US8580382B2 - Coated metal pigment, method for production of the same, and coating composition containing the same - Google Patents

Coated metal pigment, method for production of the same, and coating composition containing the same Download PDF

Info

Publication number
US8580382B2
US8580382B2 US11/922,851 US92285106A US8580382B2 US 8580382 B2 US8580382 B2 US 8580382B2 US 92285106 A US92285106 A US 92285106A US 8580382 B2 US8580382 B2 US 8580382B2
Authority
US
United States
Prior art keywords
metal pigment
coated metal
layer
adhesion layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/922,851
Other versions
US20090117281A1 (en
Inventor
Takayuki Sato
Taro Morimitsu
Shunichi Setoguchi
Yoshiki Hashizume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Assigned to TOYO ALUMINIUM KABUSHIKI KAISHA reassignment TOYO ALUMINIUM KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HASHIZUME, YOSHIKI, MORIMITSU, TARO, SATO, TAKAYUKI, SETOGUCHI, SHUNICHI
Publication of US20090117281A1 publication Critical patent/US20090117281A1/en
Application granted granted Critical
Publication of US8580382B2 publication Critical patent/US8580382B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • C09C1/648Aluminium treated with inorganic and organic, e.g. polymeric, compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to coated metal pigments which can be contained in, for example, metallic coatings to be used for coating metals or plastics, to methods for the production of the same, and to coating compositions containing the same.
  • coated metal pigments which show excellent coating storage stability, i.e., excellent water resistance when being used as an aqueous coating and also show excellent chemical resistance when coating films are formed therefrom, to methods for the production of the same, and to coating compositions containing the same.
  • Patent document 4 Japanese Patent Laying-Open No. 2003-41150 (Patent document 5), Japanese Patent Laying-Open No. 2004-131542 (Patent document 6), and Japanese Patent Laying-Open No. 2004-124069 (Patent document 7)).
  • the present invention intends to solve the above-mentioned problems and provide a coated metal pigment which can satisfy both the coating stability in use as an aqueous coating, namely, water resistance and the chemical resistance of a coating film formed from the aqueous coating at practically satisfactory levels, a method for the production of the same, and a coating composition containing the same.
  • the present invention relates to a coated metal pigment including a metal pigment and a composite coating layer, wherein the composite coating layer includes an adhesion layer which is disposed on the surface of the metal pigment either in contact with the metal pigment or at an interposition of another layer and contains polysiloxane and/or silica, and a resin layer which is disposed on the surface of the adhesion layer either in contact with the adhesion layer or at an interposition of another layer.
  • a layer including an oxide or a hydrate containing at least one sort selected from Mo, P and Al is preferably further formed between the metal pigment and the adhesion layer.
  • the resin layer in the coated metal pigment of the present invention is preferably a copolymer obtained by copolymerization of at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities, and a polymerizable monomer having a benzene nucleus.
  • the another layer disposed on the surface of the adhesion layer in the coated metal pigment of the present invention is preferably a coupling agent layer which includes a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group.
  • the present invention relates also to a method of coated metal pigment production for obtaining the coated metal pigment mentioned above, including: an adhesion layer formation step which includes mixing the metal pigment with a solvent containing an alkoxysilane, water and a hydrolysis catalyst and forming the adhesion layer on the surface of the metal pigment through hydrolysis and condensation of the alkoxysilane; a hydrophobization step which includes hydrophobizing the surface of the adhesion layer; and a resin layer formation step which includes dispersing the hydrophobized metal pigment in a nonpolar solvent containing a polymerization initiator and at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities and a polymerizable monomer having a benzene nucleus to deposit the resin layer including a copolymer of the monomers on the surface of the metal pigment.
  • the ratio of the average particle diameter (A) of the coated metal pigment to the average particle diameter (B) of the metal pigment before the adhesion layer formation step, (A)/(B), is not less than 1.0 and not more than 1.1.
  • the production method of the present invention preferably further has a step of forming, before the adhesion layer formation step, a layer including an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment.
