US8549513B2 - Model-based virtual system provisioning - Google Patents

Model-based virtual system provisioning Download PDF

Info

Publication number
US8549513B2
US8549513B2 US11/169,973 US16997305A US8549513B2 US 8549513 B2 US8549513 B2 US 8549513B2 US 16997305 A US16997305 A US 16997305A US 8549513 B2 US8549513 B2 US 8549513B2
Authority
US
United States
Prior art keywords
workload
model
computing device
virtual machine
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/169,973
Other versions
US20070006218A1 (en
Inventor
Anders B. Vinberg
Robert M. Fries
Kevin Grealish
Galen C. Hunt
Aamer Hydrie
Rob Mensching
Geoffrey Outhred
John M. Parchem
Bassam Tabbara
Rene Antonio Vega
Robert V. Welland
Eric J. Winner
Jeffrey A. Woolsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ServiceNow Inc
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/169,973 priority Critical patent/US8549513B2/en
Application filed by Microsoft Corp filed Critical Microsoft Corp
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VEGA, RENE ANTONIO, WOOLSEY, JEFFREY A., FRIES, ROBERT M., HYDRIE, AAMER, PARCHEM, JOHN M., WINNER, ERIC J., MENSCHING, ROB, GREALISH, KEVIN, OUTHRED, GEOFFREY, VINBERG, ANDERS B., TABBARA, BASSAM, WELLAND, ROBERT V., HUNT, GALEN C.
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VEGA, RENE ANTONIO, WOOLSEY, JEFFREY A., FRIES, ROBERT M., HUNT, GALEN C., HYDRIE, AAMER, PARCHEM, JOHN M., WINNER, ERIC J., MENSCHING, ROB, GREALISH, KEVIN, OUTHRED, GEOFFREY, VINBERG, ANDERS B., TABBARA, BASSAM, WELLAND, ROBERT V.
Publication of US20070006218A1 publication Critical patent/US20070006218A1/en
Priority to US14/042,619 priority patent/US9317270B2/en
Application granted granted Critical
Publication of US8549513B2 publication Critical patent/US8549513B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Priority to US14/857,480 priority patent/US9811368B2/en
Priority to US15/721,338 priority patent/US10540159B2/en
Assigned to SERVICENOW, INC. reassignment SERVICENOW, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT TECHNOLOGY LICENSING, LLC
Assigned to SERVICENOW, INC. reassignment SERVICENOW, INC. CORRECTIVE BY NULLIFICATION TO CORRECT INCORRECTLY RECORDED APPLICATION NUMBERS AT REEL 047681 FRAME 0916. ASSIGNOR(S) HEREBY CONFIRMS THE TABLE 2 ATTACHMENT AS NOT TO BE RECORDED. Assignors: MICROSOFT TECHNOLOGY LICENSING, LLC
Assigned to SERVICENOW, INC. reassignment SERVICENOW, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT CORRECTION PREVIOUSLY RECORDED ON REEL 047681 FRAME 0916. ASSIGNOR(S) HEREBY CONFIRMS THE REMOVAL OF MULTIPLE APPLICATIONS FROM ASSIGNMENT INADVERTENTLY RECORDED.. Assignors: MICROSOFT TECHNOLOGY LICENSING, LLC
Assigned to SERVICENOW, INC. reassignment SERVICENOW, INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NULLIFICATION TO CORRECT BY REMOVAL PREVIOUSLY RECORDED AT REEL: 050117 FRAME: 0259. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: MICROSOFT TECHNOLOGY LICENSING, LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/61Installation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/4557Distribution of virtual machine instances; Migration and load balancing

Definitions

  • Computers have become increasingly commonplace in our world and offer a variety of different functionality. Some computers are designed primarily for individual use, while others are designed primarily to be accessed by multiple users and/or multiple other computers concurrently. These different functionalities are realized by the use of different hardware components as well as different software applications that are installed on the computers.
  • Model-based virtual system provisioning is described herein.
  • a model of a workload to be installed on a virtual machine of a system as well as a model of the system are accessed.
  • a workload refers to some computing that is to be performed, and includes an application to be executed to perform the computing, and optionally includes the operating system on which the application is to be installed.
  • the workload model identifies a source of the application and operating system of the workload, as well as constraints of the workload, such as resources and/or other capabilities that the virtual machine(s) on which the workload is to be installed must have.
  • An installation specification for the application is also generated, the installation specification being derived at least in part from the model of the workload and the model of the virtual system.
  • FIG. 1 illustrates an example system definition model (SDM) that can be used with the model-based virtual system provisioning described herein.
  • SDM system definition model
  • FIG. 2 illustrates an example use of types, configurations, and instances.
  • FIG. 3 is a flowchart illustrating an example process for provisioning a virtual system.
  • FIG. 4 illustrates an example workload installation specification in additional detail.
  • FIG. 5 is a flowchart illustrating an example of the generation of a workload installation specification for physical deployment in additional detail.
  • FIG. 6 illustrates an example general computer environment, which can be used to implement the techniques described herein.
  • Model-based virtual system provisioning is described herein.
  • An installation specification for provisioning a computing device(s) is generated and subsequently used to provision the computing device(s).
  • the installation specification describes how to install a workload on the computing device(s), the workload referring to some computing that is to be performed.
  • the workload is installed on a virtual machine of the computing device(s), which is typically created as part of the installation process.
  • the installation specification is derived at least in part from a model of the workload to be installed on the computing device(s) and a model of the system in which the application is to be installed (the system including the computing device(s)).
  • an application refers to a collection of instructions that can be executed by a processor, such as a central processing unit (CPU) of a computing device.
  • a processor such as a central processing unit (CPU) of a computing device.
  • An application can be any of a variety of different types of software or firmware, or portions thereof. Examples of applications include programs that run on an operating system, the operating system, operating system components, services, infrastructure, middleware, portions of any of these, and so forth.
  • a system definition model describes a system that can be managed. Management of a system can include, for example, installing software on the system, monitoring the performance of the system, maintaining configuration information about the system, verifying that constraints within the system are satisfied, combinations thereof, and so forth.
  • a system can be, for example, an application, a single computing device, multiple computing devices networked together (e.g., via a private or personal network such as a local area network (LAN) or via a larger network such as the Internet), and so forth.
  • a virtual machine can be thought of as a computing device implemented in software.
  • a virtual machine typically emulates a computing device, including all of the hardware components of a computing device, although in some cases the physical devices may be assigned directly to a virtual machine without emulation.
  • a virtual machine runs on a computing device in its own isolated and self-contained environment, having its own operating system and optionally other software installed on it. Multiple virtual machines can be run on the same computing device, each of the multiple virtual machines having its own isolated environment and its own operating system installed thereon.
  • a virtual system includes one or more computing devices that run a virtual machine.
  • a virtual system can include one or more computing devices that already run a virtual machine and/or one or more computing devices that are to have a virtual machine provisioned thereon.
  • a virtual machine can be provisioned on a computing device as part of the virtual system provisioning described herein.
  • FIG. 1 illustrates an example SDM 100 that can be used with the model-based virtual system provisioning described herein.
  • SDM 100 includes a component corresponding to each of one or more software and/or hardware components being managed in a virtual system. These software and/or hardware components being managed refer to those software and/or hardware components that the author of SDM 100 and/or designers of the system desires to include in SDM 100 .
  • Examples of hardware and/or software components that could be in a system include an application (such as a database application, email application, file server application, game, productivity application, operating system, and so forth), particular hardware on a computer (such as a network card, a hard disk drive, one of multiple processors, and so forth), a virtual machine, a computer, a group of multiple computers, and so on.
  • a system refers to a collection of one or more hardware and/or software components.
  • SDM 100 represents a system including component 102 , component 104 , component 106 , component 108 , component 110 , component 112 , and component 114 .
  • the example SDM 100 includes seven components, in practice a system, and thus the SDM, can include any number of components.
  • component 106 could represent a particular computer, while component 104 represents an operating system running on that particular computer.
  • component 106 could represent an operating system, while component 104 represents a database application running on the operating system.
  • component 114 could represent a particular computer, while component 112 represents an operating system installed on that particular computer, component 110 represents a virtual machine running on the operating system, and component 108 represents an operating system running on the virtual machine. Note that the operating systems associated with component 112 and component 108 could be the same or alternatively two different operating systems.
  • the SDM is intended to be a comprehensive knowledge store, containing all information used in managing the system. This information includes information regarding the particular components in the system, as well as relationships among the various components in the system. Despite this intent, it is to be appreciated that the SDM may contain only some of the information used in managing the system rather than all of the information.
  • Relationships can exist between different components in a system, and these relationships are typically illustrated in SDM diagrams with lines connecting the related components. Examples of relationships that can exist between components include containment relationships, hosting relationships, and communication relationships. Containment relationships identify one component as being contained by another component—data and definitions of the component being contained are incorporated into the containing component. When a component is installed on a system, any components contained in that component are also typically installed on the system. In FIG. 1 , containment relationships are illustrated by the diagonal lines connecting component 102 and component 104 , and connecting component 102 and component 108 .
  • Hosting relationships identify dependencies among components. In a hosting relationship, the hosting component typically must be present in order for the guest component to be included in the system. In FIG. 1 , hosting relationships are illustrated by the vertical lines connecting component 104 and component 106 , connecting component 108 and component 110 , connecting component 110 and 112 , and connecting component 112 and 114 .
  • Communication relationships identify components that can communicate with one another. Communication relationships may or may not imply that a dependency exists between the components. In FIG. 1 , communication relationships are illustrated by the horizontal line connecting component 104 and component 108 .
  • Information pages 122 are associated with component 102
  • information pages 124 are associated with component 104
  • information pages 126 are associated with component 106
  • information pages 128 are associated with component 108
  • information pages 130 are associated with component 110
  • information pages 132 are associated with component 112
  • information pages 134 are associated with component 114 .
  • Each information page contains information about the associated component. Different types of information can be maintained for different components.
  • One or more information pages can be associated with each component in SDM 100 , and the particular information that is included in a particular information page can vary in different implementations.
  • All the information can be included on a single information page, or alternatively different pieces of information can be grouped together in any desired manner and included on different pages.
  • different pages contain different types of information, such as one page containing installation information and another page containing constraint information.
  • different types of information may be included on the same page, such as installation information and constraint information being included on the same page.
  • Examples of types of information pages include installation pages, constraint pages, monitoring pages, service level agreement pages, description pages, and so forth.
  • Installation pages include information describing how to install the associated component onto another component (e.g., install an application onto a computer), such as what files to copy onto a hard drive, what system settings need to be added or changed (such as data to include in an operating system registry), what configuration programs to run after files are copied onto the hard drive, sequencing specifications that identify that a particular installation or configuration step of one component should be completed before an installation or configuration step of another component, and so forth.
  • Constraint pages include information describing constraints for the associated component, including constraints to be imposed on the associated component, as well as constraints to be imposed on the system in which the associated component is being used (or is to be used). Constraints imposed on the associated component are settings that the component should have (or alternatively should not have) when the component is installed into a system. Constraints imposed on the system are settings (or other configuration items, such as the existence of another application or a piece of hardware) that the system should have (or alternatively should not have) in order for the associated component to be used in that particular system.
  • constraints can flow across relationships. For example, constraints can identify settings that any component that is contained by the component, or that any component that contains the component, should have (or alternatively should not have). By way of another example, constraints can identify settings that any component that is hosted by the component, or that any component that hosts the component, should have (or alternatively should not have). By way of yet another example, constraints can identify settings that any component that communicates with the component should have (or alternatively should not have).
  • constraint pages may also include a description of how particular settings (or components) are to be discovered. For example, if a constraint indicates that an application should not co-exist with Microsoft® SQL Server, then the constraint page could also include a description of how to discover whether Microsoft® SQL Server is installed in the system. By way of another example, if a constraint indicates that available physical memory should exceed a certain threshold, then the constraint page could also include a description of how to discover the amount of available physical memory in the system. By way of still another example, if a constraint indicates that a security setting for Microsoft® SQL Server should have a particular value, then the constraint page could also include a description of how to discover the value of that security setting for Microsoft® SQL Server.
  • Constraint pages may also include a description of how particular settings are to be modified if they are discovered to not be in compliance with the constraints.
  • the constraint pages could include specifications of some other action(s) to take if particular settings are discovered to not be in compliance with the constraints, such as sending an event into the system's event log, alerting an operator, starting a software application to take some corrective action, and so forth.
  • the constraint pages could include a policy that describes what action to take under various circumstances, such as depending on the time of day, depending on the location of the system.
  • Constraint pages may also optionally include default values for at least some of these settings, identifying a default value to use within a range of values that satisfy the constraint. These default values can be used to assist in installation of an application, as discussed in more detail below.
  • Monitoring pages include information related to monitoring the performance and/or health of the associated component. This information can include rules describing how the associated component is to be monitored (e.g., what events or other criteria to look for when monitoring the component), as well as what actions to take when a particular rule is satisfied (e.g., record certain settings or what events occurred, sound an alarm, etc.).
  • rules describing how the associated component is to be monitored e.g., what events or other criteria to look for when monitoring the component
  • actions to take when a particular rule is satisfied e.g., record certain settings or what events occurred, sound an alarm, etc.
  • Service level agreement pages include information describing agreements between two or more parties regarding the associated component (e.g., between the purchaser of the associated component and the seller from which the associated component was purchased). These can be accessed during operation of the system to determine, for example, whether the agreement reached between the two or more parties is being met by the parties.
  • Description pages include information describing the associated component, such as various settings for the component, or other characteristics of the component. These settings or characteristics can include a name or other identifier of the component, the manufacturer of the component, when the component was installed or manufactured, performance characteristics of the component, and so forth.
  • a description page associated with a component that represents a computing device may include information about the amount of memory installed in the computing device
  • a description page associated with a component that represents a processor may include information about the speed of the processor
  • a description page associated with a component that represents a hard drive may include information about the storage capacity of the hard drive and the speed of the hard drive, and so forth.
  • an SDM maintains various information (e.g., installation, constraints, monitoring, etc.) regarding each component in the system. Despite the varied nature of these information pages, they are maintained together in the SDM and thus can all be readily accessed by various utilities or other applications involved in the management of the system.
  • An SDM can be generated and stored in any of a variety of different ways and using any of a variety of different data structures.
  • the SDM may be stored in a database.
  • the SDM may be stored in a file or set of multiple files, the files being encoded in XML (Extensible Markup Language) or alternatively some other form.
  • the SDM may not be explicitly stored, but constructed each time it is needed. The SDM could be constructed as needed from information existing in other forms, such as installation specifications.
  • the SDM is based on a data structure format including types, instances, and optionally configurations.
  • Each component in the SDM corresponds to or is associated with a type, an instance, and possibly one or more configurations.
  • each type, instance, and configuration corresponding to a particular component can have its own information page(s).
  • a type refers to a general template having corresponding information pages that describe the component generally.
  • each different version of a component will correspond to its own type (e.g., version 1.0 of a software component would correspond to one type, while version 1.1 of that software component would correspond to another type).
  • a configuration refers to a more specific template that can include more specific information for a particular class of the type.
  • An instance refers to a specific occurrence of a type or configuration, and corresponds to an actual physical component (software, hardware, firmware, etc.).
  • information contained in information pages associated with an instance can be more specific or restrictive than, but generally cannot contradict or be broader than, the information contained in information pages associated with the type or the configuration.
  • information contained in information pages associated with a configuration can be more specific or restrictive than, but cannot contradict or be broader than, the information contained in information pages associated with the type. For example, if a constraint page associated with a type defines a range of values for a buffer size, the constraint page associated with the configuration or the instance could define a smaller range of values within that range of values, but could not define a range that exceeds that range of values.
  • a model of an existing system as deployed may violate the information contained in information pages associated with the type for that existing system.
  • This situation can arise, for example, where the system was deployed prior to an SDM for the system being created, or where a user (such as a system administrator) may have intentionally deployed the system in noncompliance with the information contained in information pages associated with the type for that existing system.
  • FIG. 2 The use of types, configurations, and instances is illustrated in FIG. 2 .
  • a type 202 corresponds to a particular component.
  • a configuration (config) 210 exists which includes additional information for a particular class of the particular component, and two instances 212 and 214 of that particular class of the particular component.
  • a type 202 corresponding to the database application is created, having an associated constraint information page.
  • the constraint information page includes various general constraints for the database application. For example, one of the constraints may be a range of values that a particular buffer size should be within for the database application.
  • Type 202 corresponds to the database application in general.
  • Each of the instances 204 , 206 , and 208 corresponds to a different example of the database application.
  • Each of the instances 204 , 206 , and 208 is an actual database application, and can have its own associated information pages.
  • each instance could have its own associated description information page that could include a unique identifier of the particular associated database application.
  • the constraint information page associated with each instance could include a smaller range of values for the buffer size than is indicated in the constraint information page associated with type 202 .
  • the information pages corresponding to the instances in FIG. 2 can be in addition to, or alternatively in place of, the information pages corresponding to the type.
  • two constraint information pages may be associated with each instance 204 , 206 , and 208 , the first constraint information page being a copy of the constraint information page associated with type 202 and the second constraint information page being the constraint information page associated with the particular instance and including constraints for just that instance.
  • a single constraint information page may be associated with each instance 204 , 206 , and 208 , the single constraint information page including the information from the constraint information page associated with type 202 as well as information specific to the particular instance.
  • the range of values that the particular buffer size should be within for the database application would be copied from the constraint information page associated with type 202 to the constraint information page associated with each instance. However, if the constraint information page for the instance indicated a different range of values for that particular buffer size, then that different range of values would remain in the constraint information page associated with the instance rather than copying the range of values from the constraint information page associated with type 202 .
  • configuration 210 corresponds to a particular class of the database application.
  • different classes of the database application may be defined based on the type of hardware the application is to be installed on, such as different settings based on whether the computer on which the database application is to be installed is publicly accessible (e.g., accessible via the Internet), or based on whether an operating system is already installed on the server. These different settings are included in the constraint information page associated with configuration 210 .
  • Each of the instances 212 and 214 corresponds to a different example of the database application. Similar to instances 204 , 206 , and 208 , each of instances 212 and 214 is an actual database application, and can have its own information page(s). However, unlike instances 204 , 206 , and 208 , the constraint information pages associated with instances 212 and 214 each include the constraints that are in the constraint information page associated with configuration 210 as well as the constraints in the constraint information page associated with type 202 .
  • the data structure(s) implementing the SDM could alternatively include the information discussed as being included in the various information pages.
  • the component data structures themselves could include the information discussed as being included in the various information pages rather than having separate information pages.
  • the installation page associated with a component can be used as a basis for provisioning a virtual system.
  • Provisioning a virtual system refers to installing a workload on the virtual system, as well as making any necessary changes to the virtual system in order for the workload to be installed.
  • Such necessary changes typically include creating a new virtual machine, and can also include other actions, such as installing an operating system on the computing device on which the new virtual machine runs or installing an operating system on the newly created virtual machine, setting configuration values for the operating system, installing one or more other applications, configuring a storage system to be accessible to the virtual machine, configuring networks to be accessible to the virtual machine, and so forth.
  • the workload is installed by creating a new virtual machine on a computing device and copying an image file to the storage device of the computing device. This image file includes an application(s) to be run to perform the computing of the workload, and also typically includes the operating system on which the application(s) is to be run.
  • each of these different classes of computing devices refers to computing devices having particular common characteristics, so they are grouped together and viewed as a class of devices.
  • Examples of different classes of devices include IIS (Internet Information Services) servers that are accessible to the Internet, IIS servers that are accessible only on an internal intranet, database servers, email servers, order processing servers, desktop computers, and so forth.
  • IIS Internet Information Services
  • IIS servers that are accessible only on an internal intranet
  • database servers database servers
  • email servers order processing servers
  • desktop computers desktop computers
  • These different classes of computing devices can be different classes of physical devices, as well as different classes of virtual machines.
  • the classes may distinguish between virtual machine classes and physical device classes.
  • one class may be database virtual machines, another class may be database physical servers (not running the database on a virtual machine), another class may be an order processing virtual machine, another class may be an order processing physical server (not running the order processing application(s) on a virtual machine), and so forth.
  • the classes may not distinguish between virtual machine classes and physical device classes.
  • a single database server class may be used for database servers regardless of whether the database application(s) are run on a virtual machine or a computing device without a virtual machine(s).
  • a workload is some computing that is to be performed.
  • a workload typically includes an application to be executed to perform the computing, and can also include the operating system on which the application is to be installed.
  • Various configuration information describing how the application and/or operating system is to be configured, as well as data to be used by the application and/or operating system when executing, can also be included in the workload.
  • a model of the workload includes the application, operating system, configuration information, and/or data, as well as constraints of the workload such as resources and/or other capabilities that the virtual machine(s) on which the workload is to be installed must have. Examples of these constraints are discussed below.
  • FIG. 3 is a flowchart illustrating an example process 300 for provisioning a virtual system. Portions of process 300 can be implemented in software, firmware, and/or hardware.
  • a model of a workload is built (act 302 ).
  • the workload typically includes the application to be installed on a virtual system, and can also include the operating system, configuration information, and/or data.
  • the workload may not include an application, but may include an operating system (or components of an operating system), configuration information, and/or data.
  • the model of the workload can also include one or more constraints.
  • This building process in act 302 is typically performed by the developer of the workload, although could alternatively be performed by others.
  • This model is an SDM model of the workload, analogous to model 100 of FIG. 1 , and includes one or more components.
  • the model of the workload includes types and optionally configurations.
  • zero or more information pages are associated with each component in the model.
  • at least a constraint information page is associated with each component in the model.
  • types and optionally configurations are defined, along with associated information page(s).
  • the types and configurations can be standard types or configurations that are copied or modified in act 302 , or alternatively can be newly created in act 302 .
  • different constraints can be included in the configuration information page associated with the type and the configuration information page associated with the configuration.
  • the specific constraints included in the configuration information page for a particular workload can vary based on the particular computing to be performed and/or the desires of the designer of the workload.
  • constraints included on a constraint information page can take a variety of forms, such as: hardware requirements regarding the computing device(s) or other hardware on which the application is to be installed (e.g., a minimum processor speed, a minimum amount of memory, a minimum amount of free hard drive space, a minimum amount of network bandwidth available, particular security mechanisms available, and so forth), software requirements regarding the computing device(s) or other hardware or software on which the workload is to be installed (e.g., a particular operating system that should already be installed on the computing device(s), one or more other applications that should already be installed on the computing device(s), specifications regarding how particular hardware and/or the operating system is to be configured such as particular settings for the operating system that should already be made, a particular type of security or encryption that should be in use, and so forth, requirements regarding a virtual machine that should be created on a computing device as well as requirements regarding an operating system that should be installed on the virtual machine before the application can be installed thereon, other requirements regarding the computing device(s) on which the workload is to be installed (
  • Constraints can be positive requirements specifying that something should be present (e.g., the processor should have at least a minimum processor speed, or the Windows® XP operating system should already be installed on the computing device). Constraints can also be negative requirements specifying that something should not be present (e.g., one or more particular applications should not already be installed on the computing device, or particular operating system settings should not be present).
  • One example constraint of the workload is a number and/or size of CPUs that the system on which the workload is to be installed must have.
  • This constraint can identify a specific number of CPUs that the system must have (e.g., 1 CPU, 2 CPUs, 4 CPUs, etc.), or a range of CPUs that the system must have (e.g., 2 to 4 CPUs).
  • the constraint can also specify the size of the CPUs that are needed, referring to the fraction of a CPU that is needed (e.g., a workload may require 100% of 1 CPU, or 50% of each of 2 CPUs). Both requirements and recommendations can be specified (e.g., a minimum of 2 CPUs is required, but 4 or more CPUs should be used if possible).
  • Another example constraint of the workload is an amount of memory (e.g., RAM). This constraint typically identifies a minimum amount of memory that the system on which the workload is to be installed must have. Both requirements and recommendations can be specified (e.g., a minimum of 2 GB of memory is required, but 4 GB or more of memory should be used if possible).
  • RAM random access memory
  • Another example constraint of the workload is an amount of storage space (e.g., hard disk space, optical disk space, etc.). This constraint typically identifies a minimum amount of storage space that the system on which the workload is to be installed must have. Both requirements and recommendations can be specified (e.g., a minimum of 10 GB of storage space is required, but 15 GB or more of storage space should be used if possible).
  • Another example constraint of the workload is the hardware type or architecture. For example, particular types of CPUs, particular bus or memory speeds, particular co-processors, and so forth may be required and/or recommended.
  • Another example constraint of the workload is the type of storage available to the system. This constraint can specify performance and reliability characteristics of the storage (e.g., RAID 1 or RAID 5 is required). This constraint can also specify that access to particular systems or databases is required. Both requirements and recommendations can be specified (e.g., RAID 1 or RAID 5 is required, but RAID 5 should be used if possible).
  • Another example constraint of the workload is the schedule for the workload, referring to when the computing that is to be performed should be started and/or ended. Both requirements and recommendations can be specified (e.g., the computing must end by 6:00 am, but should end by 5:00 am if possible).
  • Another example constraint is the events that should trigger the deployment of the workload, referring to when the computing that is to be performed should be started and/or ended. For example, when the same workload is operating on several computing devices with tasks assigned to the individual devices and/or virtual machines by a load balancing device, a monitoring system may determine that the number of incoming requests is exceeding the aggregate capacity of the devices and/or virtual machines, and may send an event indicating that another instance of that workload should be deployed to help carry the load. By way of another example, when a running workload fails because of a software or hardware problem, a monitoring system may send an event that indicates that a replacement copy of that workload should be deployed.
  • the constraints may also include a combination of events and schedules. For example, a workload may be started by a schedule, and the constraints specify that the workload should be ended and removed from the computing device when processing is finished, as indicated by an event; however, if the processing is not completed when the “batch window closes” at 6:00 am, the workload should be paused and removed from the computing device, and restarted to continue processing when the next “batch window” opens at the following midnight.
  • constraints of the workload can refer to constraints on the physical hardware of the virtual system and/or constraints on the virtual hardware of a virtual machine of the virtual system.
  • the model of the workload identifies whether the constraints refer to physical hardware or virtual hardware.
  • the constraints of the workload identify constraints of the virtual hardware, and these constraints can be compared to the constraints of the system to verify that a virtual machine having virtual hardware satisfying these constraints of the workload can be created.
  • the constraints of the workload can be compared to the constraints of currently running virtual machines to verify that a virtual machine having virtual hardware satisfying these constraints of the workload exists.
  • the constraints of the workload identify constraints of the physical hardware, and these constraints can be compared to the constraints of the system to verify that a computing device satisfying these constraints exists.
  • the workload may have different constraints that apply for different types of deployment. For example, if the workload is deployed and started from a state where it is not previously running, a certain set of constraints apply, but if the workload is started after having been previously executing, paused and saved in a virtual machine image file, another set of constraints apply, and if the workload is to be moved from one computing device to another through a migration process, yet another set of constraints apply.
  • a model of the system where the application is to be installed is built (act 304 ).
  • This building process in act 304 is typically performed by an administrator of the system where the application is to be installed, although could alternatively be performed by others.
  • This model is an SDM model of the system analogous to model 100 of FIG. 1 , and includes one or more components.
  • the model of the virtual system includes types and instances, and optionally configurations.
  • the system in act 304 can be referred to as a virtual system, although the virtual machine(s) onto which the application and the operating system of the workload are to be installed may not yet be created.
  • the system in act 304 describes the physical computing devices on which virtual machines may be created, and describes virtual machines that have already been created, but does not describe virtual machines that have not yet been created.
  • the system in act 304 could be a single computing device, or alternatively multiple computing devices. For example, if the application will be installed on a virtual machine of a computing device in a data center having a thousand computing devices, then the model of the system where the application is to be installed will include those thousand computing devices. By way of another example, if the application will be installed on a virtual machine of a home computer that is not coupled to any other computers, then the model of the system where the application is to be installed will include just that home computer.
  • a computing device can vary, and that any of a wide variety of computing devices can be a system in act 304 .
  • “hierarchical” computers can exist, such as a rack that can contain multiple chassis, each chassis can contain multiple blades, each blade can contain multiple motherboards, each motherboard can contain multiple processors, and each processor can contain multiple cores. Any of these components of such a hierarchical computer can be viewed as a computing device (e.g., the rack can be a computing device, each chassis can be a computing device, each blade can be a computing device, each motherboard can be a computing device, each processor can be a computing device, and/or each core can be a computing device).
  • the characteristics of each computing device in the hierarchy, and the characteristics of the containment, hosting and communications relationships among them, are typically significant for the placement of virtual machines on those computing devices.
  • the speed of the connection may determine how a workload can be deployed, and therefore a constraint in the workload model indicates that the workload cannot be deployed across several computing devices at a level in the hierarchy where the connection speed is too slow.
  • a particular constraint on the workload may specify the software licensing requirements for various types of deployment, where operating systems and applications would have different rules about the licenses required when deploying the workload on a processor, or on a blade with many processors, or across several blades. Under these types of constraints, a particular computing device may not have enough licenses to allow the workload to be deployed, even though it may have enough processing power, memory and storage.
  • the model of the system built in act 304 will be generated by the system administrator prior to the workload being designed and the model of the workload being built in act 302 . In such situations, the previously generated model can be accessed and need not be re-built in act 304 .
  • Components in the model of the system built in act 304 will include constraint information pages. These constraint information pages include constraints for each component in the virtual system. Such constraint information pages can identify constraints for the corresponding component, and optionally constraints that should be satisfied by any application to be installed on the corresponding component. Both the constraints on the workload and the characteristics of the system may be time-series data, in addition to the possibly time-based nature of the deployment schedule. For example, if once started the workload requires only 1 CPU for half an hour, and then needs 4 CPUs for half an hour, this sequence of values can be represented in the constraints.
  • the number of available CPUs can be calculated as 2 CPUs for 1 hour, 4 CPUs for 2 hours after that, and 8 CPUs after that. This time series of available CPUs can be recorded in the characteristics page of the system model
  • a logical deployment evaluation is performed (act 306 ).
  • the logical deployment evaluation involves comparing the model of the workload (from act 302 ) to the model of the system (from act 304 ) to determine whether the application could be installed in the system.
  • the application designer or system administrator will identify a particular class (or classes) of computing device on which he or she desires to install the application.
  • the application may be compared to all classes of computing devices in the system.
  • the constraints and/or description information for the workload are compared to the constraints for that class of computing device to determine whether the workload satisfies the constraints of the class of computing device, and the constraints and/or description information for the class of computing device are compared to the constraints for the workload to determine whether the class of computing device satisfies the constraints of the workload.
  • the constraints and description information for all components of the class of computing device including any applications that are hosted by the class of computing device (e.g., an operating system as well as possibly other applications) are also accessed as part of the logical deployment evaluation.
  • These constraints used in the logical deployment evaluation can include constraints that are flowed across relationships, as discussed above.
  • These constraints used in the logical deployment evaluation can also include time-series based constraints, as discussed above.
  • Accessing the constraints for the operating system and other applications allows verification that, if installed on a device of the class of computing device, settings made on the computing device for the workload would not conflict with current settings for other applications installed on the computing device.
  • the verification can use the scheduled start time of the workload, and the time-series of constraints and system characteristics, and can verify that the time profile of resources available on the system satisfies the time profile of requirements of the workload.
  • the evaluation in act 306 includes evaluating that any constraints of the virtual machine are satisfied by the class of computing device in order to verify that the virtual machine can be installed on the class of computing device.
  • a particular constraint on the class of computing device may indicate that a software firewall should always be running on the class of computing device.
  • a description page associated with the workload would be accessed to verify that the workload does not require a software firewall to be deactivated.
  • a particular constraint on the workload may indicate that the computing device should have a minimum processor speed.
  • a description page associated with the class of computing device (or the processor of the class of computing device) would be accessed to verify that the speed of the processor is at least the minimum processor speed.
  • this processor speed could refer to the speed of the virtual processor of the virtual machine on which the workload would be installed, or the speed of the physical processor of the class of computing device on which the virtual machine is installed.
  • the fractional parts of the physical processor may be allocated to each virtual machine, and each such fractional part serves as the virtual processor for the virtual machine to which the part is allocated.
  • a check would be made to ensure that the speed of the physical processor satisfies the constraint. Furthermore, a check would also be made that the fractional part of the physical processor can be allocated to the virtual machine to create a virtual processor that satisfies the constraint. This check can be performed by checking a description page associated with the system, or by communicating a request or query to a virtual system management component as to whether it would be able to create such a virtual machine having a virtual processor satisfying the constraint. It is to be appreciated that such speeds of virtual processors can vary depending on the number of other virtual machines that are already running on the computing device, as the presence of such other virtual machines will affect the fractional part of the physical processor that can be allocated to the virtual machine.
  • a particular constraint on the workload may indicate that the computing of the workload should be performed between midnight and 4:00 am.
  • a description page associated with the class of computing device would be accessed to verify that the computing device has sufficient processing capacity (in light of other workloads already scheduled to be performed between midnight and 4:00 am) to have a new virtual machine (or alternatively an existing virtual machine) perform the computing of the workload.
  • a class of computing device may “overcommit” its resources.
  • three different virtual machines may each require 4 GB of memory, but a particular class of computing device may only have 8 GB of memory.
  • all three virtual machines could be run on that class of computing device by running only two of the three virtual machines concurrently, or all three virtual machines could be run simultaneously (on the assumption that the workloads will on the average share some memory pages that are used for read-only access).
  • two different virtual machines may each require 100 GB of storage space, but a particular class of computing device may only have 160 GB of storage space.
  • both virtual machines could be run on that class of computing device by running the two virtual machines at separate times, or both virtual machines could be run simultaneously (on the assumption that they will not both make full demands on the storage space at the same time).
  • the models of the workloads indicate whether such overcommitment is possible and whether it is desirable.
  • constraints in act 306 are evaluated in act 306 , regardless of what those components are.
  • constraints of the class of computing device are evaluated in act 306 down to the layer that is hosting the workload being installed, but may extend to other layers if referenced in the SDM.
  • constraints of the virtual machine would be evaluated against the computing device and the operating system running on the computing device, while constraints of the workload would be evaluated against the virtual machine.
  • the workload had a constraint referencing the computing device itself (e.g., regarding physical protection of the computing device on which the workload is deployed), then that constraint of the workload would be evaluated against the computing device.
  • the results of the evaluation in act 306 can be returned to the workload designer and/or system administrator.
  • An indication of success (if all of the constraints are satisfied) or failure (if all of the constraints are not satisfied) can be returned.
  • an indication of which constraint was not satisfied can be returned, as well as optionally an indication of which component caused the constraint to not be satisfied.
  • the evaluation can indicate whether the constraints that were not satisfied were mandatory or recommended constraints. Returning such information can assist the workload developer in modifying the workload so that it can be installed in the system, and in choosing which of the available systems would be most suited for the workload.
  • Process 300 then proceeds based on the results of the evaluation in act 306 . If the evaluation indicates that the workload can be installed in the system, then process 300 can proceed to act 308 . Act 306 may also optionally be repeated for a different class of computing device in the system. However, if the evaluation indicates that the workload cannot be installed in the system, then the evaluation of act 306 can be repeated for a different class of computing device in the virtual system, or alternatively the workload may be modified in order to overcome the problem(s) identified in the evaluation of act 306 , and process 300 can return to act 302 to build a model of the modified workload.
  • the verification can evaluate whether the constraints can be met by a later or earlier start time and can return a list of possible classes of computing devices with the possible start time for each one.
  • physical deployment of the workload is determined. Determining physical deployment of the workload refers to identifying which particular computing device(s) will perform the computing of the workload (and optionally have a new virtual machine created thereon to perform the computing of the workload).
  • the particular computing device(s) which will perform the computing of the workload can be identified in different manners. One way in which the particular computing device(s) will perform the computing of the workload can be identified is manually, such as by a system administrator or other party manually selecting a particular computing device(s).
  • This manually selected computing device(s) could be a computing device already(s) in the system, or alternatively a new computing device(s) that needs to be purchased or a computing device(s) that needs to be removed from storage and added to the system (e.g., coupled to the network that the other computing devices in the system are coupled to).
  • the particular computing device(s) which will perform the computing of the workload can be identified automatically.
  • An application running in the system can identify various characteristics of the computing devices on which a virtual machine could be created and the workload installed thereon (e.g., the computing devices of the particular class of computing device on which the application is to be installed), such as load characteristics of each computing device.
  • the load characteristics could identify, for example, the average or maximum amount of processor usage, the average amount of memory usage, the amount of available network bandwidth being used, the amount of hard disk drive space being used, and so forth.
  • the computing device(s) most likely to be able to support the new virtual machine and the workload would be identified as the computing device(s) on which the computing of the workload is to be performed (e.g., the computing device having the lightest load, such as the lowest average processor usage, the smallest amount of available network bandwidth being used, the most hard disk drive space available, and so forth). If no computing device can meet the recommended schedule, but several can meet the required schedule, the computing device that comes closest to meeting the recommended schedule could be identified.
  • a new virtual machine is created as part of installing the workload.
  • the characteristics of the computing devices are evaluated for purposes of determining which computing device(s) will have the new virtual machine created thereon and will perform the computing of the workload.
  • a new virtual machine may not be created, and the workload may be installed on an already running virtual machine. In such situations, the characteristics of the currently running virtual machines are evaluated for purposes of determining which virtual machine(s) will perform the computing of the workload.
  • the particular computing device(s) which will perform the computing of the workload can be identified in a semi-automatic manner.
  • An application running in the system can identify various characteristics of the computing devices on which the virtual machine could possibly be created and the computing of the workload could possibly be performed (or characteristics of the virtual machines on which the workload could possibly be performed) analogous to the automatic manner, and then present those results to a user (such as the system administrator) for manual selection of one or more of the computing devices (or virtual machines).
  • One or more of the computing devices may optionally be recommended to the user as the best candidate(s) for selection, but the ultimate selection would remain at the user's discretion.
  • priorities of different workloads may be used as part of the physical deployment determining of act 308 .
  • Workloads can optionally be assigned priorities, allowing the importance of the workloads relative to one another to be identified. These priorities are typically included in the model of the workload or the workload itself, but alternatively may be maintained elsewhere.
  • Higher priority workloads can be given access to resources of the virtual system before lower priority workloads. This can result in situations where, for example, higher priority workloads can be performed by a computing device(s), but there are insufficient resources for lower priority workloads to be performed. This can also result in situations where, for example, higher priority workloads are given the resources recommended by the constraints of the workload, whereas lower priority workloads are given only the resources required by the constraints of the workload.
  • selection of different sources of data and/or other systems to which access is needed may be performed as part of the physical deployment determining of act 308 .
  • multiple sources may exist from which data identified as being required in the model of the workload can be obtained, or multiple replicated file servers may exist that can be a file server identified as being required in the model of the workload.
  • Particular sources of data and/or other systems to which access is needed may be selected in act 308 based on various factors, such as the load on the various sources and/or other systems, the bandwidth of the connection to those sources and/or systems, and so forth.
  • selection of such sources of data and/or other systems to which access is needed may be performed as part of the physical deployment in act 312 discussed below.
  • virtual machines can be rearranged to run on different computing devices. For example, a virtual machine running on one computing device could be moved to another computing device, thereby freeing up capacity on the original computing device. Such a process of moving or rearranging virtual machines is also referred to as migration of the virtual machines. Virtual machines can be migrated in any of a variety of manners, such as with the assistance of the Virtual Server Migration Toolkit (VSMT) available from Microsoft Corporation of Redmond, Wash.
  • VSMT Virtual Server Migration Toolkit
  • This identification of which computing device should perform the computing of the workload, and optionally which virtual machines should be migrated to different computing devices, is performed as part of the physical deployment determining of act 308 .
  • a workload installation specification for physical deployment of the workload is then generated (act 310 ).
  • the workload installation specification can be saved as an installation page associated with the component representing the workload in the workload model.
  • the workload installation specification includes an identification, for each class of device in the virtual system on which the workload may be installed, of how to install the workload. As each of these identifications indicates how to install the workload on a particular class of devices, these identifications can also be referred to as device class installation specifications.
  • the device class installation specifications can also identify which particular computing device(s) of that class the workload is to be installed on (the computing device(s) determined in act 308 ).
  • This identification of how to install the workload includes, for example, all of the settings for the virtual machine to be created on the device, the operating system to install on the virtual machine (including all of the settings of the operating system and the identification of all of the files that need to be copied to the virtual machine to install the operating system), all of the settings of the computing device that should be made or changed, an identification of all of the files that need to be copied to the computing device and where those files should be copied, an order in which files should be copied and/or settings made or changed, any initialization programs that need to be run after the files have been copied and/or settings made or changed, and so forth.
  • This identification may also include installing an operating system and/or one or more additional applications on the computing device prior to creating the virtual machine on the device.
  • one class of computing device may be a bare computing device with no operating system installed on it.
  • the installation specification for that class of computing device would include initially installing the appropriate operating system on the computing device, followed by creating the virtual machine on the computing device, then installing an operating system on the virtual machine, and then installing the application on that operating system of the virtual machine.
  • this identification of how to install the workload identifies a particular image file that is the image to be run to perform the computing of the workload.
  • the image file can be created as part of the process of building the model of the workload in act 302 , or alternatively can be created at other times (e.g., after the logical deployment evaluation has been performed in act 306 ).
  • the image file includes the application files and data, and optionally the files and data for the operating system on which the application will be executed, for the workload.
  • the image file can be copied to a disk drive or other storage device and executed by a virtual machine to perform the computing of the workload—no additional installation or configuration of the operating system or the application of the workload is typically required.
  • the image file can be generated in any of a variety of conventional manners, such as by installing the application and operating system onto a virtual machine and generating a file that includes all the folders and files installed onto that virtual machine, by a user (e.g., the designer of the workload) manually identifying the folders and files to be included in the image file, and so forth.
  • the image file can then be simply copied to the computing device(s) as part of the physical deployment in act 312 discussed below.
  • the device class installation specification for that class of device includes an indication of the migration that is to be performed and the constraints that must be met for that type of migration.
  • each device class installation specification can be generated automatically based on the information contained in the information pages associated with the workload to be installed.
  • the constraint information page can include various default values. These default values can be used during act 310 to identify the settings or configuration values that should be set when installing the workload, and thus which should be included in the device class installation specification. For example, a particular default value may be included in the configuration information page for a buffer size. This default value would be included in the device class installation specification so that when the workload is installed on a particular computing device, the computing device settings (such as in an operating system registry) can be modified to include this default value for the buffer size (possibly replacing another value for the buffer size previously stored in the computing device settings).
  • constraint information included in the constraint information page can be used in act 310 to identify the settings or configuration values that should be set when installing the workload. If a range of values for a particular setting were included in the constraint information page, then a setting to be used when installing the application can be derived from that range. For example, the lowest value in the range could be selected, the highest value in the range could be selected, the average of the highest and lowest values in the range could be computed and selected, a value in the range could be selected randomly, and so forth.
  • information contained in the information pages associated with the workload can be used as a basis for automatically generating at least a portion of each device class installation specification.
  • Default values and/or ranges of values can be used to automatically generate values for the device class installation specification in the same manner as discussed above.
  • a suitable value that is compliant with the constraints of all of the components is determined.
  • This suitable value can be determined in different manners, including manually, automatically, and semi-automatically.
  • a suitable value can be determined manually by a user (such as the system administrator) inputting a suitable value for the setting or configuration value.
  • a suitable value can be determined automatically by evaluating the various constraints and selecting a value that satisfies all the constraints. This selected value is then used as the suitable value. For example, if each constraint lists a range of acceptable values, then a value that falls within each range of acceptable values can be automatically identified and used as the suitable value.
  • a suitable value can be determined semi-automatically by evaluating the various constraints and selecting a value that satisfies all the constraints analogous to the automatic manner. However, rather than automatically using the selected value as the suitable value, the selected value can be presented to a user (such as the system administrator) for approval. The user can accept this selected value, or alternatively input a different value. Alternatively, rather than presenting a single selected value to the user, the range of possible values (or portion of the range of possible values) that satisfies the constraints of the different components may be presented to the user.
  • a device class installation specification may be generated manually rather than automatically.
  • This manual generation refers to user inputs (such as by the application developer or system administrator) rather than automatic generation by some component or module (e.g., development module 400 discussed below).
  • some component or module e.g., development module 400 discussed below.
  • the particular files to be identified in the device class installation specification may be identified manually rather than automatically.
  • an assignment record is generated in act 310 that maintains a record of which device class installation specifications are to be used for which device classes.
  • This record can be, for example, a mapping of device class to device class installation specification.
  • the assignment record generated can also be stored as part of the workload installation specification.
  • an identification of which device class installation specification is associated with which particular class of device may be maintained in other manners.
  • the indication may be inherent in the naming convention used for the device class installation specification (e.g., each device class installation specification may be a separate file having a file name that identifies the particular class of device), or each device class installation specification may include an indication of the associated class of device.
  • the workload installation specification is generated after the logical deployment evaluation in act 306 .
  • the application installation specification is generated only after it is verified that the workload can be installed in the system.
  • the constraint information (such as default values) associated with the workload can be used to determine settings to be included in the workload installation specification.
  • the workload installation specification generated in act 310 is derived at least in part from the model of the workload as well as the model of the system.
  • the timing of the physical deployment can vary. Deployment may be triggered manually, such as by a user (such as the system administrator) specifying that deployment should begin “now” or at a particular time in the future. Deployment may also be triggered based on other events and/or schedules identified in the workload as discussed above.
  • this physical deployment includes making the workload installation specification available to a deployment system and having the deployment system create a new virtual machine on the particular device identified in act 308 , and also copy the image file identified by the workload on the particular device identified in act 308 for execution by the newly created virtual machine.
  • this physical deployment includes making the workload installation specification available to a deployment system and having the deployment system create a new virtual machine on the particular device identified in act 308 and install the application on that new virtual machine following the installation instructions in the workload installation specification.
  • the deployment system operates in a conventional manner to install the workload. If the application installation specification indicates that migration of any virtual machines is to be performed, then this migration can also be carried out by the deployment system (optionally with the assistance of another component, such as the Virtual Server Migration Toolkit discussed above). Any of a variety of deployment systems could be used in act 312 , such as the Windows® Installer service or Microsoft® Systems Management Server, both available from Microsoft Corporation of Redmond, Wash.
  • the new virtual machine and the application installed thereon becomes part of the system and thus the workload model is incorporated into the system model and a component for the new virtual machine (as well as the operating system for the new virtual machine, and any other components running on the virtual machine) is added to the system model.
  • the SDM for the system includes the SDM of the workload. This includes modifying characteristics of the system such as available number of CPUs, which might be time-series based to reflect the allocation of CPUs to scheduled workloads and the time-series based requirements of CPUs of those workloads.
  • the evaluation in act 306 may be for a particular computing device or virtual machine rather than for a class of computing device.
  • the evaluation in act 306 is the same as discussed above, except that constraint and description information for a particular instance of a computing device are used rather than constraint and description information for a class of computing device.
  • the identification of the particular computing device is made in, or prior to, act 306 rather than in act 308 , and can be made in the same manner as discussed in act 308 .
  • a particular device class installation specification may indicate to install the whole workload or individual components of the workload on multiple different computing devices within the system.
  • the workload developer or system administrator may desire to install the workload on all of the computing devices of a particular class.
  • the workload developer or system administrator may desire to install each part of the workload on a computing device of a specific class.
  • an indication is included in the device class installation specification for that particular device class that the workload is to be installed on all of the computing devices of that particular class, or alternatively may identify the particular computing devices (e.g., by name or other unique identifier) on which the workload is to be installed.
  • the installation instructions may also identify the sequence in which the parts of the workload are to be installed on each system, and how to coordinate the installation steps by waiting for the completion of one step before proceeding with the next, using conventional orchestration technologies.
  • the deployment system used to install the workload receives this indication and installs the workload on the appropriate computing devices.
  • FIG. 4 illustrates an example workload installation specification in additional detail.
  • An installation specification development module 400 generates a workload installation specification 402 .
  • Installation specification module 400 can be implemented in software, firmware, hardware, or combinations thereof, and can perform act 310 of FIG. 3 , and optionally additional acts of FIG. 3 (such as act 306 and/or act 308 ).
  • Workload installation specification 402 includes multiple (x) device class installation specifications 404 ( 1 ), 404 ( 2 ), . . . 404 ( x ). Each of the device class installation specifications 404 identifies how the workload is to be installed on a particular class of computing device.
  • Workload installation specification 402 also includes specification assignment record 406 to identify which specification 404 corresponds to which class of computing device.
  • Workload installation specification 402 is input to a deployment system 408 along with any necessary installation file(s) 410 .
  • Installation file(s) 410 include the file(s) that are to be installed on the computing device in order to install the application, such as one or more files of executable code, one or more files of data, an image file, and so forth.
  • workload installation specification 402 and installation file(s) 410 may be stored together in a single package (e.g., a compressed file).
  • FIG. 5 is a flowchart illustrating the generation of a workload installation specification for physical deployment of act 310 of FIG. 3 in additional detail.
  • FIG. 5 can be implemented in software, firmware, and/or hardware.
  • a device class on which the workload could be installed is selected (act 502 ).
  • the system administrator and/or workload developer may desire that the workload be installed only on certain classes of devices, in which case the devices on which the workload could be installed is less than all of the devices in the system.
  • the workload may be able to be installed on any device in the system.
  • a device class installation specification for the selected device class is then generated, identifying how to install the workload and virtual machine on the selected device class (act 504 ).
  • this generation can include using default values included in an information page associated with the workload in the workload model for setting values to include in the installation specification being generated.
  • the device class installation specification is generated in a format that is expected and understood by a deployment system that will be installing the workload and the virtual machine.
  • the device class installation specification may be generated in this format in act 504 , or alternatively may be subsequently translated into this format (e.g., by a translation component of the distribution system).
  • different device installation specifications may be generated for computing devices that will have the same functionality but are currently configured differently, such as computing devices that do not yet have an operating system installed and computing devices that already have an operating system installed.
  • computing devices may be considered to be part of the same device class, but the device class installation specification would include a conditional portion to be used based on the configuration of the particular instance of the computing device on which the application is being installed (e.g., the conditional portion may be bypassed if the computing device already has an installed operating system, or used to install an operating system on the computing device if an operating system is not already installed on the computing device).
  • a specification assignment record is generated associating particular installation specifications with particular device classes (act 510 ).
  • the specification assignment record may be generated in act 504 as the device class installation specifications are being generated, and an indication of which device class is associated with which device class installation specification added to the specification assignment record as the device class installation specification is generated.
  • the device class installation specifications generated in act 504 and the assignment record generated in act 510 are then combined into a workload installation specification for the application (act 512 ).
  • FIG. 6 illustrates an example general computer environment 600 , which can be used to implement the techniques described herein.
  • the computer environment 600 is only one example of a computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the computer and network architectures. Neither should the computer environment 600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the example computer environment 600 .
  • Computer environment 600 includes a general-purpose computing device in the form of a computer 602 .
  • Computer 602 can be, for example, a computing device on which an application is installed or a computing device on which at least portions of process 300 of FIG. 3 are implemented.
  • Computer 602 can be, for example, a desktop computer, a handheld computer, a notebook or laptop computer, a server computer, a game console, and so on.
  • the components of computer 602 can include, but are not limited to, one or more processors or processing units 604 , a system memory 606 , and a system bus 608 that couples various system components including the processor 604 to the system memory 606 .
  • the system bus 608 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures.
  • bus architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, and a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus.
  • Computer 602 typically includes a variety of computer readable media. Such media can be any available media that is accessible by computer 602 and includes both volatile and non-volatile media, removable and non-removable media.
  • the system memory 606 includes computer readable media in the form of volatile memory, such as random access memory (RAM) 610 , and/or non-volatile memory, such as read only memory (ROM) 612 .
  • RAM random access memory
  • ROM read only memory
  • a basic input/output system (BIOS) 614 containing the basic routines that help to transfer information between elements within computer 602 , such as during start-up, is stored in ROM 612 .
  • BIOS basic input/output system
  • RAM 610 typically contains data and/or program modules that are immediately accessible to and/or presently operated on by the processing unit 604 .
  • Computer 602 may also include other removable/non-removable, volatile/non-volatile computer storage media.
  • FIG. 6 illustrates a hard disk drive 616 for reading from and writing to a non-removable, non-volatile magnetic media (not shown), a magnetic disk drive 618 for reading from and writing to a removable, non-volatile magnetic disk 620 (e.g., a “floppy disk”), and an optical disk drive 622 for reading from and/or writing to a removable, non-volatile optical disk 624 such as a CD-ROM, DVD-ROM, or other optical media.
  • a hard disk drive 616 for reading from and writing to a non-removable, non-volatile magnetic media (not shown)
  • a magnetic disk drive 618 for reading from and writing to a removable, non-volatile magnetic disk 620 (e.g., a “floppy disk”)
  • an optical disk drive 622 for reading from and/or writing to a removable, non-volatile optical disk
  • the hard disk drive 616 , magnetic disk drive 618 , and optical disk drive 622 are each connected to the system bus 608 by one or more data media interfaces 626 .
  • the hard disk drive 616 , magnetic disk drive 618 , and optical disk drive 622 can be connected to the system bus 608 by one or more interfaces (not shown).
  • the disk drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules, and other data for computer 602 .
  • a hard disk 616 a removable magnetic disk 620 , and a removable optical disk 624
  • other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access memories (RAM), read only memories (ROM), electrically erasable programmable read-only memory (EEPROM), and the like, can also be utilized to implement the exemplary computing system and environment.
  • Any number of program modules can be stored on the hard disk 616 , magnetic disk 620 , optical disk 624 , ROM 612 , and/or RAM 610 , including by way of example, an operating system 626 , one or more application programs 628 , other program modules 630 , and program data 632 .
  • Each of such operating system 626 , one or more application programs 628 , other program modules 630 , and program data 632 may implement all or part of the resident components that support the distributed file system.
  • a user can enter commands and information into computer 602 via input devices such as a keyboard 634 and a pointing device 636 (e.g., a “mouse”).
  • Other input devices 638 may include a microphone, joystick, game pad, satellite dish, serial port, scanner, and/or the like.
  • input/output interfaces 640 that are coupled to the system bus 608 , but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
  • a monitor 642 or other type of display device can also be connected to the system bus 608 via an interface, such as a video adapter 644 .
  • other output peripheral devices can include components such as speakers (not shown) and a printer 646 which can be connected to computer 602 via the input/output interfaces 640 .
  • Computer 602 can operate in a networked environment using logical connections to one or more remote computers, such as a remote computing device 648 .
  • the remote computing device 648 can be a personal computer, portable computer, a server, a router, a network computer, a peer device or other common network node, and the like.
  • the remote computing device 648 is illustrated as a portable computer that can include many or all of the elements and features described herein relative to computer 602 .
  • Logical connections between computer 602 and the remote computer 648 are depicted as a local area network (LAN) 650 and a general wide area network (WAN) 652 .
  • LAN local area network
  • WAN wide area network
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • the computer 602 When implemented in a LAN networking environment, the computer 602 is connected to a local network 650 via a network interface or adapter 654 . When implemented in a WAN networking environment, the computer 602 typically includes a modem 656 or other means for establishing communications over the wide network 652 .
  • the modem 656 which can be internal or external to computer 602 , can be connected to the system bus 608 via the input/output interfaces 640 or other appropriate mechanisms. It is to be appreciated that the illustrated network connections are exemplary and that other means of establishing communication link(s) between the computers 602 and 648 can be employed.
  • remote application programs 658 reside on a memory device of remote computer 648 .
  • application programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computing device 602 , and are executed by the data processor(s) of the computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • functionality of the program modules may be combined or distributed as desired in various embodiments.
  • Computer readable media can be any available media that can be accessed by a computer.
  • Computer readable media may comprise “computer storage media” and “communications media.”
  • Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
  • Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
  • portions of the framework may be implemented in hardware or a combination of hardware, software, and/or firmware.
  • one or more application specific integrated circuits (ASICs) or programmable logic devices (PLDs) could be designed or programmed to implement one or more portions of the framework.
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices

Abstract

Model-based virtual system provisioning includes accessing a model of a workload to be installed on a virtual machine of a system as well as a model of the system. A workload refers to some computing that is to be performed, and includes an application to be executed to perform the computing, and optionally includes the operating system on which the application is to be installed. The workload model identifies a source of the application and operating system of the workload, as well as constraints of the workload, such as resources and/or other capabilities that the virtual machine(s) on which the workload is to be installed must have. An installation specification for the application is also generated, the installation specification being derived at least in part from the model of the workload and the model of the virtual system.

Description

BACKGROUND
Computers have become increasingly commonplace in our world and offer a variety of different functionality. Some computers are designed primarily for individual use, while others are designed primarily to be accessed by multiple users and/or multiple other computers concurrently. These different functionalities are realized by the use of different hardware components as well as different software applications that are installed on the computers.
Although the variety of available computer functionality and software applications is a tremendous benefit to the end users of the computers, such a wide variety can be problematic for the developers of the software applications as well as system administrators that are tasked with keeping computers running. Such problems can arise, for example, because of differences in configurations or settings that are required by different software applications that a user may try to install on the same computer. Situations can arise where the settings required by one software application cause another software application to malfunction. By way of another example, situations can arise where two software applications have conflicting requirements on how the operating system on the computer should be configured. Such situations can cause one or both of the software applications, and possibly additional applications, to operate incorrectly if both are installed concurrently.
Accordingly, there is a need for an improved way to install software applications on computers.
SUMMARY
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Model-based virtual system provisioning is described herein.
In accordance with certain aspects, a model of a workload to be installed on a virtual machine of a system as well as a model of the system are accessed. A workload refers to some computing that is to be performed, and includes an application to be executed to perform the computing, and optionally includes the operating system on which the application is to be installed. The workload model identifies a source of the application and operating system of the workload, as well as constraints of the workload, such as resources and/or other capabilities that the virtual machine(s) on which the workload is to be installed must have. An installation specification for the application is also generated, the installation specification being derived at least in part from the model of the workload and the model of the virtual system.
BRIEF DESCRIPTION OF THE DRAWINGS
The same numbers are used throughout the drawings to reference like features.
FIG. 1 illustrates an example system definition model (SDM) that can be used with the model-based virtual system provisioning described herein.
FIG. 2 illustrates an example use of types, configurations, and instances.
FIG. 3 is a flowchart illustrating an example process for provisioning a virtual system.
FIG. 4 illustrates an example workload installation specification in additional detail.
FIG. 5 is a flowchart illustrating an example of the generation of a workload installation specification for physical deployment in additional detail.
FIG. 6 illustrates an example general computer environment, which can be used to implement the techniques described herein.
DETAILED DESCRIPTION
Model-based virtual system provisioning is described herein. An installation specification for provisioning a computing device(s) is generated and subsequently used to provision the computing device(s). The installation specification describes how to install a workload on the computing device(s), the workload referring to some computing that is to be performed. The workload is installed on a virtual machine of the computing device(s), which is typically created as part of the installation process. The installation specification is derived at least in part from a model of the workload to be installed on the computing device(s) and a model of the system in which the application is to be installed (the system including the computing device(s)).
As used herein, an application refers to a collection of instructions that can be executed by a processor, such as a central processing unit (CPU) of a computing device. An application can be any of a variety of different types of software or firmware, or portions thereof. Examples of applications include programs that run on an operating system, the operating system, operating system components, services, infrastructure, middleware, portions of any of these, and so forth.
A system definition model (SDM) describes a system that can be managed. Management of a system can include, for example, installing software on the system, monitoring the performance of the system, maintaining configuration information about the system, verifying that constraints within the system are satisfied, combinations thereof, and so forth. A system can be, for example, an application, a single computing device, multiple computing devices networked together (e.g., via a private or personal network such as a local area network (LAN) or via a larger network such as the Internet), and so forth.
The systems discussed herein can be virtual systems that include one or more virtual machines. A virtual machine can be thought of as a computing device implemented in software. A virtual machine typically emulates a computing device, including all of the hardware components of a computing device, although in some cases the physical devices may be assigned directly to a virtual machine without emulation. A virtual machine runs on a computing device in its own isolated and self-contained environment, having its own operating system and optionally other software installed on it. Multiple virtual machines can be run on the same computing device, each of the multiple virtual machines having its own isolated environment and its own operating system installed thereon. A virtual system includes one or more computing devices that run a virtual machine. A virtual system can include one or more computing devices that already run a virtual machine and/or one or more computing devices that are to have a virtual machine provisioned thereon. A virtual machine can be provisioned on a computing device as part of the virtual system provisioning described herein.
In addition to conventional virtual machines, other forms of containers for workloads are being contemplated or implemented in the industry, such as “sandboxes” that allow a workload to run within an operating system that is shared with other workloads but which nonetheless provide the workloads more isolation than if the workloads were running directly in the operating system. These different containers can be viewed as “lightweight” virtual machines, in the sense that they provide many of the same benefits as traditional virtual machines with less cost or operational overhead. The techniques described herein can be used for such containers as well as traditional virtual systems, and references to virtual machines herein include such other forms of containers.
FIG. 1 illustrates an example SDM 100 that can be used with the model-based virtual system provisioning described herein. SDM 100 includes a component corresponding to each of one or more software and/or hardware components being managed in a virtual system. These software and/or hardware components being managed refer to those software and/or hardware components that the author of SDM 100 and/or designers of the system desires to include in SDM 100. Examples of hardware and/or software components that could be in a system include an application (such as a database application, email application, file server application, game, productivity application, operating system, and so forth), particular hardware on a computer (such as a network card, a hard disk drive, one of multiple processors, and so forth), a virtual machine, a computer, a group of multiple computers, and so on. A system refers to a collection of one or more hardware and/or software components.
SDM 100 represents a system including component 102, component 104, component 106, component 108, component 110, component 112, and component 114. Although the example SDM 100 includes seven components, in practice a system, and thus the SDM, can include any number of components.
For example, component 106 could represent a particular computer, while component 104 represents an operating system running on that particular computer. By way of another example, component 106 could represent an operating system, while component 104 represents a database application running on the operating system. By way of yet another example, component 114 could represent a particular computer, while component 112 represents an operating system installed on that particular computer, component 110 represents a virtual machine running on the operating system, and component 108 represents an operating system running on the virtual machine. Note that the operating systems associated with component 112 and component 108 could be the same or alternatively two different operating systems.
The SDM is intended to be a comprehensive knowledge store, containing all information used in managing the system. This information includes information regarding the particular components in the system, as well as relationships among the various components in the system. Despite this intent, it is to be appreciated that the SDM may contain only some of the information used in managing the system rather than all of the information.
Relationships can exist between different components in a system, and these relationships are typically illustrated in SDM diagrams with lines connecting the related components. Examples of relationships that can exist between components include containment relationships, hosting relationships, and communication relationships. Containment relationships identify one component as being contained by another component—data and definitions of the component being contained are incorporated into the containing component. When a component is installed on a system, any components contained in that component are also typically installed on the system. In FIG. 1, containment relationships are illustrated by the diagonal lines connecting component 102 and component 104, and connecting component 102 and component 108.
Hosting relationships identify dependencies among components. In a hosting relationship, the hosting component typically must be present in order for the guest component to be included in the system. In FIG. 1, hosting relationships are illustrated by the vertical lines connecting component 104 and component 106, connecting component 108 and component 110, connecting component 110 and 112, and connecting component 112 and 114.
Communication relationships identify components that can communicate with one another. Communication relationships may or may not imply that a dependency exists between the components. In FIG. 1, communication relationships are illustrated by the horizontal line connecting component 104 and component 108.
Associated with each component in SDM 100 is one or more information (info) pages. Information pages 122 are associated with component 102, information pages 124 are associated with component 104, information pages 126 are associated with component 106, information pages 128 are associated with component 108, information pages 130 are associated with component 110, information pages 132 are associated with component 112, and information pages 134 are associated with component 114. Each information page contains information about the associated component. Different types of information can be maintained for different components. One or more information pages can be associated with each component in SDM 100, and the particular information that is included in a particular information page can vary in different implementations. All the information can be included on a single information page, or alternatively different pieces of information can be grouped together in any desired manner and included on different pages. In certain embodiments, different pages contain different types of information, such as one page containing installation information and another page containing constraint information. Alternatively, different types of information may be included on the same page, such as installation information and constraint information being included on the same page.
Examples of types of information pages include installation pages, constraint pages, monitoring pages, service level agreement pages, description pages, and so forth. Installation pages include information describing how to install the associated component onto another component (e.g., install an application onto a computer), such as what files to copy onto a hard drive, what system settings need to be added or changed (such as data to include in an operating system registry), what configuration programs to run after files are copied onto the hard drive, sequencing specifications that identify that a particular installation or configuration step of one component should be completed before an installation or configuration step of another component, and so forth.
Constraint pages include information describing constraints for the associated component, including constraints to be imposed on the associated component, as well as constraints to be imposed on the system in which the associated component is being used (or is to be used). Constraints imposed on the associated component are settings that the component should have (or alternatively should not have) when the component is installed into a system. Constraints imposed on the system are settings (or other configuration items, such as the existence of another application or a piece of hardware) that the system should have (or alternatively should not have) in order for the associated component to be used in that particular system.
It should also be noted that constraints can flow across relationships. For example, constraints can identify settings that any component that is contained by the component, or that any component that contains the component, should have (or alternatively should not have). By way of another example, constraints can identify settings that any component that is hosted by the component, or that any component that hosts the component, should have (or alternatively should not have). By way of yet another example, constraints can identify settings that any component that communicates with the component should have (or alternatively should not have).
In addition, constraint pages may also include a description of how particular settings (or components) are to be discovered. For example, if a constraint indicates that an application should not co-exist with Microsoft® SQL Server, then the constraint page could also include a description of how to discover whether Microsoft® SQL Server is installed in the system. By way of another example, if a constraint indicates that available physical memory should exceed a certain threshold, then the constraint page could also include a description of how to discover the amount of available physical memory in the system. By way of still another example, if a constraint indicates that a security setting for Microsoft® SQL Server should have a particular value, then the constraint page could also include a description of how to discover the value of that security setting for Microsoft® SQL Server.
Constraint pages may also include a description of how particular settings are to be modified if they are discovered to not be in compliance with the constraints. Alternatively, the constraint pages could include specifications of some other action(s) to take if particular settings are discovered to not be in compliance with the constraints, such as sending an event into the system's event log, alerting an operator, starting a software application to take some corrective action, and so forth. Alternatively, the constraint pages could include a policy that describes what action to take under various circumstances, such as depending on the time of day, depending on the location of the system.
Constraint pages may also optionally include default values for at least some of these settings, identifying a default value to use within a range of values that satisfy the constraint. These default values can be used to assist in installation of an application, as discussed in more detail below.
Monitoring pages include information related to monitoring the performance and/or health of the associated component. This information can include rules describing how the associated component is to be monitored (e.g., what events or other criteria to look for when monitoring the component), as well as what actions to take when a particular rule is satisfied (e.g., record certain settings or what events occurred, sound an alarm, etc.).
Service level agreement pages include information describing agreements between two or more parties regarding the associated component (e.g., between the purchaser of the associated component and the seller from which the associated component was purchased). These can be accessed during operation of the system to determine, for example, whether the agreement reached between the two or more parties is being met by the parties.
Description pages include information describing the associated component, such as various settings for the component, or other characteristics of the component. These settings or characteristics can include a name or other identifier of the component, the manufacturer of the component, when the component was installed or manufactured, performance characteristics of the component, and so forth. For example, a description page associated with a component that represents a computing device may include information about the amount of memory installed in the computing device, a description page associated with a component that represents a processor may include information about the speed of the processor, a description page associated with a component that represents a hard drive may include information about the storage capacity of the hard drive and the speed of the hard drive, and so forth.
As can be seen in FIG. 1, an SDM maintains various information (e.g., installation, constraints, monitoring, etc.) regarding each component in the system. Despite the varied nature of these information pages, they are maintained together in the SDM and thus can all be readily accessed by various utilities or other applications involved in the management of the system.
An SDM can be generated and stored in any of a variety of different ways and using any of a variety of different data structures. For example, the SDM may be stored in a database. By way of another example, the SDM may be stored in a file or set of multiple files, the files being encoded in XML (Extensible Markup Language) or alternatively some other form. By way of yet another example, the SDM may not be explicitly stored, but constructed each time it is needed. The SDM could be constructed as needed from information existing in other forms, such as installation specifications.
In certain embodiments, the SDM is based on a data structure format including types, instances, and optionally configurations. Each component in the SDM corresponds to or is associated with a type, an instance, and possibly one or more configurations. Additionally, each type, instance, and configuration corresponding to a particular component can have its own information page(s). A type refers to a general template having corresponding information pages that describe the component generally. Typically, each different version of a component will correspond to its own type (e.g., version 1.0 of a software component would correspond to one type, while version 1.1 of that software component would correspond to another type). A configuration refers to a more specific template that can include more specific information for a particular class of the type. An instance refers to a specific occurrence of a type or configuration, and corresponds to an actual physical component (software, hardware, firmware, etc.).
For types, configurations, and instances associated with a component, information contained in information pages associated with an instance can be more specific or restrictive than, but generally cannot contradict or be broader than, the information contained in information pages associated with the type or the configuration. Similarly, information contained in information pages associated with a configuration can be more specific or restrictive than, but cannot contradict or be broader than, the information contained in information pages associated with the type. For example, if a constraint page associated with a type defines a range of values for a buffer size, the constraint page associated with the configuration or the instance could define a smaller range of values within that range of values, but could not define a range that exceeds that range of values.
It should be noted, however, that in certain circumstances a model of an existing system as deployed (that is, a particular instance of a system) may violate the information contained in information pages associated with the type for that existing system. This situation can arise, for example, where the system was deployed prior to an SDM for the system being created, or where a user (such as a system administrator) may have intentionally deployed the system in noncompliance with the information contained in information pages associated with the type for that existing system.
The use of types, configurations, and instances is illustrated in FIG. 2. In FIG. 2, a type 202 corresponds to a particular component. Three different instances 204, 206, and 208 of that particular component exist and are based on type 202. Additionally, a configuration (config) 210 exists which includes additional information for a particular class of the particular component, and two instances 212 and 214 of that particular class of the particular component.
For example, assume that a particular component is a database application. A type 202 corresponding to the database application is created, having an associated constraint information page. The constraint information page includes various general constraints for the database application. For example, one of the constraints may be a range of values that a particular buffer size should be within for the database application. Type 202 corresponds to the database application in general.
Each of the instances 204, 206, and 208 corresponds to a different example of the database application. Each of the instances 204, 206, and 208 is an actual database application, and can have its own associated information pages. For example, each instance could have its own associated description information page that could include a unique identifier of the particular associated database application. By way of another example, the constraint information page associated with each instance could include a smaller range of values for the buffer size than is indicated in the constraint information page associated with type 202.
The information pages corresponding to the instances in FIG. 2 can be in addition to, or alternatively in place of, the information pages corresponding to the type. For example, two constraint information pages may be associated with each instance 204, 206, and 208, the first constraint information page being a copy of the constraint information page associated with type 202 and the second constraint information page being the constraint information page associated with the particular instance and including constraints for just that instance. Alternatively, a single constraint information page may be associated with each instance 204, 206, and 208, the single constraint information page including the information from the constraint information page associated with type 202 as well as information specific to the particular instance. For example, the range of values that the particular buffer size should be within for the database application would be copied from the constraint information page associated with type 202 to the constraint information page associated with each instance. However, if the constraint information page for the instance indicated a different range of values for that particular buffer size, then that different range of values would remain in the constraint information page associated with the instance rather than copying the range of values from the constraint information page associated with type 202.
Following this example of a database application, configuration 210 corresponds to a particular class of the database application. For example, different classes of the database application may be defined based on the type of hardware the application is to be installed on, such as different settings based on whether the computer on which the database application is to be installed is publicly accessible (e.g., accessible via the Internet), or based on whether an operating system is already installed on the server. These different settings are included in the constraint information page associated with configuration 210.
Each of the instances 212 and 214 corresponds to a different example of the database application. Similar to instances 204, 206, and 208, each of instances 212 and 214 is an actual database application, and can have its own information page(s). However, unlike instances 204, 206, and 208, the constraint information pages associated with instances 212 and 214 each include the constraints that are in the constraint information page associated with configuration 210 as well as the constraints in the constraint information page associated with type 202.
It should be noted that, although the information pages are discussed as being separate from the components in the SDM, the data structure(s) implementing the SDM could alternatively include the information discussed as being included in the various information pages. Thus, the component data structures themselves could include the information discussed as being included in the various information pages rather than having separate information pages.
The installation page associated with a component can be used as a basis for provisioning a virtual system. Provisioning a virtual system refers to installing a workload on the virtual system, as well as making any necessary changes to the virtual system in order for the workload to be installed. Such necessary changes typically include creating a new virtual machine, and can also include other actions, such as installing an operating system on the computing device on which the new virtual machine runs or installing an operating system on the newly created virtual machine, setting configuration values for the operating system, installing one or more other applications, configuring a storage system to be accessible to the virtual machine, configuring networks to be accessible to the virtual machine, and so forth. In certain implementations, the workload is installed by creating a new virtual machine on a computing device and copying an image file to the storage device of the computing device. This image file includes an application(s) to be run to perform the computing of the workload, and also typically includes the operating system on which the application(s) is to be run.
In the discussions herein, reference is made to different classes of computing devices. Each of these different classes of computing devices refers to computing devices having particular common characteristics, so they are grouped together and viewed as a class of devices. Examples of different classes of devices include IIS (Internet Information Services) servers that are accessible to the Internet, IIS servers that are accessible only on an internal intranet, database servers, email servers, order processing servers, desktop computers, and so forth. Typically, each different class of computing device corresponds to one of the configurations in the system model.
These different classes of computing devices can be different classes of physical devices, as well as different classes of virtual machines. The classes may distinguish between virtual machine classes and physical device classes. For example, one class may be database virtual machines, another class may be database physical servers (not running the database on a virtual machine), another class may be an order processing virtual machine, another class may be an order processing physical server (not running the order processing application(s) on a virtual machine), and so forth. Alternatively, the classes may not distinguish between virtual machine classes and physical device classes. For example, a single database server class may be used for database servers regardless of whether the database application(s) are run on a virtual machine or a computing device without a virtual machine(s).
Provisioning of virtual systems is based in part on workloads. Generally, a workload is some computing that is to be performed. A workload typically includes an application to be executed to perform the computing, and can also include the operating system on which the application is to be installed. Various configuration information describing how the application and/or operating system is to be configured, as well as data to be used by the application and/or operating system when executing, can also be included in the workload. A model of the workload includes the application, operating system, configuration information, and/or data, as well as constraints of the workload such as resources and/or other capabilities that the virtual machine(s) on which the workload is to be installed must have. Examples of these constraints are discussed below.
FIG. 3 is a flowchart illustrating an example process 300 for provisioning a virtual system. Portions of process 300 can be implemented in software, firmware, and/or hardware.
Initially, a model of a workload is built (act 302). As discussed above, the workload typically includes the application to be installed on a virtual system, and can also include the operating system, configuration information, and/or data. Alternatively, the workload may not include an application, but may include an operating system (or components of an operating system), configuration information, and/or data. The model of the workload can also include one or more constraints.
This building process in act 302 is typically performed by the developer of the workload, although could alternatively be performed by others. This model is an SDM model of the workload, analogous to model 100 of FIG. 1, and includes one or more components. The model of the workload includes types and optionally configurations. As part of the building process in act 302, zero or more information pages are associated with each component in the model. Typically, at least a constraint information page is associated with each component in the model.
As part of the building process in act 302, types and optionally configurations are defined, along with associated information page(s). The types and configurations can be standard types or configurations that are copied or modified in act 302, or alternatively can be newly created in act 302. As discussed above, different constraints can be included in the configuration information page associated with the type and the configuration information page associated with the configuration. The specific constraints included in the configuration information page for a particular workload can vary based on the particular computing to be performed and/or the desires of the designer of the workload.
The constraints included on a constraint information page can take a variety of forms, such as: hardware requirements regarding the computing device(s) or other hardware on which the application is to be installed (e.g., a minimum processor speed, a minimum amount of memory, a minimum amount of free hard drive space, a minimum amount of network bandwidth available, particular security mechanisms available, and so forth), software requirements regarding the computing device(s) or other hardware or software on which the workload is to be installed (e.g., a particular operating system that should already be installed on the computing device(s), one or more other applications that should already be installed on the computing device(s), specifications regarding how particular hardware and/or the operating system is to be configured such as particular settings for the operating system that should already be made, a particular type of security or encryption that should be in use, and so forth, requirements regarding a virtual machine that should be created on a computing device as well as requirements regarding an operating system that should be installed on the virtual machine before the application can be installed thereon, other requirements regarding the computing device(s) on which the workload is to be installed (e.g., particular security keys available, data center policies that should be enforced, authentication that is used, system topology, etc.), and so on.
Constraints can be positive requirements specifying that something should be present (e.g., the processor should have at least a minimum processor speed, or the Windows® XP operating system should already be installed on the computing device). Constraints can also be negative requirements specifying that something should not be present (e.g., one or more particular applications should not already be installed on the computing device, or particular operating system settings should not be present).
One example constraint of the workload is a number and/or size of CPUs that the system on which the workload is to be installed must have. This constraint can identify a specific number of CPUs that the system must have (e.g., 1 CPU, 2 CPUs, 4 CPUs, etc.), or a range of CPUs that the system must have (e.g., 2 to 4 CPUs). The constraint can also specify the size of the CPUs that are needed, referring to the fraction of a CPU that is needed (e.g., a workload may require 100% of 1 CPU, or 50% of each of 2 CPUs). Both requirements and recommendations can be specified (e.g., a minimum of 2 CPUs is required, but 4 or more CPUs should be used if possible).
Another example constraint of the workload is an amount of memory (e.g., RAM). This constraint typically identifies a minimum amount of memory that the system on which the workload is to be installed must have. Both requirements and recommendations can be specified (e.g., a minimum of 2 GB of memory is required, but 4 GB or more of memory should be used if possible).
Another example constraint of the workload is an amount of storage space (e.g., hard disk space, optical disk space, etc.). This constraint typically identifies a minimum amount of storage space that the system on which the workload is to be installed must have. Both requirements and recommendations can be specified (e.g., a minimum of 10 GB of storage space is required, but 15 GB or more of storage space should be used if possible).
Another example constraint of the workload is the hardware type or architecture. For example, particular types of CPUs, particular bus or memory speeds, particular co-processors, and so forth may be required and/or recommended.
Another example constraint of the workload is the type of storage available to the system. This constraint can specify performance and reliability characteristics of the storage (e.g., RAID 1 or RAID 5 is required). This constraint can also specify that access to particular systems or databases is required. Both requirements and recommendations can be specified (e.g., RAID 1 or RAID 5 is required, but RAID 5 should be used if possible).
Another example constraint of the workload is the schedule for the workload, referring to when the computing that is to be performed should be started and/or ended. Both requirements and recommendations can be specified (e.g., the computing must end by 6:00 am, but should end by 5:00 am if possible).
Another example constraint is the events that should trigger the deployment of the workload, referring to when the computing that is to be performed should be started and/or ended. For example, when the same workload is operating on several computing devices with tasks assigned to the individual devices and/or virtual machines by a load balancing device, a monitoring system may determine that the number of incoming requests is exceeding the aggregate capacity of the devices and/or virtual machines, and may send an event indicating that another instance of that workload should be deployed to help carry the load. By way of another example, when a running workload fails because of a software or hardware problem, a monitoring system may send an event that indicates that a replacement copy of that workload should be deployed.
The constraints may also include a combination of events and schedules. For example, a workload may be started by a schedule, and the constraints specify that the workload should be ended and removed from the computing device when processing is finished, as indicated by an event; however, if the processing is not completed when the “batch window closes” at 6:00 am, the workload should be paused and removed from the computing device, and restarted to continue processing when the next “batch window” opens at the following midnight.
These constraints of the workload can refer to constraints on the physical hardware of the virtual system and/or constraints on the virtual hardware of a virtual machine of the virtual system. The model of the workload identifies whether the constraints refer to physical hardware or virtual hardware. Typically, the constraints of the workload identify constraints of the virtual hardware, and these constraints can be compared to the constraints of the system to verify that a virtual machine having virtual hardware satisfying these constraints of the workload can be created. Alternatively, the constraints of the workload can be compared to the constraints of currently running virtual machines to verify that a virtual machine having virtual hardware satisfying these constraints of the workload exists. In another alternative, the constraints of the workload identify constraints of the physical hardware, and these constraints can be compared to the constraints of the system to verify that a computing device satisfying these constraints exists.
Additionally, the workload may have different constraints that apply for different types of deployment. For example, if the workload is deployed and started from a state where it is not previously running, a certain set of constraints apply, but if the workload is started after having been previously executing, paused and saved in a virtual machine image file, another set of constraints apply, and if the workload is to be moved from one computing device to another through a migration process, yet another set of constraints apply.
Additionally, a model of the system where the application is to be installed is built (act 304). This building process in act 304 is typically performed by an administrator of the system where the application is to be installed, although could alternatively be performed by others. This model is an SDM model of the system analogous to model 100 of FIG. 1, and includes one or more components. The model of the virtual system includes types and instances, and optionally configurations.
The system in act 304 can be referred to as a virtual system, although the virtual machine(s) onto which the application and the operating system of the workload are to be installed may not yet be created. As such, the system in act 304 describes the physical computing devices on which virtual machines may be created, and describes virtual machines that have already been created, but does not describe virtual machines that have not yet been created.
The system in act 304 could be a single computing device, or alternatively multiple computing devices. For example, if the application will be installed on a virtual machine of a computing device in a data center having a thousand computing devices, then the model of the system where the application is to be installed will include those thousand computing devices. By way of another example, if the application will be installed on a virtual machine of a home computer that is not coupled to any other computers, then the model of the system where the application is to be installed will include just that home computer.
It should also be noted that the exact nature of a computing device can vary, and that any of a wide variety of computing devices can be a system in act 304. For example, “hierarchical” computers can exist, such as a rack that can contain multiple chassis, each chassis can contain multiple blades, each blade can contain multiple motherboards, each motherboard can contain multiple processors, and each processor can contain multiple cores. Any of these components of such a hierarchical computer can be viewed as a computing device (e.g., the rack can be a computing device, each chassis can be a computing device, each blade can be a computing device, each motherboard can be a computing device, each processor can be a computing device, and/or each core can be a computing device).
The characteristics of each computing device in the hierarchy, and the characteristics of the containment, hosting and communications relationships among them, are typically significant for the placement of virtual machines on those computing devices. For example, the speed of the connection may determine how a workload can be deployed, and therefore a constraint in the workload model indicates that the workload cannot be deployed across several computing devices at a level in the hierarchy where the connection speed is too slow. By way of another example, while it may be possible to deploy a workload down to the level of a single core, it may not be desirable to do so because of unpredictable performance interactions between workloads on the cores within one processor, and in this case the workload model has constraints that the workload should not be deployed on a computing device below the level of a processor in the hierarchy, or below a level where certain performance guarantees can be met, which would be described in the model of the computing device. By way of yet another example, a particular constraint on the workload may specify the software licensing requirements for various types of deployment, where operating systems and applications would have different rules about the licenses required when deploying the workload on a processor, or on a blade with many processors, or across several blades. Under these types of constraints, a particular computing device may not have enough licenses to allow the workload to be deployed, even though it may have enough processing power, memory and storage.
Oftentimes, the model of the system built in act 304 will be generated by the system administrator prior to the workload being designed and the model of the workload being built in act 302. In such situations, the previously generated model can be accessed and need not be re-built in act 304.
Components in the model of the system built in act 304 will include constraint information pages. These constraint information pages include constraints for each component in the virtual system. Such constraint information pages can identify constraints for the corresponding component, and optionally constraints that should be satisfied by any application to be installed on the corresponding component. Both the constraints on the workload and the characteristics of the system may be time-series data, in addition to the possibly time-based nature of the deployment schedule. For example, if once started the workload requires only 1 CPU for half an hour, and then needs 4 CPUs for half an hour, this sequence of values can be represented in the constraints. Similarly, if a computing device has 8 CPUs, but 2 of them are assigned to a workload for 1 hour, and 4 of them are assigned to a workload for 3 hours, and after that no more work is assigned to the computing device, the number of available CPUs can be calculated as 2 CPUs for 1 hour, 4 CPUs for 2 hours after that, and 8 CPUs after that. This time series of available CPUs can be recorded in the characteristics page of the system model
Based on the models built in acts 302 and 304, a logical deployment evaluation is performed (act 306). The logical deployment evaluation involves comparing the model of the workload (from act 302) to the model of the system (from act 304) to determine whether the application could be installed in the system. Typically, the application designer or system administrator will identify a particular class (or classes) of computing device on which he or she desires to install the application. Alternatively, the application may be compared to all classes of computing devices in the system.
The constraints and/or description information for the workload are compared to the constraints for that class of computing device to determine whether the workload satisfies the constraints of the class of computing device, and the constraints and/or description information for the class of computing device are compared to the constraints for the workload to determine whether the class of computing device satisfies the constraints of the workload. The constraints and description information for all components of the class of computing device, including any applications that are hosted by the class of computing device (e.g., an operating system as well as possibly other applications) are also accessed as part of the logical deployment evaluation. These constraints used in the logical deployment evaluation can include constraints that are flowed across relationships, as discussed above. These constraints used in the logical deployment evaluation can also include time-series based constraints, as discussed above. Accessing the constraints for the operating system and other applications allows verification that, if installed on a device of the class of computing device, settings made on the computing device for the workload would not conflict with current settings for other applications installed on the computing device. The verification can use the scheduled start time of the workload, and the time-series of constraints and system characteristics, and can verify that the time profile of resources available on the system satisfies the time profile of requirements of the workload. In embodiments in which a virtual machine is being installed onto which the application will be installed, the evaluation in act 306 includes evaluating that any constraints of the virtual machine are satisfied by the class of computing device in order to verify that the virtual machine can be installed on the class of computing device.
By way of example, a particular constraint on the class of computing device may indicate that a software firewall should always be running on the class of computing device. A description page associated with the workload would be accessed to verify that the workload does not require a software firewall to be deactivated.
By way of another example, a particular constraint on the workload may indicate that the computing device should have a minimum processor speed. A description page associated with the class of computing device (or the processor of the class of computing device) would be accessed to verify that the speed of the processor is at least the minimum processor speed. As discussed above, this processor speed could refer to the speed of the virtual processor of the virtual machine on which the workload would be installed, or the speed of the physical processor of the class of computing device on which the virtual machine is installed. Furthermore, the fractional parts of the physical processor may be allocated to each virtual machine, and each such fractional part serves as the virtual processor for the virtual machine to which the part is allocated. As a fractional part of the physical processor could not be allocated as a virtual processor with a faster speed than the physical processor, a check would be made to ensure that the speed of the physical processor satisfies the constraint. Furthermore, a check would also be made that the fractional part of the physical processor can be allocated to the virtual machine to create a virtual processor that satisfies the constraint. This check can be performed by checking a description page associated with the system, or by communicating a request or query to a virtual system management component as to whether it would be able to create such a virtual machine having a virtual processor satisfying the constraint. It is to be appreciated that such speeds of virtual processors can vary depending on the number of other virtual machines that are already running on the computing device, as the presence of such other virtual machines will affect the fractional part of the physical processor that can be allocated to the virtual machine.
By way of yet another example, a particular constraint on the workload may indicate that the computing of the workload should be performed between midnight and 4:00 am. A description page associated with the class of computing device would be accessed to verify that the computing device has sufficient processing capacity (in light of other workloads already scheduled to be performed between midnight and 4:00 am) to have a new virtual machine (or alternatively an existing virtual machine) perform the computing of the workload.
It should be noted that, depending on the manner in which virtual machines are created and managed, it may be possible for a class of computing device to “overcommit” its resources. For example, three different virtual machines may each require 4 GB of memory, but a particular class of computing device may only have 8 GB of memory. In such situations, all three virtual machines could be run on that class of computing device by running only two of the three virtual machines concurrently, or all three virtual machines could be run simultaneously (on the assumption that the workloads will on the average share some memory pages that are used for read-only access). By way of another example, two different virtual machines may each require 100 GB of storage space, but a particular class of computing device may only have 160 GB of storage space. In such situations, both virtual machines could be run on that class of computing device by running the two virtual machines at separate times, or both virtual machines could be run simultaneously (on the assumption that they will not both make full demands on the storage space at the same time). The models of the workloads indicate whether such overcommitment is possible and whether it is desirable.
It should also be noted that whatever components are referenced by constraints in the SDM are evaluated in act 306, regardless of what those components are. Typically, constraints of the class of computing device are evaluated in act 306 down to the layer that is hosting the workload being installed, but may extend to other layers if referenced in the SDM. By way of example, assume that a virtual machine is being provisioned on a computing device, and a workload is being provisioned on the virtual machine. Typically, constraints of the virtual machine would be evaluated against the computing device and the operating system running on the computing device, while constraints of the workload would be evaluated against the virtual machine. However, if the workload had a constraint referencing the computing device itself (e.g., regarding physical protection of the computing device on which the workload is deployed), then that constraint of the workload would be evaluated against the computing device.
The results of the evaluation in act 306 can be returned to the workload designer and/or system administrator. An indication of success (if all of the constraints are satisfied) or failure (if all of the constraints are not satisfied) can be returned. In addition, if one or more of the constraints are not satisfied, then an indication of which constraint was not satisfied can be returned, as well as optionally an indication of which component caused the constraint to not be satisfied. Optionally, the evaluation can indicate whether the constraints that were not satisfied were mandatory or recommended constraints. Returning such information can assist the workload developer in modifying the workload so that it can be installed in the system, and in choosing which of the available systems would be most suited for the workload.
Process 300 then proceeds based on the results of the evaluation in act 306. If the evaluation indicates that the workload can be installed in the system, then process 300 can proceed to act 308. Act 306 may also optionally be repeated for a different class of computing device in the system. However, if the evaluation indicates that the workload cannot be installed in the system, then the evaluation of act 306 can be repeated for a different class of computing device in the virtual system, or alternatively the workload may be modified in order to overcome the problem(s) identified in the evaluation of act 306, and process 300 can return to act 302 to build a model of the modified workload. If time-series based constraints are not met by the system, and if the scheduled start time is specified as a recommended rather than required start time, the verification can evaluate whether the constraints can be met by a later or earlier start time and can return a list of possible classes of computing devices with the possible start time for each one.
In act 308, physical deployment of the workload is determined. Determining physical deployment of the workload refers to identifying which particular computing device(s) will perform the computing of the workload (and optionally have a new virtual machine created thereon to perform the computing of the workload). The particular computing device(s) which will perform the computing of the workload can be identified in different manners. One way in which the particular computing device(s) will perform the computing of the workload can be identified is manually, such as by a system administrator or other party manually selecting a particular computing device(s). This manually selected computing device(s) could be a computing device already(s) in the system, or alternatively a new computing device(s) that needs to be purchased or a computing device(s) that needs to be removed from storage and added to the system (e.g., coupled to the network that the other computing devices in the system are coupled to).
Alternatively, the particular computing device(s) which will perform the computing of the workload can be identified automatically. An application running in the system can identify various characteristics of the computing devices on which a virtual machine could be created and the workload installed thereon (e.g., the computing devices of the particular class of computing device on which the application is to be installed), such as load characteristics of each computing device. The load characteristics could identify, for example, the average or maximum amount of processor usage, the average amount of memory usage, the amount of available network bandwidth being used, the amount of hard disk drive space being used, and so forth. Based on these load characteristics, the computing device(s) most likely to be able to support the new virtual machine and the workload would be identified as the computing device(s) on which the computing of the workload is to be performed (e.g., the computing device having the lightest load, such as the lowest average processor usage, the smallest amount of available network bandwidth being used, the most hard disk drive space available, and so forth). If no computing device can meet the recommended schedule, but several can meet the required schedule, the computing device that comes closest to meeting the recommended schedule could be identified.
It should be noted that typically a new virtual machine is created as part of installing the workload. Thus, the characteristics of the computing devices are evaluated for purposes of determining which computing device(s) will have the new virtual machine created thereon and will perform the computing of the workload. Alternatively, a new virtual machine may not be created, and the workload may be installed on an already running virtual machine. In such situations, the characteristics of the currently running virtual machines are evaluated for purposes of determining which virtual machine(s) will perform the computing of the workload.
Alternatively, the particular computing device(s) which will perform the computing of the workload can be identified in a semi-automatic manner. An application running in the system can identify various characteristics of the computing devices on which the virtual machine could possibly be created and the computing of the workload could possibly be performed (or characteristics of the virtual machines on which the workload could possibly be performed) analogous to the automatic manner, and then present those results to a user (such as the system administrator) for manual selection of one or more of the computing devices (or virtual machines). One or more of the computing devices may optionally be recommended to the user as the best candidate(s) for selection, but the ultimate selection would remain at the user's discretion.
Additionally, priorities of different workloads may be used as part of the physical deployment determining of act 308. Workloads can optionally be assigned priorities, allowing the importance of the workloads relative to one another to be identified. These priorities are typically included in the model of the workload or the workload itself, but alternatively may be maintained elsewhere. Higher priority workloads can be given access to resources of the virtual system before lower priority workloads. This can result in situations where, for example, higher priority workloads can be performed by a computing device(s), but there are insufficient resources for lower priority workloads to be performed. This can also result in situations where, for example, higher priority workloads are given the resources recommended by the constraints of the workload, whereas lower priority workloads are given only the resources required by the constraints of the workload.
In addition, selection of different sources of data and/or other systems to which access is needed may be performed as part of the physical deployment determining of act 308. For example, multiple sources may exist from which data identified as being required in the model of the workload can be obtained, or multiple replicated file servers may exist that can be a file server identified as being required in the model of the workload. Particular sources of data and/or other systems to which access is needed may be selected in act 308 based on various factors, such as the load on the various sources and/or other systems, the bandwidth of the connection to those sources and/or systems, and so forth. Alternatively, rather than being performed as part of act 308, selection of such sources of data and/or other systems to which access is needed may be performed as part of the physical deployment in act 312 discussed below.
It should be noted that one additional factor that can be optionally taken into account when identifying the characteristics of the various computing devices is that virtual machines can be rearranged to run on different computing devices. For example, a virtual machine running on one computing device could be moved to another computing device, thereby freeing up capacity on the original computing device. Such a process of moving or rearranging virtual machines is also referred to as migration of the virtual machines. Virtual machines can be migrated in any of a variety of manners, such as with the assistance of the Virtual Server Migration Toolkit (VSMT) available from Microsoft Corporation of Redmond, Wash.
Accounting for the possibility of migrating virtual machines allows the load characteristics of the computing devices to be changed by migrating the virtual machines. For example, the situation may arise where none of the computing devices have the desired spare capacity to create a virtual machine on which the application could be installed, but that capacity of one of the computing devices could be released by moving a virtual machine from that one computing device to another of the computing devices. After the virtual machine is moved, however, the released capacity results in that one computing device having sufficient capacity so that the new virtual machine on which the application is to be installed can be created and the application installed on that new virtual machine.
This identification of which computing device should perform the computing of the workload, and optionally which virtual machines should be migrated to different computing devices, is performed as part of the physical deployment determining of act 308.
A workload installation specification for physical deployment of the workload is then generated (act 310). The workload installation specification can be saved as an installation page associated with the component representing the workload in the workload model. The workload installation specification includes an identification, for each class of device in the virtual system on which the workload may be installed, of how to install the workload. As each of these identifications indicates how to install the workload on a particular class of devices, these identifications can also be referred to as device class installation specifications. The device class installation specifications can also identify which particular computing device(s) of that class the workload is to be installed on (the computing device(s) determined in act 308).
This identification of how to install the workload includes, for example, all of the settings for the virtual machine to be created on the device, the operating system to install on the virtual machine (including all of the settings of the operating system and the identification of all of the files that need to be copied to the virtual machine to install the operating system), all of the settings of the computing device that should be made or changed, an identification of all of the files that need to be copied to the computing device and where those files should be copied, an order in which files should be copied and/or settings made or changed, any initialization programs that need to be run after the files have been copied and/or settings made or changed, and so forth. This identification may also include installing an operating system and/or one or more additional applications on the computing device prior to creating the virtual machine on the device. For example, one class of computing device may be a bare computing device with no operating system installed on it. In such situations, the installation specification for that class of computing device would include initially installing the appropriate operating system on the computing device, followed by creating the virtual machine on the computing device, then installing an operating system on the virtual machine, and then installing the application on that operating system of the virtual machine.
In certain implementations, this identification of how to install the workload identifies a particular image file that is the image to be run to perform the computing of the workload. The image file can be created as part of the process of building the model of the workload in act 302, or alternatively can be created at other times (e.g., after the logical deployment evaluation has been performed in act 306). The image file includes the application files and data, and optionally the files and data for the operating system on which the application will be executed, for the workload. The image file can be copied to a disk drive or other storage device and executed by a virtual machine to perform the computing of the workload—no additional installation or configuration of the operating system or the application of the workload is typically required. The image file can be generated in any of a variety of conventional manners, such as by installing the application and operating system onto a virtual machine and generating a file that includes all the folders and files installed onto that virtual machine, by a user (e.g., the designer of the workload) manually identifying the folders and files to be included in the image file, and so forth. The image file can then be simply copied to the computing device(s) as part of the physical deployment in act 312 discussed below.
Additionally, if any migration of virtual machines is to be performed for a particular class of device, as identified in act 308, then the device class installation specification for that class of device includes an indication of the migration that is to be performed and the constraints that must be met for that type of migration.
At least a portion of each device class installation specification can be generated automatically based on the information contained in the information pages associated with the workload to be installed. As discussed above, the constraint information page can include various default values. These default values can be used during act 310 to identify the settings or configuration values that should be set when installing the workload, and thus which should be included in the device class installation specification. For example, a particular default value may be included in the configuration information page for a buffer size. This default value would be included in the device class installation specification so that when the workload is installed on a particular computing device, the computing device settings (such as in an operating system registry) can be modified to include this default value for the buffer size (possibly replacing another value for the buffer size previously stored in the computing device settings).
In addition to default values, other constraint information included in the constraint information page can be used in act 310 to identify the settings or configuration values that should be set when installing the workload. If a range of values for a particular setting were included in the constraint information page, then a setting to be used when installing the application can be derived from that range. For example, the lowest value in the range could be selected, the highest value in the range could be selected, the average of the highest and lowest values in the range could be computed and selected, a value in the range could be selected randomly, and so forth.
Furthermore, in addition to information contained in the information pages associated with the workload, information contained in the information pages associated with the virtual system (such as the computing device on which the application is to be installed) can be used as a basis for automatically generating at least a portion of each device class installation specification. Default values and/or ranges of values can be used to automatically generate values for the device class installation specification in the same manner as discussed above.
It should also be noted that different components can have different constraints and different default values for the same settings or configuration values. In such situations, even though there is overlap of the constraints so that the different components can all be installed on a computing device, one or more of the default values may violate the constraints of another component. Thus, a suitable value that is compliant with the constraints of all of the components is determined. This suitable value can be determined in different manners, including manually, automatically, and semi-automatically. A suitable value can be determined manually by a user (such as the system administrator) inputting a suitable value for the setting or configuration value.
A suitable value can be determined automatically by evaluating the various constraints and selecting a value that satisfies all the constraints. This selected value is then used as the suitable value. For example, if each constraint lists a range of acceptable values, then a value that falls within each range of acceptable values can be automatically identified and used as the suitable value.
A suitable value can be determined semi-automatically by evaluating the various constraints and selecting a value that satisfies all the constraints analogous to the automatic manner. However, rather than automatically using the selected value as the suitable value, the selected value can be presented to a user (such as the system administrator) for approval. The user can accept this selected value, or alternatively input a different value. Alternatively, rather than presenting a single selected value to the user, the range of possible values (or portion of the range of possible values) that satisfies the constraints of the different components may be presented to the user.
It should further be noted that at least a portion of a device class installation specification may be generated manually rather than automatically. This manual generation refers to user inputs (such as by the application developer or system administrator) rather than automatic generation by some component or module (e.g., development module 400 discussed below). For example, the particular files to be identified in the device class installation specification may be identified manually rather than automatically.
Additionally, an assignment record is generated in act 310 that maintains a record of which device class installation specifications are to be used for which device classes. This record can be, for example, a mapping of device class to device class installation specification. Thus, given the workload installation specification including multiple device class installation specifications, a determination as to which particular device class installation specification to use can be made based on the class of the device on which the workload is to be installed. The assignment record generated can also be stored as part of the workload installation specification.
Alternatively, rather than having a separate assignment record, an identification of which device class installation specification is associated with which particular class of device may be maintained in other manners. For example, the indication may be inherent in the naming convention used for the device class installation specification (e.g., each device class installation specification may be a separate file having a file name that identifies the particular class of device), or each device class installation specification may include an indication of the associated class of device.
The workload installation specification is generated after the logical deployment evaluation in act 306. Thus, the application installation specification is generated only after it is verified that the workload can be installed in the system. Additionally, the constraint information (such as default values) associated with the workload can be used to determine settings to be included in the workload installation specification. Thus, it can be seen that the workload installation specification generated in act 310 is derived at least in part from the model of the workload as well as the model of the system.
After the workload installation specification is created, physical deployment of the workload is performed (act 312). The timing of the physical deployment can vary. Deployment may be triggered manually, such as by a user (such as the system administrator) specifying that deployment should begin “now” or at a particular time in the future. Deployment may also be triggered based on other events and/or schedules identified in the workload as discussed above.
In certain implementations, this physical deployment includes making the workload installation specification available to a deployment system and having the deployment system create a new virtual machine on the particular device identified in act 308, and also copy the image file identified by the workload on the particular device identified in act 308 for execution by the newly created virtual machine. In other implementations, this physical deployment includes making the workload installation specification available to a deployment system and having the deployment system create a new virtual machine on the particular device identified in act 308 and install the application on that new virtual machine following the installation instructions in the workload installation specification.
Once the deployment system is given the workload installation specification, the deployment system operates in a conventional manner to install the workload. If the application installation specification indicates that migration of any virtual machines is to be performed, then this migration can also be carried out by the deployment system (optionally with the assistance of another component, such as the Virtual Server Migration Toolkit discussed above). Any of a variety of deployment systems could be used in act 312, such as the Windows® Installer service or Microsoft® Systems Management Server, both available from Microsoft Corporation of Redmond, Wash.
Once the workload is installed on a computing device, the new virtual machine and the application installed thereon becomes part of the system and thus the workload model is incorporated into the system model and a component for the new virtual machine (as well as the operating system for the new virtual machine, and any other components running on the virtual machine) is added to the system model. Thus, after installation of the application, the SDM for the system includes the SDM of the workload. This includes modifying characteristics of the system such as available number of CPUs, which might be time-series based to reflect the allocation of CPUs to scheduled workloads and the time-series based requirements of CPUs of those workloads.
Alternatively, the evaluation in act 306 may be for a particular computing device or virtual machine rather than for a class of computing device. In this alternative, the evaluation in act 306 is the same as discussed above, except that constraint and description information for a particular instance of a computing device are used rather than constraint and description information for a class of computing device. In such situations, the identification of the particular computing device is made in, or prior to, act 306 rather than in act 308, and can be made in the same manner as discussed in act 308.
It should also be noted that a particular device class installation specification may indicate to install the whole workload or individual components of the workload on multiple different computing devices within the system. For example, the workload developer or system administrator may desire to install the workload on all of the computing devices of a particular class. By way of another example, the workload developer or system administrator may desire to install each part of the workload on a computing device of a specific class. In such a situation, an indication is included in the device class installation specification for that particular device class that the workload is to be installed on all of the computing devices of that particular class, or alternatively may identify the particular computing devices (e.g., by name or other unique identifier) on which the workload is to be installed. The installation instructions may also identify the sequence in which the parts of the workload are to be installed on each system, and how to coordinate the installation steps by waiting for the completion of one step before proceeding with the next, using conventional orchestration technologies. The deployment system used to install the workload receives this indication and installs the workload on the appropriate computing devices.
FIG. 4 illustrates an example workload installation specification in additional detail. An installation specification development module 400 generates a workload installation specification 402. Installation specification module 400 can be implemented in software, firmware, hardware, or combinations thereof, and can perform act 310 of FIG. 3, and optionally additional acts of FIG. 3 (such as act 306 and/or act 308). Workload installation specification 402 includes multiple (x) device class installation specifications 404(1), 404(2), . . . 404(x). Each of the device class installation specifications 404 identifies how the workload is to be installed on a particular class of computing device. Workload installation specification 402 also includes specification assignment record 406 to identify which specification 404 corresponds to which class of computing device.
Workload installation specification 402 is input to a deployment system 408 along with any necessary installation file(s) 410. Installation file(s) 410 include the file(s) that are to be installed on the computing device in order to install the application, such as one or more files of executable code, one or more files of data, an image file, and so forth. Alternatively, although illustrated separately, workload installation specification 402 and installation file(s) 410 may be stored together in a single package (e.g., a compressed file).
FIG. 5 is a flowchart illustrating the generation of a workload installation specification for physical deployment of act 310 of FIG. 3 in additional detail. FIG. 5 can be implemented in software, firmware, and/or hardware.
Initially, a device class on which the workload could be installed is selected (act 502). In certain embodiments the system administrator and/or workload developer (or alternatively some other party) may desire that the workload be installed only on certain classes of devices, in which case the devices on which the workload could be installed is less than all of the devices in the system. Alternatively, the workload may be able to be installed on any device in the system.
A device class installation specification for the selected device class is then generated, identifying how to install the workload and virtual machine on the selected device class (act 504). As discussed above, this generation can include using default values included in an information page associated with the workload in the workload model for setting values to include in the installation specification being generated.
In some situations, the device class installation specification is generated in a format that is expected and understood by a deployment system that will be installing the workload and the virtual machine. The device class installation specification may be generated in this format in act 504, or alternatively may be subsequently translated into this format (e.g., by a translation component of the distribution system).
It should be noted that different device installation specifications may be generated for computing devices that will have the same functionality but are currently configured differently, such as computing devices that do not yet have an operating system installed and computing devices that already have an operating system installed. Alternatively, such computing devices may be considered to be part of the same device class, but the device class installation specification would include a conditional portion to be used based on the configuration of the particular instance of the computing device on which the application is being installed (e.g., the conditional portion may be bypassed if the computing device already has an installed operating system, or used to install an operating system on the computing device if an operating system is not already installed on the computing device).
A check is then made as to whether there are any additional device class(es) in the virtual system for which no device class installation specification has been generated (act 506). If there are any such additional device class(es), then one such additional device class is selected (act 508) and the process returns to act 504 to generate a device class installation specification for the selected device class.
Returning to act 506, if device class installation specifications have been generated for all of the device class(es), then a specification assignment record is generated associating particular installation specifications with particular device classes (act 510). Alternatively, the specification assignment record may be generated in act 504 as the device class installation specifications are being generated, and an indication of which device class is associated with which device class installation specification added to the specification assignment record as the device class installation specification is generated.
The device class installation specifications generated in act 504 and the assignment record generated in act 510 are then combined into a workload installation specification for the application (act 512).
FIG. 6 illustrates an example general computer environment 600, which can be used to implement the techniques described herein. The computer environment 600 is only one example of a computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the computer and network architectures. Neither should the computer environment 600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the example computer environment 600.
Computer environment 600 includes a general-purpose computing device in the form of a computer 602. Computer 602 can be, for example, a computing device on which an application is installed or a computing device on which at least portions of process 300 of FIG. 3 are implemented. Computer 602 can be, for example, a desktop computer, a handheld computer, a notebook or laptop computer, a server computer, a game console, and so on. The components of computer 602 can include, but are not limited to, one or more processors or processing units 604, a system memory 606, and a system bus 608 that couples various system components including the processor 604 to the system memory 606.
The system bus 608 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, and a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus.
Computer 602 typically includes a variety of computer readable media. Such media can be any available media that is accessible by computer 602 and includes both volatile and non-volatile media, removable and non-removable media.
The system memory 606 includes computer readable media in the form of volatile memory, such as random access memory (RAM) 610, and/or non-volatile memory, such as read only memory (ROM) 612. A basic input/output system (BIOS) 614, containing the basic routines that help to transfer information between elements within computer 602, such as during start-up, is stored in ROM 612. RAM 610 typically contains data and/or program modules that are immediately accessible to and/or presently operated on by the processing unit 604.
Computer 602 may also include other removable/non-removable, volatile/non-volatile computer storage media. By way of example, FIG. 6 illustrates a hard disk drive 616 for reading from and writing to a non-removable, non-volatile magnetic media (not shown), a magnetic disk drive 618 for reading from and writing to a removable, non-volatile magnetic disk 620 (e.g., a “floppy disk”), and an optical disk drive 622 for reading from and/or writing to a removable, non-volatile optical disk 624 such as a CD-ROM, DVD-ROM, or other optical media. The hard disk drive 616, magnetic disk drive 618, and optical disk drive 622 are each connected to the system bus 608 by one or more data media interfaces 626. Alternatively, the hard disk drive 616, magnetic disk drive 618, and optical disk drive 622 can be connected to the system bus 608 by one or more interfaces (not shown).
The disk drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules, and other data for computer 602. Although the example illustrates a hard disk 616, a removable magnetic disk 620, and a removable optical disk 624, it is to be appreciated that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access memories (RAM), read only memories (ROM), electrically erasable programmable read-only memory (EEPROM), and the like, can also be utilized to implement the exemplary computing system and environment.
Any number of program modules can be stored on the hard disk 616, magnetic disk 620, optical disk 624, ROM 612, and/or RAM 610, including by way of example, an operating system 626, one or more application programs 628, other program modules 630, and program data 632. Each of such operating system 626, one or more application programs 628, other program modules 630, and program data 632 (or some combination thereof) may implement all or part of the resident components that support the distributed file system.
A user can enter commands and information into computer 602 via input devices such as a keyboard 634 and a pointing device 636 (e.g., a “mouse”). Other input devices 638 (not shown specifically) may include a microphone, joystick, game pad, satellite dish, serial port, scanner, and/or the like. These and other input devices are connected to the processing unit 604 via input/output interfaces 640 that are coupled to the system bus 608, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
A monitor 642 or other type of display device can also be connected to the system bus 608 via an interface, such as a video adapter 644. In addition to the monitor 642, other output peripheral devices can include components such as speakers (not shown) and a printer 646 which can be connected to computer 602 via the input/output interfaces 640.
Computer 602 can operate in a networked environment using logical connections to one or more remote computers, such as a remote computing device 648. By way of example, the remote computing device 648 can be a personal computer, portable computer, a server, a router, a network computer, a peer device or other common network node, and the like. The remote computing device 648 is illustrated as a portable computer that can include many or all of the elements and features described herein relative to computer 602.
Logical connections between computer 602 and the remote computer 648 are depicted as a local area network (LAN) 650 and a general wide area network (WAN) 652. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
When implemented in a LAN networking environment, the computer 602 is connected to a local network 650 via a network interface or adapter 654. When implemented in a WAN networking environment, the computer 602 typically includes a modem 656 or other means for establishing communications over the wide network 652. The modem 656, which can be internal or external to computer 602, can be connected to the system bus 608 via the input/output interfaces 640 or other appropriate mechanisms. It is to be appreciated that the illustrated network connections are exemplary and that other means of establishing communication link(s) between the computers 602 and 648 can be employed.
In a networked environment, such as that illustrated with computing environment 600, program modules depicted relative to the computer 602, or portions thereof, may be stored in a remote memory storage device. By way of example, remote application programs 658 reside on a memory device of remote computer 648. For purposes of illustration, application programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of the computing device 602, and are executed by the data processor(s) of the computer.
Various modules and techniques may be described herein in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
An implementation of these modules and techniques may be stored on or transmitted across some form of computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example, and not limitation, computer readable media may comprise “computer storage media” and “communications media.”
“Computer storage media” includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
“Communication media” typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
Alternatively, portions of the framework may be implemented in hardware or a combination of hardware, software, and/or firmware. For example, one or more application specific integrated circuits (ASICs) or programmable logic devices (PLDs) could be designed or programmed to implement one or more portions of the framework.
CONCLUSION
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention.

