H), 1.98 (m, 1H), 2.15 (m, 1H) 2.45 (m, 2H), 2.95 (m, 2H), 3.35 (dd, 2H), 3.4 (m, 2H), 3.68 (br, 5H), 3.77 (br, 2H), 4.3 (br, 3H), 4.68 (br, 1H), 6.47 (d, 1H), 6.65 (d, 2H), 6.85 (d, 2H), 7.63 (d, 2H). M/Z for C27H34N2O6.C4H6O6 [M−H]=483.
Example 2E37 Preparation of Compound 265: N-((1R,2R)-1-(benzo[δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-isopropoxyphenyl)-5-oxopentanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00092
1H NMR (400 MHz, CD3OD) δ 1.30 (sd, 6H), 1.70-1.85 (m, 2H), 2.04 (br, 4H), 2.09-2.26 (m, 2H), 2.64-2.82 (m, 2H), 3.31-3.48 (m, 5H), 4.37 (s, 2H), 4.43 (br, 1H), 4.68 (m, 1H), 4.71 (sd, 1H), 5.76 (s, 2H), 6.66 (d, 1H), 6.82-6.95 (m, 4H), 7.84 (d, 2H); MS for C28H36N2O6.C4H6O6: [M−H] 645.
Example 2E38 Preparation of Compound 267: N-((1R,2R)-1-(benzo[δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00093
1H NMR (400 MHz, CD3OD) δ 1.49 (br, 4H), 2.03 (br, 4H), 2.89 (t, 2H), 3.33-3.46 (m, 6H), 3.84 (s, 3H), 4.37 (s, 2H), 4.43 (d, 1H), 4.76 (br, 1H), 5.81 (s, 2H), 6.68 (d, 1H), 6.81 (d, 1H), 6.88 (s, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for C27H34N2O6.C4H6O6: [M−H] 633.
Example 2E39 Preparation of Compound 268: N-((1R,2R)-1-(benzo[δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-isopropoxyphenyl)-7-oxoheptanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00094
1H NMR (400 MHz, CD3OD) δ 1.15-1.18 (m, 2H), 1.30 (d, 6H), 1.40-1.45 (m, 2H), 1.57-1.65 (m, 2H), 2.03 (br, 4H), 2.12-2.17 (m, 2H), 2.88 (t, 2H), 3.33-3.48 (m, 5H), 4.38 (s, 2H), 4.42 (d, 1H), 4.67 (m, 1H), 4.78 (d, 1H), 5.83 (d, 2H), 6.71 (d, 1H), 6.82 (d, 1H), 6.89 (s, 1H), 6.92 (d, 2H), 7.90 (d, 2H); MS for C30H40N2O6.C4H6O6: [M−H] 675.
Example 2E40 Preparation of Compound 197: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenoxy)butanamide(2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00095
1H NMR (400 MHz, CD3OD) δ 1.78-1.91 (m, 2H), 2.00 (br, 4H), 2.32 (t, 2H), 3.33-3.47 (m, 6H), 3.69 (s, 3H), 3.72 (t, 2H), 4.11 (br, 4H), 4.37 (s, 2H), 4.41 (d, 1H), 4.72 (d, 1H), 6.69-6.86 (m, 7H); MS for C26H34N2O6.C4H6O6: [M−H] 621.
Example 2E41 Preparation of Compound 187: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-methylbutanoyl)phenoxy)propanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00096
1H NMR (400 MHz, CD3OD) δ 0.95 (d, 6H), 2.00 (br, 4H), 2.17 (m, 2H), 2.66 (t, 2H), 2.78 (d, 2H), 3.34-3.44 (m, 5H), 4.12-4.17 (m, 6H), 4.40 (s, 2H), 4.45 (d, 1H), 4.73 (sd, 1H), 6.67 (d, 1H), 6.79 (d, 1H), 6.86 (s, 1H), 6.93 (d, 2H), 7.91 (d, 2H); MS for C29H38N2O6.C4H6O6: [M−H] 661.
Example 2E42 Preparation of Compound 83: 2-O-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00097
1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 2.63 (br, 4H), 2.78 (dd, 1H), 2.89 (dd, 1H), 4.24 (s, 4H), 4.27 (br, 1H), 4.36 (q, 2H), 4.94 (d, 1H), 6.71 (d, 1H), 6.77-6.82 (m, 4H), 6.86 (d, 1H), 7.24 (s, 1H); MS for C23H27ClN2O5: [M−H] 447.
Example 2E43 Preparation of Compound 87: 2-(3,4-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00098
1H NMR (400 MHz, CDCl3) δ 1.78 (br, 4H), 2.67 (br, 4H), 2.79 (dd, 1H), 2.92 (dd, 1H), 4.25 (br, s, 5H), 4.35 (q, 2H), 4.95 (d, 1H), 6.71-6.84 (m, 5H), 7.01 (d, 1H), 7.34 (d, 1H); MS for C23H26Cl2N2O5: [M−H] 482.
Example 2E44 Preparation of Compound 86: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-phenoxyphenyl)acetamide
Figure US08309593-20121113-C00099
1H NMR (400 MHz, CDCl3) δ 1.72 (br, 4H), 2.57 (br, 4H), 2.75-2.80 (m, 2H), 3.45 (s, 2H), 4.11-4.13 (m, 1H), 4.23 (s, 4H), 4.84 (d, 1H), 5.86 (d, 1H), 6.55 (dd, 1H), 6.71 (d, 1H), 6.74 (d, 1H), 6.80 (br, 1H), 6.85 (dd, 1H), 6.92 (dd, 1H), 6.98 (d, 1H), 7.14 (t, 1H), 7.28-7.36 (m, 2H); MS for C29H32N2O5: [M−H] 489.
Example 2E45 Preparation of Compound 280: 2-(3,4-difluorophenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00100
1H NMR (400 MHz, CDCl3) δ 1.80 (br, 4H, 2.68 (br, 4H), 2.84 (d, 2H), 3.45 (s, 2H), 4.17 (m, 1H), 4.25 (s, 4H), 4.88 (d, 1H), 5.88 (d, 1H), 6.65 (d, 1H), 6.79 (d, 1H), 6.95 (m, 1H), 6.95 (t, 1H), 7.13 (q, 1H); MS for C23H26F2N2O4: [M−H]434.
Example 2E46 Preparation of Compound 103: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide
Figure US08309593-20121113-C00101
1H NMR (400 MHz, CDCl3) δ 1.65 (br, 4H), 2.48 (br, 4H), 2.69 (d, 2H), 3.40 (s, 2H), 4.08 (m, 1H), 4.17 (s, 4H), 4.80 (s, 1H), 5.84 (t, 1H), 6.55 (d, 1H), 6.66 (s, 1H), 6.70 (d, 1H), 7.10 (t, 3H); MS for C24H27F3N2O5: [M−H] 481.
Example 2E47 Preparation of Compound 90: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(thiophen-2-yl)isoxazole-3-carboxamide
Figure US08309593-20121113-C00102
1H NMR (400 MHz, CDCl3) δ 1.82 (br, 4H), 2.73-2.81 (m, 4H), 2.89-2.93 (m, 1H), 3.02-3.07 (m, 1H), 4.23 (s, 4H), 4.41 (br, 1H), 5.07 (s, 1H), 5.30 (d, 1H), 6.74 (s, 1H), 6.83 (t, 2H), 6.90 (s, 1H), 7.12-7.14 (m, 2H), 7.47 (d, 1H), 7.52 (d, 1H); MS for C23H25N3O5S: [M−H] 456.
Example 2E48 Preparation of Compound 92: 3-(3-chloro-4-methoxyphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide
Figure US08309593-20121113-C00103
1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 2.38 (t, 2H), 2.60 (br, 4H), 2.8 (m, 4H), 3.86 (s, 3H), 4.20 (br, 1H), 4.24 (s, 4H), 4.87 (s, 1H), 5.80 (d, 1H), 6.66 (d, 1H), 6.8 (m, 3H), 7.00 (d, 1H), 7.18 (s, 1H); MS for C25H31ClN2O5: [M−H] 475.
Example 2E49 Preparation of Compound 96: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)propanamide
Figure US08309593-20121113-C00104
1H NMR (400 MHz, CDCl3) δ 1.73 (br, 4H), 2.4 (m, 2H), 2.53 (m, 4H), 2.7 (m, 2H), 2.90-2.97 (m, 2H), 4.17 (br, 1H), 4.23 (s, 4H), 4.89 (s, 1H), 5.83 (br, 1H), 6.68 (d, 1H), 6.79 (d, 2H), 7.24 (d, 2H), 7.50 (d, 2H); MS for C25H29F3N2O5: [M−H] 479.
Example 2E50 Preparation of Compound 101: 4-(benzo[d]thiazol-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)butanamide
Figure US08309593-20121113-C00105
1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 2.10-2.15 (m, 2H), 2.24-2.27 (m, 2H), 2.64-2.67 (m, 4H), 2.79-2.83 (m, 2H), 3.02 (t, 2H), 4.18 (s, 4H), 4.26 (br, 1H), 4.92 (d, 1H), 6.12 (br, 1H), 6.75-6.81 (m, 2H), 6.86 (s, 1H), 7.37 (t, 1H), 7.45 (t, 1H), 7.85 (d, 1H), 7.92 (d, 1H); MS for C26H31N3O4S: [M−H] 482.
Example 2E51 Preparation of Compound 102: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(2,3-dihydrobenzo[β][1,4]dioxine-6-sulfonamido)hexanamide
Figure US08309593-20121113-C00106
1H NMR (400 MHz, CDCl3) δ 1.15-1.20 (m, 2H), 1.38-1.50 (m, 4H), 1.77 (br, 4H), 2.08 (q, 2H), 2.63-2.66 (m, 4H), 2.79 (d, 2H), 2.87 (t, 2H), 4.2 (m, 9H), 4.91 (br, 1H), 5.93 (br, 1H), 6.77 (q, 2H), 6.84 (s, 1H), 6.93 (d, 1H), 7.31 (d, 1H), 7.37 (s, 1H); MS for C29H39N3O8S: [M−H] 590.
Example 2E52 Preparation of Compound 104: N-(5-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-ylamino)-5-oxopentyl)benzamide
Figure US08309593-20121113-C00107
1H NMR (400 MHz, CDCl3) δ 1.47-1.52 (m, 2H), 1.59-1.69 (m, 2H), 1.77 (br, 4H), 2.15-2.21 (m, 2H), 2.62-2.65 (m, 4H), 2.81 (br, 2H), 3.30-3.42 (m, 2H), 4.19-4.23 (m, 5H), 4.94 (br, 1H), 5.98 (br, 1H), 6.76 (br, 1H), 6.78-6.86 (m, 3H), 7.40-7.50 (m, 3H), 7.80 (d, 2H); MS for C27H35N3O5: [M−H] 482.
Example 2E53 Preparation of Compound 281: N1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-N-5-(thiazol-2-yl)glutaramide
Figure US08309593-20121113-C00108
1H NMR (400 MHz, CDCl3) δ 1.74 (br, 4H), 1.97-2.03 (m, 2H), 2.20-2.26 (m, 2H), 2.40-2.45 (m, 2H), 2.64-2.68 (m, 5H), 2.88 (m 1H), 4.20 (s, 4H), 4.26-4.29 (m, 1H), 4.83 (d, 1H), 6.12 (br, 1H), 6.74-6.79 (m, 2H), 6.85 (s, 1H), 6.95 (d, 1H), 7.41 (d, 1H); MS for C23H30N4O5S: [M−H] 475.
Example 2E54 Preparation of Compound 282: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(3,4-dimethoxyphenyl)-5-oxopentanamide
Figure US08309593-20121113-C00109
1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 1.92-2.00 (m, 2H), 2.21-2.26 (m, 2H), 2.60-2.65 (m, 4H), 2.70-2.95 (m, 4H), 3.93 (d, 6H), 4.17-4.23 (m, 5H), 4.90 (d, 1H), 5.96 (br, 1H), 6.75-6.79 (m, 2H), 6.85 (s, 1H), 6.87 (d, 1H), 7.50 (s, 1H), 7.55 (d, 1H); MS for C28H36N2O7: [M−H] 513.
Example 2E55 Preparation of Compound 283: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-p-tolylpentanamide
Figure US08309593-20121113-C00110
1H NMR (400 MHz, CDCl3) δ 1.77 (br, 4H), 1.96-2.02 (m, 2H), 2.21-2.26 (m, 2H), 2.40 (s, 3H), 2.63-2.80 (m, 4H), 2.82-2.95 (m, 4H), 4.18-4.23 (m, 5H), 4.91 (d, 1H), 5.94 (br, 1H), 6.74-6.77 (m, 2H), 6.85 (s, 1H), 7.26 (d, 2H), 7.81 (d, 2H); MS for C27H34N2O5: [M−H] 467.
Example 2E56 Preparation of Compound 113: N4(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-phenylpentanamide
Figure US08309593-20121113-C00111
1H NMR (400 MHz, CDCl3) δ 1.76 (br, 4H), 1.95-2.01 (m, 2H), 2.22-2.25 (m, 2H), 2.62-2.63 (m, 4H), 2.78-2.95 (m, 4H), 4.17-4.22 (m, 5H), 4.91 (sd, 1H), 5.99 (br, 1H), 6.77 (st, 2H), 6.85 (s, 1H), 7.44-7.58 (m, 3H), 7.92 (d, 2H); MS for C26H32N2O5: [M−H] 453.
Example 2E57 Preparation of Compound 284: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-isopropoxyphenyl)-5-oxopentanamide
Figure US08309593-20121113-C00112
1H NMR (400 MHz, CDCl3) δ 1.36 (d, 6H), 1.75 (br, 4H), 1.90-2.02 (m, 2H), 2.20-2.25 (m, 2H), 2.60-2.66 (m, 4H), 2.70-2.86 (m, 4H), 4.17 (s, 4H), 4.22 (br, 1H), 4.62-4.65 (m, 1H), 4.89 (sd, 1H), 6.07 (d, 1H), 6.77 (s, 2H), 6.85 (s, 1H), 6.87 (d, 2H), 7.86 (d, 2H); MS for C29H38N2O6: [M−H] 511.
Example 2E58 Preparation of Compound 140: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxy-3,5-dimethylphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00113
1H NMR (400 MHz, CDCl3) δ 1.61-1.63 (m, 4H), 1.77 (br, 4H), 2.16 (t, 2H), 2.32 (s, 6H), 2.61-2.67 (m, 4H), 2.74-2.89 (m, 2H), 2.91 (t, 2H), 3.75 (s, 3H), 4.21 (br, 5H), 4.90 (sd, 1H), 5.93 (br, 1H), 6.75-6.82 (m, 2H), 6.85 (sd, 1H), 7.61 (s, 2H); MS for C30H40N2O6: [M−H] 525.
Example 2E59 Preparation of Compound 141: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00114
1H NMR (400 MHz, CDCl3) δ 1.62-1.64 (m, 4H), 1.76 (br, 4H), 2.17 (t, 2H), 2.61-2.65 (m, 4H), 2.72-2.79 (m, 2H), 2.89 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.89 (d, 1H), 6.01 (br, 1H), 6.77 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.90 (d, 2H); MS for C28H36N2O6: [M−H] 497.
Example 2E60 Preparation of Compound 155: 6-(4-tert-butylphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-oxohexanamide
Figure US08309593-20121113-C00115
1H NMR (400 MHz, CDCl3) δ 1.34 (s, 9H), 1.63-1.65 (m, 4H), 1.77 (br, 4H), 2.17 (t, 2H), 2.64-2.66 (br, 4H), 2.75 (dd, 1H), 2.2.81 (dd, 1H), 2.91 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H), 6.02 (br, 1H), 6.77-6.82 (q, 2H), 6.85 (d, 1H), 7.46 (d, 2H), 7.86 (d, 2H); MS for C31H42N2O5: [M−H] 523.
Example 2E61 Preparation of Compound 156: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide
Figure US08309593-20121113-C00116
1H NMR (400 MHz, CDCl3) δ 1.25-1.30 (m, 2H), 1.55-1.70 (m, 4H), 1.77 (br, 4H), 2.13 (t, 2H), 2.61-2.66 (m, 4H), 2.74-2.82 (m, 2H), 2.88 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (br, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.92 (d, 2H); MS for C29H38N2O6: [M−H] 511.
Example 2E62 Preparation of Compound 144: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-8-(4-methoxyphenyl)-8-oxooctanamide
Figure US08309593-20121113-C00117
1H NMR (400 MHz, CDCl3) δ 1.25-1.33 (m, 4H), 1.54 (m, 2H), 1.68 (t, 2H), 1.78 (br, 4H), 2.11 (br, 2H), 2.65 (br, 4H), 2.76-2.11 (m, 4H), 3.86 (s, 3H), 4.21 (br, 5H), 4.90 (br, 1H), 6.02 (d, 1H), 6.78-6.84 (m, 3H), 6.91 (d, 2H), 7.92 (d, 2H); MS for C30H40N2O6: [M−H] 525.
Example 2E63 Preparation of Compound 159: 7-(4-chlorophenyl)-N-(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide
Figure US08309593-20121113-C00118
1H NMR (400 MHz, CDCl3) δ 1.26-1.37 (m, 2H), 1.57 (m, 2H), 1.68 (m, 2H), 1.77 (br, 4H), 2.13 (t, 2H), 2.62-2.65 (m, 4H), 2.76-2.82 (m, 2H), 2.90 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (d, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 7.42 (d, 2H), 7.87 (d, 2H); MS for C28H35 ClN2O5: [M−H] 515.
Example 2E64 Preparation of Compound 160: 7-(4-tert-butylphenyl)-N((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide
Figure US08309593-20121113-C00119
1H NMR (400 MHz, CDCl3) δ 1.27-1.34 (m, 11H), 1.56-1.71 (m, 4H), 1.77 (br, 4H), 2.13 (t, 2H), 2.63-2.66 (m, 4H), 2.76-2.819 (m, 2H), 2.91 (t, 2H), 4.20 (br, 5H), 4.90 (sd, 1H), 5.90 (d, 1H), 6.81 (q, 2H), 6.85 (s, 1H), 7.46 (d, 2H), 7.88 (d, 2H); MS for C32H44N2O5: [M−H] 537.
Example 2E65 Preparation of Compound 168: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00120
1H NMR (400 MHz, CD3OD) δ 1.15-1.19 (m, 2H), 1.40-1.47 (m, 2H), 1.60 (m, 2H), 2.02 (br, 4H), 2.09-2.21 (m, 2H), 2.90 (t, 2H), 3.35-3.49 (m, 5H), 3.83 (s, 3H), 4.12 (br, 4H), 4.38 (s, 2H), 4.43 (m, 1H), 4.74 (sd, 1H), 6.71 (d, 1H), 6.79 (dq, 1H), 6.86 (sd, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for C29H38N2O6.C4H6O6: [M−H] 661.
Example 2E66 Preparation of Compound 162: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-isopropoxyphenyl)-4-oxobutanamide
Figure US08309593-20121113-C00121
1H NMR (400 MHz, CDCl3) δ 1.35 (d, 6H), 1.77 (br, 4H), 2.52-2.56 (m, 2H), 2.64-2.83 (m, 6H), 3.09-3.36 (m, 2H), 4.22 (br, 5H), 4.63-4.66 (m, 1H), 4.89 (sd, 1H), 6.13 (d, 1H), 6.78 (s, 2H), 6.88 (t, 3H), 7.90 (d, 2H); MS for C28H36N2O6: [M−H] 497.
Example 2E67 Preparation of Compound 176: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-oxo-4-(4-(trifluoromethyl)phenyl)butanamide (2S,3S)-2,3-dihydroxysuccinate
Figure US08309593-20121113-C00122
1H NMR (400 MHz, CD3OD) δ 2.08 (br, 4H), 2.54-2.72 (m, 2H), 3.24-3.48 (m, 6H), 4.19 (s, 4H), 4.29 (m, 4H), 4.74 (sd, 1H), 6.76 (d, 1H), 6.86 (d, 1H), 6.92 (s, 1H), 7.81 (d, 2H), 8.13 (d, 2H); MS for C26H29F3N2O5.C4H6O6: [M−H] 657.
Example 2E68 Preparation of Compound 65 (Genz-528152-1): 2-(3′-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide
Figure US08309593-20121113-C00123
1H NMR (400 MHz, CDCl3) δ 1.70 (br, 4H), 2.54 (br, 4H), 2.72-2.81 (m, 2H), 3.53 (s, 2H), 4.12-4.23 (m, 5H), 4.85 (d, 1H), 5.82 (d, 1H), 6.58 (dd, 1H), 6.70 (sd, 1H), 6.73 (d, 1H), 7.19 (d, 1H), 7.32-7.34 (m, 1H), 7.38 (t, 1H), 7.46-7.49 (m, 1H), 7.52 (d, 2H), 7.59 (d, 1H); C29H31ClN2O4: [M−H] 507.
Example 2E69 Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide
Figure US08309593-20121113-C00124
1H NMR (CDCl3 400 mHz, ppm); 1.75 (m, 4H), 2.55 (m, 2H), 2.65 (m, 4H), 2.85 (m, 2H), 3.8 (s, 6H), 4.1 (m, 2H), 4.25 (m, 1H), 5.0 (d, 1H), 6.5 (br. d, 1H), 6.8 (m, 4H), 7.25 (m, 4H). M/Z for C24H32N2O5 [M−H]+ 429.
Example 2E70 Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide
Figure US08309593-20121113-C00125
1H NMR (CDCl3 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s, 3H), 4.25 (m, 1H), 4.65 (m, 1H), 5.0 (d, 1H), 5.95 (br. d, 1H), 6.85 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3.
Example 2E71 Preparation of Compound 285: 7-(4-Methoxy-phenyl)-7-oxo-heptanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-amide
Figure US08309593-20121113-C00126
1H NMR (CDCl3 400 mHz, ppm); 1.25 (m, 2H), 1.6 (m, 4H), 1.8 (m, 4H), 2.15 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.75 (s, 3H), 3.9 (s, 3H), 4.2 (m, 1H), 5.0 (d, 1H), 5.9 (br. d, 1H), 6.85 (d, 2H), 6.95 (d, 2H), 7.2 (d, 2H), 7.95 (d, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3
Example 2E72 Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide
Figure US08309593-20121113-C00127
1H NMR (CDCl3 400 mHz, ppm); 1.75 (m, 4H), 2.55 (m, 2H), 2.65 (m, 4H), 2.85 (m, 2H), 3.8 (s, 6H), 4.1 (m, 2H), 4.25 (m, 1H), 5.0 (d, 1H), 6.5 (br. d, 1H), 6.8 (m, 4H), 7.25 (m, 4H). M/Z for C24H32N2O5 [M−H]+429.
Example 2E73 Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide
Figure US08309593-20121113-C00128
1H NMR (CDCl3 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s, 3H), 4.25 (m, 1H), 4.65 (m, 1H), 5.0 (d, 1H), 5.95 (br. d, 1H), 6.85 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 483.3.
Example 2E74 Preparation of Compound 305
Figure US08309593-20121113-C00129
1H NMR (CDCl3 400 mHz, ppm); 1.25 (m, 14H), 1.6 (m, 4H), 1.8 (m, 4H), 2.1 (t, 2H), 2.6 (t, 2H), 2.8 (m, 6H), 4.2 (m, 5H), 4.9 (d, 1H), 6.0 (br d, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.5 (m, 1H), 8.4 (m, 2H). M/Z for C24H32N2O5 [M−H]+ 538.
Example 2E75 Preparation of Compound 320: Octanoic acid [2-hydroxy-2(4-methoxy-phenyl)-1-Pyrrolidin1-ylmethyl-ethyl]-amide
Figure US08309593-20121113-C00130
1H NMR (CDCl3 400 mHz, ppm); 0.9 (t, 3H), 1.2 (m, 8H), 1.5 (m, 2H), 1.8 (m, 4H), 2.1 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 4.95 (d, 1H), 5.9 (br d, 1H), 6.9 (2s, 2H), 7.25 (m, 2H). M/Z for C22H36N2O3 [M−H]+ 377.4.
Example 2E76 Preparation of Cyclic Amide Analogs
Figure US08309593-20121113-C00131
Cyclic amide analogs were prepared according to Scheme 6. 2-Amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol was prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 B2. This amine was coupled with various nitriles in potassium carbonate and glycerol, under an atmosphere of nitrogen, for example, at 115° C. for 18 hours. Compound 323 characterized by the following structural formula was prepared by following Scheme 6. Compound 323 was purified by column chromatography using a mixture of methanol and methylene chloride.
Figure US08309593-20121113-C00132
1H NMR (CDCl3 400 mHz, ppm); 0.95 (t, 3H), 1.35 (m, 2H), 1.6 (m, 2H), 1.8 (m, 4H), 2.7 (m, 6H), 2.8 (m, 2H), 4.2 (m, 5H), 5.4 (d, 1H), 6.85 (m, 3H), 7.2 (m, 2H), 7.9 (d, 2H). M/Z for C24H32N2O5 [M−H] 421.54.
Example 2E77 Preparation of N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxyethoxy)phenyl)-5-oxopentanamide
Figure US08309593-20121113-C00133
1H NMR (CDCl3, 400 mHz, ppm): 1.25 (t, 3H), 1.8 (br, 4H), 1.95 (m, 2H), 2.05 (t, 3H), 2.25 (m, 2H), 3.65 (m, 4H), 2.90 (m, 4H), 3.4 (s, 4H), 3.8 (m, 2H), 4.15 (m, 9H), 4.95 (br, 1H), 5.95 (br, 1H), 6.88-6.95 (m, 5H), 7.9 (m, 2H). M/Z for C29H38N2O7 [M+H]=527.
Example 2E78 Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00134
1H NMR (CDCl3, 400 mHz, ppm): 1.76 (br, 4H), 2.52-2.57 (sq, 2H), 2.60-2.73 (br, 4 H), 2.88-2.96 (st, 2H), 3.8 (s, 3H), 3.96-4.0 (m, 1H), 4.06-4.11 (1H), 4.21-4.24 (m, 1H), 5.07 (d, 1H), 6.57 (bd, 1H), 6.77-6.87 (sq, 4H), 7.20-7.27 (sd, 6H). M/Z for C23H29ClN2O4 [M+H]=433.
Example 2E79 Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00135
1H NMR (CDCl3, 400 mHz, ppm): 1.54-1.62 (br, 4H), 1.79 (br, 4H), 2.14 (t, 2H), 2.63-2.69 (br, 4H), 2.83-2.89 (m, 4H), 3.88 (s, 3H), 4.24 (br, 1H), 5.03 (d, 1H), 5.93 (d, 1H), 6.93 (d, 2H), 7.26-7.32 (m, 4H), 7.93 (d, 2H). M/Z for C26H33ClN2O4 [M+H]=473.
Example 2E80 Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00136
1H NMR (CDCl3, 400 mHz, ppm): 1.77 (br, 4H), 1.91-2.0 (m, 2H), 2.18 (s, 3H), 2.2-2.25 (m, 2H), 2.62-2.69 (m, 4H), 2.77-2.89 (m, 4H), 3.75 (s, 3H), 3.88 (s, 3H), 4.23 (m, 1H), 4.96 (sd, 1H), 5.93 (br, 1H), 6.75 (br, 1H), 6.94 (d, 2H), 7.1 (br, 2H), 7.88 (m, 2H). M/Z for C28H38N2O5 [M+H]=483.
Example 2E81 Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide
Figure US08309593-20121113-C00137
1H NMR (CDCl3, 400 mHz, ppm): 1.73 (br, 4H), 2.20 (s, 3H), 2.55 (br, 4H), 2.81 (st, 2H), 3.46 (s, 2H), 3.82 (s, 3H), 4.15 (m, 1H), 4.92 (sd, 1H), 5.85 (br, 1H), 672 (d, 1H), 6.95 (sd, 1H), 7.00 (br, 1H), 7.2 (m, 4H). M/Z for C24H29F3N2O4 [M+H]=467.
Example 2E82 Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(2,2,3,3-tetrafluoro-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)propan-2-yl)octanamide
Figure US08309593-20121113-C00138
1H NMR (CDCl3, 400 mHz, ppm): 0.9 (t, 3H), 1.2 (m, 11H), 1.5 (bm, 8H), 1.8 (br, 4H), 2.1 (m, 2H), 2.65 (m, 4H), 2.90 (m, 2H), 4.2 (m, 1H), 5.05 (d, 1H), 5.85 (br, 1H), 7.2 (m, 3H). M/Z for C23H32F4N2O4 [M+H]=477.
Example 2E83 Preparation of N-((1R,2R)-1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide
Figure US08309593-20121113-C00139
1H NMR (CDCl3, 400 mHz, ppm): 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 5.0 (d, 1H), 5.85 (br, 1H), 6.8-6.95 (3H), 7.1-7.20 (4H). M/Z for C23H23F5N2O5 [M+H]=503.
Example 2E84 Preparation of N-((1R,2R)-1-hydroxy-1-(4-(2-phenoxyethoxy)phenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00140
1H NMR (CDCl3, 400 mHz, ppm): 1.6 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.7 (m, 4H), 2.85 (m, 4H), 3.8 (s, 3H), 4.25 (m, 1H), 4.3 (s, 3H), 5.0 (d, 1H), 5.95 (br, 1H), 6.9 (m, 7H), 7.2 (m, 4H), 7.95 (m, 2H). M/Z for C34H42N2O6 [M+H]=575.
Example 2E85 Preparation of N-((1R,2R)-1-(4-(cyclobutylmethoxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00141
1H NMR (CDCl3, 400 mHz, ppm): 1.6 (br, 4H), 1.9 (m, 9H), 2.05 (m, 5H), 2.75-3.0 (m, 9H), 3.8 (m, 5H), 4.3 (m, 1H), 5.0 (m, 1H), 6.2 (br, 1H), 6.9 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C31H42N2O5 [M+H]=523.
Example 2E86 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00142
1H NMR (CDCl3, 400 mHz, ppm): 1.6 (m, 8H), 1.8 (m, 10H), 2.15 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 2.9 (m, 5H), 2.95 (s, 3H), 4.0 (t, 2H), 4.15 (m, 1H), 4.45 (t, 1H), 4.55 (t, 1H), 4.95 (br, 2H), 5.9 (br, 1H), 6.90 (m, 4H), 7.20 (m, 2H), 7.95 (m, 2H), 8.05 (br, 1H). M/Z for C30H41FN2O5 [M+H]=529.
Example 2E87 Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(4-(3-(p-tolyloxy)propoxy)phenyl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00143
1H NMR (CDCl3, 400 mHz, ppm): 1.65 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.25 (t, 2H), 2.3 (s, 3H), 2.65 (m, 4H), 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 4.15 (m, 4H), 4.25 (m, 1H), 4.95 (br, 1H), 6.85 (br, 1H), 6.8-6.95 (m, 6H), 7.05 (m, 2H), 7.2 (m, 2H), 7.95 (2H). M/Z for C36H46N2O6 [M+H]=603.
Example 2E88 Preparation of N-((1R,2R)-1-(4-butoxyphenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00144
1H NMR (CDCl3, 400 mHz, ppm): 1.0 (t, 3H), 1.5 (m, 2H), 1.65 (m, 4H), 1.8 (m, 6H), 2.15 (t, 2H), 2.65 (m, 4H0, 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 3.9 (t, 2H), 4.15 (m, 1H), 4.95 (br, 1H), 5.90 (br, 1H), 6.8-6.95 (m, 4H), 7.2 (br, 2H), 7.90 (br, 2H). M/Z for C30H42N2O5 [M+H]=511.
Example 2E89 Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxyethoxy)phenyl)-5-oxopentanamide
Figure US08309593-20121113-C00145
1H NMR (CDCl3, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.7 (m, 6H), 1.95 (m, 2H), 2.20 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.45 (s, 3H), 3.75 (m, 2H), 3.90 (t, 2H), 4.15 (m, 2H), 4.25 (m, 1H), 4.95 (m, 1H), 6.0 (br, 1H), 6.8 (m, 2H), 6.9 (m, 2H), 7.2 (m, 2H), 7.90 (m, 2H). M/Z for C33H48N2O6 [M+H]=569.