  • the present invention relates also to the coated metal pigment mentioned above and a coating composition containing the coated metal pigment obtained by the method mentioned above and a binder.
  • the coated metal pigment of the present invention makes it possible to satisfy both the storage stability of an aqueous metallic coating for use in coating metals, plastics, and the like and the chemical resistance of a coating film. Moreover, the coated metal pigment of the present invention is produced also as a copper alloy pigment, a silver-coated glass flake, and the like, which can be prevented from discoloring in a coating and in a coating film.
  • a layer containing polysiloxane and/or silica is formed as an adhesion layer in contact with a metal pigment or at an interposition of another layer and further a resin layer is formed on the surface of the adhesion layer in contact with the adhesion layer or at an interposition of another layer.
  • the material of the metal pigment used in the present invention include aluminum and its alloy, iron and its alloy (for example, stainless steel), copper and its alloy (for example, bronze), and materials prepared by coating metals, such as Ag, Cu, Ni, Ti and Fe, or an alloy thereof on glass flakes by plating, PVD or the like.
  • the particle diameter and shape of a metal pigment are not particularly restricted, but those having an average major axis of from 1 to 100 ⁇ m and a thickness of from 0.01 to 5 ⁇ m are preferred.
  • the adhesion layer of the present invention is a layer containing polysiloxane and/or silica. It is preferable that polysiloxane or silica is the principal component of the adhesion layer, in other words, that 50 mass % or more of the adhesion layer is accounted for by polysiloxane or silica. Polysiloxane can be formed, for example, by hydrolysis and condensation of an alkoxysilane.
  • alkoxysilane examples include tetraethoxysilane, tetramethoxysilane, tetraisopropoxysilane and condensates thereof.
  • the reaction shown below is caused to proceed by feeding a metal pigment and the alkoxysilane into a solvent, such as methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether or propylene glycol monopropyl ether, to hydrolyze and then condense the alkoxysilane, Al+Si(OR) 4 +2H 2 O ⁇ Al/SiO 2 +4ROH and as a result, a coating film containing polysiloxane or silica as a principal component is formed on the surface of the metal pigment.
  • a coating film containing polysiloxane or silica as a principal component is formed on the surface of the metal pigment.
  • the thus produced coating film adheres
  • the thickness of the adhesion layer of the present invention is preferably about 5 to 50 nm.
  • the thickness of the adhesion layer is 5 nm or more, good water resistance is imparted in use of the coated metal pigment of the present invention as an aqueous coating; when it is 50 nm or less, the gloss of the metal pigment is not affected and good design is obtained.
  • a resin layer is formed on the surface of the adhesion layer in contact with the adhesion layer or at an interposition of another layer.
  • the resin layer has an effect of improving the chemical resistance of a coating film because it can bond firmly to the coating resin, which is a constituent of the coating film.
  • a resin substantially insoluble in organic solvents and water is preferably used.
  • a resin insoluble both in the organic solvent which can be used as a solvent in the preparation of a coating containing the coated metal pigment of the present invention and in water.
  • organic solvents examples include alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, isoamyl alcohol, n-hexyl alcohol, 2-ethylhexyl alcohol, diacetone alcohol and ethylene glycol; esters such as ethyl acetate, n-butyl acetate, isoamyl acetate and cellosolve acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; polyhydric alcohol ethers such as ethylcellosolve, butylcellosolve, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether and butylcarbitol; and hydrocarbon
  • a resin substantially insoluble in at least one of these organic solvents and in water is preferable because a resin layer can exist in a coating stably for a long period of time and chemical resistance achieved when being formed into a coating film is maintained for a long time.
  • the fact that the resin constituting the resin layer is substantially insoluble in an organic solvent and in water can be made sure on the basis of the fact that, in both cases where a coated metal pigment is dispersed in an organic solvent and in water, followed by being left at rest at 40° C. for 10 days, the amount of the resin eluted from the coated metal pigment is not more than 5 g per 100 g of the resin layer of the coated metal pigment.