Claims (17)

The invention claimed is:
1. A method comprising:
accessing a model of a workload to be installed on a virtual machine of a system wherein the workload includes an application and an operating system to be installed on the virtual machine, the model of the workload comprising a component that identifies a source of the application and a component that identifies the source of the operating system of the workload and the model identifying the relationship between the operating system and the application by identifying a corresponding relationship between components in the workload model;
accessing a model of the system wherein the virtual machine is to be created on a computing device to provide virtualized components of the system, the virtual machine emulates a computing environment that is compatible with the operating system and has the characteristics required to allow the application to run, the model of the system comprising components corresponding to the virtualized components of the system, the model identifying relationships among the virtualized components by identifying a corresponding relationship among the components of the model; and
generating an installation specification for the workload, the installation specification being derived at least in part from the model of the workload and the model of the system, wherein the installation specification identifies an image file of the workload that is to be copied to a storage device of a computing device of the system on which the virtual machine is created in order to install the workload on the virtual machine.
2. A method as recited in claim 1, having a virtual machine created on a computing device of the system prior to installing an application and operating system on the virtual machine.
3. A method as recited in claim 1, wherein the installation specification includes an indication to migrate another virtual machine from one computing device to another computing device.
4. A method as recited in claim 1, further comprising:
generating a plurality of device class installation specifications for the workload, each of the plurality of device class installation specifications being for a different one of a plurality of classes of devices in the system on which the workload could be installed.
5. A method as recited in claim 4, further comprising:
generating a record associating each of the plurality of device class installation specifications with one of the plurality of classes of devices.
6. A method as recited in claim 1, further comprising:
performing, prior to generating the installation specification, a logical deployment evaluation to determine whether the workload could be installed in the system, the performing comprising comparing constraints associated with the workload to constraints associated with the system.
7. A method as recited in claim 6, wherein the constraints associated with the workload include software licensing requirements that must be satisfied by the system.
8. A method as recited in claim 1, further comprising:
identifying, prior to generating the installation specification, which one or more computing devices of a plurality of computing devices in the system is to have the workload installed thereon.
9. One or more computer readable storage media having stored thereon a plurality of instructions that, when executed by one or more processors, causes the one or more processors to:
access a model of a workload to be installed on one or more virtual machines of a system, the workload includes an application and an operating system to be installed on the virtual machine, the model of the workload comprising components corresponding to the application and the operating system to be installed and identifying the relationship between the operating system and the application by identifying a corresponding relationship between components in the workload model;
access a model of the system wherein the one or more virtual machines are to be created on a computing device to provide virtualized components of the system wherein the virtual machine emulates a computing environment that is compatible with the operating system and has the characteristics required to allow the application to run, the model of the system comprising components corresponding to the virtualized components of the system, the model identifying relationships among the virtualized components by identifying a corresponding relationship among the components of the model; and
generate a workload installation specification for the workload to be installed on one or more virtual machines of a system, the workload installation specification being based at least in part on the model of the workload and the model of the system.
10. One or more computer readable media as recited in claim 9, wherein the installation specification identifies an image file of the workload that is to be copied to a storage device of one or more computing devices of the system on which the one or more virtual machines are created in order to install the workload on the one or more virtual machines.
11. One or more computer readable media as recited in claim 9, wherein the plurality of instructions further cause the one or more processors to:
trigger deployment of the workload based on one or more constraints in the model of the workload.
12. One or more computer readable media as recited in claim 9, wherein the plurality of instructions further cause the one or more processors to:
generate a plurality of device class installation specifications for the workload, each of the plurality of device class installation specifications being for a different one of a plurality of classes of devices on which the workload could be installed; and
include the plurality of device class installation specifications in the workload installation specification.
13. One or more computer readable media as recited in claim 9, wherein to generate the workload installation specification is to:
access a constraint information page in the model of the workload;
obtain default values for settings from the constraint information page; and
include, in the workload installation specification, the default values to be stored as settings on the one or more computing devices during installation of the workload on the one or more computing devices.
14. A computing device comprising:
a processor; and
a memory, coupled to the processor, to store instructions that, when executed by the processor, cause the processor to:
access a model of a workload to be installed on a virtual machine of a system, the model of the workload comprising components corresponding to components to be installed on the virtual machine, including at least an operating system and an application, and identifying the relationship between the components to be installed on the virtual machine by identifying a corresponding relationship between components in the workload model;
access a model of the system wherein the model of the computing components of the system is different from the computing components of a computing device on which the virtual machine is installed wherein the virtual machine emulates a computing environment that is compatible with the operating system and has the characteristics required to allow the application to run, the model of the system comprising components corresponding to the virtualized components of the system, the model identifying relationships among the virtualized components by identifying a corresponding relationship among the components of the model; and
generate an installation specification for the workload, the installation specification being derived at least in part from the model of the workload and the model of the system.
15. A computing device as recited in claim 14, wherein the virtual machine is to be installed on a computing device of the system prior to installing an application and operating system of the workload on the virtual machine.
16. A computing device as recited in claim 14, further comprising:
generating a plurality of device class installation specifications for the workload, each of the plurality of device class installation specifications being for a different one of a plurality of classes of devices in the system on which the workload could be installed.
17. A computing device as recited in claim 14, wherein the generating comprises:
accessing a constraint information page in the model of the workload;
obtaining default values for settings from the constraint information page; and
including, in the installation specification, the default values to be stored as settings on a computing device of the system during installation of the workload on the computing device.
US11/169,973 2005-06-29 2005-06-29 Model-based virtual system provisioning Active 2028-09-17 US8549513B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/169,973 US8549513B2 (en) 2005-06-29 2005-06-29 Model-based virtual system provisioning
US14/042,619 US9317270B2 (en) 2005-06-29 2013-09-30 Model-based virtual system provisioning
US14/857,480 US9811368B2 (en) 2005-06-29 2015-09-17 Model-based virtual system provisioning
US15/721,338 US10540159B2 (en) 2005-06-29 2017-09-29 Model-based virtual system provisioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/169,973 US8549513B2 (en) 2005-06-29 2005-06-29 Model-based virtual system provisioning

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/042,619 Continuation US9317270B2 (en) 2005-06-29 2013-09-30 Model-based virtual system provisioning

Publications (2)

Publication Number Publication Date
US20070006218A1 US20070006218A1 (en) 2007-01-04
US8549513B2 true US8549513B2 (en) 2013-10-01

Family

ID=37591400

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/169,973 Active 2028-09-17 US8549513B2 (en) 2005-06-29 2005-06-29 Model-based virtual system provisioning
US14/042,619 Active US9317270B2 (en) 2005-06-29 2013-09-30 Model-based virtual system provisioning
US14/857,480 Active 2025-10-06 US9811368B2 (en) 2005-06-29 2015-09-17 Model-based virtual system provisioning
US15/721,338 Active 2025-11-16 US10540159B2 (en) 2005-06-29 2017-09-29 Model-based virtual system provisioning

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/042,619 Active US9317270B2 (en) 2005-06-29 2013-09-30 Model-based virtual system provisioning
US14/857,480 Active 2025-10-06 US9811368B2 (en) 2005-06-29 2015-09-17 Model-based virtual system provisioning
US15/721,338 Active 2025-11-16 US10540159B2 (en) 2005-06-29 2017-09-29 Model-based virtual system provisioning

Country Status (1)

Country Link
US (4) US8549513B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044170A1 (en) * 2007-08-10 2009-02-12 Microsoft Corporation Automated Application Modeling for Application Virtualization
US20090281819A1 (en) * 2008-05-12 2009-11-12 Microsoft Corporation Data driven component reputation
US20130212282A1 (en) * 2006-10-20 2013-08-15 Desktone, Inc. Virtual Computing Services Deployment Network
US20130290951A1 (en) * 2008-09-24 2013-10-31 Matthew L. Domsch Virtual Machine Manufacturing Methods and Media
US20140143011A1 (en) * 2012-11-16 2014-05-22 Dell Products L.P. System and method for application-migration assessment
US8863113B1 (en) * 2007-07-10 2014-10-14 Parallels IP Holdings GmbH Method and system for unattended installation of guest operating system
US20150026667A1 (en) * 2013-07-19 2015-01-22 Cisco Technology, Inc. Network Development and Testing as a Cloud Service
US8943203B1 (en) * 2009-07-10 2015-01-27 Netapp, Inc. System and method for storage and deployment of virtual machines in a virtual server environment
US9280336B2 (en) 2011-06-30 2016-03-08 International Business Machines Corporation Virtual machine disk image installation
US20160077862A1 (en) * 2005-06-29 2016-03-17 Microsoft Technology Licensing, Llc Model-based virtual system provisioning
US9535684B2 (en) * 2011-08-26 2017-01-03 Vmware, Inc. Management of software updates in a virtualized environment of a datacenter using dependency relationships
US9705923B2 (en) 2014-09-02 2017-07-11 Symantec Corporation Method and apparatus for automating security provisioning of workloads
US9800650B2 (en) 2014-03-10 2017-10-24 Vmware, Inc. Resource management for multiple desktop configurations for supporting virtual desktops of different user classes
US9959157B1 (en) * 2014-12-02 2018-05-01 Amazon Technologies, Inc. Computing instance migration
US20180150288A1 (en) * 2016-11-30 2018-05-31 Vmware, Inc. Win32 software distribution architecture
US10255092B2 (en) * 2016-02-09 2019-04-09 Airwatch Llc Managed virtual machine deployment
US20190384634A1 (en) * 2018-06-14 2019-12-19 International Business Machines Corporation Cloud and datacenter migration wave planning using analytics and flow modeling
US10547667B1 (en) * 2011-08-30 2020-01-28 CSC Holdings, LLC Heterogeneous cloud processing utilizing consumer devices
US10616311B2 (en) 2016-06-03 2020-04-07 At&T Intellectual Property I, L.P. Facilitating management of communications systems

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2674872B1 (en) * 2006-04-21 2019-10-09 Cirba IP Inc. Method and system for determining compatibility of computer systems
US8695102B2 (en) * 2006-05-01 2014-04-08 International Business Machines Corporation Controlling execution of executables between partitions in a multi-partitioned data processing system
US20070283147A1 (en) * 2006-05-30 2007-12-06 Fried Eric P System and method to manage device access in a software partition
US7725305B2 (en) * 2006-06-08 2010-05-25 Microsoft Corporation Partial virtualization on computing device
US7917889B2 (en) * 2006-06-19 2011-03-29 International Business Machines Corporation Data locations template based application-data association and its use for policy based management
US20080256538A1 (en) * 2007-04-10 2008-10-16 Novell, Inc. Storage configurations for tessellated virtual machines
US8141090B1 (en) 2007-04-24 2012-03-20 Hewlett-Packard Development Company, L.P. Automated model-based provisioning of resources
US8065676B1 (en) * 2007-04-24 2011-11-22 Hewlett-Packard Development Company, L.P. Automated provisioning of virtual machines for a virtual machine buffer pool and production pool
US9058438B2 (en) * 2007-04-30 2015-06-16 International Business Machines Corporation Application-requirement based configuration designer for distributed computing systems
US8904341B2 (en) * 2007-04-30 2014-12-02 Hewlett-Packard Development Company, L.P. Deriving grounded model of business process suitable for automatic deployment
US8069341B2 (en) * 2007-06-29 2011-11-29 Microsoft Corporation Unified provisioning of physical and virtual images
KR100927442B1 (en) * 2007-08-16 2009-11-19 주식회사 마크애니 Virtual Application Creation System, Virtual Application Installation Method, Native API Call Processing Method and Virtual Application Execution Method
WO2009026703A1 (en) * 2007-08-31 2009-03-05 Cirba Inc. Method and system for evaluating virtualized environments
US8839231B2 (en) * 2007-12-04 2014-09-16 Dell Products L.P. Method and system for software installation
WO2009082382A1 (en) * 2007-12-20 2009-07-02 Hewlett-Packard Development Company, L.P. Automated model generation for computer based business process
US20100262558A1 (en) * 2007-12-20 2010-10-14 Nigel Edwards Incorporating Development Tools In System For Deploying Computer Based Process On Shared Infrastructure
US20100262559A1 (en) * 2007-12-20 2010-10-14 Lawrence Wilcock Modelling Computer Based Business Process And Simulating Operation
CN101946260A (en) * 2007-12-20 2011-01-12 惠普开发有限公司 Modelling computer based business process for customisation and delivery
US20110004564A1 (en) * 2007-12-20 2011-01-06 Jerome Rolia Model Based Deployment Of Computer Based Business Process On Dedicated Hardware
US8307405B2 (en) * 2008-04-28 2012-11-06 International Business Machines Corporation Methods, hardware products, and computer program products for implementing zero-trust policy in storage reports
US8336099B2 (en) * 2008-05-08 2012-12-18 International Business Machines Corporation Methods, hardware products, and computer program products for implementing introspection data comparison utilizing hypervisor guest introspection data
US8327355B2 (en) * 2008-07-15 2012-12-04 International Business Machines Corporation Method, computer program product, and hardware product for supporting virtual machine guest migration overcommit
US20100031249A1 (en) * 2008-08-04 2010-02-04 International Business Machines Corporation Method for policy based enforcement of business requirements for software install
US11271871B2 (en) 2008-09-11 2022-03-08 Juniper Networks, Inc. Methods and apparatus related to a flexible data center security architecture
US9847953B2 (en) 2008-09-11 2017-12-19 Juniper Networks, Inc. Methods and apparatus related to virtualization of data center resources
US8265071B2 (en) * 2008-09-11 2012-09-11 Juniper Networks, Inc. Methods and apparatus related to a flexible data center security architecture
JP5429179B2 (en) * 2008-10-02 2014-02-26 日本電気株式会社 Network node and load balancing method thereof
US8312419B2 (en) * 2008-10-30 2012-11-13 Hewlett-Packard Development Company, L.P. Automated lifecycle management of a computer implemented service
EP2345963A4 (en) * 2008-10-31 2013-01-09 Ibm Computer system, method, and computer program for managing batch job
US8359594B1 (en) * 2009-06-30 2013-01-22 Sychron Advanced Technologies, Inc. Automated rapid virtual machine provisioning system
US20110035802A1 (en) * 2009-08-07 2011-02-10 Microsoft Corporation Representing virtual object priority based on relationships
US8966475B2 (en) * 2009-08-10 2015-02-24 Novell, Inc. Workload management for heterogeneous hosts in a computing system environment
US9037717B2 (en) * 2009-09-21 2015-05-19 International Business Machines Corporation Virtual machine demand estimation
WO2011039887A1 (en) * 2009-10-01 2011-04-07 三菱電機株式会社 Computer device
US20110119191A1 (en) * 2009-11-19 2011-05-19 International Business Machines Corporation License optimization in a virtualized environment
TW201142709A (en) * 2009-12-11 2011-12-01 Ibm A method, system and computer program for deciding whether to install a first application within one of a plurality of candiate environments
US9389895B2 (en) 2009-12-17 2016-07-12 Microsoft Technology Licensing, Llc Virtual storage target offload techniques
US20110153715A1 (en) * 2009-12-17 2011-06-23 Microsoft Corporation Lightweight service migration
US8683465B2 (en) * 2009-12-18 2014-03-25 International Business Machines Corporation Virtual image deployment with a warm cache
US9098456B2 (en) * 2010-01-13 2015-08-04 International Business Machines Corporation System and method for reducing latency time with cloud services
US8738333B1 (en) * 2010-05-25 2014-05-27 Vmware, Inc. Capacity and load analysis in a datacenter
US9858068B2 (en) 2010-06-22 2018-01-02 Hewlett Packard Enterprise Development Lp Methods and systems for planning application deployment
WO2011162746A1 (en) * 2010-06-22 2011-12-29 Hewlett-Packard Development Company, L.P. A method and system for determining a deployment of applications
US9733963B2 (en) * 2010-09-17 2017-08-15 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Optimizing virtual graphics processing unit utilization
JP2012068790A (en) * 2010-09-22 2012-04-05 Internatl Business Mach Corp <Ibm> Selection apparatus for image of os, selection method, and selection program
US8843924B2 (en) 2011-06-17 2014-09-23 International Business Machines Corporation Identification of over-constrained virtual machines
US8949428B2 (en) 2011-06-17 2015-02-03 International Business Machines Corporation Virtual machine load balancing
US8966084B2 (en) 2011-06-17 2015-02-24 International Business Machines Corporation Virtual machine load balancing
US10264058B1 (en) * 2011-06-30 2019-04-16 Emc Corporation Defining virtual application templates
US10042657B1 (en) 2011-06-30 2018-08-07 Emc Corporation Provisioning virtual applciations from virtual application templates
US20130227572A1 (en) * 2011-08-01 2013-08-29 Nec Corporation Test device, a system, a program and a method
TW201324187A (en) * 2011-12-15 2013-06-16 Hon Hai Prec Ind Co Ltd System and method for deploying virtual machines
CN103164253A (en) * 2011-12-16 2013-06-19 鸿富锦精密工业(深圳)有限公司 Virtual machine deployment system and virtual machine deployment method
US9665356B2 (en) * 2012-01-31 2017-05-30 Red Hat, Inc. Configuration of an application in a computing platform
CN103309723B (en) * 2012-03-16 2016-08-10 山东智慧生活数据系统有限公司 Virtual machine resource integration and method
US20130332587A1 (en) * 2012-06-11 2013-12-12 International Business Machines Corporation Method and a system for on-boarding, administration and communication between cloud providers and tenants in a share-all multi-tenancy environment
US9215144B2 (en) 2012-10-18 2015-12-15 International Business Machines Corporation Recommending a policy for an IT asset
EP2953024A1 (en) * 2013-02-01 2015-12-09 NEC Corporation Resource control system, control pattern generation device, control device, resource control method and program
US20140223427A1 (en) * 2013-02-04 2014-08-07 Thomas C. Bootland System, Method and Apparatus for Determining Virtual Machine Performance
US9015650B2 (en) * 2013-06-03 2015-04-21 Microsoft Technology Licensing, Llc Unified datacenter storage model
EP2816472A1 (en) * 2013-06-19 2014-12-24 British Telecommunications public limited company Model based enforcement of software compliance
EP2816469A1 (en) * 2013-06-19 2014-12-24 British Telecommunications public limited company Application broker for multiple virtualised computing environments
EP2816481A1 (en) 2013-06-19 2014-12-24 British Telecommunications public limited company Enforcing software compliance
EP2816468A1 (en) 2013-06-19 2014-12-24 British Telecommunications public limited company Evaluating software compliance
US9852000B2 (en) * 2013-08-27 2017-12-26 Empire Technology Development Llc Consolidating operations associated with a plurality of host devices
US20150134828A1 (en) * 2013-09-27 2015-05-14 Empire Technology Development Llc Infrastructure migration tool
CN103685542B (en) * 2013-12-23 2016-06-29 重庆广播电视大学 Cloud virtual machine migration method, device and system
US20150234644A1 (en) * 2014-02-10 2015-08-20 Empire Technology Development Llc Automatic collection and provisioning of resources to migrate applications from one infrastructure to another infrastructure
US20150278512A1 (en) * 2014-03-28 2015-10-01 Intel Corporation Virtualization based intra-block workload isolation
CN105100127B (en) 2014-04-22 2018-06-05 国际商业机器公司 For verifying the device and method using deployment topologies in cloud computing environment
CN106462458B (en) 2014-04-30 2019-08-30 大连理工大学 Virtual machine (vm) migration
CN107844360B (en) * 2014-04-30 2021-10-01 华为技术有限公司 Method and device for executing application code by hard disk
US9218176B1 (en) * 2014-06-13 2015-12-22 International Business Machines Corporation Software deployment in a distributed virtual machine environment
GB2528115B (en) * 2014-07-11 2021-05-19 Advanced Risc Mach Ltd Dynamic saving of registers in transactions
JP2016103144A (en) * 2014-11-28 2016-06-02 富士通株式会社 Virtual machine deployment method, virtual machine deployment program and virtual machine deployment system
US10684837B2 (en) * 2015-02-25 2020-06-16 Red Hat Israel, Ltd. Repository manager
US9516063B2 (en) * 2015-03-10 2016-12-06 Raytheon Company System, method, and computer-readable medium for performing automated security validation on a virtual machine
US20170068555A1 (en) * 2015-09-04 2017-03-09 International Business Machines Corporation Operation-specific virtual machine placement constraints
CN105224389B (en) * 2015-09-23 2018-07-13 电子科技大学 Based on the virtual machine resource integration method that linear dependence and segmenting vanning are theoretical
US9965329B2 (en) * 2015-10-12 2018-05-08 Advanced Micro Devices, Inc. Method and apparatus for workload placement on heterogeneous systems
US10713072B1 (en) * 2016-06-27 2020-07-14 Amazon Technologies, Inc. Computing resource provisioning
US11113030B1 (en) * 2019-05-23 2021-09-07 Xilinx, Inc. Constraints for applications in a heterogeneous programming environment
TWI779321B (en) * 2020-07-22 2022-10-01 宏碁股份有限公司 Resource integration system and resource integration method
US20230275837A1 (en) * 2022-02-25 2023-08-31 Cisco Technology, Inc. Demand-based scaling of enterprise workloads into cloud networks