Example 2E90 Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00146
1H NMR (CDCl3, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.75 (m, 3H), 2.1 (m, 1H), 2.4 (m, 1H), 2.55 (t, 2H), 2.75 (m, 3H), 2.85 (m, 1H), 3.0 (m, 1H), 3.75 (s, 3H), 3.90 (t, 2H), 4.05 (m, 2H), 4.1 (m, 1H), 4.15 (m, 1H), 5.0 (br, 1H), 6.6 (br, 1H), 6.8 (m, 6H), 7.2 (m, 2H). M/Z for C29H42N2O6 [M+H]=515.
Example 2E91 Preparation of 2-(4′-chlorobiphenyl-4-yl)-N-((1R,2R)-3-((R)-3-fluoropyrrolidin-1-yl)-1-hydroxy-1-(4-isopropoxyphenyl)propan-2-yl)acetamide
Figure US08309593-20121113-C00147
1H NMR (CDCl3, 400 mHz, ppm): 1.15 (m, 6H), 2.10 (m, 2H), 2.4 (q, 1H), 2.5-2.75 (m, 4H), 2.95 (m, 2H), 3.55 (d, 2H), 4.15 (m, 1H), 4.45 (m, 1H), 4.85 (br, 1H), 5.10 (m, 1H), 5.9 (br, 1H), 6.75 (m, 2H), 7.05 (br, 2H), 7.20 (m, 2H), 7.4 (m, 2H), 7.5 (m, 4H). M/Z for C30H34ClFN2O3 [M+H]=528.
Example 2E92 Preparation of N-((1R,2R)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)-1-(4-isopropoxyphenyl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00148
1H NMR (CDCl3, 400 mHz, ppm): 1.35 (d, 6H), 1.7 (m, 1H), 2.1 (m, 1H), 2.45 (m, 1H), 2.55 (t, 2H), 2.7-2.9 (m, 4H), 3.0 (m, 1H), 3.8 (s, 3H), 4.05 (m, 1H), 4.15 (m, 1H), 4.20 (m, 1H), 4.35 (m, 1H), 4.5 (m, 1H), 4.95 (d, 1H), 6.55 (br, 1H), 6.75-6.85 (m, 6H), 7.2 (m, 2H). M/Z for C26H36N2O6 [M+H]=473.
Example 2E93 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentanamide
Figure US08309593-20121113-C00149
1H NMR (400 MHz, CDCl3) δ=1.7-2.2 (m, 12H), 2.4 (dd, 1H), 2.65-2.9 (m, 6H), 3.0 (dd, 1H), 3.90 (s, 3H), 3.91 (dd, 2H), 4.1-4.22 (m, 1H), 4.3-4.4 (m, 1H), 4.4 (dd, 1H), 4.6 (dd, 1H), 4.91 (d, 1H), 6.19 (d, 1H), 6.83 (d, 2H), 6.92 (d, 2H), 7.22 (d, 2H), 7.9 (d, 2H); MS for C29H39FN2O6 m/z 531 [M+H].
Example 2E94 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-8-methoxyoctanamide
Figure US08309593-20121113-C00150
1H NMR (400 MHz, CDCl3) δ=1.2-1.34 (m, 6H), 1.45-1.6 (m, 4H), 1.7-1.8 (m, 1H), 1.86-1.95 (m, 4H), 2.0-2.2 (m, 4), 2.4-2.5 (m, 2H), 2.7-2.8 (m, 4H), 2.98 (dd, 1H), 3.3 (s, 3H), 3.53 (dd, 1H), 4.0 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4 (m, 1H), 4.5 (dd, 1H), 4.58 (dd, 1H), 4.9 (d, 1H), 5.9 (d, 1H), 6.85 (d, 2H), 7.22 (d, 2H); MS for C26H43FN2O5 m/z 483 [M+H]
Example 2E95 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenoxy)butanamide
Figure US08309593-20121113-C00151
1H NMR (400 MHz, CDCl3) δ=1.6-2.2 (m, 9H), 2.3-2.5 (m, 4H), 2.6-2.8 (m, 5), 2.9 (dd, 1H), 3.7 (s, 3H), 3.85 (dd, 2H), 3.95 (dd, 2H), 4.2-4.3 (m, 2H), 4.5 (dd, 1H), 4.6 (dd, 1H), 4.9 (d, 1H), 6.0 (d, 1H), 6.7-7 (m, 6H), 7.1-7.2 (d, 2H); MS for C28H39FN2O6 m/z 519 [M+H].
Example 2E96 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00152
1H NMR (400 MHz, CDCl3) δ=1.6-1.7 (m, 1H), 1.8-2 (m, 4H), 2.1-2.2 (m, 1), 2.4-2.5 (m, 1H), 2.6 (t, 2H), 2.7-2.85 (m, 4H), 3.0 (dd, 1H), 3.7 (s, 3H), 4.0 (t, 2H), 4.1-4.3 (m, 4H), 4.5 (dd, 1H), 4.6 (dd, 1H) 4.98 (d, 1H), 6.6 (d, 1H), 6.7-6.9 (m, 6H), 7.1-7.22 (d, 2H); MS for C27H37FN2O6 m/z 505 [M+H].
Example 2E97 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide
Figure US08309593-20121113-C00153
1H NMR (400 MHz, CDCl3) δ=1.1-1.4 (m, 3H), 1.5-2.0 (m, 12H), 2.1-2.2 (dd, 4H), 2.4-2.90 (m, 10H), 3.0 (dd, 1H), 3.75 (s, 3H), 3.9 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4.5 (m, 2H), 4.57 (dd, 1H), 4.9 (d, 1H), 5.9 (d, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 7.2 (d, 2H), 7.9 (d, 2H); MS for C31H43FN2O6 m/z 559 [M+H].
Example 2E98 Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide
Figure US08309593-20121113-C00154
1H NMR (400 MHz, CD3OD) δ=1.4-1.6 (m, 4H), 1.6-1.8 (m, 5H), 2.0-2.2 (m, 1H), 2.2-2.3 (m, 2H), 2.4-2.6 (m, 3H), 2.7-3.0 (m, 5H), 3.8 (s, 3H), 3.9 (dd, 1H), 4.1-4.25 (m, 1H), 4.3-4.38 (m, 1H), 4.4 (dd, 1H), 4.5 (dd, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.2 (d, 2H), 8 (d, 2H); MS for C30H41FN2O6 m/z 545 [M+H]
Example 2E99 Preparation of N-((1S,2R)-1-(5-chlorothiophen-2-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00155
1H NMR (400 MHz, CDCl3) δ=1.7 (broad s, 4H), 2.5-2.7 (m, 7H), 2.8 (dd, 1H), 2.94 (dd, 1H), 3.77 (s, 3H) 4.1-4.2 (m, 2H), 4.3-4.35 (m, 1H), 5.18 (d, 1H), 6.55 (d, 1H), 6.66 (d, 1H), 6.67 (d, 1H), 6.7-6.9 (m, 4H); MS for C21H27ClN2O4S m/z 439 [M+H].
Example 2E100 Preparation of N-((1S,2R)-1-hydroxy-1-(3-methylthiophen-2-yl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide 2,2,2-trifluoroacetate
Figure US08309593-20121113-C00156
1H NMR (400 MHz, CD3OD) δ=1.8-2.2 (m, 4H), 2.24 (s, 3H) 2.5-2.8 (m, 2H), 3.0-3.2 (m, 2H), 3.5 (dd, 2H), 3.7 (s, 3H), 3.6-3.8 (m, 2H), 4.0-4.2 (m, 2H), 4.5 (dd, 1H), 5.2 (s, 1H), 6.8 (d, 1H), 6.84 (broad s, 4H), 7.2 (d, 1H); MS for C22H30N2O4S m/z 419 [M+H].
Example 2E101 Preparation of Compound 257: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-morpholinopropan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00157
1H NMR (400 MHz, CDCl3) δ=2.4-2.6 (m, 7H), 2.7 (dd, 1H), 3.5-3.7 (m, 4H), 3.8 (s, 3H), 4-4.2 (m, 2H), 4.2 (s, 4H), 4.2-4.3 (m, 1H), 4.9 (d, 1H), 6.5 (d, 1H), 6.7-6.9 (m, 7H); MS for C25H32N2O7 m/z 473.1 [M+H].
Example 2E102 Preparation of Compound 261: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(piperidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide
Figure US08309593-20121113-C00158
1H NMR (400 MHz, CDCl3) δ=1.4 (br, 2H), 1.6 (br, 4H), 2.2-2.8 (m, 6H), 3.8 (s, 3H), 4.0-4.2 (m, 2H), 4.2 (s, 4H), 4.2-4.3 (m, 1H), 4.9 (s, 1H), 6.4 (d, 1H), 6.7-6.9 (m, 7H); MS for C25H34N2O6 m/z 471.1 [M+H].
Example 2B1 Preparation of Compound 6: 1-benzyl-34(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea
Figure US08309593-20121113-C00159
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.6 (m, 5H), 2.6-2.7 (dd, 1H), 4.0 (m, 1H), 4.2 (s, 4H), 4.3 (m, 2H), 4.8 (d, 1H), 4.86 (d, 1H), 5.0 (br, 1H), 6.6-6.9 (m, 3H), 7.2-7.4 (m, 5H); MS for C23H29N3O4 m/z 412.2 [M+H].
Example 2B2 Preparation of Compound 17: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-fluorobenzyl)urea
Figure US08309593-20121113-C00160
1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.9 (m, 1H), 4.0-4.1 (m, 2H), 4.13 (s, 4H), 4.7 (d, 1H), 5.4 (d, 1H), 6.6-7.1 (m, 7H); MS for C23H28FN3O4 m/z 430.2 [M+H].
Example 2B3 Preparation of Compound 40:1-(4-bromobenzyl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea
Figure US08309593-20121113-C00161
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.8 (m, 6H), 4.0 (m, 1H), 4.1-4.2 (m, 2H) 4.2 (s, 4H), 4.8 (d, 1H), 5.3 (d, 1H), 5.6-5.8 (br, 1H), 6.8-7.0 (m, 3H), 7.0 (d, 2H), 7.4 (d, 2H); MS for C23H28BrN3O4 m/z 490 [M], 491 [M+H], 492 [M+2].
Example 2B4 Preparation of Compound 41: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxybenzyl)urea
Figure US08309593-20121113-C00162
1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.7 (s, 3H), 3.9 (m, 1H), 4.1 (d, 2H), 4.2 (s, 4H), 4.7 (d, 1H), 5.2 (d, 1H), 5.5-5.7 (br, 1H), 6.6-6.8 (m, 5H), 7.1 (d, 2H); MS for C24H31N3O5 m/z 442.2 [M+H].
Example 2B5 Preparation of Compound 80: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxybenzyl)urea
Figure US08309593-20121113-C00163
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.6 (m, 6H), 3.8 (s, 3H), 4.0 (m, 1H), 4.1-4.2 (s, 6H), 4.8 (d, 1H), 5.1 (d, 1H), 5.2-5.4 (br, 1H), 6.6-6.8 (m, 6H), 7.2 (dd, 1H); MS for C24H31N3O5 m/z 442.2 [M+H].
Example 2B6 Preparation of Compound 42: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methylbenzyl)urea
Figure US08309593-20121113-C00164
1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.3 (s, 3H), 2.4-2.6 (m, 6H), 4.0 (m, 1H), 4.2 (d, 2H), 4.21 (s, 4H), 4.7 (d, 1H), 5.2 (d, 1H), 5.4-5.6 (br, 1H), 6.7-7.1 (m, 7H); MS (for C24H31N3O4 m/z 426.2 [M+H].
Example 2B7 Preparation of Compound 43: 1-(4-chlorobenzyl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea
Figure US08309593-20121113-C00165
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.7 (m, 6H), 4.0 (m, 1H), 4.2 (s, 6H), 4.8 (d, 1H), 5.2 (d, 1H), 5.4-5.5 (br, 1H), 6.7-6.9 (m, 3H), 7.1 (d, 2H), 7.3 (d, 2H); MS for C23H28N3ClO4 m/z 446 [M+H], 447.5 [M+2].
Example 2B8 Preparation of Compound 10: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((S)-1-phenylethyl)urea
Figure US08309593-20121113-C00166
1H NMR (400 MHz, CDCl3) δ=1.4 (d, 3H), 1.6 (s, 4H), 2.2-2.5 (m, 4H), 2.5 (dd, 1H), 2.6 (dd, 1H), 3.9 (m, 1H), 4.2 (s, 4H), 4.5 (m, 1H), 4.8 (d, 1H), 5.0 (d, 1H), 5.1-5.3 (br, 1H), 6.6-6.9 (m, 3H), 7.2-7.4 (m, 5H); MS for C24H31N3O4 m/z 426.2 [M+H].
Example 2B9 Preparation of Compound 286: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((R)-1-phenylethyl)urea
Figure US08309593-20121113-C00167
1H NMR (400 MHz, CDCl3) δ=1.3 (d, 3H), 1.7 (s, 4H), 2.2-2.6 (m, 6H), 3.9 (m, 1H), 4.2 (s, 4H), 4.6-4.7 (m, 2H), 5.3 (d, 1H), 5.6-5.7 (br, 1H), 6.6 (d, 1H), 6.7 (d, 1H), 6.8 (s, 1H), 7.2-7.4 (m, 5H); MS for C24H31N3O4 m/z 426.0 [M+H].
Example 2B10 Preparation of Compound 69: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-2-yl)urea
Figure US08309593-20121113-C00168
1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4-2.8 (m, 6H), 4.1 (s, 5H), 4.8 (s, 1H), 6.0 (d, 1H), 6.7 (s, 2H), 6.9 (s, 1H), 7.1-7.8 (m, 7H); MS for C26H29N3O4 m/z 448.1 [M+H].
Example 2B11 Preparation of Compound 288: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-1-yl)urea
Figure US08309593-20121113-C00169
1H NMR (400 MHz, CDCl3) δ=1.6 (s, 4H), 2.4 (s, 4H), 2.6 (d, 2H), 4.1 (m, 1H), 4.2 (s, 4H), 4.8 (d, 1H), 5.4 (d, 1H), 6.5 (d, 1H), 6.6 (d, 1H), 6.7 (s, 1H), 7.2-7.6 (m, 3H), 7.7 (d, 1H), 7.8 (d, 1H), 8.0 (d, 1H); MS for C26H29N3O4 m/z 448.1 [M+H].
Example 2B12 Preparation of Compound 71: 14(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((S)-1-(naphthalen-1-yl)ethyl)urea
Figure US08309593-20121113-C00170
1H NMR (400 MHz, CDCl3) δ=1.4 (s, 4H), 1.5 (d, 3H), 2.3 (s, 4H), 2.4 (dd, 1H), 2.6 (dd, 1H), 3.9 (br, 1H), 4.2 (s, 4H), 4.7 (s, 1H), 5.0 (d, 1H), 5.3 (br, 1H), 5.5 (br, 1H), 6.6 (m, 3H), 7.4-7.6 (m, 4H), 7.7 (d, 1H), 7.8 (d, 1H), 8.1 (d, 1H); MS for C28H33N3O4 m/z 476.2 [M+H].
Example 2B13 Preparation of Compound 70:1-(biphenyl-4-yl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea
Figure US08309593-20121113-C00171
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.6-2.8 (m, 6H), 4.1 (br, 1H), 4.2 (s, 4H), 4.9 (br, 1H), 5.9 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 9H); for C28H31N3O4 m/z 474.1 [M+H].
Example 2B14 Preparation of Compound 81: 14(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)urea
Figure US08309593-20121113-C00172
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.3 (d, 2H), 7.5 (d, 2H); MS for C23H26F3N3O4 m/z 465.97 [M+H].
Example 2B15 Preparation of Compound 68: 14(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-(trifluoromethyl)phenyl)urea
Figure US08309593-20121113-C00173
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.9 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 4H); MS for C23H26F3N3O4 m/z 466.0 [M+H].
Example 2B16 Preparation of Compound 82: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethoxy)phenyl)urea
Figure US08309593-20121113-C00174
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.0 (d, 2H), 7.2 (d, 2H); MS for C23H26F3N3O5 m/z 481.5 [M], 482.5 [M+H].
Example 2B17 Preparation of Compound 133: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methylthiazol-4-yl)phenyl)urea
Figure US08309593-20121113-C00175
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.4-2.7 (m, 6H), 2.7 (s, 3H), 4.1 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2 (s, 1H), 7.3 (d, 2H), 7.7 (d, 2H); MS for C26H30N4O4S m/z 494.9 [M+H].
Example 2B18 Preparation of Compound 7: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-dodecylurea
Figure US08309593-20121113-C00176
1H NMR (400 MHz, CDCl3) δ=0.9 (t, 3H), 1.3 (br, 18H), 1.4 (m, 2H), 1.8 (s, 4H), 2.5-2.7 (m, 6H), 3.1 (q, 2H), 4.0 (m, 1H), 4.3 (s, 4H), 4.4 (br, 1H), 4.76 (d, 1H), 4.8 (d, 1H), 6.7-6.8 (dd, 2H), 6.9 (s, 1H); MS for C28H47N3O4 m/z 489.7 [M+H], 490.9 [M+2].
Example 2B19 Preparation of Compound 287: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(2-(thiophen-2-yl)ethyl)urea
Figure US08309593-20121113-C00177
1H NMR (400 MHz, CDCl3) δ=1.7 (s, 4H), 2.5-2.7 (m, 6H), 3.0 (t, 2H), 3.8 (q, 2H), 4.0 (m, 1H), 4.2 (s, 4H), 4.8 (d, 2H), 4.9 (d, 1H), 6.7-6.8 (m, 3H), 6.9 (d, 1H), 6.9 (dd-1H), 7.1 (d, 1H); MS for C22H29N3O4S m/z 432.1 [M+H].
Example 2B20 Preparation of 1-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxybenzyl)urea 2,2,2-trifluoroacetate
Figure US08309593-20121113-C00178
1H NMR (400 MHz, CD3OD) δ=1.8-2.2 (m, 6H), 3.2-3.3 (dd, 2H), 3.4-3.7 (m, 3H), 3.8 (s, 3H), 3.82-4.1 (m, 4H), 4.3 (dd, 2H), 4.4 (dd, 1H), 4.5 (dd, 2H), 4.8 (dd, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 7 (m, 2H), 7.3 (d, 2H); MS for C26H36FN3O5 m/z 491 [M+H].
Example 2B21 Preparation of 1-(4-chlorobenzyl)-3-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)urea
Figure US08309593-20121113-C00179
1H NMR (400 MHz, CDCl3) δ=1.6-1.8 (m, 3H), 1.8-2 (m, 5H), 2-2.2 (m, 2H), 2.2-2.3 (m, 2H), 2.8-2.4 (m, 5H), 2.9 (m, 1H), 3.9-4.0 (m, 3), 4.1-4.4 (m, 3H), 4.5 (t, 1H), 4.6-4.7 (m, 1H), 4.75 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.15-7.3 (m, 4H); MS for C25H33ClFN3O4 m/z 494 [M+H].
Example 3 GM3 Elisa Assay
B16-FO cells from ATCC (American Tissue Culture Collection) were grown in DMEM media (ATCC) with 10% Fetal Bovine Serum (Hyclone) and Pen/Step/Glutamine (Biowhittaker). 4000 cells per well were plated on collagen coated plates (BD) and allowed to attach for 6 hours in an incubator (37 degrees, 5% CO2). After 6 hours the compounds and controls were added to the wells, the plates mixed and returned to the incubator for 2 days. Day of assay the cells were fixed for 20 minutes with 1% formaldehyde and then washed with Tris Buffered Saline (TBS) 3 times, 150 μl of TBS was left in the wells and 50 μl of goat serum (Invitrogen) was added, the plates mixed and incubated for 1 hour at room temperature. The plates were flicked and the cells incubated with the monoclonal Antibody to GM3 (NeuAc) (Cosmo) for 45 minutes as room temperature. The plates were then washed 3 times with TBS, leaving 150 μl of TBS in the wells and Peroxidase AffinPure F (ab′) 2 frag Gt Anti-mouse IgM, μ Chain Specific (Jackson Immuno Research) was added in 50 μl, the plates mixed and incubated for 45 minutes at room temperature. The plates were washed 3 times with TBS, flicked and blotted and 100 μl of Quantablu (Pierce) was added to the wells and incubated for 1 hour then read on a Fluorometer at Ex 325 and Em 420. The data was then analyzed using standard programs.
The results of the GM3 Elisa assay are summarized in Tables 1 and 2. In Tables 1 and 2, IC50 values are indicated as “A,” “B,” C,” “D,” and “E” for those of less than or equal to 0.1 μm; those of greater than 0.1 μm, and less than or equal to 1 μm; those of greater than 1 μm, and less than or equal to 3 μm; those of greater than 3 μm, and less than or equal to 10 μm; those of greater than 10 μm, respectively. As shown in Tables 1, 2 and 3, numerous compounds of the invention were shown to be inhibitors of GM3.
TABLE 1
IC 50 Values from GM3 Elisa Assay
Figure US08309593-20121113-C00180
Z—R* Compound IC50_uM_Mean
Figure US08309593-20121113-C00181
 1 B
Figure US08309593-20121113-C00182
 2 C
Figure US08309593-20121113-C00183
 3 C
Figure US08309593-20121113-C00184
 4 B
Figure US08309593-20121113-C00185
 5 B
Figure US08309593-20121113-C00186
 6 B
Figure US08309593-20121113-C00187
 7 A
Figure US08309593-20121113-C00188
 8 B
Figure US08309593-20121113-C00189
 9 B
Figure US08309593-20121113-C00190
 10 B
Figure US08309593-20121113-C00191
 11 A
Figure US08309593-20121113-C00192
 12 B
Figure US08309593-20121113-C00193
 13 B
Figure US08309593-20121113-C00194
 14 B
Figure US08309593-20121113-C00195
 15 B
Figure US08309593-20121113-C00196
 16 D
Figure US08309593-20121113-C00197
 17 A
Figure US08309593-20121113-C00198
 18 B
Figure US08309593-20121113-C00199
 19 B
Figure US08309593-20121113-C00200
 20 B
Figure US08309593-20121113-C00201
 21 A
Figure US08309593-20121113-C00202
 22 C
Figure US08309593-20121113-C00203
 23 A
Figure US08309593-20121113-C00204
 24 B
Figure US08309593-20121113-C00205
 25 B
Figure US08309593-20121113-C00206
 26 B
Figure US08309593-20121113-C00207
 27 A
Figure US08309593-20121113-C00208
 28 A
Figure US08309593-20121113-C00209
 29 A
Figure US08309593-20121113-C00210
 30 B
Figure US08309593-20121113-C00211
 31 B
Figure US08309593-20121113-C00212
 32 A
Figure US08309593-20121113-C00213
 33 A
Figure US08309593-20121113-C00214
 34 C
Figure US08309593-20121113-C00215
 35 C
Figure US08309593-20121113-C00216
 36 B
Figure US08309593-20121113-C00217
 37 B
Figure US08309593-20121113-C00218
 38 B
Figure US08309593-20121113-C00219
 39 A
Figure US08309593-20121113-C00220
 40 A
Figure US08309593-20121113-C00221
 41 A
Figure US08309593-20121113-C00222
 42 A
Figure US08309593-20121113-C00223
 43 A
Figure US08309593-20121113-C00224
 44 B
Figure US08309593-20121113-C00225
 45 B
Figure US08309593-20121113-C00226
 46 B
Figure US08309593-20121113-C00227
 47 B
Figure US08309593-20121113-C00228
 48 A
Figure US08309593-20121113-C00229
 49 A
Figure US08309593-20121113-C00230
 50 B
Figure US08309593-20121113-C00231
 51 B
Figure US08309593-20121113-C00232
 52 B
Figure US08309593-20121113-C00233
 53 C
Figure US08309593-20121113-C00234
 54 A
Figure US08309593-20121113-C00235
 55 A
Figure US08309593-20121113-C00236
 56 A
Figure US08309593-20121113-C00237
 57 A
Figure US08309593-20121113-C00238
 58 B
Figure US08309593-20121113-C00239
 59 A
Figure US08309593-20121113-C00240
 60 A
Figure US08309593-20121113-C00241
 61 A
Figure US08309593-20121113-C00242
 62 B
Figure US08309593-20121113-C00243
 63 A
Figure US08309593-20121113-C00244
 64 A
Figure US08309593-20121113-C00245
 65 A
Figure US08309593-20121113-C00246
 66 A
Figure US08309593-20121113-C00247
 67 A
Figure US08309593-20121113-C00248
 68 B
Figure US08309593-20121113-C00249
 69 B
Figure US08309593-20121113-C00250
 70 A
Figure US08309593-20121113-C00251
 71 B
Figure US08309593-20121113-C00252
 72 B
Figure US08309593-20121113-C00253
 73 A
Figure US08309593-20121113-C00254
 74 B
Figure US08309593-20121113-C00255
 75 B
Figure US08309593-20121113-C00256
 76 B
Figure US08309593-20121113-C00257
 77 A
Figure US08309593-20121113-C00258
 78 B
Figure US08309593-20121113-C00259
 79 A
Figure US08309593-20121113-C00260
 80 A
Figure US08309593-20121113-C00261
 81 B
Figure US08309593-20121113-C00262
 82 A
Figure US08309593-20121113-C00263
 83 A
Figure US08309593-20121113-C00264
 84 C
Figure US08309593-20121113-C00265
 85 A
Figure US08309593-20121113-C00266
 86 A
Figure US08309593-20121113-C00267
 87 A
Figure US08309593-20121113-C00268
 88 B
Figure US08309593-20121113-C00269
 89 B
Figure US08309593-20121113-C00270
 90 B
Figure US08309593-20121113-C00271
 91 B
Figure US08309593-20121113-C00272
 92 A
Figure US08309593-20121113-C00273
 93 A
Figure US08309593-20121113-C00274
 94 C
Figure US08309593-20121113-C00275
 95 A
Figure US08309593-20121113-C00276
 96 A
Figure US08309593-20121113-C00277
 97 B
Figure US08309593-20121113-C00278
 98 D
Figure US08309593-20121113-C00279
 99 B
Figure US08309593-20121113-C00280
100 A
Figure US08309593-20121113-C00281
101 A
Figure US08309593-20121113-C00282
102 C
Figure US08309593-20121113-C00283
103 A
Figure US08309593-20121113-C00284
104 B
Figure US08309593-20121113-C00285
105 B
Figure US08309593-20121113-C00286
106 B
Figure US08309593-20121113-C00287
107 D
Figure US08309593-20121113-C00288
108 B
Figure US08309593-20121113-C00289
109 A
Figure US08309593-20121113-C00290
110 A
Figure US08309593-20121113-C00291
111 B
Figure US08309593-20121113-C00292
112 B
Figure US08309593-20121113-C00293
113 B
Figure US08309593-20121113-C00294
114 B
Figure US08309593-20121113-C00295
115 A
Figure US08309593-20121113-C00296
116 B
Figure US08309593-20121113-C00297
117 B
Figure US08309593-20121113-C00298
118 B
Figure US08309593-20121113-C00299
119 A
Figure US08309593-20121113-C00300
120 B
Figure US08309593-20121113-C00301
121 D
Figure US08309593-20121113-C00302
122 D
Figure US08309593-20121113-C00303
123 C
Figure US08309593-20121113-C00304
124 C
Figure US08309593-20121113-C00305
125 B
Figure US08309593-20121113-C00306
126 D
Figure US08309593-20121113-C00307
127 B
Figure US08309593-20121113-C00308
128 C
Figure US08309593-20121113-C00309
129 B
Figure US08309593-20121113-C00310
130 C
Figure US08309593-20121113-C00311
131 A
Figure US08309593-20121113-C00312
132 D
Figure US08309593-20121113-C00313
133 D
Figure US08309593-20121113-C00314
134 C
Figure US08309593-20121113-C00315
135 C
Figure US08309593-20121113-C00316
136 A
Figure US08309593-20121113-C00317
137 A
Figure US08309593-20121113-C00318
138 A
Figure US08309593-20121113-C00319
139 A
Figure US08309593-20121113-C00320
140 A
Figure US08309593-20121113-C00321
141 A
Figure US08309593-20121113-C00322
142 A
Figure US08309593-20121113-C00323
143 A
Figure US08309593-20121113-C00324
144 A
Figure US08309593-20121113-C00325
145 B
Figure US08309593-20121113-C00326
146 B
Figure US08309593-20121113-C00327
147 B
Figure US08309593-20121113-C00328
148 A
Figure US08309593-20121113-C00329
149 B
Figure US08309593-20121113-C00330
150 C
Figure US08309593-20121113-C00331
151 B
Figure US08309593-20121113-C00332
152 A
Figure US08309593-20121113-C00333
153 B
Figure US08309593-20121113-C00334
154 B
Figure US08309593-20121113-C00335
155 B
Figure US08309593-20121113-C00336
156 A
Figure US08309593-20121113-C00337
157 A
Figure US08309593-20121113-C00338
158 A
Figure US08309593-20121113-C00339
159 A
Figure US08309593-20121113-C00340
160 B
Figure US08309593-20121113-C00341
161 B
Figure US08309593-20121113-C00342
162 A
Figure US08309593-20121113-C00343
163 A
Figure US08309593-20121113-C00344
164 A
Figure US08309593-20121113-C00345
165 A
Figure US08309593-20121113-C00346
166 A
Figure US08309593-20121113-C00347
167 A
Figure US08309593-20121113-C00348
168 A
Figure US08309593-20121113-C00349
169 A
Figure US08309593-20121113-C00350
170 B
Figure US08309593-20121113-C00351
171 C
Figure US08309593-20121113-C00352
172 B