  • the resin constituting the resin layer of the present invention examples include acrylic ester copolymers, polyester resins, epoxy resins, polyurethane resins, polyethylene resins and polystyrene resins. Acrylic ester copolymers having a three-dimensional cross-linked structure are particularly preferred.
  • the resin layer is formed so that the amount of the resin layer is within the range of from 1 to 100 parts by mass, preferably from 5 to 50 parts by mass, per 100 parts by mass of the metal pigment. When the amount of the resin layer is 1 part by mass or more, good chemical resistance is obtained; when it is 100 parts by mass or less, the gloss of the metal pigment is hard to be affected.
  • the coating layer of the present invention is a composite coating layer with at least a double structure including an adhesion layer and a resin layer
  • both the layers do not mutually inhibit their actions and the adhesion between the adhesion layer and the resin layer is good. It therefore is possible to obtain a coated metal pigment which satisfies both water resistance in an aqueous coating and chemical resistance after the formation of a coating film by virtue of a synergistic effect of the adhesion layer and the resin layer.
  • a coupling agent layer composed of a coupling agent such as a silane coupling agent or a titanium coupling agent
  • a fat layer composed of a constitution of fatty acid/aliphatic amine/aliphatic alcohol/phosphoric ester or the like
  • a polysiloxane layer having a residual alkoxyl group
  • a particularly preferable example of the another layer formed between the adhesion layer and the resin layer is a coupling agent layer composed of a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group.
  • a coupling agent layer composed of a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group.
  • a film composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al is formed between the metal pigment and the adhesion layer.
  • Examples of a compound containing Mo include peroxo-polymolybdic acid represented by a composition formula Mo x O y .mH 2 O 2 .nH 2 O (x is 1 or 2, y is an integer from 2 to 5, m and n denote arbitrary positive numbers), ammonium molybdate and phosphomolybdic acid.
  • Examples of a compound containing P include orthophosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid and metaphosphoric acid.
  • Examples of a compound containing Al include aluminum nitrate.
  • a boehmite coating may be formed on the surface of the aluminum pigment by dispersing the aluminum pigment in a solution containing ammonia, amine, oxalic acid, or the like and water and treating the solution.
  • the content of Mo, P and Al in the coating film formed on the surface of the metal pigment is preferably from 0.01 to 5.0 parts by mass, and more preferably from 0.05 to 2.0 parts by mass per 100 parts by mass of the metal pigment.
  • the content of Mo, P and Al is desirably varied depending on the specific surface area of the metal pigment to be treated. It is preferable that the content is made large for a metal pigment with a large specific surface area and that the content is made small for a metal pigment with a small specific surface area.
  • the resin layer in the coated metal pigment of the present invention is preferably a copolymer obtained by copolymerization of at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities, and a polymerizable monomer having a benzene nucleus because it can increase the chemical resistance of a coating film.
  • the resin layer of the present invention is a copolymer obtained by copolymerization of three kinds of the above-mentioned monomers can be confirmed, for example, by the following methods.
  • Another exemplary method is one in which quality determination of fragments is made by pyrolysis gas chromatography.
  • a monomer component having a phosphoric acid group can be specified by combined use of the IR analysis and a method of analyzing the content of phosphorus in the sample by ICP emission spectroscopic analysis.
  • Examples of reactive monomers having a carboxyl group and/or a phosphoric acid group include acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid, 2-methacryloyloxyethyl acid phosphate, di-2-methacryloyloxyethyl acid phosphate, tri-2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, di-2-acryloyloxyethyl acid phosphate, tri-2-acryloyloxyethyl acid phosphate, diphenyl-2-methacryloyloxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl acid phosphate, dibutyl-2-methacryloyloxyethyl acid phosphate, dibutyl-2-acryloyloxyethyl acid phosphate, dioctyl-2-methacryloy
  • a reactive monomer having a carboxyl group and/or a phosphoric acid group can result in improvement in chemical resistance or adhesion to an object to be coated when forming a coating film because the reactive monomer has an action of improving the adhesion to the adhesion layer of the present invention.