Citations (443)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200770A (en) 1977-09-06 1980-04-29 Stanford University Cryptographic apparatus and method
US4218582A (en) 1977-10-06 1980-08-19 The Board Of Trustees Of The Leland Stanford Junior University Public key cryptographic apparatus and method
US4405829A (en) 1977-12-14 1983-09-20 Massachusetts Institute Of Technology Cryptographic communications system and method
US4424414A (en) 1978-05-01 1984-01-03 Board Of Trustees Of The Leland Stanford Junior University Exponentiation cryptographic apparatus and method
US5031089A (en) 1988-12-30 1991-07-09 United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Dynamic resource allocation scheme for distributed heterogeneous computer systems
US5220621A (en) 1990-08-01 1993-06-15 International Business Machines Corporation Character recognition system using the generalized hough transformation and method
US5430810A (en) 1990-11-20 1995-07-04 Imra America, Inc. Real time implementation of the hough transform
US5490276A (en) 1991-03-18 1996-02-06 Echelon Corporation Programming language structures for use in a network for communicating, sensing and controlling information
US5495610A (en) 1989-11-30 1996-02-27 Seer Technologies, Inc. Software distribution system to build and distribute a software release
US5499357A (en) 1993-05-28 1996-03-12 Xerox Corporation Process for configuration management
US5504921A (en) 1990-09-17 1996-04-02 Cabletron Systems, Inc. Network management system using model-based intelligence
US5557774A (en) 1993-03-22 1996-09-17 Hitachi, Ltd. Method for making test environmental programs
US5579482A (en) 1991-03-18 1996-11-26 Echelon Corporation Method and apparatus for storing interface information in a computer system
US5668995A (en) 1994-04-22 1997-09-16 Ncr Corporation Method and apparatus for capacity planning for multiprocessor computer systems in client/server environments
US5686940A (en) 1993-12-24 1997-11-11 Rohm Co., Ltd. Display apparatus
US5724508A (en) 1995-03-09 1998-03-03 Insoft, Inc. Apparatus for collaborative computing
US5748958A (en) 1996-04-30 1998-05-05 International Business Machines Corporation System for utilizing batch requests to present membership changes to process groups
RU2111625C1 (en) 1992-03-20 1998-05-20 Эй Ти энд Ти Корп Remote control telemetry call system
US5758351A (en) 1995-03-01 1998-05-26 Sterling Software, Inc. System and method for the creation and use of surrogate information system objects
US5768271A (en) 1996-04-12 1998-06-16 Alcatel Data Networks Inc. Virtual private network
US5774689A (en) 1995-09-22 1998-06-30 Bell Atlantic Network Services, Inc. Network configuration management system for digital communication networks
US5784463A (en) 1996-12-04 1998-07-21 V-One Corporation Token distribution, registration, and dynamic configuration of user entitlement for an application level security system and method
US5790895A (en) 1996-10-18 1998-08-04 Compaq Computer Corporation Modem sharing
US5818937A (en) 1996-08-12 1998-10-06 Ncr Corporation Telephone tone security device
US5822531A (en) 1996-07-22 1998-10-13 International Business Machines Corporation Method and system for dynamically reconfiguring a cluster of computer systems
US5826015A (en) 1997-02-20 1998-10-20 Digital Equipment Corporation Method and apparatus for secure remote programming of firmware and configurations of a computer over a network
US5835777A (en) * 1996-03-20 1998-11-10 Hewlett-Packard Company Method of automatically generating a software installation package
US5845277A (en) 1996-12-19 1998-12-01 Mci Communications Corporation Production of statistically-based network maps
US5845124A (en) 1996-05-01 1998-12-01 Ncr Corporation Systems and methods for generating and displaying a symbolic representation of a network model
US5867706A (en) 1996-01-26 1999-02-02 International Business Machines Corp. Method of load balancing across the processors of a server
US5872928A (en) 1995-02-24 1999-02-16 Cabletron Systems, Inc. Method and apparatus for defining and enforcing policies for configuration management in communications networks
US5878220A (en) 1994-11-21 1999-03-02 Oracle Corporation Method and apparatus for storing and transferring data on a network
US5895499A (en) 1995-07-03 1999-04-20 Sun Microsystems, Inc. Cross-domain data transfer using deferred page remapping
US5905728A (en) 1996-06-19 1999-05-18 Electronics And Telecommunications Research Institute Method of assigning connection identifier in asynchronous transfer mode switching system
US5917730A (en) 1995-08-17 1999-06-29 Gse Process Solutions, Inc. Computer implemented object oriented visualization system and method
US5930798A (en) 1996-08-15 1999-07-27 Predicate Logic, Inc. Universal data measurement, analysis and control system
US5958009A (en) 1997-02-27 1999-09-28 Hewlett-Packard Company System and method for efficiently monitoring quality of service in a distributed processing environment
US5968126A (en) 1997-04-02 1999-10-19 Switchsoft Systems, Inc. User-based binding of network stations to broadcast domains
US6035405A (en) 1997-12-22 2000-03-07 Nortel Networks Corporation Secure virtual LANs
US6041054A (en) 1997-09-24 2000-03-21 Telefonaktiebolaget Lm Ericsson Efficient transport of internet protocol packets using asynchronous transfer mode adaptation layer two
US6047323A (en) 1995-10-19 2000-04-04 Hewlett-Packard Company Creation and migration of distributed streams in clusters of networked computers
US6049528A (en) 1997-06-30 2000-04-11 Sun Microsystems, Inc. Trunking ethernet-compatible networks
US6052469A (en) 1996-07-29 2000-04-18 International Business Machines Corporation Interoperable cryptographic key recovery system with verification by comparison
US6059842A (en) 1998-04-14 2000-05-09 International Business Machines Corp. System and method for optimizing computer software and hardware
US6065058A (en) 1997-05-09 2000-05-16 International Business Machines Corp. Dynamic push filtering based on information exchanged among nodes in a proxy hierarchy
US6076108A (en) 1998-03-06 2000-06-13 I2 Technologies, Inc. System and method for maintaining a state for a user session using a web system having a global session server
US6075776A (en) 1996-06-07 2000-06-13 Nippon Telegraph And Telephone Corporation VLAN control system and method
US6081826A (en) 1996-03-12 2000-06-27 Hitachi, Ltd. System using environment manager with resource table in each computer for managing distributed computing resources managed for each application
US6085238A (en) 1996-04-23 2000-07-04 Matsushita Electric Works, Ltd. Virtual LAN system
US6086618A (en) 1998-01-26 2000-07-11 Microsoft Corporation Method and computer program product for estimating total resource usage requirements of a server application in a hypothetical user configuration
US6108702A (en) 1998-12-02 2000-08-22 Micromuse, Inc. Method and apparatus for determining accurate topology features of a network
US6112243A (en) 1996-12-30 2000-08-29 Intel Corporation Method and apparatus for allocating tasks to remote networked processors
US6115393A (en) 1991-04-12 2000-09-05 Concord Communications, Inc. Network monitoring
US6118785A (en) 1998-04-07 2000-09-12 3Com Corporation Point-to-point protocol with a signaling channel
US6125442A (en) 1996-12-13 2000-09-26 Maves International Software, Inc. Method, system and data structures for computer software application development and execution
US6125447A (en) 1997-12-11 2000-09-26 Sun Microsystems, Inc. Protection domains to provide security in a computer system
US6134594A (en) 1997-10-28 2000-10-17 Microsoft Corporation Multi-user, multiple tier distributed application architecture with single-user access control of middle tier objects
JP2000293497A (en) 1999-03-30 2000-10-20 Internatl Business Mach Corp <Ibm> Generation system for cluster node relief signal
US6147995A (en) 1995-11-15 2000-11-14 Cabletron Systems, Inc. Method for establishing restricted broadcast groups in a switched network
US6151688A (en) 1997-02-21 2000-11-21 Novell, Inc. Resource management in a clustered computer system
US6167383A (en) 1998-09-22 2000-12-26 Dell Usa, Lp Method and apparatus for providing customer configured machines at an internet site
US6167052A (en) 1998-04-27 2000-12-26 Vpnx.Com, Inc. Establishing connectivity in networks
US6178529B1 (en) 1997-11-03 2001-01-23 Microsoft Corporation Method and system for resource monitoring of disparate resources in a server cluster
US6182275B1 (en) 1998-01-26 2001-01-30 Dell Usa, L.P. Generation of a compatible order for a computer system
US6185308B1 (en) 1997-07-07 2001-02-06 Fujitsu Limited Key recovery system
US6192401B1 (en) 1997-10-21 2001-02-20 Sun Microsystems, Inc. System and method for determining cluster membership in a heterogeneous distributed system
US6195355B1 (en) 1997-09-26 2001-02-27 Sony Corporation Packet-Transmission control method and packet-transmission control apparatus
US6208345B1 (en) 1998-04-15 2001-03-27 Adc Telecommunications, Inc. Visual data integration system and method
US6208649B1 (en) 1998-03-11 2001-03-27 Cisco Technology, Inc. Derived VLAN mapping technique
US6209099B1 (en) 1996-12-18 2001-03-27 Ncr Corporation Secure data processing method and system
US6212559B1 (en) 1998-10-28 2001-04-03 Trw Inc. Automated configuration of internet-like computer networks
US6226788B1 (en) 1998-07-22 2001-05-01 Cisco Technology, Inc. Extensible network management system
US6230312B1 (en) 1998-10-02 2001-05-08 Microsoft Corporation Automatic detection of per-unit location constraints
US6233610B1 (en) 1997-08-27 2001-05-15 Northern Telecom Limited Communications network having management system architecture supporting reuse
US6236901B1 (en) 1998-03-31 2001-05-22 Dell Usa, L.P. Manufacturing system and method for assembly of computer systems in a build-to-order environment
US6237020B1 (en) 1996-10-01 2001-05-22 International Business Machines Corporation Task-oriented automatic distribution of software
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US6253230B1 (en) 1998-09-22 2001-06-26 International Business Machines Corporation Distributed scalable device for selecting a server from a server cluster and a switched path to the selected server
US6256773B1 (en) 1999-08-31 2001-07-03 Accenture Llp System, method and article of manufacture for configuration management in a development architecture framework
US6259448B1 (en) 1998-06-03 2001-07-10 International Business Machines Corporation Resource model configuration and deployment in a distributed computer network
US6263089B1 (en) 1997-10-03 2001-07-17 Nippon Telephone And Telegraph Corporation Method and equipment for extracting image features from image sequence
US6266707B1 (en) 1998-08-17 2001-07-24 International Business Machines Corporation System and method for IP network address translation and IP filtering with dynamic address resolution
US6269076B1 (en) 1998-05-28 2001-07-31 3Com Corporation Method of resolving split virtual LANs utilizing a network management system
US6269079B1 (en) 1997-11-12 2001-07-31 International Business Machines Corporation Systems, methods and computer program products for distributing connection information between ATM nodes
US20010014158A1 (en) 1998-11-25 2001-08-16 Hush Communications Corporation Public key cryptosystem with roaming user capability
US20010020228A1 (en) 1999-07-09 2001-09-06 International Business Machines Corporation Umethod, system and program for managing relationships among entities to exchange encryption keys for use in providing access and authorization to resources
US6304972B1 (en) 2000-01-03 2001-10-16 Massachusetts Institute Of Technology Secure software system and related techniques
US6305015B1 (en) 1997-07-02 2001-10-16 Bull S.A. Information processing system architecture
US6311144B1 (en) 1998-05-13 2001-10-30 Nabil A. Abu El Ata Method and apparatus for designing and analyzing information systems using multi-layer mathematical models
US6311270B1 (en) 1998-09-14 2001-10-30 International Business Machines Corporation Method and apparatus for securing communication utilizing a security processor
JP2001339437A (en) 2000-05-30 2001-12-07 Nippon Telegr & Teleph Corp <Ntt> Method and device for provider switchable communication
US6330605B1 (en) 1998-11-19 2001-12-11 Volera, Inc. Proxy cache cluster
JP2001526814A (en) 1997-05-22 2001-12-18 トラスティーズ・オブ・ボストン・ユニバーシティ Distributed cache, prefetch, copy method and system
US6336138B1 (en) 1998-08-25 2002-01-01 Hewlett-Packard Company Template-driven approach for generating models on network services
US20020022952A1 (en) 1998-03-26 2002-02-21 David Zager Dynamic modeling of complex networks and prediction of impacts of faults therein
US6351685B1 (en) 1999-11-05 2002-02-26 International Business Machines Corporation Wireless communication between multiple intelligent pickers and with a central job queue in an automated data storage library
US6360265B1 (en) 1998-07-08 2002-03-19 Lucent Technologies Inc. Arrangement of delivering internet protocol datagrams for multimedia services to the same server
JP2002084302A (en) 2000-09-06 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for communication by network
US6367010B1 (en) 1999-07-02 2002-04-02 Postx Corporation Method for generating secure symmetric encryption and decryption
US6370573B1 (en) 1999-08-31 2002-04-09 Accenture Llp System, method and article of manufacture for managing an environment of a development architecture framework
US6370584B1 (en) 1998-01-13 2002-04-09 Trustees Of Boston University Distributed routing
US6377996B1 (en) 1999-02-18 2002-04-23 International Business Machines Corporation System for seamless streaming of data stored on a network of distributed primary and target servers using segmentation information exchanged among all servers during streaming
US20020049573A1 (en) 1998-05-13 2002-04-25 El Ata Nabil A. Abu Automated system and method for designing model based architectures of information systems
US6389464B1 (en) 1997-06-27 2002-05-14 Cornet Technology, Inc. Device management system for managing standards-compliant and non-compliant network elements using standard management protocols and a universal site server which is configurable from remote locations via internet browser technology
US6393485B1 (en) 1998-10-27 2002-05-21 International Business Machines Corporation Method and apparatus for managing clustered computer systems
US6393474B1 (en) 1998-12-31 2002-05-21 3Com Corporation Dynamic policy management apparatus and method using active network devices
US6393456B1 (en) 1998-11-30 2002-05-21 Microsoft Corporation System, method, and computer program product for workflow processing using internet interoperable electronic messaging with mime multiple content type
US20020069267A1 (en) 2000-11-06 2002-06-06 Karl Thiele Data management framework for policy management
US6408390B1 (en) 1994-10-27 2002-06-18 Mitsubishi Corporation Apparatus for data copyright management system
US20020075844A1 (en) 2000-12-15 2002-06-20 Hagen W. Alexander Integrating public and private network resources for optimized broadband wireless access and method
US20020082820A1 (en) 2000-10-31 2002-06-27 Glenn Ferguson Data model for automated server configuration
US20020087264A1 (en) 2001-01-04 2002-07-04 Hills Alexander A. Position location system and method
US6418554B1 (en) 1998-09-21 2002-07-09 Microsoft Corporation Software implementation installer mechanism
US20020090089A1 (en) 2001-01-05 2002-07-11 Steven Branigan Methods and apparatus for secure wireless networking
US6424992B2 (en) 1996-12-23 2002-07-23 International Business Machines Corporation Affinity-based router and routing method
US6424718B1 (en) 1996-10-16 2002-07-23 International Business Machines Corporation Data communications system using public key cryptography in a web environment
US6427171B1 (en) 1997-10-14 2002-07-30 Alacritech, Inc. Protocol processing stack for use with intelligent network interface device
US6427163B1 (en) 1998-07-10 2002-07-30 International Business Machines Corporation Highly scalable and highly available cluster system management scheme
US6438100B1 (en) 1998-08-07 2002-08-20 Alcatel Canada Inc. Method and apparatus for routing server redundancy in a network having carrier scale internetworking
US6442557B1 (en) 1998-02-27 2002-08-27 Prc Inc. Evaluation of enterprise architecture model including relational database
US6449650B1 (en) 1999-02-01 2002-09-10 Redback Networks Inc. Methods and apparatus for deploying quality of service policies on a data communication network
RU2189072C2 (en) 1996-01-31 2002-09-10 Ипсилон Нетуоркс, Инк. Improved method and device for dynamic shift between routing and switching bursts in data transmission network
CN1368694A (en) 2001-02-01 2002-09-11 安德华科技股份有限公司 Method and system for dynamically discriminating job entity
US20020131601A1 (en) 2001-03-14 2002-09-19 Toshihiko Ninomiya Cryptographic key management method
US6457048B2 (en) 1998-12-04 2002-09-24 Sun Microsystems, Inc. System for representing device topology in a computer network operable independent of network management software
US6463536B2 (en) 1994-10-27 2002-10-08 Mitsubishi Corporation Data copyright management system
US20020147862A1 (en) * 2001-04-07 2002-10-10 Traut Eric P. Method for establishing a drive image in a computing environment
US6466985B1 (en) 1998-04-10 2002-10-15 At&T Corp. Method and apparatus for providing quality of service using the internet protocol
US20020152086A1 (en) 2001-02-15 2002-10-17 Smith Ned M. Method and apparatus for controlling a lifecycle of an electronic contract
US6470464B2 (en) 1999-02-23 2002-10-22 International Business Machines Corporation System and method for predicting computer system performance and for making recommendations for improving its performance
US6470025B1 (en) 1998-06-05 2002-10-22 3Com Technologies System for providing fair access for VLANs to a shared transmission medium
CN1375685A (en) 2001-03-13 2002-10-23 松下电器产业株式会社 Information terminal device and map information providing system
US20020156900A1 (en) 2001-03-30 2002-10-24 Brian Marquette Protocol independent control module
US6473791B1 (en) 1998-08-17 2002-10-29 Microsoft Corporation Object load balancing
US6480955B1 (en) 1999-07-09 2002-11-12 Lsi Logic Corporation Methods and apparatus for committing configuration changes to managed devices prior to completion of the configuration change
US6484261B1 (en) 1998-02-17 2002-11-19 Cisco Technology, Inc. Graphical network security policy management
US20020171690A1 (en) 2001-05-15 2002-11-21 International Business Machines Corporation Method and system for scaling a graphical user interface (GUI) widget based on selection pointer proximity
US20020184327A1 (en) 2001-05-11 2002-12-05 Major Robert Drew System and method for partitioning address space in a proxy cache server cluster
JP2002354006A (en) 2001-05-24 2002-12-06 Oki Electric Ind Co Ltd Network system for duplicate address
US20020188941A1 (en) 2001-06-12 2002-12-12 International Business Machines Corporation Efficient installation of software packages
US20020198995A1 (en) 2001-04-10 2002-12-26 International Business Machines Corporation Apparatus and methods for maximizing service-level-agreement profits
US6502131B1 (en) 1997-05-27 2002-12-31 Novell, Inc. Directory enabled policy management tool for intelligent traffic management
US6505244B1 (en) 1999-06-29 2003-01-07 Cisco Technology Inc. Policy engine which supports application specific plug-ins for enforcing policies in a feedback-based, adaptive data network
US20030009559A1 (en) 2001-07-09 2003-01-09 Naoya Ikeda Network system and method of distributing accesses to a plurality of server apparatus in the network system
US20030008712A1 (en) 2001-06-04 2003-01-09 Playnet, Inc. System and method for distributing a multi-client game/application over a communications network
US20030014644A1 (en) 2001-05-02 2003-01-16 Burns James E. Method and system for security policy management
JP2003030424A (en) 2001-07-10 2003-01-31 Aioi Insurance Co Ltd Method and device for automatically systematizing insurance business
US6519615B1 (en) 1996-10-11 2003-02-11 Sun Microsystems, Inc. Method and system for leasing storage
US20030041159A1 (en) 2001-08-17 2003-02-27 David Tinsley Systems and method for presenting customizable multimedia presentations
US20030041142A1 (en) 2001-08-27 2003-02-27 Nec Usa, Inc. Generic network monitoring tool
US6529953B1 (en) 1999-12-17 2003-03-04 Reliable Network Solutions Scalable computer network resource monitoring and location system
US20030046615A1 (en) 2000-12-22 2003-03-06 Alan Stone System and method for adaptive reliability balancing in distributed programming networks
US20030051049A1 (en) 2001-08-15 2003-03-13 Ariel Noy Network provisioning in a distributed network management architecture
US6539494B1 (en) 1999-06-17 2003-03-25 Art Technology Group, Inc. Internet server session backup apparatus
US20030065743A1 (en) 2001-09-28 2003-04-03 Jenny Patrick Duncan Method and system for distributing requests for content
US6546553B1 (en) 1998-10-02 2003-04-08 Microsoft Corporation Service installation on a base function and provision of a pass function with a service-free base function semantic
US6546423B1 (en) 1998-10-22 2003-04-08 At&T Corp. System and method for network load balancing
US6549934B1 (en) 1999-03-01 2003-04-15 Microsoft Corporation Method and system for remote access to computer devices via client managed server buffers exclusively allocated to the client
US6564261B1 (en) 1999-05-10 2003-05-13 Telefonaktiebolaget Lm Ericsson (Publ) Distributed system to intelligently establish sessions between anonymous users over various networks
US6570847B1 (en) 1998-12-31 2003-05-27 At&T Corp. Method and system for network traffic rate control based on fractional tokens
US6570875B1 (en) 1998-10-13 2003-05-27 Intel Corporation Automatic filtering and creation of virtual LANs among a plurality of switch ports
US6574195B2 (en) 2000-04-19 2003-06-03 Caspian Networks, Inc. Micro-flow management
US6584499B1 (en) 1999-07-09 2003-06-24 Lsi Logic Corporation Methods and apparatus for performing mass operations on a plurality of managed devices on a network
US6587876B1 (en) 1999-08-24 2003-07-01 Hewlett-Packard Development Company Grouping targets of management policies
US20030126464A1 (en) 2001-12-04 2003-07-03 Mcdaniel Patrick D. Method and system for determining and enforcing security policy in a communication session
US6598173B1 (en) 1997-05-13 2003-07-22 Micron Technology, Inc. Method of remote access and control of environmental conditions
US6598077B2 (en) 1999-12-06 2003-07-22 Warp Solutions, Inc. System and method for dynamic content routing
US6597956B1 (en) 1999-08-23 2003-07-22 Terraspring, Inc. Method and apparatus for controlling an extensible computing system
US6598033B2 (en) 1996-10-21 2003-07-22 Nortel Networks Limited Problem model for alarm correlation
US6598223B1 (en) 1999-10-06 2003-07-22 Dell Usa, L.P. Method and system for installing and testing build-to-order components in a defined configuration computer system
US20030138105A1 (en) 2002-01-18 2003-07-24 International Business Machines Corporation Storing keys in a cryptology device
US6601101B1 (en) 2000-03-15 2003-07-29 3Com Corporation Transparent access to network attached devices
US6601233B1 (en) 1999-07-30 2003-07-29 Accenture Llp Business components framework
US6606708B1 (en) 1997-09-26 2003-08-12 Worldcom, Inc. Secure server architecture for Web based data management
US6609213B1 (en) 2000-08-10 2003-08-19 Dell Products, L.P. Cluster-based system and method of recovery from server failures
US6609148B1 (en) 1999-11-10 2003-08-19 Randy Salo Clients remote access to enterprise networks employing enterprise gateway servers in a centralized data center converting plurality of data requests for messaging and collaboration into a single request
US6611522B1 (en) 1998-06-19 2003-08-26 Juniper Networks, Inc. Quality of service facility in a device for performing IP forwarding and ATM switching
EP0964546A3 (en) 1998-05-29 2003-09-03 Hitachi, Ltd. Network management system
US6628671B1 (en) 1999-01-19 2003-09-30 Vtstarcom, Inc. Instant activation of point-to point protocol (PPP) connection using existing PPP state
US6631141B1 (en) 1999-05-27 2003-10-07 Ibm Corporation Methods, systems and computer program products for selecting an aggregator interface
US6640303B1 (en) 2000-04-28 2003-10-28 Ky Quy Vu System and method for encryption using transparent keys
JP2003532784A (en) 2000-05-09 2003-11-05 ソリユテイア・インコーポレイテツド Functional fluid composition containing epoxide acid scavenger
US6651101B1 (en) 1998-12-04 2003-11-18 Cisco Technology, Inc. Method and apparatus for identifying network data traffic flows and for applying quality of service treatments to the flows
US6651240B1 (en) 1999-02-17 2003-11-18 Fujitsu Limited Object-oriented software development support apparatus and development support method
US20030217263A1 (en) 2002-03-21 2003-11-20 Tsutomu Sakai System and method for secure real-time digital transmission
US20030214908A1 (en) 2002-03-19 2003-11-20 Anurag Kumar Methods and apparatus for quality of service control for TCP aggregates at a bottleneck link in the internet
US6654782B1 (en) 1999-10-28 2003-11-25 Networks Associates, Inc. Modular framework for dynamically processing network events using action sets in a distributed computing environment
US6654796B1 (en) 1999-10-07 2003-11-25 Cisco Technology, Inc. System for managing cluster of network switches using IP address for commander switch and redirecting a managing request via forwarding an HTTP connection to an expansion switch
US20030225563A1 (en) 2002-05-30 2003-12-04 Gonos Dan G. Capacity planning
US6665714B1 (en) 1999-06-30 2003-12-16 Emc Corporation Method and apparatus for determining an identity of a network device
US6671699B1 (en) 2000-05-20 2003-12-30 Equipe Communications Corporation Shared database usage in network devices
US20040002878A1 (en) 2002-06-28 2004-01-01 International Business Machines Corporation Method and system for user-determined authentication in a federated environment
US6675308B1 (en) 2000-05-09 2004-01-06 3Com Corporation Methods of determining whether a network interface card entry within the system registry pertains to physical hardware or to a virtual device
US6678835B1 (en) 1999-06-10 2004-01-13 Alcatel State transition protocol for high availability units
US6678821B1 (en) 2000-03-23 2004-01-13 E-Witness Inc. Method and system for restricting access to the private key of a user in a public key infrastructure
US6681262B1 (en) 2002-05-06 2004-01-20 Infinicon Systems Network data flow optimization
US6691168B1 (en) 1998-12-31 2004-02-10 Pmc-Sierra Method and apparatus for high-speed network rule processing
US6691165B1 (en) 1998-11-10 2004-02-10 Rainfinity, Inc. Distributed server cluster for controlling network traffic
US6691148B1 (en) 1998-03-13 2004-02-10 Verizon Corporate Services Group Inc. Framework for providing quality of service requirements in a distributed object-oriented computer system
US6694436B1 (en) 1998-05-22 2004-02-17 Activcard Terminal and system for performing secure electronic transactions
US6701363B1 (en) 2000-02-29 2004-03-02 International Business Machines Corporation Method, computer program product, and system for deriving web transaction performance metrics
US20040059812A1 (en) 2000-12-14 2004-03-25 Shmuel Assa Topology information system for a managed world
US6717949B1 (en) 1998-08-31 2004-04-06 International Business Machines Corporation System and method for IP network address translation using selective masquerade
US6718379B1 (en) 2000-06-09 2004-04-06 Advanced Micro Devices, Inc. System and method for network management of local area networks having non-blocking network switches configured for switching data packets between subnetworks based on management policies
US6718361B1 (en) 2000-04-07 2004-04-06 Network Appliance Inc. Method and apparatus for reliable and scalable distribution of data files in distributed networks
US20040073795A1 (en) 2002-10-10 2004-04-15 Jablon David P. Systems and methods for password-based connection
US20040073443A1 (en) 2000-11-10 2004-04-15 Gabrick John J. System for automating and managing an IP environment
US6725253B1 (en) 1999-10-14 2004-04-20 Fujitsu Limited Load balancing system
US20040078787A1 (en) 2002-07-19 2004-04-22 Michael Borek System and method for troubleshooting, maintaining and repairing network devices
US6728885B1 (en) 1998-10-09 2004-04-27 Networks Associates Technology, Inc. System and method for network access control using adaptive proxies
US6735596B2 (en) 2001-06-07 2004-05-11 Guy Charles Corynen Computer method and user interface for decision analysis and for global system optimization
US6738736B1 (en) 1999-10-06 2004-05-18 Accenture Llp Method and estimator for providing capacacity modeling and planning
US6742020B1 (en) 2000-06-08 2004-05-25 Hewlett-Packard Development Company, L.P. System and method for managing data flow and measuring service in a storage network
US6741266B1 (en) 1999-09-13 2004-05-25 Fujitsu Limited Gui display, and recording medium including a computerized method stored therein for realizing the gui display
US6748447B1 (en) 2000-04-07 2004-06-08 Network Appliance, Inc. Method and apparatus for scalable distribution of information in a distributed network
US20040111315A1 (en) 2002-10-16 2004-06-10 Xerox Corporation Device model agent
US20040117476A1 (en) 2002-12-17 2004-06-17 Doug Steele Method and system for performing load balancing across control planes in a data center
US6754716B1 (en) 2000-02-11 2004-06-22 Ensim Corporation Restricting communication between network devices on a common network
US6754816B1 (en) 2000-10-26 2004-06-22 Dell Products L.P. Scalable environmental data calculation method customized by system configuration
US6757744B1 (en) 1999-05-12 2004-06-29 Unisys Corporation Distributed transport communications manager with messaging subsystem for high-speed communications between heterogeneous computer systems
US6760775B1 (en) 1999-03-05 2004-07-06 At&T Corp. System, method and apparatus for network service load and reliability management
US6760765B1 (en) 1999-11-09 2004-07-06 Matsushita Electric Industrial Co., Ltd. Cluster server apparatus
US6769060B1 (en) 2000-10-25 2004-07-27 Ericsson Inc. Method of bilateral identity authentication
US6769008B1 (en) 2000-01-10 2004-07-27 Sun Microsystems, Inc. Method and apparatus for dynamically altering configurations of clustered computer systems
US6779016B1 (en) 1999-08-23 2004-08-17 Terraspring, Inc. Extensible computing system
US20040160386A1 (en) 2002-12-02 2004-08-19 Georg Michelitsch Method for operating a display device
US6782408B1 (en) 1999-03-30 2004-08-24 International Business Machines Corporation Controlling a number of instances of an application running in a computing environment
US20040193388A1 (en) 2003-03-06 2004-09-30 Geoffrey Outhred Design time validation of systems
US6801937B1 (en) 2000-05-31 2004-10-05 International Business Machines Corporation Method, system and program products for defining nodes to a cluster
US6801949B1 (en) 1999-04-12 2004-10-05 Rainfinity, Inc. Distributed server cluster with graphical user interface
US6801528B2 (en) 2002-07-03 2004-10-05 Ericsson Inc. System and method for dynamic simultaneous connection to multiple service providers
US20040199572A1 (en) 2003-03-06 2004-10-07 Hunt Galen C. Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US6804783B1 (en) 1996-10-17 2004-10-12 Network Engineering Software Firewall providing enhanced network security and user transparency
US6813778B1 (en) 1999-08-16 2004-11-02 General Instruments Corporation Method and system for downloading and managing the enablement of a list of code objects
US6816897B2 (en) 2001-04-30 2004-11-09 Opsware, Inc. Console mapping tool for automated deployment and management of network devices
US20040226010A1 (en) 2000-10-31 2004-11-11 Loudcloud, Inc. Automated provisioning framework for internet site servers
US6820121B1 (en) 2000-08-24 2004-11-16 International Business Machines Corporation Methods systems and computer program products for processing an event based on policy rules using hashing
US6820042B1 (en) 1999-07-23 2004-11-16 Opnet Technologies Mixed mode network simulator
US6823299B1 (en) 1999-07-09 2004-11-23 Autodesk, Inc. Modeling objects, systems, and simulations by establishing relationships in an event-driven graph in a computer implemented graphics system
US6823382B2 (en) 2001-08-20 2004-11-23 Altaworks Corporation Monitoring and control engine for multi-tiered service-level management of distributed web-application servers
US6823373B1 (en) 2000-08-11 2004-11-23 Informatica Corporation System and method for coupling remote data stores and mobile devices via an internet based server
US6829770B1 (en) 1999-02-23 2004-12-07 Microsoft Corporation Object connectivity through loosely coupled publish and subscribe events
US6829639B1 (en) 1999-11-15 2004-12-07 Netvision, Inc. Method and system for intelligent global event notification and control within a distributed computing environment
US6836750B2 (en) 2001-04-23 2004-12-28 Hewlett-Packard Development Company, L.P. Systems and methods for providing an automated diagnostic audit for cluster computer systems
US6839348B2 (en) 1999-04-30 2005-01-04 Cisco Technology, Inc. System and method for distributing multicasts in virtual local area networks
US20050008001A1 (en) 2003-02-14 2005-01-13 John Leslie Williams System and method for interfacing with heterogeneous network data gathering tools
US6845160B1 (en) 1998-11-12 2005-01-18 Fuji Xerox Co., Ltd. Apparatus and method for depositing encryption keys
US6847970B2 (en) 2002-09-11 2005-01-25 International Business Machines Corporation Methods and apparatus for managing dependencies in distributed systems
US20050021742A1 (en) 2003-03-31 2005-01-27 System Management Arts, Inc. Method and apparatus for multi-realm system modeling
US6854069B2 (en) 2000-05-02 2005-02-08 Sun Microsystems Inc. Method and system for achieving high availability in a networked computer system
US6853841B1 (en) 2000-10-25 2005-02-08 Sun Microsystems, Inc. Protocol for a remote control device to enable control of network attached devices
US6856591B1 (en) 2000-12-15 2005-02-15 Cisco Technology, Inc. Method and system for high reliability cluster management
US6862613B1 (en) 2000-01-10 2005-03-01 Sun Microsystems, Inc. Method and apparatus for managing operations of clustered computer systems
US6868062B1 (en) 2000-03-28 2005-03-15 Intel Corporation Managing data traffic on multiple ports
US6868454B1 (en) 1999-05-06 2005-03-15 Fujitsu Limited Distributed-object development system and computer-readable recording medium recorded with program for making computer execute distributed-object development
US6879926B2 (en) 2001-06-29 2005-04-12 National Instruments Corporation Measurement system software architecture for easily creating high-performance measurement applications
US6880002B2 (en) 2001-09-05 2005-04-12 Surgient, Inc. Virtualized logical server cloud providing non-deterministic allocation of logical attributes of logical servers to physical resources
US20050080811A1 (en) 2003-10-10 2005-04-14 Cendura Corporation Configuration management architecture
US6886038B1 (en) 2000-10-24 2005-04-26 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US20050091078A1 (en) 2000-10-24 2005-04-28 Microsoft Corporation System and method for distributed management of shared computers
US20050091227A1 (en) 2003-10-23 2005-04-28 Mccollum Raymond W. Model-based management of computer systems and distributed applications
US6888807B2 (en) 2002-06-10 2005-05-03 Ipr Licensing, Inc. Applying session services based on packet flows
US20050097146A1 (en) 2003-08-21 2005-05-05 Konstantinou Alexander V. Methods and systems for autonomously managing a network
US20050097082A1 (en) * 2003-10-30 2005-05-05 International Business Machines Corporation Selection of optimal execution environment for software applications
US20050102154A1 (en) 2003-11-12 2005-05-12 Dodd Ryan A. Method, computer useable medium, and system for enterprise resource management
US20050102538A1 (en) 2000-10-24 2005-05-12 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US20050102513A1 (en) 2003-11-10 2005-05-12 Nokia Corporation Enforcing authorized domains with domain membership vouchers
US6895534B2 (en) 2001-04-23 2005-05-17 Hewlett-Packard Development Company, L.P. Systems and methods for providing automated diagnostic services for a cluster computer system
US6898791B1 (en) 1998-04-21 2005-05-24 California Institute Of Technology Infospheres distributed object system
US6904458B1 (en) 2000-04-26 2005-06-07 Microsoft Corporation System and method for remote management
JP2005155729A (en) 2003-11-21 2005-06-16 Toyota Motor Corp Hydraulic control device for belt type continuously variable transmission
US20050138416A1 (en) 2003-12-19 2005-06-23 Microsoft Corporation Object model for managing firewall services
US6912568B1 (en) 1999-07-27 2005-06-28 Hitachi, Ltd. Service management system
US6912657B2 (en) 2000-02-22 2005-06-28 Telefonaktiebolaget Lm Ericsson Method and arrangement in a communication network
US6915338B1 (en) 2000-10-24 2005-07-05 Microsoft Corporation System and method providing automatic policy enforcement in a multi-computer service application
EP1550969A2 (en) 2003-12-11 2005-07-06 International Business Machines Corporation Method and system for dynamically and automatically set-up offerings for IT-services
US20050152270A1 (en) 2002-04-12 2005-07-14 Gerardo Gomez Paredes Policy-based qos management in multi-radio access networks
US6922791B2 (en) 2001-08-09 2005-07-26 Dell Products L.P. Failover system and method for cluster environment
US6928482B1 (en) 2000-06-29 2005-08-09 Cisco Technology, Inc. Method and apparatus for scalable process flow load balancing of a multiplicity of parallel packet processors in a digital communication network
US20050193103A1 (en) 2002-06-18 2005-09-01 John Drabik Method and apparatus for automatic configuration and management of a virtual private network
US6944759B1 (en) 2000-09-29 2005-09-13 Hewlett-Packard Development Company, L.P. Automatic system configuration management
US6944678B2 (en) 2001-06-18 2005-09-13 Transtech Networks Usa, Inc. Content-aware application switch and methods thereof
US6947987B2 (en) 1998-05-29 2005-09-20 Ncr Corporation Method and apparatus for allocating network resources and changing the allocation based on dynamic workload changes
US6954930B2 (en) 2002-02-19 2005-10-11 International Business Machines Corporation Remote validation of installation input data
US6957186B1 (en) 1999-05-27 2005-10-18 Accenture Llp System method and article of manufacture for building, managing, and supporting various components of a system
US20050246529A1 (en) 2004-04-30 2005-11-03 Microsoft Corporation Isolated persistent identity storage for authentication of computing devies
US6963981B1 (en) 2001-01-29 2005-11-08 Akamai Technologies, Inc. Method and apparatus for remote installation of an operating system over a network connection
US20050251783A1 (en) 2003-03-06 2005-11-10 Microsoft Corporation Settings and constraints validation to enable design for operations
US20050257244A1 (en) 2004-05-13 2005-11-17 Hewlett-Packard Development Company, L.P. Method and apparatus for role-based security policy management
US6968550B2 (en) 1999-05-19 2005-11-22 International Business Machines Corporation Apparatus and method for synchronizing software between computers
US6968291B1 (en) 2003-11-04 2005-11-22 Sun Microsystems, Inc. Using and generating finite state machines to monitor system status
US6968551B2 (en) 2001-06-11 2005-11-22 John Hediger System and user interface for generation and processing of software application installation instructions
US6968535B2 (en) 2002-03-21 2005-11-22 Sun Microsystems, Inc. Service mapping method of enterprise application modeling and development for multi-tier service environments
US6971063B1 (en) 2000-07-28 2005-11-29 Wireless Valley Communications Inc. System, method, and apparatus for portable design, deployment, test, and optimization of a communication network
US6971072B1 (en) 1999-05-13 2005-11-29 International Business Machines Corporation Reactive user interface control based on environmental sensing
US20050268325A1 (en) 2004-05-27 2005-12-01 Harumi Kuno Method and system for integrating policies across systems
US6973622B1 (en) 2000-09-25 2005-12-06 Wireless Valley Communications, Inc. System and method for design, tracking, measurement, prediction and optimization of data communication networks
US6973620B2 (en) 2001-09-06 2005-12-06 International Business Machines Corporation Method and apparatus for providing user support based on contextual information
US6976269B1 (en) 2000-08-29 2005-12-13 Equinix, Inc. Internet co-location facility security system
US6976079B1 (en) 2000-09-29 2005-12-13 International Business Machines Corporation System and method for upgrading software in a distributed computer system
US6978379B1 (en) 1999-05-28 2005-12-20 Hewlett-Packard Development Company, L.P. Configuring computer systems
US6983317B1 (en) 2000-02-28 2006-01-03 Microsoft Corporation Enterprise management system
US6985956B2 (en) 2000-11-02 2006-01-10 Sun Microsystems, Inc. Switching system
US6986135B2 (en) 2001-09-06 2006-01-10 Cognos Incorporated Deployment manager for organizing and deploying an application in a distributed computing environment
US6987838B2 (en) 2003-04-16 2006-01-17 Entrisphere, Inc. System and method for deploying new equipment and services in conjunction with a legacy provisioning system
US6990666B2 (en) 2002-03-18 2006-01-24 Surgient Inc. Near on-line server
US20060025984A1 (en) 2004-08-02 2006-02-02 Microsoft Corporation Automatic validation and calibration of transaction-based performance models
US7003562B2 (en) 2001-03-27 2006-02-21 Redseal Systems, Inc. Method and apparatus for network wide policy-based analysis of configurations of devices
US7003574B1 (en) 2000-11-01 2006-02-21 Microsoft Corporation Session load balancing and use of VIP as source address for inter-cluster traffic through the use of a session identifier
US20060048017A1 (en) 2004-08-30 2006-03-02 International Business Machines Corporation Techniques for health monitoring and control of application servers
US7013462B2 (en) 2001-05-10 2006-03-14 Hewlett-Packard Development Company, L.P. Method to map an inventory management system to a configuration management system
US7024451B2 (en) 2001-11-05 2006-04-04 Hewlett-Packard Development Company, L.P. System and method for maintaining consistent independent server-side state among collaborating servers
US7028228B1 (en) 2001-03-28 2006-04-11 The Shoregroup, Inc. Method and apparatus for identifying problems in computer networks
US7027412B2 (en) 2000-11-10 2006-04-11 Veritas Operating Corporation System for dynamic provisioning of secure, scalable, and extensible networked computer environments
US7032031B2 (en) 2000-06-23 2006-04-18 Cloudshield Technologies, Inc. Edge adapter apparatus and method
US7035930B2 (en) 2001-10-26 2006-04-25 Hewlett-Packard Development Company, L.P. Method and framework for generating an optimized deployment of software applications in a distributed computing environment using layered model descriptions of services and servers
US7043407B2 (en) 1997-03-10 2006-05-09 Trilogy Development Group, Inc. Method and apparatus for configuring systems
US7046680B1 (en) 2000-11-28 2006-05-16 Mci, Inc. Network access system including a programmable access device having distributed service control
US7047279B1 (en) 2000-05-05 2006-05-16 Accenture, Llp Creating collaborative application sharing
US7050961B1 (en) 2001-03-21 2006-05-23 Unisys Corporation Solution generation method for thin client sizing tool
US7055149B2 (en) 2001-07-25 2006-05-30 Lenovo (Singapore) Pte Ltd. Method and apparatus for automating software upgrades
US7054943B1 (en) 2000-04-28 2006-05-30 International Business Machines Corporation Method and apparatus for dynamically adjusting resources assigned to plurality of customers, for meeting service level agreements (slas) with minimal resources, and allowing common pools of resources to be used across plural customers on a demand basis
US7058858B2 (en) 2001-04-23 2006-06-06 Hewlett-Packard Development Company, L.P. Systems and methods for providing automated diagnostic services for a cluster computer system
US7058704B1 (en) 1998-12-01 2006-06-06 Network Appliance, Inc.. Method and apparatus for implementing a service-level agreement
US7058826B2 (en) 2000-09-27 2006-06-06 Amphus, Inc. System, architecture, and method for logical server and other network devices in a dynamically configurable multi-server network environment
US20060123040A1 (en) 2004-12-03 2006-06-08 International Business Machines Corporation Algorithm for automated enterprise deployments
US7062718B2 (en) 2001-08-14 2006-06-13 National Instruments Corporation Configuration diagram which graphically displays program relationship
US7069204B1 (en) 2000-09-28 2006-06-27 Cadence Design System, Inc. Method and system for performance level modeling and simulation of electronic systems having both hardware and software elements
US7069337B2 (en) 2001-03-20 2006-06-27 Mci, Inc. Policy-based synchronization of per-class resources between routers in a data network
US7069553B2 (en) 2003-03-03 2006-06-27 Computer Associates Think, Inc. Universal deployment tool
US7072807B2 (en) 2003-03-06 2006-07-04 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US7072822B2 (en) 2002-09-30 2006-07-04 Cognos Incorporated Deploying multiple enterprise planning models across clusters of application servers
US7076633B2 (en) 2001-03-28 2006-07-11 Swsoft Holdings, Ltd. Hosting service providing platform system and method
US7076552B2 (en) 2000-05-24 2006-07-11 Sony International (Europe) Gmbh Universal QoS adaptation framework for mobile multimedia applications
US20060155708A1 (en) 2005-01-13 2006-07-13 Microsoft Corporation System and method for generating virtual networks
US20060161879A1 (en) 2005-01-18 2006-07-20 Microsoft Corporation Methods for managing standards
US20060161884A1 (en) 2005-01-18 2006-07-20 Microsoft Corporation Methods for managing capacity
US7082464B2 (en) 2001-07-06 2006-07-25 Juniper Networks, Inc. Network management system
US7089281B1 (en) 2000-12-08 2006-08-08 Sun Microsystems, Inc. Load balancing in a dynamic session redirector
US7089530B1 (en) 1999-05-17 2006-08-08 Invensys Systems, Inc. Process control configuration system with connection validation and configuration
US7089293B2 (en) 2000-11-02 2006-08-08 Sun Microsystems, Inc. Switching system method for discovering and accessing SCSI devices in response to query
US7093005B2 (en) 2000-02-11 2006-08-15 Terraspring, Inc. Graphical editor for defining and creating a computer system
US7093288B1 (en) 2000-10-24 2006-08-15 Microsoft Corporation Using packet filters and network virtualization to restrict network communications
US7099936B2 (en) 2002-03-29 2006-08-29 International Business Machines Corporation Multi-tier service level agreement method and system
US7103185B1 (en) 1999-12-22 2006-09-05 Cisco Technology, Inc. Method and apparatus for distributing and updating private keys of multicast group managers using directory replication
US7113900B1 (en) 2000-10-24 2006-09-26 Microsoft Corporation System and method for logical modeling of distributed computer systems
US7117158B2 (en) 2002-04-25 2006-10-03 Bilcare, Inc. Systems, methods and computer program products for designing, deploying and managing interactive voice response (IVR) systems
US7117261B2 (en) 2000-02-18 2006-10-03 Infrastructure Innovations, Llc. Auto control of network monitoring and simulation
US7120797B2 (en) 2002-04-24 2006-10-10 Microsoft Corporation Methods for authenticating potential members invited to join a group
US7120154B2 (en) 2000-06-30 2006-10-10 Marc Bavant Method for the routing of IP frames between the users of a variable graph network
EP1307018B1 (en) 2001-10-24 2006-10-11 Sun Microsystems, Inc. Load balancing unit and method of its operation
EP1180886B1 (en) 2000-08-17 2006-10-11 Sun Microsystems, Inc. Load balancing method and system
US7124289B1 (en) 2000-10-31 2006-10-17 Opsware Inc. Automated provisioning framework for internet site servers
US20060235664A1 (en) 2005-04-15 2006-10-19 Microsoft Corporation Model-based capacity planning
US20060232927A1 (en) 2005-04-15 2006-10-19 Microsoft Corporation Model-based system monitoring
US7127625B2 (en) 2003-09-04 2006-10-24 Hewlett-Packard Development Company, L.P. Application management based on power consumption
US7131123B2 (en) 2001-04-30 2006-10-31 Opsware Inc. Automated provisioning of computing networks using a network database model
US7134122B1 (en) 2001-05-31 2006-11-07 Oracle International Corporation One click deployment
US7134011B2 (en) 1990-06-01 2006-11-07 Huron Ip Llc Apparatus, architecture, and method for integrated modular server system providing dynamically power-managed and work-load managed network devices
US7139999B2 (en) 1999-08-31 2006-11-21 Accenture Llp Development architecture framework
US7143420B2 (en) 2002-08-29 2006-11-28 Sun Microsystems, Inc. Strategic technology architecture roadmap
US7146353B2 (en) 2003-07-22 2006-12-05 Hewlett-Packard Development Company, L.P. Resource allocation for multiple applications
US7150015B2 (en) 2000-09-01 2006-12-12 Pace Charles P Method and system for deploying an asset over a multi-tiered network
US7152157B2 (en) 2003-03-05 2006-12-19 Sun Microsystems, Inc. System and method for dynamic resource configuration using a dependency graph
US7152109B2 (en) 2001-04-20 2006-12-19 Opsware, Inc Automated provisioning of computing networks according to customer accounts using a network database data model
US7155490B1 (en) 2000-03-01 2006-12-26 Freewebs Corporation System and method for providing a web-based operating system
US20070006177A1 (en) 2005-05-10 2007-01-04 International Business Machines Corporation Automatic generation of hybrid performance models
US7162427B1 (en) 1999-08-20 2007-01-09 Electronic Data Systems Corporation Structure and method of modeling integrated business and information technology frameworks and architecture in support of a business
US7162634B2 (en) 2001-04-18 2007-01-09 Thomson Licensing Method for providing security on a powerline-modem network
US7174379B2 (en) 2001-08-03 2007-02-06 International Business Machines Corporation Managing server resources for hosted applications
US7188364B2 (en) 2001-12-20 2007-03-06 Cranite Systems, Inc. Personal virtual bridged local area networks
US7188335B1 (en) 2001-12-28 2007-03-06 Trilogy Development Group, Inc. Product configuration using configuration patterns
US7191344B2 (en) 2002-08-08 2007-03-13 Authenex, Inc. Method and system for controlling access to data stored on a data storage device
US7191429B2 (en) 2001-09-28 2007-03-13 Manyeta Informatique Inc. System and method for managing architectural layers within a software model
US7194439B2 (en) 2001-04-30 2007-03-20 International Business Machines Corporation Method and system for correlating job accounting information with software license information
US7194616B2 (en) 2001-10-27 2007-03-20 International Business Machines Corporation Flexible temporary capacity upgrade/downgrade in a computer system without involvement of the operating system
US7197418B2 (en) 2001-08-15 2007-03-27 National Instruments Corporation Online specification of a system which compares determined devices and installed devices
US7200665B2 (en) 2001-10-17 2007-04-03 Hewlett-Packard Development Company, L.P. Allowing requests of a session to be serviced by different servers in a multi-server data service system
US7203911B2 (en) 2002-05-13 2007-04-10 Microsoft Corporation Altering a display on a viewing device based upon a user proximity to the viewing device
US7210143B2 (en) 2002-07-17 2007-04-24 International Business Machines Corporation Deployment of applications in a multitier compute infrastructure
US7213231B1 (en) 2001-01-11 2007-05-01 Cisco Technology, Inc. Cross-spectrum application model for dynamic computing environments in software lifecycle
US20070112847A1 (en) 2005-11-02 2007-05-17 Microsoft Corporation Modeling IT operations/policies
US7222147B1 (en) 2000-05-20 2007-05-22 Ciena Corporation Processing network management data in accordance with metadata files
US7225441B2 (en) 2000-12-27 2007-05-29 Intel Corporation Mechanism for providing power management through virtualization
US7231410B1 (en) 2004-03-10 2007-06-12 Qlogic, Corporation Revision control system for large-scale systems management
US7231430B2 (en) 2001-04-20 2007-06-12 Egenera, Inc. Reconfigurable, virtual processing system, cluster, network and method
US7237267B2 (en) 2003-10-16 2007-06-26 Cisco Technology, Inc. Policy-based network security management
US7254634B1 (en) 2002-03-08 2007-08-07 Akamai Technologies, Inc. Managing web tier session state objects in a content delivery network (CDN)
US7257817B2 (en) 2001-10-16 2007-08-14 Microsoft Corporation Virtual network with adaptive dispatcher
US7257584B2 (en) 2002-03-18 2007-08-14 Surgient, Inc. Server file management
US20070192769A1 (en) 2004-10-20 2007-08-16 Fujitsu Limited Program, method, and apparatus for managing applications
US7272653B2 (en) 2000-09-28 2007-09-18 International Business Machines Corporation System and method for implementing a clustered load balancer
US7275156B2 (en) 2002-08-30 2007-09-25 Xerox Corporation Method and apparatus for establishing and using a secure credential infrastructure
US7278273B1 (en) 2003-12-30 2007-10-09 Google Inc. Modular data center
US7302608B1 (en) 2004-03-31 2007-11-27 Google Inc. Systems and methods for automatic repair and replacement of networked machines
US7305556B2 (en) 2001-12-05 2007-12-04 Canon Kabushiki Kaisha Secure printing with authenticated printer key
US7309498B2 (en) 2001-10-10 2007-12-18 Belenkaya Bronislava G Biodegradable absorbents and methods of preparation
US7313573B2 (en) 2003-09-17 2007-12-25 International Business Machines Corporation Diagnosis of equipment failures using an integrated approach of case based reasoning and reliability analysis
US7313614B2 (en) 2000-11-02 2007-12-25 Sun Microsystems, Inc. Switching system
US7315801B1 (en) 2000-01-14 2008-01-01 Secure Computing Corporation Network security modeling system and method
US7318216B2 (en) 2003-09-24 2008-01-08 Tablecode Software Corporation Software application development environment facilitating development of a software application
US7333000B2 (en) 2004-11-12 2008-02-19 Afco Systems Development, Inc. Tracking system and method for electrically powered equipment
US20080059214A1 (en) 2003-03-06 2008-03-06 Microsoft Corporation Model-Based Policy Application
US7343601B2 (en) 2001-01-08 2008-03-11 International Business Machines Corporation Efficient application deployment on dynamic clusters
US7350068B2 (en) 2005-04-22 2008-03-25 International Business Machines Corporation Server blade network boot method that minimizes required network bandwidth
US7349891B2 (en) 2001-09-07 2008-03-25 International Business Machines Corporation Site integration management system for operational support service in an internet data center
US7350186B2 (en) 2003-03-10 2008-03-25 International Business Machines Corporation Methods and apparatus for managing computing deployment in presence of variable workload
US7356679B1 (en) * 2003-04-11 2008-04-08 Vmware, Inc. Computer image capture, customization and deployment
US7366755B1 (en) 2000-07-28 2008-04-29 International Business Machines Corporation Method and apparatus for affinity of users to application servers
US7370323B2 (en) 2001-04-19 2008-05-06 International Business Machines Corporation Method and system for managing configuration changes in a data processing system
US7376125B1 (en) 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch
US7379982B2 (en) 2002-04-15 2008-05-27 Bassam Tabbara System and method for custom installation of an operating system on a remote client
US7383329B2 (en) 2001-02-13 2008-06-03 Aventail, Llc Distributed cache for state transfer operations
US7386721B1 (en) 2003-03-12 2008-06-10 Cisco Technology, Inc. Method and apparatus for integrated provisioning of a network device with configuration information and identity certification
US7403901B1 (en) 2000-04-13 2008-07-22 Accenture Llp Error and load summary reporting in a health care solution environment
US7404175B2 (en) 2000-10-10 2008-07-22 Bea Systems, Inc. Smart generator
US7406692B2 (en) 2003-02-24 2008-07-29 Bea Systems, Inc. System and method for server load balancing and server affinity
US7409420B2 (en) 2001-07-16 2008-08-05 Bea Systems, Inc. Method and apparatus for session replication and failover
US7412502B2 (en) 2002-04-18 2008-08-12 International Business Machines Corporation Graphics for end to end component mapping and problem-solving in a network environment
US7415729B2 (en) 2002-06-19 2008-08-19 Hitachi, Ltd. Storage device
US7421505B2 (en) 2000-12-21 2008-09-02 Noatak Software Llc Method and system for executing protocol stack instructions to form a packet for causing a computing device to perform an operation
US7436965B2 (en) 2003-02-19 2008-10-14 Microsoft Corporation Optical out-of-band key distribution
US7448079B2 (en) 2000-07-05 2008-11-04 Ernst & Young, Llp Method and apparatus for providing computer services
US7461249B1 (en) 1999-08-13 2008-12-02 Hewlett-Packard Development Company, L.P. Computer platforms and their methods of operation
US7464147B1 (en) 1999-11-10 2008-12-09 International Business Machines Corporation Managing a cluster of networked resources and resource groups using rule - base constraints in a scalable clustering environment
US7478381B2 (en) 2003-12-15 2009-01-13 Microsoft Corporation Managing software updates and a software distribution service
US7478385B2 (en) 2003-01-17 2009-01-13 National Instruments Corporation Installing software using programmatic component dependency analysis
US7480907B1 (en) 2003-01-09 2009-01-20 Hewlett-Packard Development Company, L.P. Mobile services network for update of firmware/software in mobile handsets
US7496911B2 (en) 2001-06-22 2009-02-24 Invensys Systems, Inc. Installing supervisory process control and manufacturing software from a remote location and maintaining configuration data links in a run-time environment
US7500069B2 (en) 2001-09-17 2009-03-03 Hewlett-Packard Development Company, L.P. System and method for providing secure access to network logical storage partitions
US7505872B2 (en) 2002-09-11 2009-03-17 International Business Machines Corporation Methods and apparatus for impact analysis and problem determination
US7506034B2 (en) 2000-03-03 2009-03-17 Intel Corporation Methods and apparatus for off loading content servers through direct file transfer from a storage center to an end-user
US7512942B2 (en) 2005-08-24 2009-03-31 International Business Machines Corporation Model-driven software deployment in an application server
US7543066B2 (en) 2001-04-30 2009-06-02 International Business Machines Corporation Method and apparatus for maintaining session affinity across multiple server groups
US7567504B2 (en) 2003-06-30 2009-07-28 Microsoft Corporation Network load balancing with traffic routing
US7590736B2 (en) 2003-06-30 2009-09-15 Microsoft Corporation Flexible network load balancing
US7594224B2 (en) 2003-10-10 2009-09-22 Bea Systems, Inc. Distributed enterprise security system
US7603442B2 (en) 2003-06-20 2009-10-13 Microsoft Corporation Method and system for maintaining service dependency relationships in a computer system
US7606929B2 (en) 2003-06-30 2009-10-20 Microsoft Corporation Network load balancing with connection manipulation
US7613822B2 (en) 2003-06-30 2009-11-03 Microsoft Corporation Network load balancing with session information
US7624086B2 (en) 2005-03-04 2009-11-24 Maxsp Corporation Pre-install compliance system
US7636917B2 (en) 2003-06-30 2009-12-22 Microsoft Corporation Network load balancing with host status information
US7653187B2 (en) 2002-01-08 2010-01-26 At&T Services, Inc. Method and system for presenting billing information according to a customer-defined hierarchal structure