Figure US08309593-20121113-C00353
173 A
Figure US08309593-20121113-C00354
174 A
Figure US08309593-20121113-C00355
175 A
Figure US08309593-20121113-C00356
176 A
Figure US08309593-20121113-C00357
177 B
Figure US08309593-20121113-C00358
178 A
Figure US08309593-20121113-C00359
179 A
Figure US08309593-20121113-C00360
180 B
Figure US08309593-20121113-C00361
181 A
Figure US08309593-20121113-C00362
182 B
Figure US08309593-20121113-C00363
183 A
Figure US08309593-20121113-C00364
184 B
Figure US08309593-20121113-C00365
185 B
Figure US08309593-20121113-C00366
186 A
Figure US08309593-20121113-C00367
187 B
Figure US08309593-20121113-C00368
188 B
Figure US08309593-20121113-C00369
189 B
Figure US08309593-20121113-C00370
190 A
Figure US08309593-20121113-C00371
191 A
Figure US08309593-20121113-C00372
192 B
Figure US08309593-20121113-C00373
193 B
Figure US08309593-20121113-C00374
194 B
Figure US08309593-20121113-C00375
195 B
Figure US08309593-20121113-C00376
196 C
Figure US08309593-20121113-C00377
197 A
Figure US08309593-20121113-C00378
198 B
Figure US08309593-20121113-C00379
199 A
Figure US08309593-20121113-C00380
200 B
Figure US08309593-20121113-C00381
201 C
Figure US08309593-20121113-C00382
202 B
Figure US08309593-20121113-C00383
203 A
Figure US08309593-20121113-C00384
204 B
Figure US08309593-20121113-C00385
205 A
Figure US08309593-20121113-C00386
206 B
Figure US08309593-20121113-C00387
207 A
Figure US08309593-20121113-C00388
208 B
Figure US08309593-20121113-C00389
209 A
Figure US08309593-20121113-C00390
210 B
Figure US08309593-20121113-C00391
211 B
Figure US08309593-20121113-C00392
212 D
Figure US08309593-20121113-C00393
213 B
Figure US08309593-20121113-C00394
214 D
Figure US08309593-20121113-C00395
215 B
Figure US08309593-20121113-C00396
216 A
Figure US08309593-20121113-C00397
217 A
Figure US08309593-20121113-C00398
218 D
Figure US08309593-20121113-C00399
219 D
Figure US08309593-20121113-C00400
220 B
Figure US08309593-20121113-C00401
221 A
Figure US08309593-20121113-C00402
222 A
Figure US08309593-20121113-C00403
223 A
Figure US08309593-20121113-C00404
224 B
Figure US08309593-20121113-C00405
225 A
Figure US08309593-20121113-C00406
226 D
Figure US08309593-20121113-C00407
227 C
Figure US08309593-20121113-C00408
228 B
Figure US08309593-20121113-C00409
229 E
Figure US08309593-20121113-C00410
230 B
Figure US08309593-20121113-C00411
231 A
Figure US08309593-20121113-C00412
232 C
Figure US08309593-20121113-C00413
233 C
Figure US08309593-20121113-C00414
234 B
Figure US08309593-20121113-C00415
235 B
Figure US08309593-20121113-C00416
236 A
Figure US08309593-20121113-C00417
237 A
Figure US08309593-20121113-C00418
238 A
Figure US08309593-20121113-C00419
239 D
Figure US08309593-20121113-C00420
240 C
Figure US08309593-20121113-C00421
241 A
Figure US08309593-20121113-C00422
291 C
Figure US08309593-20121113-C00423
292 C
Figure US08309593-20121113-C00424
293 B
Figure US08309593-20121113-C00425
294 B
Figure US08309593-20121113-C00426
295 A
Figure US08309593-20121113-C00427
296 B
Figure US08309593-20121113-C00428
297 C
Figure US08309593-20121113-C00429
298 B
Figure US08309593-20121113-C00430
299 A
Figure US08309593-20121113-C00431
300 A
Figure US08309593-20121113-C00432
301 A
Figure US08309593-20121113-C00433
302 A
Figure US08309593-20121113-C00434
303 A
Figure US08309593-20121113-C00435
304 A
Figure US08309593-20121113-C00436
305 A
Figure US08309593-20121113-C00437
306 B
Figure US08309593-20121113-C00438
307 A
Figure US08309593-20121113-C00439
308 A
TABLE 2
IC 50 Values from GM3 Elisa Assay
Structure Compound IC50_uM_Mean
Figure US08309593-20121113-C00440
242 D
Figure US08309593-20121113-C00441
243 A
Figure US08309593-20121113-C00442
244 A
Figure US08309593-20121113-C00443
245 D
Figure US08309593-20121113-C00444
246 C
Figure US08309593-20121113-C00445
247 A
Figure US08309593-20121113-C00446
248 B
Figure US08309593-20121113-C00447
249 C
Figure US08309593-20121113-C00448
250 B
Figure US08309593-20121113-C00449
251 B
Figure US08309593-20121113-C00450
252 B
Figure US08309593-20121113-C00451
253 B
Figure US08309593-20121113-C00452
254 B
Figure US08309593-20121113-C00453
255 C
Figure US08309593-20121113-C00454
256 B
Figure US08309593-20121113-C00455
257 D
Figure US08309593-20121113-C00456
258 D
Figure US08309593-20121113-C00457
259 A
Figure US08309593-20121113-C00458
260 A
Figure US08309593-20121113-C00459
261 B
Figure US08309593-20121113-C00460
262 A
Figure US08309593-20121113-C00461
263 B
Figure US08309593-20121113-C00462
264 A
Figure US08309593-20121113-C00463
265 A
Figure US08309593-20121113-C00464
266 A
Figure US08309593-20121113-C00465
267 A
Figure US08309593-20121113-C00466
268 A
Figure US08309593-20121113-C00467
269 A
Figure US08309593-20121113-C00468
270 A
Figure US08309593-20121113-C00469
271 A
Figure US08309593-20121113-C00470
272 A
Figure US08309593-20121113-C00471
273 B
Figure US08309593-20121113-C00472
274 C
Figure US08309593-20121113-C00473
275 A
Figure US08309593-20121113-C00474
276 B
Figure US08309593-20121113-C00475
277 D
Figure US08309593-20121113-C00476
278 E
Figure US08309593-20121113-C00477
279 C
Figure US08309593-20121113-C00478
282 C
Figure US08309593-20121113-C00479
283 A
Figure US08309593-20121113-C00480
284 A
Figure US08309593-20121113-C00481
285 A
Figure US08309593-20121113-C00482
286 D
Figure US08309593-20121113-C00483
287 C
Figure US08309593-20121113-C00484
289 B
Figure US08309593-20121113-C00485
309 A
Figure US08309593-20121113-C00486
310 C
Figure US08309593-20121113-C00487
311 C
Figure US08309593-20121113-C00488
312 B
Figure US08309593-20121113-C00489
313 A
Figure US08309593-20121113-C00490
314 C
Figure US08309593-20121113-C00491
315 B
Figure US08309593-20121113-C00492
316 D
Figure US08309593-20121113-C00493
317 B
Figure US08309593-20121113-C00494
318 B
Figure US08309593-20121113-C00495
319 B
Figure US08309593-20121113-C00496
320 A
Figure US08309593-20121113-C00497
321 C
Figure US08309593-20121113-C00498
322 B
TABLE 3
IC 50 Values
Structure IC50_uM_Mean Compound
Figure US08309593-20121113-C00499
B 340
Figure US08309593-20121113-C00500
A 341
Figure US08309593-20121113-C00501
B 342
Figure US08309593-20121113-C00502
B 343
Figure US08309593-20121113-C00503
A 344
Figure US08309593-20121113-C00504
A 345
Figure US08309593-20121113-C00505
B 346
Figure US08309593-20121113-C00506
B 347
Figure US08309593-20121113-C00507
B 348
Figure US08309593-20121113-C00508
B 349
Figure US08309593-20121113-C00509
A 350
Figure US08309593-20121113-C00510
B 351
Figure US08309593-20121113-C00511
D 352
Figure US08309593-20121113-C00512
B 353
Figure US08309593-20121113-C00513
B 354
Figure US08309593-20121113-C00514
C 355
Figure US08309593-20121113-C00515
C 356
Figure US08309593-20121113-C00516
B 357
Figure US08309593-20121113-C00517
A 358
Figure US08309593-20121113-C00518
B 359
Figure US08309593-20121113-C00519
B 360
Figure US08309593-20121113-C00520
D 361
Figure US08309593-20121113-C00521
D 362
Figure US08309593-20121113-C00522
B 363
Figure US08309593-20121113-C00523
A 364
Figure US08309593-20121113-C00524
A 365
Figure US08309593-20121113-C00525
A 366
Figure US08309593-20121113-C00526
A 367
Figure US08309593-20121113-C00527
A 368
Figure US08309593-20121113-C00528
A 369
Figure US08309593-20121113-C00529
A 370
Figure US08309593-20121113-C00530
A 371
Figure US08309593-20121113-C00531
A 372
Figure US08309593-20121113-C00532
A 373
Figure US08309593-20121113-C00533
A 374
Figure US08309593-20121113-C00534
B 375
Figure US08309593-20121113-C00535
A 376
Figure US08309593-20121113-C00536
A 377
Figure US08309593-20121113-C00537
A 378
Figure US08309593-20121113-C00538
B 379
Figure US08309593-20121113-C00539
A 380
Figure US08309593-20121113-C00540
C 381
Figure US08309593-20121113-C00541
B 382
Figure US08309593-20121113-C00542
B 383
Figure US08309593-20121113-C00543
B 384
Figure US08309593-20121113-C00544
C 385
Figure US08309593-20121113-C00545
B 386
Figure US08309593-20121113-C00546
B 387
Figure US08309593-20121113-C00547
A 388
Figure US08309593-20121113-C00548
A 389
Figure US08309593-20121113-C00549
A 390
Figure US08309593-20121113-C00550
B 391
Figure US08309593-20121113-C00551
D 392
Figure US08309593-20121113-C00552
D 393
Figure US08309593-20121113-C00553
C 394
Figure US08309593-20121113-C00554
D 395
Figure US08309593-20121113-C00555
D 396
Figure US08309593-20121113-C00556
D 397
Figure US08309593-20121113-C00557
D 398
Figure US08309593-20121113-C00558
C 399
Figure US08309593-20121113-C00559
D 400
Figure US08309593-20121113-C00560
B 401
Figure US08309593-20121113-C00561
D 402
Figure US08309593-20121113-C00562
C 403
Figure US08309593-20121113-C00563
D 404
Figure US08309593-20121113-C00564
C 405
Figure US08309593-20121113-C00565
D 406
Figure US08309593-20121113-C00566
C 407
Figure US08309593-20121113-C00567
C 408
Figure US08309593-20121113-C00568
B 409
Figure US08309593-20121113-C00569
D 410
Figure US08309593-20121113-C00570
D 411
Figure US08309593-20121113-C00571
A 412
Figure US08309593-20121113-C00572
A 413
Figure US08309593-20121113-C00573
B 414
Figure US08309593-20121113-C00574
B 415
Figure US08309593-20121113-C00575
A 416
Figure US08309593-20121113-C00576
A 417
Figure US08309593-20121113-C00577
A 418
Figure US08309593-20121113-C00578
A 419
Figure US08309593-20121113-C00579
A 420
Figure US08309593-20121113-C00580
A 421
Figure US08309593-20121113-C00581
D 422
Figure US08309593-20121113-C00582
C 423
Figure US08309593-20121113-C00583
D 424
Figure US08309593-20121113-C00584
D 425
Figure US08309593-20121113-C00585
D 426
Figure US08309593-20121113-C00586
D 427
Figure US08309593-20121113-C00587
D 428
Figure US08309593-20121113-C00588
D 429
Figure US08309593-20121113-C00589
A 430
Figure US08309593-20121113-C00590
A 431
Figure US08309593-20121113-C00591
A 432
Figure US08309593-20121113-C00592
A 433
Figure US08309593-20121113-C00593
A 434
Figure US08309593-20121113-C00594
A 435
Figure US08309593-20121113-C00595
A 436
Figure US08309593-20121113-C00596
A 437
Figure US08309593-20121113-C00597
A 438
Figure US08309593-20121113-C00598
B 439
Figure US08309593-20121113-C00599
A 440
Figure US08309593-20121113-C00600
A 441
Figure US08309593-20121113-C00601
A 442
Figure US08309593-20121113-C00602
A 443
Figure US08309593-20121113-C00603
B 444
Figure US08309593-20121113-C00604
B 445
Figure US08309593-20121113-C00605
A 446
Figure US08309593-20121113-C00606
A 447
Figure US08309593-20121113-C00607
B 448
Figure US08309593-20121113-C00608
A 449
Figure US08309593-20121113-C00609
A 450
Figure US08309593-20121113-C00610
B 451
Figure US08309593-20121113-C00611
B 452
Figure US08309593-20121113-C00612
A 453
Figure US08309593-20121113-C00613
A 454
Figure US08309593-20121113-C00614
A 455
Figure US08309593-20121113-C00615
A 456
Figure US08309593-20121113-C00616
A 457
Figure US08309593-20121113-C00617
D 458
Figure US08309593-20121113-C00618
D 459
Figure US08309593-20121113-C00619
C 460
Figure US08309593-20121113-C00620
B 461
Figure US08309593-20121113-C00621
C 462
Figure US08309593-20121113-C00622
B 463
Figure US08309593-20121113-C00623
D 464
Figure US08309593-20121113-C00624
B 465
Figure US08309593-20121113-C00625
D 466
Figure US08309593-20121113-C00626
B 467
Figure US08309593-20121113-C00627
A 468
Figure US08309593-20121113-C00628
B 469
Figure US08309593-20121113-C00629
B 470
Figure US08309593-20121113-C00630
C 471
Figure US08309593-20121113-C00631
B 472
Figure US08309593-20121113-C00632
A 473
Figure US08309593-20121113-C00633
B 474
Figure US08309593-20121113-C00634
A 475
Figure US08309593-20121113-C00635
B 476
Figure US08309593-20121113-C00636
D 477
Figure US08309593-20121113-C00637
B 478
Figure US08309593-20121113-C00638
A 479
Figure US08309593-20121113-C00639
C 480
Figure US08309593-20121113-C00640
D 481
Figure US08309593-20121113-C00641
D 482
Figure US08309593-20121113-C00642
D 483
Figure US08309593-20121113-C00643
C 484
Figure US08309593-20121113-C00644
D 485
Figure US08309593-20121113-C00645
C 486
Figure US08309593-20121113-C00646
D 487
Figure US08309593-20121113-C00647
C 488
Figure US08309593-20121113-C00648
D 489
Figure US08309593-20121113-C00649
D 490
Figure US08309593-20121113-C00650
C 491
Figure US08309593-20121113-C00651
D 492
Figure US08309593-20121113-C00652
C 493
Figure US08309593-20121113-C00653
B 494
Figure US08309593-20121113-C00654
A 495
Figure US08309593-20121113-C00655
A 496
Figure US08309593-20121113-C00656
A 497
Figure US08309593-20121113-C00657
A 498
Figure US08309593-20121113-C00658
A 499
Figure US08309593-20121113-C00659
A 500
Figure US08309593-20121113-C00660
A 501
Figure US08309593-20121113-C00661
A 502
Figure US08309593-20121113-C00662
A 503
Figure US08309593-20121113-C00663
B 504
Figure US08309593-20121113-C00664
D 505
Figure US08309593-20121113-C00665
D 506
Figure US08309593-20121113-C00666
B 507
Figure US08309593-20121113-C00667
D 508
Figure US08309593-20121113-C00668
B 509
Figure US08309593-20121113-C00669
D 510
Figure US08309593-20121113-C00670
D 511
Figure US08309593-20121113-C00671
C 512
Figure US08309593-20121113-C00672
D 513
Figure US08309593-20121113-C00673
B 514
Figure US08309593-20121113-C00674
A 515
Figure US08309593-20121113-C00675
B 516
Figure US08309593-20121113-C00676
B 517
Figure US08309593-20121113-C00677
B 518
Figure US08309593-20121113-C00678
D 519
Figure US08309593-20121113-C00679
C 520
Figure US08309593-20121113-C00680
D 521
Figure US08309593-20121113-C00681
A 522
Figure US08309593-20121113-C00682
B 523
Figure US08309593-20121113-C00683
B 524
Figure US08309593-20121113-C00684
A 525
Figure US08309593-20121113-C00685
B 526
Figure US08309593-20121113-C00686
C 527
Figure US08309593-20121113-C00687
C 528
Figure US08309593-20121113-C00688
A 529
Figure US08309593-20121113-C00689
D 530
Figure US08309593-20121113-C00690
A 531
Figure US08309593-20121113-C00691
A 532
Figure US08309593-20121113-C00692
B 533
Figure US08309593-20121113-C00693
D 534
Figure US08309593-20121113-C00694
D 535
Figure US08309593-20121113-C00695
D 536
Figure US08309593-20121113-C00696
A 537
Figure US08309593-20121113-C00697
D 538
Figure US08309593-20121113-C00698
D 539
Figure US08309593-20121113-C00699
D 540
Figure US08309593-20121113-C00700
D 541
Figure US08309593-20121113-C00701
D 542
Figure US08309593-20121113-C00702
D 543
Figure US08309593-20121113-C00703
B 544
Figure US08309593-20121113-C00704
B 545
Figure US08309593-20121113-C00705
D 546
Figure US08309593-20121113-C00706
A 547
Figure US08309593-20121113-C00707
C 548
Figure US08309593-20121113-C00708
D 549
Figure US08309593-20121113-C00709
D 550
Figure US08309593-20121113-C00710
D 551
Figure US08309593-20121113-C00711
C 552
Figure US08309593-20121113-C00712
D 553
Figure US08309593-20121113-C00713
D 554
Figure US08309593-20121113-C00714
B 555
Figure US08309593-20121113-C00715
D 556
Figure US08309593-20121113-C00716
D 557
Figure US08309593-20121113-C00717
C 558
Figure US08309593-20121113-C00718
B 559
Figure US08309593-20121113-C00719
B 560
Figure US08309593-20121113-C00720
D 561
Figure US08309593-20121113-C00721
B 562
Figure US08309593-20121113-C00722
D 563
Figure US08309593-20121113-C00723
B 564
Figure US08309593-20121113-C00724
A 565
Figure US08309593-20121113-C00725
A 566
Figure US08309593-20121113-C00726
B 567
Figure US08309593-20121113-C00727
B 568
Figure US08309593-20121113-C00728
D 569
Figure US08309593-20121113-C00729
D 570
Figure US08309593-20121113-C00730
D 571
Figure US08309593-20121113-C00731
B 572
Figure US08309593-20121113-C00732
B 573
Figure US08309593-20121113-C00733
B 574
Figure US08309593-20121113-C00734
B 575
Figure US08309593-20121113-C00735
B 576
Figure US08309593-20121113-C00736
B 577
Figure US08309593-20121113-C00737
A 578
Figure US08309593-20121113-C00738
D 579
Figure US08309593-20121113-C00739
D 580
Figure US08309593-20121113-C00740
B 581
Figure US08309593-20121113-C00741
D 582
Figure US08309593-20121113-C00742
D 583
Figure US08309593-20121113-C00743
B 584
Figure US08309593-20121113-C00744
B 585
Figure US08309593-20121113-C00745
A 586
Figure US08309593-20121113-C00746
B 587
Figure US08309593-20121113-C00747
D 588
Figure US08309593-20121113-C00748
C 589
Figure US08309593-20121113-C00749
D 590
Figure US08309593-20121113-C00750
D 591
Figure US08309593-20121113-C00751
A 592
Figure US08309593-20121113-C00752
B 593
Figure US08309593-20121113-C00753
C 594
Figure US08309593-20121113-C00754
D 595
Figure US08309593-20121113-C00755
D 596
Figure US08309593-20121113-C00756
D 597
Figure US08309593-20121113-C00757
D 598
Figure US08309593-20121113-C00758
C 599
Figure US08309593-20121113-C00759
C 600
Figure US08309593-20121113-C00760
D 601
Figure US08309593-20121113-C00761
D 602
Figure US08309593-20121113-C00762
B 603
Figure US08309593-20121113-C00763
D 604
Figure US08309593-20121113-C00764
D 605
Figure US08309593-20121113-C00765
D 606
Figure US08309593-20121113-C00766
C 607
Figure US08309593-20121113-C00767
D 608
Figure US08309593-20121113-C00768
B 609
Figure US08309593-20121113-C00769
D 610
Figure US08309593-20121113-C00770
D 611
Figure US08309593-20121113-C00771
D 612
Figure US08309593-20121113-C00772
D 613
Figure US08309593-20121113-C00773
D 614
Figure US08309593-20121113-C00774
B 615
Figure US08309593-20121113-C00775
D 616
Figure US08309593-20121113-C00776
C 617
Figure US08309593-20121113-C00777
D 618
Figure US08309593-20121113-C00778
C 619
Figure US08309593-20121113-C00779
B 620
Figure US08309593-20121113-C00780
C 621
Figure US08309593-20121113-C00781
D 622
Figure US08309593-20121113-C00782
D 623
Figure US08309593-20121113-C00783
D 624
Figure US08309593-20121113-C00784
D 625
Figure US08309593-20121113-C00785
B 626
Figure US08309593-20121113-C00786
D 627
Figure US08309593-20121113-C00787
A 628
Figure US08309593-20121113-C00788
B 629
Figure US08309593-20121113-C00789
B 630
Figure US08309593-20121113-C00790
D 631
Figure US08309593-20121113-C00791
D 632
Figure US08309593-20121113-C00792
B 633
Figure US08309593-20121113-C00793
B 634
Figure US08309593-20121113-C00794
D 635
Figure US08309593-20121113-C00795
D 636
Figure US08309593-20121113-C00796
B 637
Figure US08309593-20121113-C00797
D 638
Figure US08309593-20121113-C00798
B 639
Figure US08309593-20121113-C00799
B 640
Figure US08309593-20121113-C00800
A 641
Figure US08309593-20121113-C00801
B 642
Figure US08309593-20121113-C00802
C 643
Figure US08309593-20121113-C00803
C 644
Figure US08309593-20121113-C00804
D 645
Figure US08309593-20121113-C00805
D 646
Figure US08309593-20121113-C00806
B 647
Figure US08309593-20121113-C00807
648
Figure US08309593-20121113-C00808
649
Figure US08309593-20121113-C00809
B 650
Figure US08309593-20121113-C00810
C 651
Figure US08309593-20121113-C00811
D 652
Figure US08309593-20121113-C00812
A 653
Figure US08309593-20121113-C00813
C 654
Figure US08309593-20121113-C00814
B 655
Figure US08309593-20121113-C00815
A 656
Figure US08309593-20121113-C00816
B 657
Figure US08309593-20121113-C00817
B 658
Figure US08309593-20121113-C00818
B 659
Figure US08309593-20121113-C00819
B 660
Figure US08309593-20121113-C00820
C 661
Figure US08309593-20121113-C00821
B 662
Figure US08309593-20121113-C00822
B 663
Figure US08309593-20121113-C00823
C 664
Figure US08309593-20121113-C00824
D 665
Figure US08309593-20121113-C00825
B 666
Figure US08309593-20121113-C00826
B 667
Figure US08309593-20121113-C00827
C 668
Figure US08309593-20121113-C00828
D 669
Figure US08309593-20121113-C00829
D 670
Figure US08309593-20121113-C00830
D 671
Figure US08309593-20121113-C00831
D 672
Figure US08309593-20121113-C00832
D 673
Figure US08309593-20121113-C00833
D 674
Figure US08309593-20121113-C00834
D 675
Figure US08309593-20121113-C00835
D 676
Figure US08309593-20121113-C00836
D 677
Figure US08309593-20121113-C00837
D 678
Figure US08309593-20121113-C00838
D 679
Figure US08309593-20121113-C00839
A 680
Figure US08309593-20121113-C00840
C 681
Figure US08309593-20121113-C00841
D 682
Figure US08309593-20121113-C00842
D 683
Figure US08309593-20121113-C00843
B 684
Figure US08309593-20121113-C00844
D 685
Figure US08309593-20121113-C00845
D 686
Figure US08309593-20121113-C00846
D 687
Figure US08309593-20121113-C00847
D 688
Figure US08309593-20121113-C00848
D 689
Figure US08309593-20121113-C00849
A 690
Figure US08309593-20121113-C00850
D 691
Figure US08309593-20121113-C00851
B 692
Figure US08309593-20121113-C00852
A 693
Figure US08309593-20121113-C00853
B 694
Figure US08309593-20121113-C00854
B 695
Figure US08309593-20121113-C00855
C 696
Figure US08309593-20121113-C00856
B 697
Figure US08309593-20121113-C00857
B 698
Figure US08309593-20121113-C00858
A 699
Figure US08309593-20121113-C00859
B 700
Figure US08309593-20121113-C00860
C 701
Figure US08309593-20121113-C00861
A 702
Figure US08309593-20121113-C00862
A 703
Figure US08309593-20121113-C00863
A 704
Figure US08309593-20121113-C00864
A 705
Figure US08309593-20121113-C00865
A 706
Figure US08309593-20121113-C00866
A 707
Figure US08309593-20121113-C00867
A 708
Figure US08309593-20121113-C00868
A 709
Figure US08309593-20121113-C00869
A 710
Figure US08309593-20121113-C00870
A 711
Figure US08309593-20121113-C00871
B 712
Figure US08309593-20121113-C00872
B 713
Figure US08309593-20121113-C00873
D 714
Figure US08309593-20121113-C00874
D 715
Figure US08309593-20121113-C00875
D 716
Figure US08309593-20121113-C00876
D 717
Figure US08309593-20121113-C00877
D 718
Figure US08309593-20121113-C00878
D 719
Figure US08309593-20121113-C00879
D 720
Figure US08309593-20121113-C00880
D 721
Figure US08309593-20121113-C00881
A 722
Figure US08309593-20121113-C00882
A 723
Figure US08309593-20121113-C00883
B 724
Figure US08309593-20121113-C00884
B 725
Figure US08309593-20121113-C00885
B 726
Figure US08309593-20121113-C00886
A 727
Figure US08309593-20121113-C00887
A 728
Figure US08309593-20121113-C00888
A 729
Figure US08309593-20121113-C00889
A 730
Figure US08309593-20121113-C00890
A 731
Figure US08309593-20121113-C00891
B 732
Figure US08309593-20121113-C00892
A 733
Figure US08309593-20121113-C00893
A 734
Figure US08309593-20121113-C00894
A 735
Figure US08309593-20121113-C00895
A 736
Figure US08309593-20121113-C00896
B 737
Figure US08309593-20121113-C00897
A 738
Figure US08309593-20121113-C00898
A 739
Figure US08309593-20121113-C00899
A 740
Figure US08309593-20121113-C00900
A 741
Example 4 Compound A (N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)nonanamide) Effectively Inhibited PKD in a Mouse Model
Figure US08309593-20121113-C00901