  • the amount of the reactive monomer having a carboxyl group and/or a phosphoric acid group is preferably adjusted to 0.1 to 10 mass % of the entire portion of the monomer. When the amount of the reactive monomer is adjusted within this range, a coating film having good chemical resistance is obtained.
  • the amount of the reactive monomer is more preferably set within the range of from 0.5 to 5 mass %.
  • polyfunctional acrylic ester monomers with three or more functionalities include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetramethylolpropane triacrylate, tetramethylolpropane tetraacrylate, tetramethylolpropane trimethacrylate, tetramethylolpropane tetramethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate and ditrimethylolpropane tetraacrylate. These may be used singly or in combination of two or more species.
  • a polyfunctional acrylic ester monomer with three or more functionalities contributes to three-dimensional crosslinking of a resin
  • a resin layer substantially insoluble in an organic solvent and water can be formed when such a polyfunctional acrylic ester monomer is used.
  • the amount of the polyfunctional acrylic ester monomer is preferably adjusted within the range of from 30 to 90 mass % of the entire portion of the monomer. In such a case, good chemical resistance is imparted to a coating film.
  • the amount of the polyfunctional acrylic ester monomer is more preferably adjusted within the range of from 40 to 80 mass %.
  • polymerizable monomers having a benzene nucleus include styrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, phenyl vinyl ketone, phenyl vinyl ether, divinylbenzene monooxide phenoxyethyl acrylate, phenoxy-polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-acryloyloxyethyl-2-hydroxyethyl phthalic acid and 2-acryloyloxyethylhexahydrophthalic acid. These may be used singly or in combination of two or more species.
  • the amount of the polymerizable monomer having a benzene nucleus is preferably adjusted within the range of from 5 to 50 mass % of the entire portion of the monomer. In such a case, coating films will have good chemical resistance.
  • the amount of the polymerizable monomer having a benzene nucleus is more preferably set within the range of from 10 to 30 mass %.
  • the coated metal pigment of the present invention can be obtained, for example, by a production method including an adhesion layer formation step which includes mixing the metal pigment with a solvent containing an alkoxysilane, water and a hydrolysis catalyst and forming the adhesion layer on the surface of the metal pigment through hydrolysis and condensation of the alkoxysilane; a hydrophobization step which includes hydrophobizing the surface of the metal pigment on which the adhesion layer has been formed; and a resin layer formation step which includes dispersing the hydrophobized metal pigment in a nonpolar solvent containing a polymerization initiator and at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities and a polymerizable monomer having a benzene nucleus to deposit the resin layer including a copolymer of the monomers on the surface of the metal pigment.
  • an adhesion layer formation step which includes mixing the metal pigment with
  • the production method mentioned above may further has a preliminary step of forming, before the above-mentioned adhesion layer formation step, a layer composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment.
  • a layer composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment.
  • the method of forming a film composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment is not particularly restricted. Examples thereof include a method including stirring or kneading a metal pigment and a solution containing a compound containing at least one sort selected from Mo, P and Al in a slurry state or in a paste state.
  • an adhesion layer containing polysiloxane and/or silica is formed on the surface of a metal pigment or, when the preliminary step is provided, on the surface of a metal pigment on which a layer composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al.
  • a method of forming an adhesion layer a method is preferably used in which an alkoxysilane and water are added to a solution in which a metal pigment has been dispersed and the alkoxysilane is hydrolyzed and condensed by adjusting the pH value of the solution with a hydrolysis catalyst, thereby depositing polysiloxane and/or silica on the surface of the metal pigment.
  • a metal pigment is dispersed in 100 parts by mass of a treatment solvent.
  • the pH value is adjusted with a hydrolysis catalyst and an alkoxysilane is added while the temperature is kept at 20 to 90° C. At this time, the alkoxysilane may be added either slowly or all at once.
  • the treatment time is preferably from 1 to 48 hours, and more preferably from 3 to 24 hours. Since the pH value of the solution changes during the treatment, the pH value is adjusted by occasional addition of a hydrolysis catalyst.