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754489B2 (en) 1993-02-22 1995-06-07 日本電気株式会社 OSI system environment definition check method
US5867713A (en) 1995-04-05 1999-02-02 International Business Machines Corporation Committing an install plan object for the network installation of application programs
JPH08297567A (en) 1995-04-26 1996-11-12 Mitsubishi Electric Corp Decentralized application development support device
JPH08305609A (en) 1995-04-28 1996-11-22 Oki Electric Ind Co Ltd Program test method and device
JP4251669B2 (en) 1995-07-14 2009-04-08 ソニー株式会社 Data processing method and apparatus
US6434598B1 (en) 1996-07-01 2002-08-13 Sun Microsystems, Inc. Object-oriented system, method and article of manufacture for a client-server graphical user interface (#9) framework in an interprise computing framework system
JPH10124343A (en) 1996-10-16 1998-05-15 Ricoh Co Ltd Device and method for simulating model, device and method for preparing model, and information storage medium
US5905872A (en) 1996-11-05 1999-05-18 At&T Corp. Method of transferring connection management information in world wideweb requests and responses
JPH10240576A (en) 1997-02-28 1998-09-11 Sony Corp Verification device and method
US6104716A (en) 1997-03-28 2000-08-15 International Business Machines Corporation Method and apparatus for lightweight secure communication tunneling over the internet
JPH11110256A (en) 1997-10-06 1999-04-23 Toshiba Corp Device and method for debugging program, and computer readable recording medium recorded with the method for the same
JP4565740B2 (en) 1997-12-12 2010-10-20 アルカテル・ユー・エス・エイ・ソーシング、エル・ピー Network management
US6308174B1 (en) 1998-05-05 2001-10-23 Nortel Networks Limited Method and apparatus for managing a communications network by storing management information about two or more configuration states of the network
JP3308210B2 (en) 1998-06-03 2002-07-29 日本電気株式会社 Distributed processing system and processing method
IL124770A0 (en) 1998-06-04 1999-01-26 Shunra Software Ltd Apparatus and method for testing network applications
US6438652B1 (en) 1998-10-09 2002-08-20 International Business Machines Corporation Load balancing cooperating cache servers by shifting forwarded request
US6006259A (en) 1998-11-20 1999-12-21 Network Alchemy, Inc. Method and apparatus for an internet protocol (IP) network clustering system
US6353806B1 (en) 1998-11-23 2002-03-05 Lucent Technologies Inc. System level hardware simulator and its automation
JP2000268012A (en) 1999-03-12 2000-09-29 Nec Corp Method and device for distributing load in client server system
AU5045600A (en) 1999-05-27 2000-12-18 Accenture Llp A system, method, and article of manufacture for effectively conveying which components of a system are required for implementation of technology
DE19939443A1 (en) 1999-08-20 2001-03-01 Bosch Gmbh Robert Device for controlling the pressure curve of a pump unit
KR20020026751A (en) 2000-10-02 2002-04-12 류지영 Method of constructing server systems via on-line
US7047518B2 (en) 2000-10-04 2006-05-16 Bea Systems, Inc. System for software application development and modeling
AU2002215311A1 (en) 2000-10-05 2002-04-15 Wind River Systems, Inc. A system and method for implementing multi-level network drivers
GB2368755A (en) 2000-11-01 2002-05-08 Content Technologies Ltd Distributing public keys using 2D barcodes
US7428074B2 (en) 2000-12-28 2008-09-23 Seiko Epson Corporation Logo data generating apparatus, logo data generating method, and data storage medium
US7246351B2 (en) 2001-02-20 2007-07-17 Jargon Software System and method for deploying and implementing software applications over a distributed network
US7386000B2 (en) 2001-04-17 2008-06-10 Nokia Corporation Packet mode speech communication
JP2003006170A (en) 2001-06-20 2003-01-10 Hitachi Ltd Method for performing program in environment of plural computers
JP2003058698A (en) 2001-08-09 2003-02-28 Ricoh Co Ltd It environment optimization system, and program and recording medium actualizing function of the same system
JP4852228B2 (en) 2001-09-26 2012-01-11 インタラクト デヴァイシーズ インコーポレイテッド System and method for communicating media signals
US7140000B2 (en) 2001-10-09 2006-11-21 Certusoft Knowledge oriented programming
DE10152011A1 (en) 2001-10-22 2003-05-08 Siemens Ag Method and device for mapping network headers onto MPLS headers in bearer architectures
US7577722B1 (en) * 2002-04-05 2009-08-18 Vmware, Inc. Provisioning of computer systems using virtual machines
US7130881B2 (en) 2002-05-01 2006-10-31 Sun Microsystems, Inc. Remote execution model for distributed application launch and control
KR20040008275A (en) 2002-07-18 2004-01-31 주식회사 메리언텍 Data Processing System For Operation Cost Of Communication Network
US7508034B2 (en) * 2002-09-25 2009-03-24 Sharp Kabushiki Kaisha Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device
JP3800188B2 (en) 2003-02-26 2006-07-26 セイコーエプソン株式会社 Display driver, electro-optical device, and electronic apparatus
US20040220792A1 (en) 2003-04-30 2004-11-04 Gallanis Peter Thomas Performance modeling for information systems
US7765540B2 (en) 2003-10-23 2010-07-27 Microsoft Corporation Use of attribution to describe management information
US7571082B2 (en) 2004-06-22 2009-08-04 Wells Fargo Bank, N.A. Common component modeling
US7621814B2 (en) 2004-07-22 2009-11-24 Scientific Games International, Inc. Media enhanced gaming system
US7506338B2 (en) 2004-08-30 2009-03-17 International Business Machines Corporation Method and apparatus for simplifying the deployment and serviceability of commercial software environments
US7653903B2 (en) 2005-03-25 2010-01-26 Sony Corporation Modular imaging download system
US7743373B2 (en) 2005-05-06 2010-06-22 International Business Machines Corporation Method and apparatus for managing software catalog and providing configuration for installation
US8549513B2 (en) 2005-06-29 2013-10-01 Microsoft Corporation Model-based virtual system provisioning
US7587453B2 (en) 2006-01-05 2009-09-08 International Business Machines Corporation Method and system for determining application availability
JP6485986B1 (en) 2018-10-25 2019-03-20 将 山野 Skateboard truck and skateboard to which it is attached