Design:
jck mice was administered Compound A ad libitum in feed (0.225% Compound A mixed with a standard diet chow in powdered format) from 26-64 days of age. Control jck mice were fed a control powdered diet from 26-64 days of age. At 63 days of age, animals were transferred to metabolic cages for 24 hour urine collection. At 64 days of age, animals were sacrificed by CO2 administration. Blood was collected by heart puncture for serum isolation. Kidneys were isolated and bisected; half of each kidney was fixed in 4% paraformaldehyde in PBS overnight for paraffin embedding and H&E staining.
Results:
Results are summarized in table 4 and discussed below.
TABLE 4
Summary of results, 0.225% Compound A in feed, 26-64 days of age
No of Dose Body weight K/BW ratio Cystic volume BUN
animals Gender (mg/kg) (g) (%) (% BW) (mg/dL)
9 M Vehicle 22.03 ± 1.58  7.55 ± 1.65  2.86 ± 1.04  90.11 ± 10.02
9 M Treated 18.43 ± 1.82* 4.46 ± 0.46* 0.88 ± 0.23*  39.25 ± 10.70*
10 F Vehicle 19.20 ± 1.80  4.94 ± 0.73  1.22 ± 0.41  50.50 ± 14.32
10 F Treated 15.93 ± 1.65* 3.57 ± 0.58* 0.58 ± 0.29* 34.67 ± 9.41*
*p < 0.05% compared to control (2-tailed t-test)