  • solid-liquid separation with a filter is effected and then, as demanded, heating treatment at 100° C. to 500° C. is effected.
  • the above-mentioned preliminary step and the adhesion layer formation step may be carried out continuously in the same treatment solvent.
  • hydrophilic solvents are preferably used and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether and acetone. These may be used singly or in combination of two or more species. It is preferable that water enough for hydrolyzing an alkoxysilane is incorporated in the treatment solvent.
  • preferable examples of basic catalysts include monoethanolamine, diethanolamine, triethanolamine, ammonia, ethylenediamine, tert-butylamine, ⁇ -aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropylmethyldimethoxysilane, urea, sodium silicate and sodium hydroxide;
  • acidic catalysts include oxalic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid and phosphonic acid. These basic catalysts or the acidic catalysts may be used solely or in combination of two or more species.
  • the pH value of the solution under treatment is preferably adjusted within a range of from 7 to 11, more preferably from 7.5 to 10 in the case of using an alkaline catalyst and within a range of from 1.5 to 4, more preferably from 2 to 3 in the case of using an acid catalyst.
  • a basic catalyst when used, the rate of adhesion layer formation is higher and the productivity is better.
  • a dispersing agent may be added in order to prevent aggregation of the metal pigment.
  • a dispersing agent nonionic surfactants, anionic surfactants, cationic surfactants, polycarboxylic acid-based dispersing agents, polymer dispersing agents, and the like are preferred.
  • a coated metal pigment excellent in chemical resistance can be obtained.
  • a coated metal pigment having an average particle diameter such that the difference between the average particle diameter of the metal pigment as the raw material and that of the coated metal pigment is not greater than 2 ⁇ m is preferred from the viewpoint of hiding ability and chemical resistance.
  • the method of hydrophobizing the surface of an adhesion layer is not particularly restricted.
  • Preferably used are, for example, a method in which a silane coupling agent or a silylation agent having a hydrophobic group is added to a solution after the adhesion layer formation step, and a method in which a silane coupling agent or a silylation agent having a hydrophobic group is added together with water and a hydrolysis catalyst under kneading to a metal pigment prepared through solid-liquid separation after the adhesion layer formation step and conversion into a paste.
  • a coupling agent layer composed of a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group is formed on the surface of the adhesion layer.
  • the surface of the adhesion layer comes to have many hydrophobic groups in a silane coupling agent or a silylation agent and the surface of the adhesion layer is hydrophobized.
  • a hydrophobic group in a silane coupling agent or a silylation agent serves to promote uniform formation of a resin layer to be formed later and also serves to improve the adhesion between an adhesion layer and a resin layer.
  • a resin layer formed later will be in a state such that it easily adheres to the surface of the adhesion layer when depositing on the surface of a metal pigment through polymerization, and it becomes possible to form a resin layer more uniformly and the adhesion between the adhesion layer and the resin layer will be improved in comparison to the case of failing to hydrophobize the surface of the adhesion layer.
  • a silane coupling agent or a silylation agent include methyltriethoxysilane, methyltrimethoxysilane, methyldiethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, octadecyltriethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, nonylphenyltriethoxysilane, hexamethyldisilazane and N,O-bis(trimethylsilyl)acetamide.
  • a silane coupling agent or a silylation agent having the hydrophobic group(s) including 6 or more, more preferably 8 or more carbon atoms is preferred.
  • the hydrophobic group is easier to adhere to a resin layer which will be formed later and it becomes possible to form a resin layer more uniformly.
  • a method of forming a resin layer a method is preferably used in which a metal pigment resulting from the adhesion layer formation step is subjected to solid-liquid separation, followed, as demanded, by washing and filtering with a nonpolar solvent, the metal pigment is then dispersed in a nonpolar solvent, a polymerizable monomer and a polymerization initiator are then added and the monomer is polymerized under stirring and heating, and a resin which has become insoluble in the solvent is deposited on the surface of the metal pigment.