Patent Citations (488)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200770A (en) 1977-09-06 1980-04-29 Stanford University Cryptographic apparatus and method
US4218582A (en) 1977-10-06 1980-08-19 The Board Of Trustees Of The Leland Stanford Junior University Public key cryptographic apparatus and method
US4405829A (en) 1977-12-14 1983-09-20 Massachusetts Institute Of Technology Cryptographic communications system and method
US4424414A (en) 1978-05-01 1984-01-03 Board Of Trustees Of The Leland Stanford Junior University Exponentiation cryptographic apparatus and method
US5031089A (en) 1988-12-30 1991-07-09 United States Of America As Represented By The Administrator, National Aeronautics And Space Administration Dynamic resource allocation scheme for distributed heterogeneous computer systems
US5495610A (en) 1989-11-30 1996-02-27 Seer Technologies, Inc. Software distribution system to build and distribute a software release
US7134011B2 (en) 1990-06-01 2006-11-07 Huron Ip Llc Apparatus, architecture, and method for integrated modular server system providing dynamically power-managed and work-load managed network devices
US5220621A (en) 1990-08-01 1993-06-15 International Business Machines Corporation Character recognition system using the generalized hough transformation and method
US5504921A (en) 1990-09-17 1996-04-02 Cabletron Systems, Inc. Network management system using model-based intelligence
US5430810A (en) 1990-11-20 1995-07-04 Imra America, Inc. Real time implementation of the hough transform
US5490276A (en) 1991-03-18 1996-02-06 Echelon Corporation Programming language structures for use in a network for communicating, sensing and controlling information
US6353861B1 (en) 1991-03-18 2002-03-05 Echelon Corporation Method and apparatus for treating a logical programming expression as an event in an event-driven computer environment
US5579482A (en) 1991-03-18 1996-11-26 Echelon Corporation Method and apparatus for storing interface information in a computer system
US6115393A (en) 1991-04-12 2000-09-05 Concord Communications, Inc. Network monitoring
RU2111625C1 (en) 1992-03-20 1998-05-20 Эй Ти энд Ти Корп Remote control telemetry call system
US5557774A (en) 1993-03-22 1996-09-17 Hitachi, Ltd. Method for making test environmental programs
US5499357A (en) 1993-05-28 1996-03-12 Xerox Corporation Process for configuration management
US5686940A (en) 1993-12-24 1997-11-11 Rohm Co., Ltd. Display apparatus
US5668995A (en) 1994-04-22 1997-09-16 Ncr Corporation Method and apparatus for capacity planning for multiprocessor computer systems in client/server environments
US6463536B2 (en) 1994-10-27 2002-10-08 Mitsubishi Corporation Data copyright management system
US6408390B1 (en) 1994-10-27 2002-06-18 Mitsubishi Corporation Apparatus for data copyright management system
US5878220A (en) 1994-11-21 1999-03-02 Oracle Corporation Method and apparatus for storing and transferring data on a network
US5872928A (en) 1995-02-24 1999-02-16 Cabletron Systems, Inc. Method and apparatus for defining and enforcing policies for configuration management in communications networks
US5758351A (en) 1995-03-01 1998-05-26 Sterling Software, Inc. System and method for the creation and use of surrogate information system objects
US6195091B1 (en) 1995-03-09 2001-02-27 Netscape Communications Corporation Apparatus for collaborative computing
US5724508A (en) 1995-03-09 1998-03-03 Insoft, Inc. Apparatus for collaborative computing
US5895499A (en) 1995-07-03 1999-04-20 Sun Microsystems, Inc. Cross-domain data transfer using deferred page remapping
US5917730A (en) 1995-08-17 1999-06-29 Gse Process Solutions, Inc. Computer implemented object oriented visualization system and method
US5774689A (en) 1995-09-22 1998-06-30 Bell Atlantic Network Services, Inc. Network configuration management system for digital communication networks
US6047323A (en) 1995-10-19 2000-04-04 Hewlett-Packard Company Creation and migration of distributed streams in clusters of networked computers
US6147995A (en) 1995-11-15 2000-11-14 Cabletron Systems, Inc. Method for establishing restricted broadcast groups in a switched network
US5867706A (en) 1996-01-26 1999-02-02 International Business Machines Corp. Method of load balancing across the processors of a server
RU2156546C2 (en) 1996-01-26 2000-09-20 Интернэшнл Бизнес Машинз Корпорейшн Load balancing using server computer processors
RU2189072C2 (en) 1996-01-31 2002-09-10 Ипсилон Нетуоркс, Инк. Improved method and device for dynamic shift between routing and switching bursts in data transmission network
US6081826A (en) 1996-03-12 2000-06-27 Hitachi, Ltd. System using environment manager with resource table in each computer for managing distributed computing resources managed for each application
US5835777A (en) * 1996-03-20 1998-11-10 Hewlett-Packard Company Method of automatically generating a software installation package
US5768271A (en) 1996-04-12 1998-06-16 Alcatel Data Networks Inc. Virtual private network
US6085238A (en) 1996-04-23 2000-07-04 Matsushita Electric Works, Ltd. Virtual LAN system
US5748958A (en) 1996-04-30 1998-05-05 International Business Machines Corporation System for utilizing batch requests to present membership changes to process groups
US5845124A (en) 1996-05-01 1998-12-01 Ncr Corporation Systems and methods for generating and displaying a symbolic representation of a network model
US6075776A (en) 1996-06-07 2000-06-13 Nippon Telegraph And Telephone Corporation VLAN control system and method
US5905728A (en) 1996-06-19 1999-05-18 Electronics And Telecommunications Research Institute Method of assigning connection identifier in asynchronous transfer mode switching system
US5822531A (en) 1996-07-22 1998-10-13 International Business Machines Corporation Method and system for dynamically reconfiguring a cluster of computer systems
US6052469A (en) 1996-07-29 2000-04-18 International Business Machines Corporation Interoperable cryptographic key recovery system with verification by comparison
US5818937A (en) 1996-08-12 1998-10-06 Ncr Corporation Telephone tone security device
US5930798A (en) 1996-08-15 1999-07-27 Predicate Logic, Inc. Universal data measurement, analysis and control system
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US6237020B1 (en) 1996-10-01 2001-05-22 International Business Machines Corporation Task-oriented automatic distribution of software
US6519615B1 (en) 1996-10-11 2003-02-11 Sun Microsystems, Inc. Method and system for leasing storage
US6424718B1 (en) 1996-10-16 2002-07-23 International Business Machines Corporation Data communications system using public key cryptography in a web environment
US6804783B1 (en) 1996-10-17 2004-10-12 Network Engineering Software Firewall providing enhanced network security and user transparency
US5790895A (en) 1996-10-18 1998-08-04 Compaq Computer Corporation Modem sharing
US6598033B2 (en) 1996-10-21 2003-07-22 Nortel Networks Limited Problem model for alarm correlation
US5784463A (en) 1996-12-04 1998-07-21 V-One Corporation Token distribution, registration, and dynamic configuration of user entitlement for an application level security system and method
US6125442A (en) 1996-12-13 2000-09-26 Maves International Software, Inc. Method, system and data structures for computer software application development and execution
US6209099B1 (en) 1996-12-18 2001-03-27 Ncr Corporation Secure data processing method and system
US5845277A (en) 1996-12-19 1998-12-01 Mci Communications Corporation Production of statistically-based network maps
US6424992B2 (en) 1996-12-23 2002-07-23 International Business Machines Corporation Affinity-based router and routing method
US6112243A (en) 1996-12-30 2000-08-29 Intel Corporation Method and apparatus for allocating tasks to remote networked processors
US5826015A (en) 1997-02-20 1998-10-20 Digital Equipment Corporation Method and apparatus for secure remote programming of firmware and configurations of a computer over a network
US6353898B1 (en) 1997-02-21 2002-03-05 Novell, Inc. Resource management in a clustered computer system
US6338112B1 (en) 1997-02-21 2002-01-08 Novell, Inc. Resource management in a clustered computer system
US6151688A (en) 1997-02-21 2000-11-21 Novell, Inc. Resource management in a clustered computer system
US5958009A (en) 1997-02-27 1999-09-28 Hewlett-Packard Company System and method for efficiently monitoring quality of service in a distributed processing environment
US7043407B2 (en) 1997-03-10 2006-05-09 Trilogy Development Group, Inc. Method and apparatus for configuring systems
US5968126A (en) 1997-04-02 1999-10-19 Switchsoft Systems, Inc. User-based binding of network stations to broadcast domains
US6065058A (en) 1997-05-09 2000-05-16 International Business Machines Corp. Dynamic push filtering based on information exchanged among nodes in a proxy hierarchy
US6598173B1 (en) 1997-05-13 2003-07-22 Micron Technology, Inc. Method of remote access and control of environmental conditions
JP2001526814A (en) 1997-05-22 2001-12-18 トラスティーズ・オブ・ボストン・ユニバーシティ Distributed cache, prefetch, copy method and system
US6502131B1 (en) 1997-05-27 2002-12-31 Novell, Inc. Directory enabled policy management tool for intelligent traffic management
US6389464B1 (en) 1997-06-27 2002-05-14 Cornet Technology, Inc. Device management system for managing standards-compliant and non-compliant network elements using standard management protocols and a universal site server which is configurable from remote locations via internet browser technology
US6049528A (en) 1997-06-30 2000-04-11 Sun Microsystems, Inc. Trunking ethernet-compatible networks
US6305015B1 (en) 1997-07-02 2001-10-16 Bull S.A. Information processing system architecture
US6185308B1 (en) 1997-07-07 2001-02-06 Fujitsu Limited Key recovery system
US6233610B1 (en) 1997-08-27 2001-05-15 Northern Telecom Limited Communications network having management system architecture supporting reuse
US6041054A (en) 1997-09-24 2000-03-21 Telefonaktiebolaget Lm Ericsson Efficient transport of internet protocol packets using asynchronous transfer mode adaptation layer two
US6606708B1 (en) 1997-09-26 2003-08-12 Worldcom, Inc. Secure server architecture for Web based data management
US6195355B1 (en) 1997-09-26 2001-02-27 Sony Corporation Packet-Transmission control method and packet-transmission control apparatus
US6263089B1 (en) 1997-10-03 2001-07-17 Nippon Telephone And Telegraph Corporation Method and equipment for extracting image features from image sequence
US6427171B1 (en) 1997-10-14 2002-07-30 Alacritech, Inc. Protocol processing stack for use with intelligent network interface device
US6192401B1 (en) 1997-10-21 2001-02-20 Sun Microsystems, Inc. System and method for determining cluster membership in a heterogeneous distributed system
US6134594A (en) 1997-10-28 2000-10-17 Microsoft Corporation Multi-user, multiple tier distributed application architecture with single-user access control of middle tier objects
US6178529B1 (en) 1997-11-03 2001-01-23 Microsoft Corporation Method and system for resource monitoring of disparate resources in a server cluster
US6269079B1 (en) 1997-11-12 2001-07-31 International Business Machines Corporation Systems, methods and computer program products for distributing connection information between ATM nodes
US6125447A (en) 1997-12-11 2000-09-26 Sun Microsystems, Inc. Protection domains to provide security in a computer system
US6035405A (en) 1997-12-22 2000-03-07 Nortel Networks Corporation Secure virtual LANs
US6370584B1 (en) 1998-01-13 2002-04-09 Trustees Of Boston University Distributed routing
US6086618A (en) 1998-01-26 2000-07-11 Microsoft Corporation Method and computer program product for estimating total resource usage requirements of a server application in a hypothetical user configuration
US6182275B1 (en) 1998-01-26 2001-01-30 Dell Usa, L.P. Generation of a compatible order for a computer system
US6484261B1 (en) 1998-02-17 2002-11-19 Cisco Technology, Inc. Graphical network security policy management
US6442557B1 (en) 1998-02-27 2002-08-27 Prc Inc. Evaluation of enterprise architecture model including relational database
US6076108A (en) 1998-03-06 2000-06-13 I2 Technologies, Inc. System and method for maintaining a state for a user session using a web system having a global session server
US6208649B1 (en) 1998-03-11 2001-03-27 Cisco Technology, Inc. Derived VLAN mapping technique
US6691148B1 (en) 1998-03-13 2004-02-10 Verizon Corporate Services Group Inc. Framework for providing quality of service requirements in a distributed object-oriented computer system
US6393386B1 (en) 1998-03-26 2002-05-21 Visual Networks Technologies, Inc. Dynamic modeling of complex networks and prediction of impacts of faults therein
US20020022952A1 (en) 1998-03-26 2002-02-21 David Zager Dynamic modeling of complex networks and prediction of impacts of faults therein
US6236901B1 (en) 1998-03-31 2001-05-22 Dell Usa, L.P. Manufacturing system and method for assembly of computer systems in a build-to-order environment
US6118785A (en) 1998-04-07 2000-09-12 3Com Corporation Point-to-point protocol with a signaling channel
US6466985B1 (en) 1998-04-10 2002-10-15 At&T Corp. Method and apparatus for providing quality of service using the internet protocol
US6059842A (en) 1998-04-14 2000-05-09 International Business Machines Corp. System and method for optimizing computer software and hardware
US6208345B1 (en) 1998-04-15 2001-03-27 Adc Telecommunications, Inc. Visual data integration system and method
US6898791B1 (en) 1998-04-21 2005-05-24 California Institute Of Technology Infospheres distributed object system
US6167052A (en) 1998-04-27 2000-12-26 Vpnx.Com, Inc. Establishing connectivity in networks
US6311144B1 (en) 1998-05-13 2001-10-30 Nabil A. Abu El Ata Method and apparatus for designing and analyzing information systems using multi-layer mathematical models
US7035786B1 (en) 1998-05-13 2006-04-25 Abu El Ata Nabil A System and method for multi-phase system development with predictive modeling
US20020049573A1 (en) 1998-05-13 2002-04-25 El Ata Nabil A. Abu Automated system and method for designing model based architectures of information systems
US6694436B1 (en) 1998-05-22 2004-02-17 Activcard Terminal and system for performing secure electronic transactions
US6269076B1 (en) 1998-05-28 2001-07-31 3Com Corporation Method of resolving split virtual LANs utilizing a network management system
US6789090B1 (en) 1998-05-29 2004-09-07 Hitachi, Ltd. Virtual network displaying system
EP0964546A3 (en) 1998-05-29 2003-09-03 Hitachi, Ltd. Network management system
US6947987B2 (en) 1998-05-29 2005-09-20 Ncr Corporation Method and apparatus for allocating network resources and changing the allocation based on dynamic workload changes
US6259448B1 (en) 1998-06-03 2001-07-10 International Business Machines Corporation Resource model configuration and deployment in a distributed computer network
US6470025B1 (en) 1998-06-05 2002-10-22 3Com Technologies System for providing fair access for VLANs to a shared transmission medium
US6611522B1 (en) 1998-06-19 2003-08-26 Juniper Networks, Inc. Quality of service facility in a device for performing IP forwarding and ATM switching
US6360265B1 (en) 1998-07-08 2002-03-19 Lucent Technologies Inc. Arrangement of delivering internet protocol datagrams for multimedia services to the same server
US6427163B1 (en) 1998-07-10 2002-07-30 International Business Machines Corporation Highly scalable and highly available cluster system management scheme
US6226788B1 (en) 1998-07-22 2001-05-01 Cisco Technology, Inc. Extensible network management system
US6438100B1 (en) 1998-08-07 2002-08-20 Alcatel Canada Inc. Method and apparatus for routing server redundancy in a network having carrier scale internetworking
US6473791B1 (en) 1998-08-17 2002-10-29 Microsoft Corporation Object load balancing
US6266707B1 (en) 1998-08-17 2001-07-24 International Business Machines Corporation System and method for IP network address translation and IP filtering with dynamic address resolution
US6336138B1 (en) 1998-08-25 2002-01-01 Hewlett-Packard Company Template-driven approach for generating models on network services
US6717949B1 (en) 1998-08-31 2004-04-06 International Business Machines Corporation System and method for IP network address translation using selective masquerade
US6311270B1 (en) 1998-09-14 2001-10-30 International Business Machines Corporation Method and apparatus for securing communication utilizing a security processor
US6418554B1 (en) 1998-09-21 2002-07-09 Microsoft Corporation Software implementation installer mechanism
US6253230B1 (en) 1998-09-22 2001-06-26 International Business Machines Corporation Distributed scalable device for selecting a server from a server cluster and a switched path to the selected server
US6167383A (en) 1998-09-22 2000-12-26 Dell Usa, Lp Method and apparatus for providing customer configured machines at an internet site
US6230312B1 (en) 1998-10-02 2001-05-08 Microsoft Corporation Automatic detection of per-unit location constraints
US6546553B1 (en) 1998-10-02 2003-04-08 Microsoft Corporation Service installation on a base function and provision of a pass function with a service-free base function semantic
US6728885B1 (en) 1998-10-09 2004-04-27 Networks Associates Technology, Inc. System and method for network access control using adaptive proxies
US6570875B1 (en) 1998-10-13 2003-05-27 Intel Corporation Automatic filtering and creation of virtual LANs among a plurality of switch ports
US6546423B1 (en) 1998-10-22 2003-04-08 At&T Corp. System and method for network load balancing
US6393485B1 (en) 1998-10-27 2002-05-21 International Business Machines Corporation Method and apparatus for managing clustered computer systems
US6212559B1 (en) 1998-10-28 2001-04-03 Trw Inc. Automated configuration of internet-like computer networks
US6691165B1 (en) 1998-11-10 2004-02-10 Rainfinity, Inc. Distributed server cluster for controlling network traffic
US6845160B1 (en) 1998-11-12 2005-01-18 Fuji Xerox Co., Ltd. Apparatus and method for depositing encryption keys
US6330605B1 (en) 1998-11-19 2001-12-11 Volera, Inc. Proxy cache cluster
US20010014158A1 (en) 1998-11-25 2001-08-16 Hush Communications Corporation Public key cryptosystem with roaming user capability
US6393456B1 (en) 1998-11-30 2002-05-21 Microsoft Corporation System, method, and computer program product for workflow processing using internet interoperable electronic messaging with mime multiple content type
US7058704B1 (en) 1998-12-01 2006-06-06 Network Appliance, Inc.. Method and apparatus for implementing a service-level agreement
US6108702A (en) 1998-12-02 2000-08-22 Micromuse, Inc. Method and apparatus for determining accurate topology features of a network
US6457048B2 (en) 1998-12-04 2002-09-24 Sun Microsystems, Inc. System for representing device topology in a computer network operable independent of network management software
US6651101B1 (en) 1998-12-04 2003-11-18 Cisco Technology, Inc. Method and apparatus for identifying network data traffic flows and for applying quality of service treatments to the flows
US6570847B1 (en) 1998-12-31 2003-05-27 At&T Corp. Method and system for network traffic rate control based on fractional tokens
US6691168B1 (en) 1998-12-31 2004-02-10 Pmc-Sierra Method and apparatus for high-speed network rule processing
US6393474B1 (en) 1998-12-31 2002-05-21 3Com Corporation Dynamic policy management apparatus and method using active network devices
US6628671B1 (en) 1999-01-19 2003-09-30 Vtstarcom, Inc. Instant activation of point-to point protocol (PPP) connection using existing PPP state
US6449650B1 (en) 1999-02-01 2002-09-10 Redback Networks Inc. Methods and apparatus for deploying quality of service policies on a data communication network
US6651240B1 (en) 1999-02-17 2003-11-18 Fujitsu Limited Object-oriented software development support apparatus and development support method
US6377996B1 (en) 1999-02-18 2002-04-23 International Business Machines Corporation System for seamless streaming of data stored on a network of distributed primary and target servers using segmentation information exchanged among all servers during streaming
US6470464B2 (en) 1999-02-23 2002-10-22 International Business Machines Corporation System and method for predicting computer system performance and for making recommendations for improving its performance
US6829770B1 (en) 1999-02-23 2004-12-07 Microsoft Corporation Object connectivity through loosely coupled publish and subscribe events
US6549934B1 (en) 1999-03-01 2003-04-15 Microsoft Corporation Method and system for remote access to computer devices via client managed server buffers exclusively allocated to the client
US6760775B1 (en) 1999-03-05 2004-07-06 At&T Corp. System, method and apparatus for network service load and reliability management
US6782408B1 (en) 1999-03-30 2004-08-24 International Business Machines Corporation Controlling a number of instances of an application running in a computing environment
US6442713B1 (en) 1999-03-30 2002-08-27 International Business Machines Corporation Cluster node distress signal
JP2000293497A (en) 1999-03-30 2000-10-20 Internatl Business Mach Corp <Ibm> Generation system for cluster node relief signal
US6801949B1 (en) 1999-04-12 2004-10-05 Rainfinity, Inc. Distributed server cluster with graphical user interface
US6839348B2 (en) 1999-04-30 2005-01-04 Cisco Technology, Inc. System and method for distributing multicasts in virtual local area networks
US6868454B1 (en) 1999-05-06 2005-03-15 Fujitsu Limited Distributed-object development system and computer-readable recording medium recorded with program for making computer execute distributed-object development
US6564261B1 (en) 1999-05-10 2003-05-13 Telefonaktiebolaget Lm Ericsson (Publ) Distributed system to intelligently establish sessions between anonymous users over various networks
US6757744B1 (en) 1999-05-12 2004-06-29 Unisys Corporation Distributed transport communications manager with messaging subsystem for high-speed communications between heterogeneous computer systems
US6971072B1 (en) 1999-05-13 2005-11-29 International Business Machines Corporation Reactive user interface control based on environmental sensing
US7089530B1 (en) 1999-05-17 2006-08-08 Invensys Systems, Inc. Process control configuration system with connection validation and configuration
US6968550B2 (en) 1999-05-19 2005-11-22 International Business Machines Corporation Apparatus and method for synchronizing software between computers
US6957186B1 (en) 1999-05-27 2005-10-18 Accenture Llp System method and article of manufacture for building, managing, and supporting various components of a system
US6631141B1 (en) 1999-05-27 2003-10-07 Ibm Corporation Methods, systems and computer program products for selecting an aggregator interface
US6978379B1 (en) 1999-05-28 2005-12-20 Hewlett-Packard Development Company, L.P. Configuring computer systems
US6678835B1 (en) 1999-06-10 2004-01-13 Alcatel State transition protocol for high availability units
US6944183B1 (en) 1999-06-10 2005-09-13 Alcatel Object model for network policy management
US6539494B1 (en) 1999-06-17 2003-03-25 Art Technology Group, Inc. Internet server session backup apparatus
US6505244B1 (en) 1999-06-29 2003-01-07 Cisco Technology Inc. Policy engine which supports application specific plug-ins for enforcing policies in a feedback-based, adaptive data network
US6665714B1 (en) 1999-06-30 2003-12-16 Emc Corporation Method and apparatus for determining an identity of a network device
US6367010B1 (en) 1999-07-02 2002-04-02 Postx Corporation Method for generating secure symmetric encryption and decryption
US6584499B1 (en) 1999-07-09 2003-06-24 Lsi Logic Corporation Methods and apparatus for performing mass operations on a plurality of managed devices on a network
US20010020228A1 (en) 1999-07-09 2001-09-06 International Business Machines Corporation Umethod, system and program for managing relationships among entities to exchange encryption keys for use in providing access and authorization to resources
US6480955B1 (en) 1999-07-09 2002-11-12 Lsi Logic Corporation Methods and apparatus for committing configuration changes to managed devices prior to completion of the configuration change
US6823299B1 (en) 1999-07-09 2004-11-23 Autodesk, Inc. Modeling objects, systems, and simulations by establishing relationships in an event-driven graph in a computer implemented graphics system
US6820042B1 (en) 1999-07-23 2004-11-16 Opnet Technologies Mixed mode network simulator
US6912568B1 (en) 1999-07-27 2005-06-28 Hitachi, Ltd. Service management system
US6601233B1 (en) 1999-07-30 2003-07-29 Accenture Llp Business components framework
US7461249B1 (en) 1999-08-13 2008-12-02 Hewlett-Packard Development Company, L.P. Computer platforms and their methods of operation
US6813778B1 (en) 1999-08-16 2004-11-02 General Instruments Corporation Method and system for downloading and managing the enablement of a list of code objects
US7162427B1 (en) 1999-08-20 2007-01-09 Electronic Data Systems Corporation Structure and method of modeling integrated business and information technology frameworks and architecture in support of a business
US6597956B1 (en) 1999-08-23 2003-07-22 Terraspring, Inc. Method and apparatus for controlling an extensible computing system
US6779016B1 (en) 1999-08-23 2004-08-17 Terraspring, Inc. Extensible computing system
US6587876B1 (en) 1999-08-24 2003-07-01 Hewlett-Packard Development Company Grouping targets of management policies
US6256773B1 (en) 1999-08-31 2001-07-03 Accenture Llp System, method and article of manufacture for configuration management in a development architecture framework
US6370573B1 (en) 1999-08-31 2002-04-09 Accenture Llp System, method and article of manufacture for managing an environment of a development architecture framework
US7139999B2 (en) 1999-08-31 2006-11-21 Accenture Llp Development architecture framework
US6741266B1 (en) 1999-09-13 2004-05-25 Fujitsu Limited Gui display, and recording medium including a computerized method stored therein for realizing the gui display
US6738736B1 (en) 1999-10-06 2004-05-18 Accenture Llp Method and estimator for providing capacacity modeling and planning
US6598223B1 (en) 1999-10-06 2003-07-22 Dell Usa, L.P. Method and system for installing and testing build-to-order components in a defined configuration computer system
US6654796B1 (en) 1999-10-07 2003-11-25 Cisco Technology, Inc. System for managing cluster of network switches using IP address for commander switch and redirecting a managing request via forwarding an HTTP connection to an expansion switch
US6725253B1 (en) 1999-10-14 2004-04-20 Fujitsu Limited Load balancing system
US6654782B1 (en) 1999-10-28 2003-11-25 Networks Associates, Inc. Modular framework for dynamically processing network events using action sets in a distributed computing environment
US6351685B1 (en) 1999-11-05 2002-02-26 International Business Machines Corporation Wireless communication between multiple intelligent pickers and with a central job queue in an automated data storage library
US6760765B1 (en) 1999-11-09 2004-07-06 Matsushita Electric Industrial Co., Ltd. Cluster server apparatus
US6609148B1 (en) 1999-11-10 2003-08-19 Randy Salo Clients remote access to enterprise networks employing enterprise gateway servers in a centralized data center converting plurality of data requests for messaging and collaboration into a single request
US7464147B1 (en) 1999-11-10 2008-12-09 International Business Machines Corporation Managing a cluster of networked resources and resource groups using rule - base constraints in a scalable clustering environment
US6829639B1 (en) 1999-11-15 2004-12-07 Netvision, Inc. Method and system for intelligent global event notification and control within a distributed computing environment
US6598077B2 (en) 1999-12-06 2003-07-22 Warp Solutions, Inc. System and method for dynamic content routing
US6529953B1 (en) 1999-12-17 2003-03-04 Reliable Network Solutions Scalable computer network resource monitoring and location system
US7103185B1 (en) 1999-12-22 2006-09-05 Cisco Technology, Inc. Method and apparatus for distributing and updating private keys of multicast group managers using directory replication
US6304972B1 (en) 2000-01-03 2001-10-16 Massachusetts Institute Of Technology Secure software system and related techniques
US6862613B1 (en) 2000-01-10 2005-03-01 Sun Microsystems, Inc. Method and apparatus for managing operations of clustered computer systems
US6769008B1 (en) 2000-01-10 2004-07-27 Sun Microsystems, Inc. Method and apparatus for dynamically altering configurations of clustered computer systems
US7315801B1 (en) 2000-01-14 2008-01-01 Secure Computing Corporation Network security modeling system and method
US6754716B1 (en) 2000-02-11 2004-06-22 Ensim Corporation Restricting communication between network devices on a common network
US7093005B2 (en) 2000-02-11 2006-08-15 Terraspring, Inc. Graphical editor for defining and creating a computer system
US7117261B2 (en) 2000-02-18 2006-10-03 Infrastructure Innovations, Llc. Auto control of network monitoring and simulation
US6912657B2 (en) 2000-02-22 2005-06-28 Telefonaktiebolaget Lm Ericsson Method and arrangement in a communication network
US6983317B1 (en) 2000-02-28 2006-01-03 Microsoft Corporation Enterprise management system
US6701363B1 (en) 2000-02-29 2004-03-02 International Business Machines Corporation Method, computer program product, and system for deriving web transaction performance metrics
US7155490B1 (en) 2000-03-01 2006-12-26 Freewebs Corporation System and method for providing a web-based operating system
US7506034B2 (en) 2000-03-03 2009-03-17 Intel Corporation Methods and apparatus for off loading content servers through direct file transfer from a storage center to an end-user
US6601101B1 (en) 2000-03-15 2003-07-29 3Com Corporation Transparent access to network attached devices
US6678821B1 (en) 2000-03-23 2004-01-13 E-Witness Inc. Method and system for restricting access to the private key of a user in a public key infrastructure
US6868062B1 (en) 2000-03-28 2005-03-15 Intel Corporation Managing data traffic on multiple ports
US6748447B1 (en) 2000-04-07 2004-06-08 Network Appliance, Inc. Method and apparatus for scalable distribution of information in a distributed network
US6718361B1 (en) 2000-04-07 2004-04-06 Network Appliance Inc. Method and apparatus for reliable and scalable distribution of data files in distributed networks
US7403901B1 (en) 2000-04-13 2008-07-22 Accenture Llp Error and load summary reporting in a health care solution environment
US6574195B2 (en) 2000-04-19 2003-06-03 Caspian Networks, Inc. Micro-flow management
US7012919B1 (en) 2000-04-19 2006-03-14 Caspian Networks, Inc. Micro-flow label switching
US6904458B1 (en) 2000-04-26 2005-06-07 Microsoft Corporation System and method for remote management
US6640303B1 (en) 2000-04-28 2003-10-28 Ky Quy Vu System and method for encryption using transparent keys
US7054943B1 (en) 2000-04-28 2006-05-30 International Business Machines Corporation Method and apparatus for dynamically adjusting resources assigned to plurality of customers, for meeting service level agreements (slas) with minimal resources, and allowing common pools of resources to be used across plural customers on a demand basis
US6854069B2 (en) 2000-05-02 2005-02-08 Sun Microsystems Inc. Method and system for achieving high availability in a networked computer system
US7047279B1 (en) 2000-05-05 2006-05-16 Accenture, Llp Creating collaborative application sharing
JP2003532784A (en) 2000-05-09 2003-11-05 ソリユテイア・インコーポレイテツド Functional fluid composition containing epoxide acid scavenger
US6675308B1 (en) 2000-05-09 2004-01-06 3Com Corporation Methods of determining whether a network interface card entry within the system registry pertains to physical hardware or to a virtual device
US7222147B1 (en) 2000-05-20 2007-05-22 Ciena Corporation Processing network management data in accordance with metadata files
US6671699B1 (en) 2000-05-20 2003-12-30 Equipe Communications Corporation Shared database usage in network devices
US7076552B2 (en) 2000-05-24 2006-07-11 Sony International (Europe) Gmbh Universal QoS adaptation framework for mobile multimedia applications
JP2001339437A (en) 2000-05-30 2001-12-07 Nippon Telegr & Teleph Corp <Ntt> Method and device for provider switchable communication
US6801937B1 (en) 2000-05-31 2004-10-05 International Business Machines Corporation Method, system and program products for defining nodes to a cluster
US6742020B1 (en) 2000-06-08 2004-05-25 Hewlett-Packard Development Company, L.P. System and method for managing data flow and measuring service in a storage network