Kidney and Body Weights
Total body weight and kidney weight were determined at sacrifice. A statistically significant decrease in total body weight was noted (p-value<0.05, two-tailed t-test). A significant difference in kidney weight/body weight ratio was also observed (p-value<0.05, two-tailed t-test) for the treated animals, suggesting efficacy of the drug.
Cyst Volume:
Cyst volume was measured by quantitating the percentage of cystic area in histological sections of kidneys from the treated and control animals, multiplied by the kidney/body weight ratio. A significant decrease in cyst volume was observed (p-value<0.05, two-tailed t-test) for the treated animals.
Kidney Function:
Blood urea nitrogen (BUN) levels were determined in serum samples derived from animals at sacrifice. BUN levels were elevated in the untreated controls, while the treated animals demonstrated a significant reduction of BUN levels (p-value<0.05, two-tailed t-test).
CONCLUSION
Administration of Compound A in feed at 0.225% resulted in a statistically significant reduction of cystic disease, as measured by kidney/body weight ratio and cyst volume. This was accompanied by improved renal function in treated animals relative to controls. These improvements were observed in both males and females. Therefore, these results demonstrate that glucosylceramide synthase inhibition is an effective strategy to treat polycystic kidney disease.

Claims (15)

1. A method of treating polycystic kidney disease in a subject, the method comprising administering to the subject having polycystic kidney disease an effective amount of a compound represented by the following structural formula:
Figure US08309593-20121113-C00902
or a pharmaceutically acceptable salt thereof, wherein
X is —(CR5R6)n-Q-; Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR7—, —NR7—, —NR7C(O)—, —NR7C(O)NR7—, —OC(O)—, —SO3—, —SO—, —S(O)2—, —SO2NR7—, or —NR7SO2—; and R4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group; or
X is —O—, —S— or —NR7—; and R4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group; or
X is —(CR5R6)n—; and R4 is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO2 or a halogen; or
X is a covalent bond; and R4 is a substituted or unsubstituted aryl group; and
R5 and R6 are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group;
n is 1, 2, 3, 4, 5 or 6; and
each R7 is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R7 and R4 taken together with the nitrogen atom of NR7R4 form a substituted or unsubstituted non-aromatic heterocyclic group;
R30 is
i) hydrogen;
ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or
iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl;
each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy;
each k′ is independently 0, 1 or 2;
each k″ is independently 0, 1 or 2; and
each m′ is independently 0, 1 or 2.
2. The method of claim 1, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00903
or a pharmaceutically acceptable salt thereof, wherein
R30 is hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
3. The method of claim 2, wherein R30 is hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
4. The method of claim 3, wherein R30 is hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
5. The method of claim 2, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00904
or a pharmaceutically acceptable salt thereof.
6. The method of claim 2, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00905
or a pharmaceutically acceptable salt thereof.
7. The method of claim 2, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00906
or a pharmaceutically acceptable salt thereof.
8. The method of claim 2, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00907
or a pharmaceutically acceptable salt thereof.
9. The method of claim 1, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00908
or a pharmaceutically acceptable salt thereof, wherein
R30 is
(i) hydrogen;
(ii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or
(iii) a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
10. The method of claim 9, wherein R30 is hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.
11. The method of claim 10, wherein R30 is hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.
12. The method of claim 9, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00909
or a pharmaceutically acceptable salt thereof.
13. The method of claim 9, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00910
or a pharmaceutically acceptable salt thereof.
14. A method of treating polycystic kidney disease in a subject, the method comprising administering to the subject having polycystic kidney disease an effective amount of a compound is represented by the following structural formula:
Figure US08309593-20121113-C00911
or a pharmaceutically acceptable salt thereof.
15. The method of claim 1, wherein the compound is represented by the following structural formula:
Figure US08309593-20121113-C00912
or a pharmaceutically acceptable salt thereof.
US13/122,135 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors Expired - Fee Related US8309593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/122,135 US8309593B2 (en) 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10254108P 2008-10-03 2008-10-03
US13/122,135 US8309593B2 (en) 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
PCT/US2009/005435 WO2010039256A1 (en) 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/005435 A-371-Of-International WO2010039256A1 (en) 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/595,251 Continuation US9272996B2 (en) 2008-10-03 2012-08-27 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Publications (2)