  • the coating efficiency of a resin layer is higher and a thicker resin layer can be formed in comparison to, for example, a method in which polymerizable double bonds are introduced in a polysiloxane-coated surface and then resin coating is applied via covalent bonds.
  • the polymerization reaction is preferably effected in a non-oxidizing atmosphere, for example, in an inert gas such as nitrogen and argon because if the atmosphere is an oxidizing atmosphere, radicals which contribute to the polymerization reaction tend to disappear easily and the polymerization efficiency of the monomer tends to decrease.
  • the reaction temperature is properly from 50 to 150° C., and more preferably from 70 to 100° C. in view of the working environment and safety because if it is too low, the polymerization efficiency tends to decrease and if it is too high, the solvent evaporates easily.
  • nonpolar solvent a hydrocarbon solvent is particularly preferred.
  • preferable nonpolar solvents include mineral spirit, petroleum benzine, solvent naphtha, isoparaffin, normal paraffin, benzene, toluene, xylene, cyclohexane, hexane, heptane, octane, chlorobenzene, trichlorobenzene, perchloroethylene and trichloroethylene. These may be used singly or in combination of two or more species.
  • the deposition efficiency of a resin is good and therefore it is possible to coat the surface of a metal pigment with a sufficient amount of a resin.
  • polar solvents such as ketones, esters and alcohols may be mixed in an amount not more than 30 mass %.
  • the reactive monomer having a carboxyl group and/or a phosphoric acid group the polyfunctional acrylic ester monomer with three or more functionalities and the polymerizable monomer having a benzene nucleus, those previously mentioned may be used.
  • peroxides such as benzoyl peroxide, lauroyl peroxide, isobutyl peroxide and methyl ethyl ketone peroxide, azo compounds such as azobisisobutyronitrile, and the like can suitably be used.
  • the slurry is forced to pass through a filter, thereby being subjected to solid-liquid separation to yield a coated metal pigment in paste form having an appropriate solid content.
  • the coated metal pigment in paste form may be imparted dispersibility in water and the like through addition of a dispersing agent or a surfactant. Affinity to an aqueous coating may also be imparted through replacement of the nonpolar solvent contained in the coated metal pigment in paste form by a hydrophilic solvent.
  • Examples of a dispersing agent and a surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkylamine, polyoxyethylene alkylphosphoric acid, metal soaps and polycarboxylic acid-based dispersing agents.
  • hydrophilic solvents examples include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether and acetone.
  • the average particle diameter of the metal pigment after the surface treatment tends to become larger through partial generation of aggregated particles.
  • the ratio of the average particle diameter (A) of the coated metal pigment to the average particle diameter (B) of the metal pigment before the adhesion layer formation step, (A)/(B) is adjusted to not less than 1.0 and not more than 1.1. Since the adhesion layer is formed on the surface of the metal pigment through the adhesion layer formation step, the above-mentioned ratio (A)/(B) is, by nature, not less than 1.0.
  • the ratio (A)/(B) is not more than 1.1, even in observation of the coated metal pigment by an electron microscope, a state in which a superfine powder up to 1 ⁇ m is adhered to the surface of metal pigment flakes is recognized, but a state in which particles of the coated metal pigment are united is not recognized. This means that almost no aggregation of the coated metal pigment has occurred.
  • a coating film is produced from a coated metal pigment whose (A)/(B) ratio is adjusted to not more than 1.1, the hiding ability and the chemical resistance become particularly satisfactory.
  • the above-mentioned average particle diameter (A) and average particle diameter (B) can be measured, for example, by laser diffractometry.
  • the coated metal pigment of the present invention can be converted into a coating composition in combination with a binder.
  • the content of the coated metal pigment is adjusted within the range of from 0.1 to 50 parts by mass, preferably from 1 to 30 parts by mass, per 100 parts by mass of the binder.
  • the content of the coated metal pigment is 0.1 parts by mass or more, a desired design can be obtained well; and when it is 50 parts by mass or less, a coating film has good image clarity.