US6718379B1 (en) 2000-06-09 2004-04-06 Advanced Micro Devices, Inc. System and method for network management of local area networks having non-blocking network switches configured for switching data packets between subnetworks based on management policies
US7032031B2 (en) 2000-06-23 2006-04-18 Cloudshield Technologies, Inc. Edge adapter apparatus and method
US6928482B1 (en) 2000-06-29 2005-08-09 Cisco Technology, Inc. Method and apparatus for scalable process flow load balancing of a multiplicity of parallel packet processors in a digital communication network
US7120154B2 (en) 2000-06-30 2006-10-10 Marc Bavant Method for the routing of IP frames between the users of a variable graph network
US7448079B2 (en) 2000-07-05 2008-11-04 Ernst & Young, Llp Method and apparatus for providing computer services
US7366755B1 (en) 2000-07-28 2008-04-29 International Business Machines Corporation Method and apparatus for affinity of users to application servers
US6971063B1 (en) 2000-07-28 2005-11-29 Wireless Valley Communications Inc. System, method, and apparatus for portable design, deployment, test, and optimization of a communication network
US6609213B1 (en) 2000-08-10 2003-08-19 Dell Products, L.P. Cluster-based system and method of recovery from server failures
US6823373B1 (en) 2000-08-11 2004-11-23 Informatica Corporation System and method for coupling remote data stores and mobile devices via an internet based server
EP1180886B1 (en) 2000-08-17 2006-10-11 Sun Microsystems, Inc. Load balancing method and system
US6820121B1 (en) 2000-08-24 2004-11-16 International Business Machines Corporation Methods systems and computer program products for processing an event based on policy rules using hashing
US6976269B1 (en) 2000-08-29 2005-12-13 Equinix, Inc. Internet co-location facility security system
US7181731B2 (en) 2000-09-01 2007-02-20 Op40, Inc. Method, system, and structure for distributing and executing software and data on different network and computer devices, platforms, and environments
US7150015B2 (en) 2000-09-01 2006-12-12 Pace Charles P Method and system for deploying an asset over a multi-tiered network
JP2002084302A (en) 2000-09-06 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for communication by network
US6973622B1 (en) 2000-09-25 2005-12-06 Wireless Valley Communications, Inc. System and method for design, tracking, measurement, prediction and optimization of data communication networks
US7058826B2 (en) 2000-09-27 2006-06-06 Amphus, Inc. System, architecture, and method for logical server and other network devices in a dynamically configurable multi-server network environment
US7069204B1 (en) 2000-09-28 2006-06-27 Cadence Design System, Inc. Method and system for performance level modeling and simulation of electronic systems having both hardware and software elements
US7272653B2 (en) 2000-09-28 2007-09-18 International Business Machines Corporation System and method for implementing a clustered load balancer
US6976079B1 (en) 2000-09-29 2005-12-13 International Business Machines Corporation System and method for upgrading software in a distributed computer system
US6944759B1 (en) 2000-09-29 2005-09-13 Hewlett-Packard Development Company, L.P. Automatic system configuration management
US7404175B2 (en) 2000-10-10 2008-07-22 Bea Systems, Inc. Smart generator
US7093288B1 (en) 2000-10-24 2006-08-15 Microsoft Corporation Using packet filters and network virtualization to restrict network communications
US20050125212A1 (en) 2000-10-24 2005-06-09 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US7113900B1 (en) 2000-10-24 2006-09-26 Microsoft Corporation System and method for logical modeling of distributed computer systems
US7574343B2 (en) 2000-10-24 2009-08-11 Microsoft Corporation System and method for logical modeling of distributed computer systems
US7096258B2 (en) 2000-10-24 2006-08-22 Microsoft Corporation System and method providing automatic policy enforcement in a multi-computer service application
US20060259610A1 (en) 2000-10-24 2006-11-16 Microsoft Corporation System and Method for Distributed Management of Shared Computers
US20060259609A1 (en) 2000-10-24 2006-11-16 Microsoft Corporation System and Method for Distributed Management of Shared Computers
US7016950B2 (en) 2000-10-24 2006-03-21 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US7155380B2 (en) 2000-10-24 2006-12-26 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US6886038B1 (en) 2000-10-24 2005-04-26 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US20050091078A1 (en) 2000-10-24 2005-04-28 Microsoft Corporation System and method for distributed management of shared computers
US7080143B2 (en) 2000-10-24 2006-07-18 Microsoft Corporation System and method providing automatic policy enforcement in a multi-computer service application
US7406517B2 (en) 2000-10-24 2008-07-29 Microsoft Corporation System and method for distributed management of shared computers
US20050192971A1 (en) 2000-10-24 2005-09-01 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US6915338B1 (en) 2000-10-24 2005-07-05 Microsoft Corporation System and method providing automatic policy enforcement in a multi-computer service application
US20050097097A1 (en) 2000-10-24 2005-05-05 Microsoft Corporation System and method for distributed management of shared computers
US7395320B2 (en) 2000-10-24 2008-07-01 Microsoft Corporation Providing automatic policy enforcement in a multi-computer service application
US20050102538A1 (en) 2000-10-24 2005-05-12 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US20050102388A1 (en) 2000-10-24 2005-05-12 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US7370103B2 (en) 2000-10-24 2008-05-06 Hunt Galen C System and method for distributed management of shared computers
US7043545B2 (en) 2000-10-24 2006-05-09 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US6907395B1 (en) 2000-10-24 2005-06-14 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US6769060B1 (en) 2000-10-25 2004-07-27 Ericsson Inc. Method of bilateral identity authentication
US6853841B1 (en) 2000-10-25 2005-02-08 Sun Microsystems, Inc. Protocol for a remote control device to enable control of network attached devices
US6754816B1 (en) 2000-10-26 2004-06-22 Dell Products L.P. Scalable environmental data calculation method customized by system configuration
US20020082820A1 (en) 2000-10-31 2002-06-27 Glenn Ferguson Data model for automated server configuration
US7124289B1 (en) 2000-10-31 2006-10-17 Opsware Inc. Automated provisioning framework for internet site servers
US20040226010A1 (en) 2000-10-31 2004-11-11 Loudcloud, Inc. Automated provisioning framework for internet site servers
US7003574B1 (en) 2000-11-01 2006-02-21 Microsoft Corporation Session load balancing and use of VIP as source address for inter-cluster traffic through the use of a session identifier
US7313614B2 (en) 2000-11-02 2007-12-25 Sun Microsystems, Inc. Switching system
US7089293B2 (en) 2000-11-02 2006-08-08 Sun Microsystems, Inc. Switching system method for discovering and accessing SCSI devices in response to query
US6985956B2 (en) 2000-11-02 2006-01-10 Sun Microsystems, Inc. Switching system
US20020069267A1 (en) 2000-11-06 2002-06-06 Karl Thiele Data management framework for policy management
US20040073443A1 (en) 2000-11-10 2004-04-15 Gabrick John J. System for automating and managing an IP environment
US7027412B2 (en) 2000-11-10 2006-04-11 Veritas Operating Corporation System for dynamic provisioning of secure, scalable, and extensible networked computer environments
US7046680B1 (en) 2000-11-28 2006-05-16 Mci, Inc. Network access system including a programmable access device having distributed service control
US7089281B1 (en) 2000-12-08 2006-08-08 Sun Microsystems, Inc. Load balancing in a dynamic session redirector
US20040059812A1 (en) 2000-12-14 2004-03-25 Shmuel Assa Topology information system for a managed world
US6856591B1 (en) 2000-12-15 2005-02-15 Cisco Technology, Inc. Method and system for high reliability cluster management
US20020075844A1 (en) 2000-12-15 2002-06-20 Hagen W. Alexander Integrating public and private network resources for optimized broadband wireless access and method
US7421505B2 (en) 2000-12-21 2008-09-02 Noatak Software Llc Method and system for executing protocol stack instructions to form a packet for causing a computing device to perform an operation
US20030046615A1 (en) 2000-12-22 2003-03-06 Alan Stone System and method for adaptive reliability balancing in distributed programming networks
US7225441B2 (en) 2000-12-27 2007-05-29 Intel Corporation Mechanism for providing power management through virtualization
US20020087264A1 (en) 2001-01-04 2002-07-04 Hills Alexander A. Position location system and method
US20020090089A1 (en) 2001-01-05 2002-07-11 Steven Branigan Methods and apparatus for secure wireless networking
US7343601B2 (en) 2001-01-08 2008-03-11 International Business Machines Corporation Efficient application deployment on dynamic clusters
US7213231B1 (en) 2001-01-11 2007-05-01 Cisco Technology, Inc. Cross-spectrum application model for dynamic computing environments in software lifecycle
US6963981B1 (en) 2001-01-29 2005-11-08 Akamai Technologies, Inc. Method and apparatus for remote installation of an operating system over a network connection
CN1368694A (en) 2001-02-01 2002-09-11 安德华科技股份有限公司 Method and system for dynamically discriminating job entity
US7383329B2 (en) 2001-02-13 2008-06-03 Aventail, Llc Distributed cache for state transfer operations
US20020152086A1 (en) 2001-02-15 2002-10-17 Smith Ned M. Method and apparatus for controlling a lifecycle of an electronic contract
CN1375685A (en) 2001-03-13 2002-10-23 松下电器产业株式会社 Information terminal device and map information providing system
US20020131601A1 (en) 2001-03-14 2002-09-19 Toshihiko Ninomiya Cryptographic key management method
US7069337B2 (en) 2001-03-20 2006-06-27 Mci, Inc. Policy-based synchronization of per-class resources between routers in a data network
US7050961B1 (en) 2001-03-21 2006-05-23 Unisys Corporation Solution generation method for thin client sizing tool
US7003562B2 (en) 2001-03-27 2006-02-21 Redseal Systems, Inc. Method and apparatus for network wide policy-based analysis of configurations of devices
US7076633B2 (en) 2001-03-28 2006-07-11 Swsoft Holdings, Ltd. Hosting service providing platform system and method
US7028228B1 (en) 2001-03-28 2006-04-11 The Shoregroup, Inc. Method and apparatus for identifying problems in computer networks
US7069480B1 (en) 2001-03-28 2006-06-27 The Shoregroup, Inc. Method and apparatus for identifying problems in computer networks
US20020156900A1 (en) 2001-03-30 2002-10-24 Brian Marquette Protocol independent control module
US20020147862A1 (en) * 2001-04-07 2002-10-10 Traut Eric P. Method for establishing a drive image in a computing environment
US20020198995A1 (en) 2001-04-10 2002-12-26 International Business Machines Corporation Apparatus and methods for maximizing service-level-agreement profits
US7162634B2 (en) 2001-04-18 2007-01-09 Thomson Licensing Method for providing security on a powerline-modem network
US7370323B2 (en) 2001-04-19 2008-05-06 International Business Machines Corporation Method and system for managing configuration changes in a data processing system
US7152109B2 (en) 2001-04-20 2006-12-19 Opsware, Inc Automated provisioning of computing networks according to customer accounts using a network database data model
US7231430B2 (en) 2001-04-20 2007-06-12 Egenera, Inc. Reconfigurable, virtual processing system, cluster, network and method
US6895534B2 (en) 2001-04-23 2005-05-17 Hewlett-Packard Development Company, L.P. Systems and methods for providing automated diagnostic services for a cluster computer system
US7058858B2 (en) 2001-04-23 2006-06-06 Hewlett-Packard Development Company, L.P. Systems and methods for providing automated diagnostic services for a cluster computer system
US6836750B2 (en) 2001-04-23 2004-12-28 Hewlett-Packard Development Company, L.P. Systems and methods for providing an automated diagnostic audit for cluster computer systems
US7194439B2 (en) 2001-04-30 2007-03-20 International Business Machines Corporation Method and system for correlating job accounting information with software license information
US7543066B2 (en) 2001-04-30 2009-06-02 International Business Machines Corporation Method and apparatus for maintaining session affinity across multiple server groups
US7131123B2 (en) 2001-04-30 2006-10-31 Opsware Inc. Automated provisioning of computing networks using a network database model
US6816897B2 (en) 2001-04-30 2004-11-09 Opsware, Inc. Console mapping tool for automated deployment and management of network devices
US20030014644A1 (en) 2001-05-02 2003-01-16 Burns James E. Method and system for security policy management
US7013462B2 (en) 2001-05-10 2006-03-14 Hewlett-Packard Development Company, L.P. Method to map an inventory management system to a configuration management system
US20020184327A1 (en) 2001-05-11 2002-12-05 Major Robert Drew System and method for partitioning address space in a proxy cache server cluster
US20020171690A1 (en) 2001-05-15 2002-11-21 International Business Machines Corporation Method and system for scaling a graphical user interface (GUI) widget based on selection pointer proximity
JP2002354006A (en) 2001-05-24 2002-12-06 Oki Electric Ind Co Ltd Network system for duplicate address
US7134122B1 (en) 2001-05-31 2006-11-07 Oracle International Corporation One click deployment
US20030008712A1 (en) 2001-06-04 2003-01-09 Playnet, Inc. System and method for distributing a multi-client game/application over a communications network
US6735596B2 (en) 2001-06-07 2004-05-11 Guy Charles Corynen Computer method and user interface for decision analysis and for global system optimization
US6968551B2 (en) 2001-06-11 2005-11-22 John Hediger System and user interface for generation and processing of software application installation instructions
US20020188941A1 (en) 2001-06-12 2002-12-12 International Business Machines Corporation Efficient installation of software packages
US7117269B2 (en) 2001-06-18 2006-10-03 Transtech Networks Usa, Inc. Packet switch with load surge-control and methods thereof
US6944678B2 (en) 2001-06-18 2005-09-13 Transtech Networks Usa, Inc. Content-aware application switch and methods thereof
US7496911B2 (en) 2001-06-22 2009-02-24 Invensys Systems, Inc. Installing supervisory process control and manufacturing software from a remote location and maintaining configuration data links in a run-time environment
US6879926B2 (en) 2001-06-29 2005-04-12 National Instruments Corporation Measurement system software architecture for easily creating high-performance measurement applications
US7082464B2 (en) 2001-07-06 2006-07-25 Juniper Networks, Inc. Network management system
US20030009559A1 (en) 2001-07-09 2003-01-09 Naoya Ikeda Network system and method of distributing accesses to a plurality of server apparatus in the network system
JP2003030424A (en) 2001-07-10 2003-01-31 Aioi Insurance Co Ltd Method and device for automatically systematizing insurance business
US7409420B2 (en) 2001-07-16 2008-08-05 Bea Systems, Inc. Method and apparatus for session replication and failover
US7055149B2 (en) 2001-07-25 2006-05-30 Lenovo (Singapore) Pte Ltd. Method and apparatus for automating software upgrades
US7174379B2 (en) 2001-08-03 2007-02-06 International Business Machines Corporation Managing server resources for hosted applications
US7139930B2 (en) 2001-08-09 2006-11-21 Dell Products L.P. Failover system and method for cluster environment
US6922791B2 (en) 2001-08-09 2005-07-26 Dell Products L.P. Failover system and method for cluster environment
US7281154B2 (en) 2001-08-09 2007-10-09 Dell Products L.P. Failover system and method for cluster environment
US7062718B2 (en) 2001-08-14 2006-06-13 National Instruments Corporation Configuration diagram which graphically displays program relationship
US7367028B2 (en) 2001-08-14 2008-04-29 National Instruments Corporation Graphically deploying programs on devices in a system
US20030051049A1 (en) 2001-08-15 2003-03-13 Ariel Noy Network provisioning in a distributed network management architecture
US7197418B2 (en) 2001-08-15 2007-03-27 National Instruments Corporation Online specification of a system which compares determined devices and installed devices
US20030041159A1 (en) 2001-08-17 2003-02-27 David Tinsley Systems and method for presenting customizable multimedia presentations
US6823382B2 (en) 2001-08-20 2004-11-23 Altaworks Corporation Monitoring and control engine for multi-tiered service-level management of distributed web-application servers
US20030041142A1 (en) 2001-08-27 2003-02-27 Nec Usa, Inc. Generic network monitoring tool
US6880002B2 (en) 2001-09-05 2005-04-12 Surgient, Inc. Virtualized logical server cloud providing non-deterministic allocation of logical attributes of logical servers to physical resources
US6986135B2 (en) 2001-09-06 2006-01-10 Cognos Incorporated Deployment manager for organizing and deploying an application in a distributed computing environment
US6973620B2 (en) 2001-09-06 2005-12-06 International Business Machines Corporation Method and apparatus for providing user support based on contextual information
US7349891B2 (en) 2001-09-07 2008-03-25 International Business Machines Corporation Site integration management system for operational support service in an internet data center
US7500069B2 (en) 2001-09-17 2009-03-03 Hewlett-Packard Development Company, L.P. System and method for providing secure access to network logical storage partitions
US7191429B2 (en) 2001-09-28 2007-03-13 Manyeta Informatique Inc. System and method for managing architectural layers within a software model
US20030065743A1 (en) 2001-09-28 2003-04-03 Jenny Patrick Duncan Method and system for distributing requests for content
US7309498B2 (en) 2001-10-10 2007-12-18 Belenkaya Bronislava G Biodegradable absorbents and methods of preparation
US7257817B2 (en) 2001-10-16 2007-08-14 Microsoft Corporation Virtual network with adaptive dispatcher
US7200665B2 (en) 2001-10-17 2007-04-03 Hewlett-Packard Development Company, L.P. Allowing requests of a session to be serviced by different servers in a multi-server data service system
EP1307018B1 (en) 2001-10-24 2006-10-11 Sun Microsystems, Inc. Load balancing unit and method of its operation
US7035930B2 (en) 2001-10-26 2006-04-25 Hewlett-Packard Development Company, L.P. Method and framework for generating an optimized deployment of software applications in a distributed computing environment using layered model descriptions of services and servers
US7194616B2 (en) 2001-10-27 2007-03-20 International Business Machines Corporation Flexible temporary capacity upgrade/downgrade in a computer system without involvement of the operating system
US7024451B2 (en) 2001-11-05 2006-04-04 Hewlett-Packard Development Company, L.P. System and method for maintaining consistent independent server-side state among collaborating servers
US20030126464A1 (en) 2001-12-04 2003-07-03 Mcdaniel Patrick D. Method and system for determining and enforcing security policy in a communication session
US7305556B2 (en) 2001-12-05 2007-12-04 Canon Kabushiki Kaisha Secure printing with authenticated printer key
US7188364B2 (en) 2001-12-20 2007-03-06 Cranite Systems, Inc. Personal virtual bridged local area networks
US7188335B1 (en) 2001-12-28 2007-03-06 Trilogy Development Group, Inc. Product configuration using configuration patterns
US7653187B2 (en) 2002-01-08 2010-01-26 At&T Services, Inc. Method and system for presenting billing information according to a customer-defined hierarchal structure
US20030138105A1 (en) 2002-01-18 2003-07-24 International Business Machines Corporation Storing keys in a cryptology device
US6954930B2 (en) 2002-02-19 2005-10-11 International Business Machines Corporation Remote validation of installation input data
US7254634B1 (en) 2002-03-08 2007-08-07 Akamai Technologies, Inc. Managing web tier session state objects in a content delivery network (CDN)
US6990666B2 (en) 2002-03-18 2006-01-24 Surgient Inc. Near on-line server
US7257584B2 (en) 2002-03-18 2007-08-14 Surgient, Inc. Server file management
US20030214908A1 (en) 2002-03-19 2003-11-20 Anurag Kumar Methods and apparatus for quality of service control for TCP aggregates at a bottleneck link in the internet
US20030217263A1 (en) 2002-03-21 2003-11-20 Tsutomu Sakai System and method for secure real-time digital transmission
US6968535B2 (en) 2002-03-21 2005-11-22 Sun Microsystems, Inc. Service mapping method of enterprise application modeling and development for multi-tier service environments
US7099936B2 (en) 2002-03-29 2006-08-29 International Business Machines Corporation Multi-tier service level agreement method and system
US20050152270A1 (en) 2002-04-12 2005-07-14 Gerardo Gomez Paredes Policy-based qos management in multi-radio access networks
US7379982B2 (en) 2002-04-15 2008-05-27 Bassam Tabbara System and method for custom installation of an operating system on a remote client
US7412502B2 (en) 2002-04-18 2008-08-12 International Business Machines Corporation Graphics for end to end component mapping and problem-solving in a network environment
US7120797B2 (en) 2002-04-24 2006-10-10 Microsoft Corporation Methods for authenticating potential members invited to join a group
US7117158B2 (en) 2002-04-25 2006-10-03 Bilcare, Inc. Systems, methods and computer program products for designing, deploying and managing interactive voice response (IVR) systems
US6681262B1 (en) 2002-05-06 2004-01-20 Infinicon Systems Network data flow optimization
US7203911B2 (en) 2002-05-13 2007-04-10 Microsoft Corporation Altering a display on a viewing device based upon a user proximity to the viewing device
US20030225563A1 (en) 2002-05-30 2003-12-04 Gonos Dan G. Capacity planning
US7376125B1 (en) 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch
US6888807B2 (en) 2002-06-10 2005-05-03 Ipr Licensing, Inc. Applying session services based on packet flows
US20050193103A1 (en) 2002-06-18 2005-09-01 John Drabik Method and apparatus for automatic configuration and management of a virtual private network
US7415729B2 (en) 2002-06-19 2008-08-19 Hitachi, Ltd. Storage device
US20040002878A1 (en) 2002-06-28 2004-01-01 International Business Machines Corporation Method and system for user-determined authentication in a federated environment
US6801528B2 (en) 2002-07-03 2004-10-05 Ericsson Inc. System and method for dynamic simultaneous connection to multiple service providers
US7210143B2 (en) 2002-07-17 2007-04-24 International Business Machines Corporation Deployment of applications in a multitier compute infrastructure
US20040078787A1 (en) 2002-07-19 2004-04-22 Michael Borek System and method for troubleshooting, maintaining and repairing network devices
US7191344B2 (en) 2002-08-08 2007-03-13 Authenex, Inc. Method and system for controlling access to data stored on a data storage device
US7143420B2 (en) 2002-08-29 2006-11-28 Sun Microsystems, Inc. Strategic technology architecture roadmap
US7275156B2 (en) 2002-08-30 2007-09-25 Xerox Corporation Method and apparatus for establishing and using a secure credential infrastructure
US7505872B2 (en) 2002-09-11 2009-03-17 International Business Machines Corporation Methods and apparatus for impact analysis and problem determination
US6847970B2 (en) 2002-09-11 2005-01-25 International Business Machines Corporation Methods and apparatus for managing dependencies in distributed systems
US7072822B2 (en) 2002-09-30 2006-07-04 Cognos Incorporated Deploying multiple enterprise planning models across clusters of application servers
US20040073795A1 (en) 2002-10-10 2004-04-15 Jablon David P. Systems and methods for password-based connection
US20040111315A1 (en) 2002-10-16 2004-06-10 Xerox Corporation Device model agent
US20040160386A1 (en) 2002-12-02 2004-08-19 Georg Michelitsch Method for operating a display device
US20040117476A1 (en) 2002-12-17 2004-06-17 Doug Steele Method and system for performing load balancing across control planes in a data center
US7480907B1 (en) 2003-01-09 2009-01-20 Hewlett-Packard Development Company, L.P. Mobile services network for update of firmware/software in mobile handsets
US7478385B2 (en) 2003-01-17 2009-01-13 National Instruments Corporation Installing software using programmatic component dependency analysis
US20050008001A1 (en) 2003-02-14 2005-01-13 John Leslie Williams System and method for interfacing with heterogeneous network data gathering tools
US7436965B2 (en) 2003-02-19 2008-10-14 Microsoft Corporation Optical out-of-band key distribution
US7406692B2 (en) 2003-02-24 2008-07-29 Bea Systems, Inc. System and method for server load balancing and server affinity
US7069553B2 (en) 2003-03-03 2006-06-27 Computer Associates Think, Inc. Universal deployment tool
US7152157B2 (en) 2003-03-05 2006-12-19 Sun Microsystems, Inc. System and method for dynamic resource configuration using a dependency graph
US7072807B2 (en) 2003-03-06 2006-07-04 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US20060025985A1 (en) 2003-03-06 2006-02-02 Microsoft Corporation Model-Based system management
US7689676B2 (en) 2003-03-06 2010-03-30 Microsoft Corporation Model-based policy application
US20040205179A1 (en) 2003-03-06 2004-10-14 Hunt Galen C. Integrating design, deployment, and management phases for systems
US7200530B2 (en) 2003-03-06 2007-04-03 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US20040193388A1 (en) 2003-03-06 2004-09-30 Geoffrey Outhred Design time validation of systems
US7630877B2 (en) 2003-03-06 2009-12-08 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US20050251783A1 (en) 2003-03-06 2005-11-10 Microsoft Corporation Settings and constraints validation to enable design for operations
US20080059214A1 (en) 2003-03-06 2008-03-06 Microsoft Corporation Model-Based Policy Application
US7162509B2 (en) 2003-03-06 2007-01-09 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US20060037002A1 (en) * 2003-03-06 2006-02-16 Microsoft Corporation Model-based provisioning of test environments
US20060034263A1 (en) 2003-03-06 2006-02-16 Microsoft Corporation Model and system state synchronization
US20040199572A1 (en) 2003-03-06 2004-10-07 Hunt Galen C. Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US20060031248A1 (en) 2003-03-06 2006-02-09 Microsoft Corporation Model-based system provisioning
US7350186B2 (en) 2003-03-10 2008-03-25 International Business Machines Corporation Methods and apparatus for managing computing deployment in presence of variable workload
US7386721B1 (en) 2003-03-12 2008-06-10 Cisco Technology, Inc. Method and apparatus for integrated provisioning of a network device with configuration information and identity certification
US20050021742A1 (en) 2003-03-31 2005-01-27 System Management Arts, Inc. Method and apparatus for multi-realm system modeling
US7356679B1 (en) * 2003-04-11 2008-04-08 Vmware, Inc. Computer image capture, customization and deployment
US6987838B2 (en) 2003-04-16 2006-01-17 Entrisphere, Inc. System and method for deploying new equipment and services in conjunction with a legacy provisioning system
US7603442B2 (en) 2003-06-20 2009-10-13 Microsoft Corporation Method and system for maintaining service dependency relationships in a computer system
US7606929B2 (en) 2003-06-30 2009-10-20 Microsoft Corporation Network load balancing with connection manipulation
US7567504B2 (en) 2003-06-30 2009-07-28 Microsoft Corporation Network load balancing with traffic routing
US7590736B2 (en) 2003-06-30 2009-09-15 Microsoft Corporation Flexible network load balancing
US7613822B2 (en) 2003-06-30 2009-11-03 Microsoft Corporation Network load balancing with session information
US7636917B2 (en) 2003-06-30 2009-12-22 Microsoft Corporation Network load balancing with host status information
US7146353B2 (en) 2003-07-22 2006-12-05 Hewlett-Packard Development Company, L.P. Resource allocation for multiple applications
US20050097146A1 (en) 2003-08-21 2005-05-05 Konstantinou Alexander V. Methods and systems for autonomously managing a network
US7127625B2 (en) 2003-09-04 2006-10-24 Hewlett-Packard Development Company, L.P. Application management based on power consumption
US7313573B2 (en) 2003-09-17 2007-12-25 International Business Machines Corporation Diagnosis of equipment failures using an integrated approach of case based reasoning and reliability analysis
US7318216B2 (en) 2003-09-24 2008-01-08 Tablecode Software Corporation Software application development environment facilitating development of a software application
US7594224B2 (en) 2003-10-10 2009-09-22 Bea Systems, Inc. Distributed enterprise security system
US20050080811A1 (en) 2003-10-10 2005-04-14 Cendura Corporation Configuration management architecture
US7237267B2 (en) 2003-10-16 2007-06-26 Cisco Technology, Inc. Policy-based network security management
US20050091227A1 (en) 2003-10-23 2005-04-28 Mccollum Raymond W. Model-based management of computer systems and distributed applications
US20050097082A1 (en) * 2003-10-30 2005-05-05 International Business Machines Corporation Selection of optimal execution environment for software applications
US6968291B1 (en) 2003-11-04 2005-11-22 Sun Microsystems, Inc. Using and generating finite state machines to monitor system status
US20050102513A1 (en) 2003-11-10 2005-05-12 Nokia Corporation Enforcing authorized domains with domain membership vouchers
US20050102154A1 (en) 2003-11-12 2005-05-12 Dodd Ryan A. Method, computer useable medium, and system for enterprise resource management
JP2005155729A (en) 2003-11-21 2005-06-16 Toyota Motor Corp Hydraulic control device for belt type continuously variable transmission
EP1550969A2 (en) 2003-12-11 2005-07-06 International Business Machines Corporation Method and system for dynamically and automatically set-up offerings for IT-services
US7478381B2 (en) 2003-12-15 2009-01-13 Microsoft Corporation Managing software updates and a software distribution service
US20050138416A1 (en) 2003-12-19 2005-06-23 Microsoft Corporation Object model for managing firewall services
US7278273B1 (en) 2003-12-30 2007-10-09 Google Inc. Modular data center
US7231410B1 (en) 2004-03-10 2007-06-12 Qlogic, Corporation Revision control system for large-scale systems management
US7302608B1 (en) 2004-03-31 2007-11-27 Google Inc. Systems and methods for automatic repair and replacement of networked machines
US7669235B2 (en) 2004-04-30 2010-02-23 Microsoft Corporation Secure domain join for computing devices
US20050246529A1 (en) 2004-04-30 2005-11-03 Microsoft Corporation Isolated persistent identity storage for authentication of computing devies
US7305549B2 (en) 2004-04-30 2007-12-04 Microsoft Corporation Filters to isolate untrusted ports of switches
US7305561B2 (en) 2004-04-30 2007-12-04 Microsoft Corporation Establishing computing trust with a staging area
US20050257244A1 (en) 2004-05-13 2005-11-17 Hewlett-Packard Development Company, L.P. Method and apparatus for role-based security policy management
US20050268325A1 (en) 2004-05-27 2005-12-01 Harumi Kuno Method and system for integrating policies across systems
US20060025984A1 (en) 2004-08-02 2006-02-02 Microsoft Corporation Automatic validation and calibration of transaction-based performance models
US20060048017A1 (en) 2004-08-30 2006-03-02 International Business Machines Corporation Techniques for health monitoring and control of application servers
US20070192769A1 (en) 2004-10-20 2007-08-16 Fujitsu Limited Program, method, and apparatus for managing applications
US7333000B2 (en) 2004-11-12 2008-02-19 Afco Systems Development, Inc. Tracking system and method for electrically powered equipment
US20060123040A1 (en) 2004-12-03 2006-06-08 International Business Machines Corporation Algorithm for automated enterprise deployments
US20060155708A1 (en) 2005-01-13 2006-07-13 Microsoft Corporation System and method for generating virtual networks
US20060161879A1 (en) 2005-01-18 2006-07-20 Microsoft Corporation Methods for managing standards
US20060161884A1 (en) 2005-01-18 2006-07-20 Microsoft Corporation Methods for managing capacity
US7624086B2 (en) 2005-03-04 2009-11-24 Maxsp Corporation Pre-install compliance system
US20060235664A1 (en) 2005-04-15 2006-10-19 Microsoft Corporation Model-based capacity planning
US20060232927A1 (en) 2005-04-15 2006-10-19 Microsoft Corporation Model-based system monitoring
US7350068B2 (en) 2005-04-22 2008-03-25 International Business Machines Corporation Server blade network boot method that minimizes required network bandwidth
US20070006177A1 (en) 2005-05-10 2007-01-04 International Business Machines Corporation Automatic generation of hybrid performance models
US7512942B2 (en) 2005-08-24 2009-03-31 International Business Machines Corporation Model-driven software deployment in an application server
US20070112847A1 (en) 2005-11-02 2007-05-17 Microsoft Corporation Modeling IT operations/policies