Publication Number Publication Date
US20110184021A1 US20110184021A1 (en) 2011-07-28
US8309593B2 true US8309593B2 (en) 2012-11-13

Family

ID=41402426

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/122,135 Expired - Fee Related US8309593B2 (en) 2008-10-03 2009-10-02 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US13/595,251 Expired - Fee Related US9272996B2 (en) 2008-10-03 2012-08-27 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US15/003,207 Expired - Fee Related US9744153B2 (en) 2008-10-03 2016-01-21 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/595,251 Expired - Fee Related US9272996B2 (en) 2008-10-03 2012-08-27 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US15/003,207 Expired - Fee Related US9744153B2 (en) 2008-10-03 2016-01-21 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Country Status (10)

Country Link
US (3) US8309593B2 (en)
EP (2) EP2349255B1 (en)
JP (4) JP2012504608A (en)
KR (1) KR101687039B1 (en)
CN (2) CN107935983A (en)
CA (1) CA2738768C (en)
IL (2) IL211946A (en)
MX (1) MX2011003517A (en)
RU (1) RU2578947C2 (en)
WO (1) WO2010039256A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298317A1 (en) * 2007-10-05 2010-11-25 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US8716327B2 (en) 2006-05-09 2014-05-06 Genzyme Corporation Methods of treating fatty liver disease
US8729075B2 (en) 2008-07-28 2014-05-20 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US8940776B2 (en) 2007-05-31 2015-01-27 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9272996B2 (en) 2008-10-03 2016-03-01 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9532976B2 (en) 2004-11-10 2017-01-03 Genzyme Corporation Method of lowering blood glucose
US20170129869A1 (en) * 2014-07-03 2017-05-11 Dr. Reddy's Laboratories Limited Amorphous form of eliglustat hemitartarate
WO2017165766A2 (en) 2016-03-25 2017-09-28 Genzyme Corporation Biomarkers of proteopathies and uses thereof
WO2019126776A1 (en) 2017-12-21 2019-06-27 Lysosomal Therapeutics Inc. Crystalline substituted cyclohexyl pyrazolo[1,5-a]pyrimidinyl carboxamide compound and therapeutic uses thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013059119A1 (en) * 2011-10-17 2013-04-25 The Regents Of The University Of Michigan Glucosylceramide synthase inhibitors and therapeutic methods using the same
CN102702010B (en) * 2012-05-23 2014-09-17 北京大学 Photosensitive functionalized solid-supported phase, preparation method and application thereof
WO2014150043A1 (en) 2013-03-15 2014-09-25 Concert Pharmaceuticals Inc. Inhibitors of the enzyme udp-glucose: n-acyl-sphingosine glucosyltransferase
TW201945337A (en) * 2013-09-20 2019-12-01 美商拜奧馬林製藥公司 GLUCOSYLCERAMIDE synthase inhibitors for the treatment of diseases
WO2016126572A2 (en) * 2015-02-02 2016-08-11 The Regents Of The University Of Michigan Glucosylceramide synthase inhibitors and therapeutic methods using the same
MX370270B (en) * 2015-03-11 2019-12-09 Biomarin Pharm Inc Glucosylceramide synthase inhibitors for the treatment of diseases.
KR20180083902A (en) 2015-11-18 2018-07-23 젠자임 코포레이션 Biomarkers of polycystic kidney disease and uses thereof
WO2017204319A1 (en) * 2016-05-27 2017-11-30 公益財団法人野口研究所 Glucosylceramide synthase inhibitor

Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065562A (en) 1975-12-29 1977-12-27 Nippon Shinyaku Co., Ltd. Method and composition for reducing blood glucose levels
US4182767A (en) 1977-06-25 1980-01-08 Nippon Shinyaku Co., Ltd. Antihyperglycemic N-alkyl-3,4,5-trihydroxy-2-piperidine methanol
GB2054371A (en) 1979-06-28 1981-02-18 Janssen Pharmaceutica Nv Long-acting parenteral compositions of haloperidol and bromperidol derivatives
EP0126974A1 (en) 1983-04-26 1984-12-05 G.D. Searle & Co. Carboxyalkyl peptide derivatives
EP0144290A2 (en) 1983-12-01 1985-06-12 Ciba-Geigy Ag Substituted ethylenediamine derivatives
US4533668A (en) 1978-05-03 1985-08-06 Nippon Shinyaku Co. Ltd. Antihyperglycemic moranoline derivatives
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
US5041441A (en) 1988-04-04 1991-08-20 The Regents Of The University Of Michigan Method of chemotherapy using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol
US5302609A (en) 1992-12-16 1994-04-12 The Regents Of The University Of Michigan Treatment of diabetic nephropathy
US5472969A (en) 1993-05-13 1995-12-05 Monsanto Company Method of inhibiting glycolipid synthesis
WO1997010817A1 (en) 1995-09-20 1997-03-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
EP0765865A1 (en) 1994-06-10 1997-04-02 Seikagaku Corporation 2-acylaminopropanol compound and medicinal composition
US5631394A (en) 1994-02-02 1997-05-20 The Liposome Company, Inc. Pharmaceutically active ceramide-related compounds
JPH09169664A (en) 1995-12-20 1997-06-30 Seikagaku Kogyo Co Ltd Agent having differentiation inducing action
JPH09216856A (en) 1995-12-08 1997-08-19 Seikagaku Kogyo Co Ltd Amino alcohol derivative and its production
US5707649A (en) 1993-08-13 1998-01-13 Seikagaku Corporation Agent for treating neuronal diseases
WO1998052553A1 (en) 1997-05-21 1998-11-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
JPH10324671A (en) 1997-05-23 1998-12-08 Seikagaku Kogyo Co Ltd Aminoalcohol derivative and pharmaceutical containing the same
JPH10338636A (en) 1997-06-06 1998-12-22 Seikagaku Kogyo Co Ltd Medicine containing amino alcohol derivative and abnormal proliferous disease therapeutic drug
US5907039A (en) 1995-12-08 1999-05-25 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
WO2001004108A1 (en) 1999-07-09 2001-01-18 Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20010003741A1 (en) 1999-12-06 2001-06-14 Hiroyuki Masuda Aminoalcohol derivative and medicament comprising the same
US6255336B1 (en) 1995-09-20 2001-07-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO2001054654A2 (en) 2000-01-25 2001-08-02 The Gillette Company Reduction of hair growth
WO2001080852A1 (en) 2000-04-19 2001-11-01 Borody Thomas J Compositions and therapies for hyperlipidaemia-associated disorders
WO2002050019A2 (en) 2000-12-20 2002-06-27 Bristol-Myers Squibb Pharma Co. Diamines as modulators of chemokine receptor activity
WO2002055498A1 (en) 2001-01-12 2002-07-18 Oxford Glycosciences (Uk) Ltd Pharmaceutically active piperidine derivatives
WO2002062777A2 (en) 2001-01-10 2002-08-15 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20020156107A1 (en) 2001-01-10 2002-10-24 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US20020198240A1 (en) 2001-01-10 2002-12-26 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US6511979B1 (en) 1998-07-27 2003-01-28 Johns Hopkins University Methods for treating conditions modulated by lactosylceramide
WO2003008399A1 (en) 2001-07-16 2003-01-30 Genzyme Corporation Synthesis of udp-glucose: n-acylsphingosine glucosyltransferase inhibitors
US20030073680A1 (en) 1995-09-20 2003-04-17 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO2003057874A1 (en) 2001-12-28 2003-07-17 Sumitomo Pharmaceuticals Company, Limited Disease markers for renal diseaes and utilization thereof
WO2003068255A1 (en) 2002-02-14 2003-08-21 Academisch Medisch Centrum Bij De Universiteit Van Amsterdam Compositions and methods for improving enzyme replacement therapy of lysosomal storage diseases
US6610703B1 (en) 1998-12-10 2003-08-26 G.D. Searle & Co. Method for treatment of glycolipid storage diseases
JP2003238410A (en) 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk Insulin resistance elimination agent
US6660749B2 (en) 1997-12-11 2003-12-09 Chancellor, Masters And Scholars Of The University Of Oxford Inhibition of glycolipid biosynthesis
WO2004007453A1 (en) 2002-07-17 2004-01-22 Oxford Glycosciences (Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosylceramide synthase
EP1384719A1 (en) 1999-07-09 2004-01-28 The Regents of The University of Michigan Inhibitors of the glucosyl ceramide synthase enzyme useful for the treatment of cancers, sphingolipidosis and microbial infections
WO2004056748A1 (en) 2002-12-21 2004-07-08 Astrazeneca Ab Therapeutic agents
WO2004078193A1 (en) 2003-02-28 2004-09-16 Intermune, Inc. Interferon drug therapy for the treatment of viral diseases and liver fibrosis
US20040260099A1 (en) 2001-01-10 2004-12-23 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6835831B2 (en) 2001-11-26 2004-12-28 Genzyme Corporation Diastereoselective synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050049235A1 (en) 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
EP1528056A1 (en) 2003-10-29 2005-05-04 Academisch Ziekenhuis bij de Universiteit van Amsterdam Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
WO2005039578A2 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Use of a deoxynojirimycin derivative or a pharmaceutically salt thereof
WO2005063275A1 (en) 2003-12-23 2005-07-14 Musc Foundaton For Research Development Methods and compositions for the prevention and treatment of inflammatory diseases or conditions
EP1576894A1 (en) 2004-03-16 2005-09-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and Metabolic Syndrome
WO2005087023A1 (en) 2004-03-16 2005-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and metabolic syndrome
WO2005108600A1 (en) 2004-05-07 2005-11-17 Merck Patent Gmbh Gm3 synthase as a therapeutic target in microvascular complications of diabetes
WO2005123055A2 (en) 2004-06-14 2005-12-29 Musc Foundation For Research Development Methods for treating inflammatory disorders
WO2006023827A2 (en) 2004-08-20 2006-03-02 The Johns Hopkins University Methods for treatment of angiogenesis
WO2006053043A2 (en) 2004-11-10 2006-05-18 Genzyme Corporation Methods of treating diabetes mellitus
US20060217560A1 (en) 2002-04-29 2006-09-28 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
WO2007022518A2 (en) 2005-08-19 2007-02-22 Amylin Pharmaceuticals, Inc. New uses of glucoregulatory proteins
US20070112028A1 (en) 2003-06-13 2007-05-17 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide
WO2007134086A2 (en) 2006-05-09 2007-11-22 Genzyme Corporation Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2008011478A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. Methods for treating chronic pain using 3-aryl-3-hydroxy-2-amino-propionic acid amides, 3-heteroaryl-3-hydroxy-2-amino-propionic acid amides and related compounds
WO2008011487A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. L-benzyl-l-hydr0xy-2, 3-diamin0-propyl amines and 3-benzyl-3-hydroxy-2-amino-propionicacid amides for chronic pain
WO2008012555A2 (en) 2006-07-27 2008-01-31 Isis Innovation Limited Epitope reduction therapy
WO2008150486A2 (en) 2007-05-31 2008-12-11 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
WO2009045503A1 (en) 2007-10-05 2009-04-09 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
WO2009117150A2 (en) 2008-03-20 2009-09-24 Genzyme Corporation Method of treating lupus with ceramide derivatives
US20110166134A1 (en) 2008-07-28 2011-07-07 Genzyme Corporation Glucosylceramide Synthase Inhibition For The Treatment Of Collapsing Glomerulopathy And Other Glomerular Disease

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416856A (en) 1990-05-10 1992-01-21 Canon Inc Positively chargeable nonmagnetic toner
JPH04140984A (en) 1990-10-02 1992-05-14 Canon Inc Still video camera
RU2005102C1 (en) * 1991-06-21 1993-12-30 Институт геологии Карельского научного центра РАН Method of decorative glass making
BR0012318A (en) * 1999-07-09 2002-05-28 Univ Michigan Amino-ceramide-like compounds and therapeutic methods of use
JP5009459B2 (en) * 1999-12-06 2012-08-22 生化学工業株式会社 Amino alcohol derivatives and pharmaceuticals containing the same
MXPA03005855A (en) 2000-12-29 2003-09-10 Wyeth Corp Method for the regioselective preparation of substituted benzo[g]quinoline-3-carbonitriles and benzo[g]quinazolines.
DK1470124T3 (en) * 2002-01-22 2006-04-18 Warner Lambert Co 2- (Pyridin-2-yl amino) pyrido [2,3] pyrimidin-7-one
KR20050021502A (en) 2002-07-17 2005-03-07 바이오겐 아이덱 엠에이 인코포레이티드 THERAPIES FOR RENAL FAILURE USING INTERFERON-β
GB0400812D0 (en) 2004-01-14 2004-02-18 Celltech R&D Ltd Novel compounds
ATE523491T1 (en) 2005-01-26 2011-09-15 Allergan Inc 3-HETEROCYCLYL-3-HYDROXY-2-AMINO-PROPIONIC ACID AMIDES AND RELATED COMPOUNDS HAVING ANALGESIC AND/OR IMMUNOSTIMULATIVE ACTIVITY
TWI389895B (en) 2006-08-21 2013-03-21 Infinity Discovery Inc Compounds and methods for inhibiting the interaction of bcl proteins with binding partners
MX2009008493A (en) * 2007-02-09 2009-08-20 Irm Llc Compounds and compositions as channel activating protease inhibitors.
EP2349255B1 (en) 2008-10-03 2016-03-30 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors

Patent Citations (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065562A (en) 1975-12-29 1977-12-27 Nippon Shinyaku Co., Ltd. Method and composition for reducing blood glucose levels
US4182767A (en) 1977-06-25 1980-01-08 Nippon Shinyaku Co., Ltd. Antihyperglycemic N-alkyl-3,4,5-trihydroxy-2-piperidine methanol
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
US4533668A (en) 1978-05-03 1985-08-06 Nippon Shinyaku Co. Ltd. Antihyperglycemic moranoline derivatives
GB2054371A (en) 1979-06-28 1981-02-18 Janssen Pharmaceutica Nv Long-acting parenteral compositions of haloperidol and bromperidol derivatives
EP0126974A1 (en) 1983-04-26 1984-12-05 G.D. Searle & Co. Carboxyalkyl peptide derivatives
EP0144290A2 (en) 1983-12-01 1985-06-12 Ciba-Geigy Ag Substituted ethylenediamine derivatives
US5041441A (en) 1988-04-04 1991-08-20 The Regents Of The University Of Michigan Method of chemotherapy using 1-phenyl-2-decanoylamino-3-morpholino-1-propanol
US5302609A (en) 1992-12-16 1994-04-12 The Regents Of The University Of Michigan Treatment of diabetic nephropathy
US5472969A (en) 1993-05-13 1995-12-05 Monsanto Company Method of inhibiting glycolipid synthesis
US5525616A (en) 1993-05-13 1996-06-11 Monsanto Company Method of inhibiting glycolipid synthesis
US5707649A (en) 1993-08-13 1998-01-13 Seikagaku Corporation Agent for treating neuronal diseases
US5849326A (en) 1993-08-13 1998-12-15 Seikagaku Corporation Method for treating neuronal diseases via administration of 2-acylaminopropanol derivatives
US5631394A (en) 1994-02-02 1997-05-20 The Liposome Company, Inc. Pharmaceutically active ceramide-related compounds
EP0765865A1 (en) 1994-06-10 1997-04-02 Seikagaku Corporation 2-acylaminopropanol compound and medicinal composition
US5763438A (en) 1994-06-10 1998-06-09 Seikagaku Corporation 2-acylaminopropanol compound and medical composition
US6030995A (en) 1995-09-20 2000-02-29 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6051598A (en) 1995-09-20 2000-04-18 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20030073680A1 (en) 1995-09-20 2003-04-17 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6569889B2 (en) 1995-09-20 2003-05-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6255336B1 (en) 1995-09-20 2001-07-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO1997010817A1 (en) 1995-09-20 1997-03-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20050239862A1 (en) 1995-09-20 2005-10-27 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US5916911A (en) 1995-09-20 1999-06-29 The Regents Of The University Of Michigan Amino ceramide--like compounds and therapeutic methods of use
US5945442A (en) 1995-09-20 1999-08-31 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US5952370A (en) 1995-09-20 1999-09-14 The Regents Of University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6040332A (en) 1995-09-20 2000-03-21 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6335444B1 (en) 1995-12-08 2002-01-01 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
JPH09216856A (en) 1995-12-08 1997-08-19 Seikagaku Kogyo Co Ltd Amino alcohol derivative and its production
US5907039A (en) 1995-12-08 1999-05-25 Seikagaku Kogyo Kabushiki Kaisha Amino alcohol derivative and method for preparing the same
JPH09169664A (en) 1995-12-20 1997-06-30 Seikagaku Kogyo Co Ltd Agent having differentiation inducing action
US5972928A (en) 1997-05-21 1999-10-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
US6228889B1 (en) 1997-05-21 2001-05-08 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
WO1998052553A1 (en) 1997-05-21 1998-11-26 Johns Hopkins University Methods for treatment of conditions associated with lactosylceramide
JPH10324671A (en) 1997-05-23 1998-12-08 Seikagaku Kogyo Co Ltd Aminoalcohol derivative and pharmaceutical containing the same
JPH10338636A (en) 1997-06-06 1998-12-22 Seikagaku Kogyo Co Ltd Medicine containing amino alcohol derivative and abnormal proliferous disease therapeutic drug
US6660749B2 (en) 1997-12-11 2003-12-09 Chancellor, Masters And Scholars Of The University Of Oxford Inhibition of glycolipid biosynthesis
US6511979B1 (en) 1998-07-27 2003-01-28 Johns Hopkins University Methods for treating conditions modulated by lactosylceramide
US6610703B1 (en) 1998-12-10 2003-08-26 G.D. Searle & Co. Method for treatment of glycolipid storage diseases
EP1384719A1 (en) 1999-07-09 2004-01-28 The Regents of The University of Michigan Inhibitors of the glucosyl ceramide synthase enzyme useful for the treatment of cancers, sphingolipidosis and microbial infections
WO2001004108A1 (en) 1999-07-09 2001-01-18 Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6890949B1 (en) 1999-07-09 2005-05-10 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US6407064B2 (en) 1999-12-06 2002-06-18 Seikagaku Corporation Aminoalcohol derivative and medicament comprising the same
US20010003741A1 (en) 1999-12-06 2001-06-14 Hiroyuki Masuda Aminoalcohol derivative and medicament comprising the same
WO2001054654A2 (en) 2000-01-25 2001-08-02 The Gillette Company Reduction of hair growth
WO2001080852A1 (en) 2000-04-19 2001-11-01 Borody Thomas J Compositions and therapies for hyperlipidaemia-associated disorders
WO2002050019A2 (en) 2000-12-20 2002-06-27 Bristol-Myers Squibb Pharma Co. Diamines as modulators of chemokine receptor activity
US20020156107A1 (en) 2001-01-10 2002-10-24 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US7148251B2 (en) 2001-01-10 2006-12-12 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20020198240A1 (en) 2001-01-10 2002-12-26 Shayman James A. Amino ceramide - like compounds and therapeutic methods of use
US7335681B2 (en) 2001-01-10 2008-02-26 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20070072916A1 (en) 2001-01-10 2007-03-29 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
WO2002062777A2 (en) 2001-01-10 2002-08-15 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20040260099A1 (en) 2001-01-10 2004-12-23 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20060074107A1 (en) 2001-01-12 2006-04-06 Oxford Glycosciences (Uk) Ltd. Pharmaceutically active piperidine derivatives
WO2002055498A1 (en) 2001-01-12 2002-07-18 Oxford Glycosciences (Uk) Ltd Pharmaceutically active piperidine derivatives
US7763738B2 (en) 2001-07-16 2010-07-27 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7615573B2 (en) 2001-07-16 2009-11-10 The Regents Of The University Of Michigan Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050009872A1 (en) 2001-07-16 2005-01-13 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US6855830B2 (en) 2001-07-16 2005-02-15 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7265228B2 (en) 2001-07-16 2007-09-04 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20070203223A1 (en) 2001-07-16 2007-08-30 Craig Siegel Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20050222244A1 (en) 2001-07-16 2005-10-06 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US7196205B2 (en) 2001-07-16 2007-03-27 The Regents Of The University Of Michigan Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
US20030050299A1 (en) 2001-07-16 2003-03-13 Genzyme Corporation Synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
WO2003008399A1 (en) 2001-07-16 2003-01-30 Genzyme Corporation Synthesis of udp-glucose: n-acylsphingosine glucosyltransferase inhibitors
US6835831B2 (en) 2001-11-26 2004-12-28 Genzyme Corporation Diastereoselective synthesis of UDP-glucose: N-acylsphingosine glucosyltransferase inhibitors
WO2003057874A1 (en) 2001-12-28 2003-07-17 Sumitomo Pharmaceuticals Company, Limited Disease markers for renal diseaes and utilization thereof
WO2003068255A1 (en) 2002-02-14 2003-08-21 Academisch Medisch Centrum Bij De Universiteit Van Amsterdam Compositions and methods for improving enzyme replacement therapy of lysosomal storage diseases
JP2003238410A (en) 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk Insulin resistance elimination agent
US20050049235A1 (en) 2002-04-29 2005-03-03 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US7253185B2 (en) 2002-04-29 2007-08-07 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20080146533A1 (en) 2002-04-29 2008-06-19 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
US20050267094A1 (en) 2002-04-29 2005-12-01 The Regents Of The University Of Michigan Amino ceramide-like compounds and therapeutic methods of use
US20090312392A1 (en) 2002-04-29 2009-12-17 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
US6916802B2 (en) 2002-04-29 2005-07-12 Genzyme Corporation Amino ceramide-like compounds and therapeutic methods of use
US20060217560A1 (en) 2002-04-29 2006-09-28 Shayman James A Amino ceramide-like compounds and therapeutic methods of use
WO2004007453A1 (en) 2002-07-17 2004-01-22 Oxford Glycosciences (Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosylceramide synthase
US20060058349A1 (en) 2002-07-17 2006-03-16 Oxford Glycosciences(Uk) Ltd Piperidinetriol derivatives as inhibitors of glycosyceramid synthase
WO2004056748A1 (en) 2002-12-21 2004-07-08 Astrazeneca Ab Therapeutic agents
WO2004078193A1 (en) 2003-02-28 2004-09-16 Intermune, Inc. Interferon drug therapy for the treatment of viral diseases and liver fibrosis
US20070112028A1 (en) 2003-06-13 2007-05-17 Actelion Pharmaceuticals Ltd. 2-Hydroxymethyl-3,4,5-trihydroxy-1-benzilpiperidine derivatives as inhibitors of glucosylceramide
WO2005040118A1 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
WO2005039578A2 (en) 2003-10-29 2005-05-06 Macrozyme B.V. Use of a deoxynojirimycin derivative or a pharmaceutically salt thereof
US20070066581A1 (en) 2003-10-29 2007-03-22 Aerts Johannes Maria Franciscu Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
EP1528056A1 (en) 2003-10-29 2005-05-04 Academisch Ziekenhuis bij de Universiteit van Amsterdam Deoxynojirimycin analogues and their uses as glucosylceramidase inhibitors
WO2005063275A1 (en) 2003-12-23 2005-07-14 Musc Foundaton For Research Development Methods and compositions for the prevention and treatment of inflammatory diseases or conditions
WO2005087023A1 (en) 2004-03-16 2005-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and metabolic syndrome
EP1576894A1 (en) 2004-03-16 2005-09-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO The use of sphingolipids in the treatment and prevention of type 2 diabetes mellitus, insulin resistance and Metabolic Syndrome
WO2005108600A1 (en) 2004-05-07 2005-11-17 Merck Patent Gmbh Gm3 synthase as a therapeutic target in microvascular complications of diabetes
WO2005123055A2 (en) 2004-06-14 2005-12-29 Musc Foundation For Research Development Methods for treating inflammatory disorders
WO2006023827A2 (en) 2004-08-20 2006-03-02 The Johns Hopkins University Methods for treatment of angiogenesis
US8003617B2 (en) 2004-11-10 2011-08-23 Genzyme Corporation Methods of treating diabetes mellitus
WO2006053043A2 (en) 2004-11-10 2006-05-18 Genzyme Corporation Methods of treating diabetes mellitus
US20120022126A1 (en) 2004-11-10 2012-01-26 Genzyme Corporation Method Of Treating Diabetes Mellitus
WO2007022518A2 (en) 2005-08-19 2007-02-22 Amylin Pharmaceuticals, Inc. New uses of glucoregulatory proteins
WO2007134086A3 (en) 2006-05-09 2008-01-17 Genzyme Corp Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2007134086A2 (en) 2006-05-09 2007-11-22 Genzyme Corporation Methods of treating fatty liver disease comprising inhibiting glucosphingolipid synthesis
WO2008011487A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. L-benzyl-l-hydr0xy-2, 3-diamin0-propyl amines and 3-benzyl-3-hydroxy-2-amino-propionicacid amides for chronic pain
WO2008011478A2 (en) 2006-07-19 2008-01-24 Allergan, Inc. Methods for treating chronic pain using 3-aryl-3-hydroxy-2-amino-propionic acid amides, 3-heteroaryl-3-hydroxy-2-amino-propionic acid amides and related compounds
WO2008012555A2 (en) 2006-07-27 2008-01-31 Isis Innovation Limited Epitope reduction therapy
WO2008150486A2 (en) 2007-05-31 2008-12-11 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US20100256216A1 (en) 2007-05-31 2010-10-07 Craig Siegel 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US20100298317A1 (en) 2007-10-05 2010-11-25 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
WO2009045503A1 (en) 2007-10-05 2009-04-09 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
WO2009117150A2 (en) 2008-03-20 2009-09-24 Genzyme Corporation Method of treating lupus with ceramide derivatives
US20110166134A1 (en) 2008-07-28 2011-07-07 Genzyme Corporation Glucosylceramide Synthase Inhibition For The Treatment Of Collapsing Glomerulopathy And Other Glomerular Disease

Non-Patent Citations (128)