  • the binder to be incorporated in the coating composition of the present invention is not particularly restricted, and examples thereof include thermosetting acrylic resin/melamine resin, thermosetting acrylic resin/CAB (cellulose acetate butyrate)/melamine resin, thermosetting polyester (alkyd) resin/melamine resin, thermosetting polyester (alkyd)/CAB/melamine resin, isocyanate-curing urethane resin/normal temperature curable acrylic resin and water-dilution acrylic emulsion/melamine resin.
  • an appropriate solvent may be used.
  • water is preferred as a solvent
  • organic solvents such as alcohols, glycols, ketones, esters, ethers and hydrocarbons, may also be used.
  • additives such as pigment dispersants, defoamers, antisettling agents and curing catalysts, and other coloring pigments such as organic coloring pigments, inorganic coloring pigments, pearl mica, alumina flakes, lamellar iron oxide and silica flakes may be incorporated.
  • the coated metal pigment of the present invention is used particularly suitably for normal temperature curable water-based coatings.
  • Such normal temperature curable water-based coatings may be not only of one-component type, but also of two or more-component combination type. Moreover, one accompanied by a reaction is also available.
  • the emulsion or water-soluble binder used for normal temperature curable water-based coatings various polymers can be used as natural or synthetic polymers, such as acrylic polymers, alkyd polymers, polyester polymers, urethane polymers, vinyl acetate polymers and silicon polymers, or oligomers, prepolymers, and the like.
  • IPA isopropyl alcohol
  • a solution obtained by adding 0.5 g of a molybdenum metal powder in small portions to 10 g of a hydrogen peroxide solution containing 30 mass % of hydrogen peroxide was dissolved.
  • 153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %, average particle diameter: 17.0 ⁇ m) as a metal pigment, and 0.6 g of a dispersing agent were added, followed by stirring and mixing at 50° C. for 1 hour (preliminary step).
  • the pH value of the slurry obtained above was adjusted to 8.5 by adding 30 g of water and monoethanolamine to the slurry.
  • TEOS tetraethoxysilane
  • Amount ( g ) of silica (amount ( g ) of Si in mixed acid solution ⁇ 60/28+amount ( g ) of Si in insoluble component ⁇ 60/28)/(amount ( g ) of coated aluminum pigment ⁇ amount ( g ) of Si in mixed acid solution ⁇ 60/28 ⁇ amount ( g ) of insoluble component) ⁇ 100 ( g )
  • Amount ( g ) of resin (amount ( g ) of insoluble component ⁇ amount ( g ) of Si in insoluble component ⁇ 60/28)/(amount ( g ) of coated aluminum pigment ⁇ amount ( g ) of Si in mixed acid solution ⁇ 60/28 ⁇ amount ( g ) of insoluble component) ⁇ 100 ( g )
  • the amounts of silica and the resin relative to 100 g of Al in the aluminum pigment were calculated.
  • the amount of silica was 7 g; the amount of the resin was 10.5 g.
  • orthophosphoric acid 0.5 g was dissolved in 600 g of IPA.
  • the pH value of the slurry obtained above was adjusted to 8.5 by adding 30 g of water and aqueous ammonia to the slurry.
  • the coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment), the amount of silica was 7.2 g (per 100 g of aluminum), and the amount of the resin was 10.8 g (per 100 g of aluminum).
  • the pH value of the slurry obtained above was adjusted to 8.5 by adding 80 g of water and urea to the slurry. 30 g of tetraethoxysilane was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours. During this operation, the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of urea (adhesion layer formation step). Then, 3 g of dimethyldimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours (hydrophobization step).
  • the slurry was subjected to solid-liquid separation with a filter, followed by drying.
  • Silver-coated glass flakes coated with silica were thus obtained.
  • 100 g of the obtained silver-coated glass flakes were charged into a 1-liter separable flask, to which 600 g of mineral spirit was then added.
  • the system was stirred under introduction of a nitrogen gas and the temperature thereof was increased to 80° C.