Non-Patent Citations (65)

* Cited by examiner, † Cited by third party
Title
"C.O.B.A.S. Centralized Out-Of-Band Authentication System," QT Wordtel Inc., Southeast Europe Cybersecurity Conference, Sophia, Bulgaria, Sep. 8-9, 2003.
"Enhanced IP Services for Cisco Networks," retrieved on Jun. 19, 2007, at <<http://proquest.safaribooksonline.com/1578701066>>, Sep. 23, 1999, 11 pages.
"Enhanced IP Services for Cisco Networks," retrieved on Jun. 19, 2007, at >, Sep. 23, 1999, 11 pages.
"Integrated Security Management", OpenPMF (Policy Management Framework), retrieved as early as Apr. 23, 2007 from <<http://www.objectsecurity.com/doc/openpmf-A4.pdf>>, 2 pages.
"Integrated Security Management", OpenPMF (Policy Management Framework), retrieved as early as Apr. 23, 2007 from >, 2 pages.
"Pretty Good Privacy PGP for Personal Privacy, Version 5.0 for Windows 95 Windows NT", Pretty Good Privacy Inc., 1997, 137.
"Remote Operating System Installation," retrieved on Feb. 13, 2009 at <<http://technet.microsoft.com/en-us/library/bb742501.aspx>>, Microsoft TechNet, Sep. 9, 1999, 1-28.
"Remote Operating System Installation," retrieved on Feb. 13, 2009 at >, Microsoft TechNet, Sep. 9, 1999, 1-28.
"The Age Changed by Information Network and System: The Internet Releasing Enterprises and Society A? The New Century created by an E Service and a Terabit Network Service: Disappearance of Enterprise Servers, Service Components Behind the Internet," Nikkei Internet Technology, Japan, Nikkei Business Publications, Inc., Dec. 22, 1999, No. 30, 76-81.
Araki, "Linux Security Diary, Use VLAN in Linux," Linux Japan, Itsutsubashi Research Co., Ltd., Nov. 1, 2008, 3(11), 110-113, (CSDB: National Academy Paper 200300158009).
Barrett et al., "Model driven distribution pattern design for dynamic web services compositions," ACM ICWE, 2006, 129-136.
Cardelli, L., "Type Systems," CRC Handbook of Computer Science and Engineering, 2nd Edition, Ch. 97, Wednesday, Feb. 25, 2004, 8:00pm CRC Press, http://research.microsoft.com/Users.Iuca/Papers/TypeSystems.pdf.
Chen, et al., "Performance Prediction of Component-based Application", Journal of Systems and Software, vol. 74, Issue 1, Jan. 2005, pp. 1-12.
Chen, et al., "Performance Prediction of Component-based Applications", Journal of Systems and Software, vol. 74 , Issue 1, Jan. 2005, pp. 1-12.
China Office Action from corresponding Chinese Patent Application No. 200410088250.0 dated Apr. 27, 2007, 3 pages.
Chunxiao et al., "Configure and Move the e-Commerce Business Model by Utilizing XML," Applications of Computer Systems, Feb. 28, 2002, No. 2, 8-11.
Chunxiao et al., "Using XML Schema to Configure Mobile E-Commerce Transaction Model," Applications of Computer Systems, Feb. 28, 2002, No. 2, 9 pages.
Chunxiao, et al., Configure and move the e-Commerce Business Model by Utilizing XML, Applications of Computer Systems, No. 2, p. 8-11.
Dekhil, et al., "Generalized Policy Model for Application and Service Management", Hewlett-Packard Laboratories, 1999, 3 pages.
Dolstra et al., "Imposing a memory management discipline on software deployment," IEEE ICSE, 2004, 1-10.
EPO Communication with Search Report dated Sep. 1, 2006, from counterpart EP Patent Application No. 04005431.4, 3 pages.
Frolund et al., "Design-Time Simulation of a Large-Scale, Distributed Object System" ACM, Oct. 1998, 8(4), 374-400.
Garschhammer, et al., "Towards Generic Service Management Concepts a Service Model Based Approach", IEEE/IFIP International Symposium, Integrated Network Management Proceedings, 2001,14 pages.
Harbour, et al., "MAST: An Open Environment for Modeling, Analysis, and Design of Real-Time Systems", 2001, pp. 1-16.
Hardwick, et al., "Modeling the Performance of E-Commerce Site", Journal of Computer Resource Management, 2002, 11 pages.
Heilala et al., "Modeling and simulation for customer driven manufacturing system design and operation planning", IEEE, 2007, 1853-1862.
Heinl et al., "A Comprehensive Approach to Flexibility in Workflow Management Systems," WACC '99, ACM, Feb. 1999, 79-88.
Howard et al., "Designing Secure Web-Based Applications for Microsoft Windows 2000", 2000.
IBM, "IBM Tivoli Workload Scheduler-Planning and Installation Guide", 2004, IBM, version 8.2, pp. i-xviii, 1-171. *
Iwasaki, H., "IP Troubles Q&A-The Prevention of Network Troubles and the Risk Management," Computer & Network LAN, Japan Ohmsha, Ltd., Jul. 14, 2000, 18(8), 29-39.
Kitjongthawonkul, S. et al., "Modeling Information Systems Using Objects, Agents, and Task-Based Problem Solving Adapters," Proc. 10th Australasian Conference on Information Systems, 1999, http://www.vuw.ac.nz/acis99/Papers/PaperKitjongthawonkul-077.pdf.
Kounev, "A Capacity Planning Methodology for Distributed E-Commerce Applications", Jan. 2, 2001, pp. 1-13.
Lee et al., "Community Services: A Toolkit for Rapid Deployment of Network Services," Proceedings of the IEEE International Conference on Cluster Computing, IEEE, 2002, 4 pages.
Levillain et al., "Switch-Based Server Load Balancing for Enterprises," Alcatel Telecommunications Review, 2002, No. 4, 298-302.
Lin et al., "User-driven Scheduling of Interactive Virtual Machines", Oct. 2004, IEEE, 8 pages. *
Liu et al., "Visualization in Network Topology Optimization", ACM, 1992, 50-56.
Mahon, "OpenView PolicyXpert: Heterogeneous Configuration and Control", OpenView Policy-Based Network Management, Feb. 1999, pp. 1-4.
Meader, P., "Build Distributed Apps a New Way," VSLive!ShowDaily, San Francisco, Mar. 25, 2004, http://www.ftponline.com/reports/vslivesf/2004/whitehorse2/.
Meader, P., "Model Apps More Effectively," VSLive!ShowDaily, San Francisco, Mar. 24, 2004, http://www.ftponline.com/reports/vslivesf/2004/whitehorse/.
Meli, "Measuring Change Requests to Support Effective Project Management Practices," Proc. of the ESCOM 2001, London, Apr. 2001, 25-34.
Menezes et al., "Handbook of Applied Cryptography," CRC Press, 1996, Chs. 8 & 12, 283-319 and 489-541.
Microsoft.com, "System Definition Model," retrieved at <<http://web.archive.org/web/20040405230803/www.microsoft.com/windowsserversystem/dsi/sdm.mspx>>, Published Dec. 15, 2003 and updated Mar. 31, 2004, 4 pages.
Microsoft.com, "System Definition Model," retrieved at >, Published Dec. 15, 2003 and updated Mar. 31, 2004, 4 pages.
Miyamoto, et al., "VLAN Management System of Large-scale Network," Journal of Information Processing Society of Japan, Dec. 15, 2000, 41(12), 3234-3244 (CSDB: National Academy Paper 200200108005).
Morimoto et al., "Compatability Testing for Windows Server 2003", Microsoft Windows Server 2003 Unleashed, Chapter 18, Section 1, Jun. 14, 2004, 2 pages.
Nerurkar, "Security Analysis and Design", Dr. Dobb's Journal, Nov. 2000, 50-56.
Nestor, "Security Modeling Using Hierarchical State Machines", IEEE, 1991, 110-119.
Norton, "Simalytic Hybrid Modeling Planning the Capacity of Client/Server Applications", Colorado Technical University, Aug. 24-29, 1997, pp. 1-7.
Office Action from the Patent Office of the State Intellectual Property Office of the People's Republic of China, Application No. 200410033027.7, mailed Feb. 2, 2007, 23 pages.
PCT International Search Report and Written Opinion for PCT Application No. PCT/US2006/038856, mailed Feb. 20, 2007, 9 pages.
Sapuntzakis et al., "Optimizing the Migration of Virtual Computers", 2002, USENIX Association, pp. 377-390. *
Selic, "A Generic Framework for Modeling Resources with UML", IEEE, vol. 33, Issue 6, Jun. 2000, pp. 64-69.
Shi et al., "An Effective Model for Composition of Secure Systems", J. of Systems and Software, 1998, 233-244.
Somers, "Hybrid: Unifying Centralised and Distributed Network Management using Intelligent Agents" IEEE Network Operations and Management Symposium, Kyoto, Apr. 15-19, 1996, 34-43.
Sultan et al., "Migratory TCP: Connection Migration for Service Continuity in the Internet" Proceedings 22nd Intl. Conference on Distributed Computing Systems; Jul. 2002, 469-470.
Tofts, C., "HOLOS-A Stimulation and Multi Mathematical Modelling Tool," Hewlett-Packard Company, 2001, http://www.hpf.hp.com/techreports/2001/HPL-2001-276.pdf.
Translated the Japanese Office Action for Japanese Patent Application No. 2004-061396, mailed on Jun. 24, 2008, 27 pages.
Translated the Japanese Office Action mailed Dec. 14, 2007 for the Japanese Patent Application No. 2001-326848, a counterpart foreign application of US Patent No. 6,886,038.
Translated the Japanese Office Action mailed Jan. 26, 2007 for the Japanese Patent Application No. 2001-326848, a counterpart foreign application of US Patent No. 6,886,038.
U.S. Appl. No. 11/427,041, filed Jun. 28, 2006, Vinberg et al.
W3C: "Resource Description Framework (RDF), Concepts and Abstract Syntax", http://www.w3.org/TR2004/REC-rdf-concepts-20040210, Feb. 10, 2004, XP002570908.
Wang, W-C, "How a SCVP client authenticates the SCVP server", Online! Sep. 12, 2003, Retrieved from the Internet: URL: http://www.imc.org/ietf-pkix/old-archive-03/msg01323.html].
Yamasaki et al., "Model based resources selection for efficient virtual cluster deployment," ACM VTDC, 2007, 1-7.
Yuhui, "e-Commerce Based on ERP for Enterprize by Utilizing DNA and XML," Computer Engineering, Jun. 2001, 27(6), 165, 166, 182.
Yuhui, e-Commerce Based on ERP for Enterprize by Utilizing DNA and XML, Computer Engineering, vol. 27, No. 6, p. 165,166,182.

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811368B2 (en) * 2005-06-29 2017-11-07 Microsoft Technology Licensing, Llc Model-based virtual system provisioning
US20160077862A1 (en) * 2005-06-29 2016-03-17 Microsoft Technology Licensing, Llc Model-based virtual system provisioning
US9317270B2 (en) 2005-06-29 2016-04-19 Microsoft Technology Licensing, Llc Model-based virtual system provisioning
US10540159B2 (en) * 2005-06-29 2020-01-21 Microsoft Technology Licensing, Llc Model-based virtual system provisioning
US10897430B2 (en) 2006-10-20 2021-01-19 Vmware, Inc. Virtual computing services deployment network
US10110512B2 (en) * 2006-10-20 2018-10-23 Vmware, Inc. Virtual computing services deployment network
US11671380B2 (en) 2006-10-20 2023-06-06 Vmware, Inc. Virtual computing services deployment network
US20130212282A1 (en) * 2006-10-20 2013-08-15 Desktone, Inc. Virtual Computing Services Deployment Network
US8863113B1 (en) * 2007-07-10 2014-10-14 Parallels IP Holdings GmbH Method and system for unattended installation of guest operating system
US20090044170A1 (en) * 2007-08-10 2009-02-12 Microsoft Corporation Automated Application Modeling for Application Virtualization
US8667482B2 (en) * 2007-08-10 2014-03-04 Microsoft Corporation Automated application modeling for application virtualization
US9070086B2 (en) * 2008-05-12 2015-06-30 Microsoft Technology Licensing, Llc Data driven component reputation
US20090281819A1 (en) * 2008-05-12 2009-11-12 Microsoft Corporation Data driven component reputation
US20130290951A1 (en) * 2008-09-24 2013-10-31 Matthew L. Domsch Virtual Machine Manufacturing Methods and Media
US8943203B1 (en) * 2009-07-10 2015-01-27 Netapp, Inc. System and method for storage and deployment of virtual machines in a virtual server environment
US9563469B2 (en) 2009-07-10 2017-02-07 Netapp, Inc. System and method for storage and deployment of virtual machines in a virtual server environment
US9280336B2 (en) 2011-06-30 2016-03-08 International Business Machines Corporation Virtual machine disk image installation
US9875133B2 (en) 2011-06-30 2018-01-23 International Business Machines Corporation Virtual machine disk image installation
US9535684B2 (en) * 2011-08-26 2017-01-03 Vmware, Inc. Management of software updates in a virtualized environment of a datacenter using dependency relationships
US10547667B1 (en) * 2011-08-30 2020-01-28 CSC Holdings, LLC Heterogeneous cloud processing utilizing consumer devices
US20140143011A1 (en) * 2012-11-16 2014-05-22 Dell Products L.P. System and method for application-migration assessment
US20150026667A1 (en) * 2013-07-19 2015-01-22 Cisco Technology, Inc. Network Development and Testing as a Cloud Service
US9838294B2 (en) 2013-07-19 2017-12-05 Cisco Technology, Inc. Network development and testing as a cloud service
US9183121B2 (en) * 2013-07-19 2015-11-10 Cisco Technology, Inc. Network development and testing as a cloud service
US9800650B2 (en) 2014-03-10 2017-10-24 Vmware, Inc. Resource management for multiple desktop configurations for supporting virtual desktops of different user classes
US10298666B2 (en) * 2014-03-10 2019-05-21 Vmware, Inc. Resource management for multiple desktop configurations for supporting virtual desktops of different user classes
US9705923B2 (en) 2014-09-02 2017-07-11 Symantec Corporation Method and apparatus for automating security provisioning of workloads
US9959157B1 (en) * 2014-12-02 2018-05-01 Amazon Technologies, Inc. Computing instance migration
US10255092B2 (en) * 2016-02-09 2019-04-09 Airwatch Llc Managed virtual machine deployment
US10616311B2 (en) 2016-06-03 2020-04-07 At&T Intellectual Property I, L.P. Facilitating management of communications systems
US11368518B2 (en) 2016-06-03 2022-06-21 At&T Intellectual Property I, L.P. Facilitating management of communications systems
US10761827B2 (en) * 2016-11-30 2020-09-01 Vmware, Inc. WIN32 software distribution architecture
US20180150288A1 (en) * 2016-11-30 2018-05-31 Vmware, Inc. Win32 software distribution architecture
US20190384634A1 (en) * 2018-06-14 2019-12-19 International Business Machines Corporation Cloud and datacenter migration wave planning using analytics and flow modeling
US10936361B2 (en) * 2018-06-14 2021-03-02 International Business Machines Corporation Cloud and datacenter migration wave planning using analytics and flow modeling

Also Published As

Publication number Publication date
US9811368B2 (en) 2017-11-07
US20140033197A1 (en) 2014-01-30
US20070006218A1 (en) 2007-01-04
US20160077862A1 (en) 2016-03-17
US9317270B2 (en) 2016-04-19
US10540159B2 (en) 2020-01-21
US20180095779A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US10540159B2 (en) Model-based virtual system provisioning
US7890951B2 (en) Model-based provisioning of test environments
US7689676B2 (en) Model-based policy application
US8108855B2 (en) Method and apparatus for deploying a set of virtual software resource templates to a set of nodes
US8327350B2 (en) Virtual resource templates
JP5982366B2 (en) Systems and methods for private cloud computing
US8910157B2 (en) Optimization of virtual appliance deployment
US9223568B2 (en) Designing and cross-configuring software
US8612976B2 (en) Virtual parts having configuration points and virtual ports for virtual solution composition and deployment
RU2429529C2 (en) Dynamic configuration, allocation and deployment of computer systems
US8584121B2 (en) Using a score-based template to provide a virtual machine
US20050262501A1 (en) Software distribution method and system supporting configuration management
US20060235664A1 (en) Model-based capacity planning
US20070005320A1 (en) Model-based configuration management
US8918783B2 (en) Managing virtual computers simultaneously with static and dynamic dependencies
US20180205600A1 (en) Closed-loop infrastructure orchestration templates
US11113186B1 (en) Testing and publishing of resource handlers in a cloud environment
US11435996B2 (en) Managing lifecycle of solutions in virtualization software installed in a cluster of hosts
US11435997B2 (en) Desired state model for managing lifecycle of virtualization software installed in heterogeneous cluster of hosts

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINBERG, ANDERS B.;FRIES, ROBERT M.;GREALISH, KEVIN;AND OTHERS;SIGNING DATES FROM 20021012 TO 20051018;REEL/FRAME:016918/0573

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINBERG, ANDERS B.;FRIES, ROBERT M.;GREALISH, KEVIN;AND OTHERS;SIGNING DATES FROM 20050805 TO 20051018;REEL/FRAME:016918/0548

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINBERG, ANDERS B.;FRIES, ROBERT M.;GREALISH, KEVIN;AND OTHERS;REEL/FRAME:016918/0548;SIGNING DATES FROM 20050805 TO 20051018

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VINBERG, ANDERS B.;FRIES, ROBERT M.;GREALISH, KEVIN;AND OTHERS;REEL/FRAME:016918/0573;SIGNING DATES FROM 20021012 TO 20051018

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034543/0001

Effective date: 20141014

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: SERVICENOW, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT TECHNOLOGY LICENSING, LLC;REEL/FRAME:047681/0916

Effective date: 20181115

AS Assignment

Owner name: SERVICENOW, INC., CALIFORNIA

Free format text: CORRECTIVE BY NULLIFICATION TO CORRECT INCORRECTLY RECORDED APPLICATION NUMBERS AT REEL 047681 FRAME 0916. ASSIGNOR(S) HEREBY CONFIRMS THE TABLE 2 ATTACHMENT AS NOT TO BE RECORDED;ASSIGNOR:MICROSOFT TECHNOLOGY LICENSING, LLC;REEL/FRAME:050117/0259

Effective date: 20181115

AS Assignment

Owner name: SERVICENOW, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NULLIFICATION TO CORRECT BY REMOVAL PREVIOUSLY RECORDED AT REEL: 050117 FRAME: 0259. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:MICROSOFT TECHNOLOGY LICENSING, LLC;REEL/FRAME:050442/0064

Effective date: 20181115

Owner name: SERVICENOW, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT CORRECTION PREVIOUSLY RECORDED ON REEL 047681 FRAME 0916. ASSIGNOR(S) HEREBY CONFIRMS THE REMOVAL OF MULTIPLE APPLICATIONS FROM ASSIGNMENT INADVERTENTLY RECORDED.;ASSIGNOR:MICROSOFT TECHNOLOGY LICENSING, LLC;REEL/FRAME:050467/0347

Effective date: 20181115

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8