* Cited by examiner, † Cited by third party
Title
Abdel-Magid, A., et al., "Metal-Assisted Aldol Condensation of Chiral alpha-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Syntheses,"J. Am. Chem Soc., 108: 4595-4602 (1986).
Abdel-Magid, A., et al., "Metal-Assisted Aldol Condensation of Chiral α-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Syntheses,"J. Am. Chem Soc., 108: 4595-4602 (1986).
Abe, A., et al., "Improved Inhibitors of Glucosylceramide Synthase," J. Biochem., 111:191-196 (1992).
Abe, A., et al., "Induction of Glucosylceramide Synthase by Synthase Inhibitors and Ceramide," Biochim. Biophys. Acta, 1299: 333-341 (1996).
Abe, A., et al., "Metabolic Effects of Short-Chain Ceramide and Glucosylceramide on Sphingolipids and Protein Kinase C," Eur. J. Biochem, 210: 765-773 (1992).
Abe, A., et al., "Reduction of Globotriasylceramide in Fabry Disease mice by substrate deprivation", J. Clin Invest. 105(11): 1563-1571, (2000).
Abe, A., et al., "Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth," J. Lipid Research, 36:611-621 (1995).
Abe, A., et al., "Use of Sulfobutyl Ether β-Cyclodextrin as a Vehicle for d-threo-1-Phenyl-2-decanoylamino-3-morpholinopropanol-Related Glucosylceramide Synthase Inhibitors", Analytical Biochemistry, vol. 287, pp. 344-347 (2000).
Adams, L.A., et al., "Nonalcoholic Fatty Liver Disease," CMAJ, 172(7):899-905 (2005).
Alberti, C., et al., "Chloramphenicol. XII and XIII. Chloramphenicol analogs. p-Nitrophenyldiaminopropanols", Chemical Abstracts Service, XP002495477 retrieved from CAPLUS Database accession No. 1957:17088 (abstract).
Alker, D., et al., "Application of Enantiopure Templated Azomethine Ylids to beta-Hydroxy-alpha-amino Acid Syntheses," Tetrahedron, 54: 6089-6098 (1998).
Alker, D., et al., "Application of Enantiopure Templated Azomethine Ylids to β-Hydroxy-α-amino Acid Syntheses," Tetrahedron, 54: 6089-6098 (1998).
Alon, R., et al., "Glycolipid Ligands for Selectins Support Leukocyte Tethering and Rolling Under Physiologic Flow Conditions," J. Immunol., 154: 5356-5366 (1995).
Ames, Bruce N., "Assay of Inorganic Phosphate, Total Phosphate and Phosphatases," Methods Enzymol., 8: 115-118 (1996).
Asano, N., "Glycosidase Inhibitors: Update and Perspectives on Practical Use," Glycobiology, 13(10):93R-104R (2003).
Bielawska, A., et al., "Ceramide-Mediated Biology: Determination of Structural and Stereospecific Requirements Through the Use of N-Acyl-Phenylaminoalcohol Analogs," J. Biol. Chem., 267: 18493-18497 (1992).
Bielawska, et al., "Modulation of Cell Growth and Differentiation by Ceramide," FEBS Letters, 307(2): 211-214 (1992).
Blobe, G.C., et al., "Regulation of Protein Kinase C and its Role in Cancer Biology," Cancer Metastasis Rev., 13: 411-431 (1994).
Brenkert, A., et al., "Synthesis of Galactosyl Ceramide and Glucosyl Ceramide by Rat Brain: Assay Procedures and Changes with Age," Brain Res., 36: 183-193 (1972).
CAPLUS Listing of Accession No. 1985:221199, Keith McCullagh, et al., "Carboxyalkyl peptide derivatives."
Carson, K.G., et al., "Studies on Morpholinosphingolipids: Potent Inhibitors of Glucosylceramide Synthase," Tetrahedron Letters, 35(17): 2659-2662 (1994).
Chatterjee, S., et al.,"Oxidized Low Density Lipoprotein Stimulates Aortic Smooth Muscle Cell Proliferation", Glycobiology, 6(3): 303-311 (1996).
Chatterjee, S., et al.,"Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease", Journal of Lipid Research, 37(6): 1334-1344 (1996).
Clark, J.M., et al., "Nonalcoholic Fatty Liver Disease, An Underrecognized Cause of Cryptogenic Cirrhosis," JAMA, 289(22):3000-3004 (2003).
Comuzzie, A.G., et al., "The Baboon as a Nonhuman Primate Model for the Study of the Genetics of Obesity", Obesity Research, 11(1):75-80 (2003).
Dellaria, Jr., J.F., et al., "Enantioselective Synthesis of alpha-Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon," J. Org. Chem., 54: 3916-3926 (1989).
Dellaria, Jr., J.F., et al., "Enantioselective Synthesis of α-Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon," J. Org. Chem., 54: 3916-3926 (1989).
Dickie, P., et al., "HIV-Associated Nephropathy in Transgenic Mice Expressing HIV-1 Genes," Virology, 185:109-119, 1991.
Dittert, L.W., et al., "Acetaminophen Prodrugs I-Synthesis, Physicochemical Properties and Analgesic Activity", J. Pharm. Sci. 57(5), pp. 774-780 (1968).
Elbein, A.D., "Glycosidase Inhibitors: Inhibitors of N-linked Oligosaccharide Processing," The FASEB Journal, 5:3055-3063 (1991).
European Search Report, European Application No. 09003291.3 dated Apr. 29, 2009.
Evans, D.A., et al., "Stereoselective Aldol Condensations Via Boron Enolates," J. Am. Chem. Soc., 103: 3099-3111 (1981).
Fan, J-G., et al., "Preventie Effects of Metformin on Rats with Nonalcoholic Steatohepatitis," Hepatology, 34(4)(1), p. 501A (2003).
Felding-Habermann, B., et al., "A Ceramide Analog Inhibits T Cell Proliferative Response Through Inhibition of Glycosphingolipid Synthesis and Enhancement of N,N-Dimethylsphingosins Synthesis," Biochemistry, 29: 6314-6322 (1990).
Folch, J., et al., "A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues", J. Biol. Chem., 226:497-509, 1956.
Freireich, E., et al., "Quantitative Comparison of Toxicity of Anticancer Agents in Mouse, Rat, Hampster, Dog, Monkey, and Man", Cancer Chemother. Reports 50(4):219 (1996).
Gatt, S., et al., "Assay of Enzymes of Lipid Metabolism with Colored and Fluorescent Derivatives of Natural Lipids," Meth. Enzymol., 72: 351-375 (1981).
Gill-Randall, R.J., et al., "Is human Type 2 diabetes maternally inherited? Insights from an animal model", Diabet. Med. 21 (7):759 (2004).
Hakomori, S. "New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy," Cancer Cells 3(12): 461-470 (1991).
Hammett, L.P. Physical Organic Chemistry, (NY: McGraw), (1940).
Harwood, L.M., et al., "Asymmetric Cycloadditions of Aldehydes to Stabilized Azomethine Ylids: Enantiocontrolled Construction of beta-Hydroxy-alpha-amino acid Derivitives," Tetrahedron: Asymmetry, 3(9): 1127-1130 (1992).
Harwood, L.M., et al., "Asymmetric Cycloadditions of Aldehydes to Stabilized Azomethine Ylids: Enantiocontrolled Construction of β-Hydroxy-α-amino acid Derivitives," Tetrahedron: Asymmetry, 3(9): 1127-1130 (1992).
Harwood, L.M., et al., "Double diastereocontrol in the synthesis of enantiomerically pure polyoxamic acid," Chem. Commun., 2641-2642 (1998).
Högberg, T. and ULF Norinder, "Theoretical and Experimental Methods in Drug Design Applied on Antipsychotic Dopamine Antagonists" Textbook of Drug Design and Development, pp. 55-91 (1991).
Hospattankar, A.V., et al., "Changes in Liver Lipids After Administration of 2-Decanoylamino-3-morpholinopropiophenone and Chlorpromazine," Lipids, 17(8): 538-543 (1982).
Inokuchi, et al., "Amino Alcohol Esters as Ceramide Analogs and Pharmaceuticals Containing Them for Treatment of Nerve Diseases," Abstract of CAPLUS Accession No. 1998: 786189, JP 10324671 (1998).
Inokuchi, et al., "Aminoalcohol derivatives for treatment of abnormal proliferative diseases", Chemical Abstracts Service, XP002495476 retrieved from CAPLUS Database accession No. 1998:816280 (abstract).
Inokuchi, et al., (1996): SNT International HCAPLUS database, Columbus (OH), accession No. 1996: 214749.
Inokuchi, J. et al., "Antitumor Activity Via Inhibition of Glycosphingolipid Biosynthesis," Cancer Lett., 38:23-30(1987).
Inokuchi, J., et al., "Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action", Cancer Research, 50:6731-6737 (1990).
Inokuchi, J., et al., "Preparation of the Active Isomer of 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, Inhibitor of Murine Clucocerebroside Synthetase," Journal of Lipid Research, 28:565-571 (1987).
International Preliminary Examination Report for International Application No. PCT/US2002/022659 dated Jul. 24, 2003.
International Preliminary Examination Report issued in International Application PCT/US2000/18935 (WO 01/04108) dated Jul. 20, 2001.
International Preliminary Examination Report issued in International Application PCT/US2002/00808, dated Jan. 10, 2003.
International Preliminary Report on Patentability for International Application No. PCT/US2008/006906 Dated Dec. 1, 2009.
International Preliminary Report on Patentability for International Application No. PCT/US2008/011450 dated Apr. 7, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2009/001773 dated Sep. 21, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2009/051864 dated Feb. 1, 2011.
International Preliminary Report on Patentability issued in International Application PCT/US2005/040596 dated May 15, 2007.
International Preliminary Report on Patentability issued in International Application PCT/US2007/068521 dated Nov. 11, 2008.
International Search Report for PCT/US2000/018935 dated Nov. 28, 2000.
International Search Report for PCT/US2002/00808 dated Oct. 1, 2002.
International Search Report for PCT/US2002/022659 dated Nov. 5, 2002.
Jaffrézou, Jr., et al., "Inhibition of Lysosomal Acid Sphingomyelinase by Agents which Reverse Multidrug Resistance," Biochim. Biophys. Acta, 1266: 1-8 (1995).
Jankowski, K., "Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion", Microchem. J., 70:41-49, 2001.
Jimbo, M., et al., "Development of a New Inhibitor of Glucosylceramide Synthase", J. Biochem, 127: 485-491 (2000).
Kabayama, K., et al., "TNFalpha-induced Insulin Resistance in Adipocytes as a Membrane Microdomain Disorder: Involvement of Ganglioside GM3," Glycobiology, 15(1): 21-29 (2005).
Kabayama, K., et al., "TNFα-induced Insulin Resistance in Adipocytes as a Membrane Microdomain Disorder: Involvement of Ganglioside GM3," Glycobiology, 15(1): 21-29 (2005).
Kalén, A., et al., "Elevated Ceramide Levels in GH4C1 Cells Treated with Retinoic Acid," Biochim. Biophys. Acta, 1125: 90-96 (1992).
Kopaczyk, K., C., et al., "In Vivo Conversions of Cerebroside and Ceramide in Rat Brain," J. Lipid Res., 6: 140-145 (1965).
Kurosawa, M., et al., "C14-Labeling of Novel Atypical beta-Adrenoceptor Agonist, SM-11044," Journal of Labelled Compounds and Radiopharmaceuticals, 38(3): 285-297 (1996).
Kurosawa, M., et al., "C14-Labeling of Novel Atypical β-Adrenoceptor Agonist, SM-11044," Journal of Labelled Compounds and Radiopharmaceuticals, 38(3): 285-297 (1996).
Lee, L., et al. "Improved Inhibitors of Glucosylceramide Synthase", J. Bio Chem., 274(21): 14662-14669 (1999).
Levery, S.B., et al., "Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth", FEBS Letters, vol. 525, pp. 59-64 (2002).
Masson, E., et al., "a-Series Gangliosides Mediate the Effects of Advanced Glycation End Products on Pericyte and Mesangial Cell Proliferation-A Common Mediator for Retinal and Renal Microangiopathy?," Diabetes, 54:220-227 (2005).
Mitchell, S., et al., "Glycosyltransferase Inhibitors: Synthesis of D-threo-PDMP, L-threo-PDMP, and Other Brain Glucosylceramide Synthase Inhibitors from D- or L-Serine," J. Org. Chem., 63: 8837-8842 (1998).
Miura, T., et al., "Synthesis and Evaluation of Morpholino and Pyrrolidinosphingolipids as Inhibitors of Glucosylceramide Synthase", Bioorganic and Medicinal Chemistry, (6) 1481-1489 (1998).
Nakamura, K., et al., "Coomassie Brilliant Blue Staining of Lipids on Thin-Layer Plates," Anal. Biochem., 142: 406-410 (1984).
Nicolaou, K., et al., "A Practical and Enantioselective Synthesis of Glycosphingolipids and Related Compounds. Total Synthesis of Globotriasylceramide (Gb3)," J. Am. Chem., Soc., 110: 7910-7912 (1988).
Nicolaus, B.J.R., "Symbiotic Approach to Drug Design", Decision Making in Drug Research, XP-001111439, p. 1-14 (1983).
Nishida, A., et al., "Practical Synthesis of threo-(1S, 2S)- and erythro-(1R, 2S)-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) from L-Serine,"Synlett, 389-390(1998).
Nojiri, H., et al., "Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monoctyoid leukemic cell lines HL-60 and U937", Proc. Natl. Acad. Sci., 83:782-786 (1986).
Non-Final Office Action for U.S. Appl. No. 12/227,076 mailed on Nov. 23, 2011.
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/667,224; Date Mailed: Apr. 22, 2011.
Notification Concerning Transmittal of International Preliminary Report on Patentability for International Application No. PCT/US2009/005435 dated Apr. 5, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for counterpart International Application No. PCT/US2009/005435, dated Feb. 12, 2010.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for counterpart International Application No. PCT/US2009/051864, dated Nov. 3, 2009.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority for counterpart International Application No. PCT/US2009/001773, dated Nov. 11, 2009.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2007/068521 dated Nov. 21, 2007.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2008/006906, dated Dec. 4, 2008.
Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from counterpart International Application No. PCT/US2008/011450, dated Jan. 21, 2009.
Office Action dated Mar. 29, 2012 for U.S. Appl. No. 12/601,871, Titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors".
Office Action for U.S. Appl. No. 12/227,076 dated Mar. 20, 2012.
Office Action for U.S. Appl. No. 12/601,871 dated Sep. 21, 2011.
Ogawa, S., et al., "Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-beta-Valienamine, and Related Compounds," Bioorganic & Medicinal Chemistry Letters, 7(14):1915-1920 (1997).
Ogawa, S., et al., "Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-β-Valienamine, and Related Compounds," Bioorganic & Medicinal Chemistry Letters, 7(14):1915-1920 (1997).
Ong, et al., "Nonalcoholic Fatty Liver Disease and the epidemic of Obesity", Cleveland Clinic Journal of Medicine, 71(8): 657-664 (Aug. 2004).
Overkleeft, H.S., et al., "Generation of Specific Deoxynojirimycin-type Inhibitors of the Non-lysosomal Glucosylceramidase," The Journal of Biological Chemistry, 273(41):26522-26527 (1998).
Preiss, J., et al., "Quantitative Measurement of sn-1,2-Diaclglycerols Present in Platelets, Hepatocytes, and ras- and sis-Transformed Normal Rat Kidney Cells," J. Biol. Chem., 261(19): 8597-8600 (1986).
Radin, N.S., "Killing Cancer Cells by Poly-drug Elevation of Ceramide Levels, A Hypothesis Whose Time has Come:," Eur. J. Biochem. 268(2): 193-204 (2001).
Radin, N.S., et al., "Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances."Advances in Lipid Research: Sphingolipids, Part B., R.M. Bell et al., Eds. (San Diego: Academic Press), 26: 183-213 (1993).
Radin, N.S., et al., "Ultrasonic Baths as Substitutes for Shaking Incubator Baths," Enzyme, 45: 867-70(1991).
Radin, N.S., et al., "Use of an Inhibitor of Glucosylceramide Synthesis, D-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol," In NeuroProtocols: A Companion to Methods in Neurosciences, S.K. Fisher, et al., Eds., (San Diego: Academic Press) 3: 145-155 (1993).
Rosenwald, A.G., et al., "Effects of a Sphingolipid Synthesis Inhibitor on Membrane Transport Through the Secretory Pathway," Biochemistry, 31: 3581-3590 (1992).
Rosenwald, A.G., et al., "Effects of the Glucosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells," J. Lipid Res., 35: 1232-1240 (1994).
Rubino, MD., F., et al., "Letter to the Editor," Annals of Surgery, 240(2):389-390 (2004).
Sandhoff, K., et al., "Biosynthesis and Degradation of Mammalian Glycosphingolipids," Phil. Trans. R. Soc. Lond, B 358:847-861 (2003).
Sasaki, A., et al., "Overexpression of Plasma Membrane-Associated Sialidase Attenuates Insulin Signaling in Transgenic Mice," The Journal of Biological Chemistry, 278(30):27896-27902 (2003).
Schwimmer, J.B., et al., "Obesity, Insulin Resistance, and and Other Clinicopathological Correlates of Pediatric Nonalcoholic Fatty Liver Disease", Journal of Pediatrics, 143(4): 500-505 (2003).
Shayman, J.A., et al., "Glucosphingolipid Dependence of Hormone-Stimulated Inositol Trisphophate Formation," J. Biol. Chem., 265(21): 12135-12138 (1990).
Shayman, J.A., et al., "Modulation of Renal Epithelial Cell Growth by Glucosylceramide," The Journal of Biological Chemistry, 266(34):22968-22974 (1991).
Shukla, A., et al., "Metabolism of D-[3H]threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthesis and the synergistic action of an inhibitor of microsomal momooxygenase," J. Lipid Research, 32: 713-722 (1991).
Shukla, G., et al., "Rapid Kidney Changes Resulting From Glycosphingolipid Depletion by Treatment with a Glucosyltransferase Inhibitor," Biochim. Biophys. Acta, 1083: 101-108 (1991).
Shukla, G.S., et al., "Glucosylceramide Synthase of Mouse Kidney: Further Characterization with an Improved Assay Method," Arch. Biochem. Biophys., 283(2): 372-378 (1990).
Skehan, P., et al., "New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening," J. Natl. Cancer Inst., 82(13): 1107-1112 (1990).
Strum, J.C., et al., "1-β-D-Arabinofuranosylcytosine Stimulates Ceramide and Diglyceride Formation in HL-60-Cells," J. Biol. Chem., 269(22): 15493-15497 (1994).
Svensson, M., et al., "Epithelial Glucosphingolipid Express as a Determinant of Bacterial Adherence and Cytokine Production", Infection and Immunity, 62:10 pp. 4404-4410 (1994).
Tagami, S., et al., "Ganglioside GM3 Participates in the Pathological Conditions of Insulin Resistance", The Journal of Biological Chemistry, 227(5):3085-3092 (2002).
Tang, W., et al., "Phorbol Ester Inhibits 13-Cis-Retinoic Acid-Induced Hydrolysis of Phosphatidylinositol 4,5-Biophosphate in cultured Murine Keratinocytes: A Possible Negative Feedback Via Protein Kinase C-Activation," Cell Bioch. Funct., 9: 183-191 (1991).
Tay-Sachs, URL: http://www.ninds.nih.gov/disorders/taysachs/taysachs.htm. National Institute of Health of Neurological Disorders and Stroke. Accessed online Sep. 9, 2011.
Uemura, K., et al., "Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Rabbit Skin Fibroblasts," J. Biochem., (Tokyo) 108(4): 525-530 (1990).
Vunnum, R.,R., et al.., "Analogs of Ceramide That Inhibit Glucocerebroside Synthetase in Mouse Brain," Chemistry and Physics of Lipids, LD. Bergelson, et al., eds. (Elsevier/North-Holland Scientific Publishers Ltd.), 26: 265-278 (1980).
Wermuth, C.G., et al., "Designing Prodrug and Bioprecursors I: Carrier Prodrug", The Practice of Medicinal Chemistry, C.G., Wermuth, ed.(CA: Academic Press Limited), pp. 671-696 (1996).
Wong, C-H., et al.., "Synthesis and Evaluation of Homoazasugars as Glycosidase Inhibitors," J. Org. Chem., 60: 1492-1501, (1995).
Yamashita, T., et al., "Enhanced insulin sensitivity in mice lacking ganglioside GM3", Proc. Natl. Acad. Scl., 100(6): 3445-3449 (2003).
Zador, I., et al. "A Role for Glycosphingolipid Accumulation in the Renal Hypertrophy of Streptozotocin-induced Diabetes Mellitus", J. Clin. Invest., 91: 797-803 (1993).
Zhao, H., et al., "Inhibiting glycosphingolipid systhesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes.", Diabetes, 56(5): 1210-1218 (2007).
Ziche, M. et al., "Angiogenesis Can Be Stimulated or Repressed In Vivo by a Change in GM3 :GD3 Ganglioside Ratio," Lab. Invest., 67:711-715 (1992).

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532976B2 (en) 2004-11-10 2017-01-03 Genzyme Corporation Method of lowering blood glucose
US9556155B2 (en) 2006-05-09 2017-01-31 Genzyme Corporation Methods of treating fatty liver disease
US8716327B2 (en) 2006-05-09 2014-05-06 Genzyme Corporation Methods of treating fatty liver disease
US8940776B2 (en) 2007-05-31 2015-01-27 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9745294B2 (en) 2007-05-31 2017-08-29 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US10220039B2 (en) 2007-10-05 2019-03-05 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US8912177B2 (en) 2007-10-05 2014-12-16 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US20100298317A1 (en) * 2007-10-05 2010-11-25 Genzyme Corporation Method of treating polycystic kidney diseases with ceramide derivatives
US9481671B2 (en) 2008-07-28 2016-11-01 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US8729075B2 (en) 2008-07-28 2014-05-20 Genzyme Corporation Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US9744153B2 (en) 2008-10-03 2017-08-29 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9272996B2 (en) 2008-10-03 2016-03-01 Genzyme Corporation 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US20170129869A1 (en) * 2014-07-03 2017-05-11 Dr. Reddy's Laboratories Limited Amorphous form of eliglustat hemitartarate
WO2017165766A2 (en) 2016-03-25 2017-09-28 Genzyme Corporation Biomarkers of proteopathies and uses thereof
WO2019126776A1 (en) 2017-12-21 2019-06-27 Lysosomal Therapeutics Inc. Crystalline substituted cyclohexyl pyrazolo[1,5-a]pyrimidinyl carboxamide compound and therapeutic uses thereof

Also Published As

Publication number Publication date
US20160338996A1 (en) 2016-11-24
MX2011003517A (en) 2011-05-25
CA2738768A1 (en) 2010-04-08
EP2349255B1 (en) 2016-03-30
RU2011117028A (en) 2012-11-10
KR20110067055A (en) 2011-06-20
JP6175465B2 (en) 2017-08-02
US9272996B2 (en) 2016-03-01
CA2738768C (en) 2017-10-31
JP2012504608A (en) 2012-02-23
JP2015129186A (en) 2015-07-16
KR101687039B1 (en) 2016-12-15
IL238583A0 (en) 2015-06-30
IL211946A0 (en) 2011-06-30
EP2349255A1 (en) 2011-08-03
EP3078373A1 (en) 2016-10-12
RU2578947C2 (en) 2016-03-27
WO2010039256A1 (en) 2010-04-08
CN102271678B (en) 2017-06-30
IL211946A (en) 2016-04-21
JP6297194B2 (en) 2018-03-20
US20120322786A1 (en) 2012-12-20
US9744153B2 (en) 2017-08-29
CN107935983A (en) 2018-04-20
US20110184021A1 (en) 2011-07-28
CN102271678A (en) 2011-12-07
IL238583B (en) 2018-11-29
JP2017132814A (en) 2017-08-03
JP2018087232A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9744153B2 (en) 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US9745294B2 (en) 2-acylaminopropoanol-type glucosylceramide synthase inhibitors
US8729075B2 (en) Glucosylceramide synthase inhibition for the treatment of collapsing glomerulopathy and other glomerular disease
US10220039B2 (en) Method of treating polycystic kidney diseases with ceramide derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENZYME CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIEGEL, CRAIG;BASTOS, CECILIA M.;HARRIS, DAVID J.;AND OTHERS;SIGNING DATES FROM 20091028 TO 20091112;REEL/FRAME:023654/0353

AS Assignment

Owner name: GENZYME CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIEGEL, CRAIG;BASTOS, CECILIA M.;HARRIS, DAVID J.;AND OTHERS;SIGNING DATES FROM 20091028 TO 20091112;REEL/FRAME:028974/0321

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20201113