  • orthophosphoric acid 0.5 g was dissolved in 600 g of IPA.
  • 153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %; average particle diameter: 17.0 ⁇ m) as a metal pigment was added, followed by stirring and mixing at 50° C. for 1 hour.
  • a commercially available aluminum pigment Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %; average particle diameter: 17.0 ⁇ m
  • the pH value of the slurry obtained above was adjusted to 8.5 by adding aqueous ammonia to the slurry.
  • 60 g of tetraethoxysilane was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours.
  • the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of aqueous ammonia.
  • 3 g of phenyltrimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours.
  • the slurry was subjected to solid-liquid separation with a filter.
  • a coated aluminum pigment in paste form having a solid content of 60 mass % and an average particle diameter of 19.4 ⁇ m was thus obtained as a coated metal pigment.
  • the coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment) and the amount of silica was 13.5 g (per 100 g of aluminum). The amount of resin was not analyzed.
  • the coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment) and the amount of the resin was 18.5 g (per 100 g of aluminum). The amount of silica was not analyzed.
  • the coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.2 g (per 100 g of the coated aluminum pigment), the amount of silica was 0.8 g (per 100 g of aluminum), and the amount of the resin was 4.1 g (per 100 g of aluminum).
  • the average particle diameter (A) of the coated metal pigment and the average particle diameter (B) of the metal pigment before the adhesion layer formation step were measured by the laser diffractometry using Microtrac HRA 9320-X100 and toluene as a dispersion medium. Then, the average particle diameter ratio (A)/(B) was calculated. The results are shown in Table 2.
  • Normal temperature curable water-based coatings were prepared under the following preparation conditions using, respectively, the coated metal pigments obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and, as commercially available pigments, a commercially available non-coated aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %, average particle diameter: 17.0 ⁇ m) and a commercially available silver-coated glass flake (Nippon Sheet Glass Co., Ltd., 2025PS; solid content: 100 mass %, average particle diameter: 24.3 ⁇ m). Plastic-coated plates were then produced.
  • a commercially available non-coated aluminum pigment Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %, average particle diameter: 17.0 ⁇ m
  • a commercially available silver-coated glass flake Nippon Sheet Glass Co., Ltd., 2025PS; solid content: 100 mass %, average particle diameter: 24.3 ⁇ m.
  • Coated metal pigment or commercially available pigment 30 parts by mass (in terms of solid)
  • Dispersing agent (The Nippon Synthetic Chemical Industry Co., Ltd., JURYMER 10): 1.0 part by mass
  • Mill base 40 parts by mass
  • Acrylic emulsion 60 parts by mass (Shin-Nakamura Chemical Co., Ltd., NK polymer MK-100WL-5)
  • a spray-coated plate was immersed in a 5 mass % sodium carbonate solution.
  • the color appearance change which occurred when the plate was left at rest at a normal temperature for 24 hours was evaluated with a color difference meter, and the ⁇ E was calculated.
  • the results are shown in Table 3.
  • the color difference values ⁇ E between before and after the immersion of the coating films formed from the coatings of Examples 4 to 6 in a sodium carbonate solution are within the range of from 0.5 to 1.2, which are remarkably smaller than the values of the coating films formed from the coatings of Comparative Examples 4 to 8 within the range of from 4.2 to 17.5. This fact indicates that the coating films from the coatings of Examples 4 to 6 according to the present invention are of good chemical resistance.
  • the coated metal pigment according to the present invention can be used suitably as a metallic pigment to be used for coating metals, plastics and the like in the fields of vehicle coating, building material coating, printing ink, and the like.

Abstract

Provided are a coated metal pigment which can satisfy both the coating stability in use as an aqueous coating, i.e., water resistance, and the chemical resistance of coating films produced by application thereof at practically satisfactory levels; a method for producing the same; and an aqueous coating containing the same. The invention relates to a coated metal pigment including a metal pigment and a composite coating layer, wherein the composite coating layer includes an adhesion layer which is disposed on the surface of the metal pigment either in contact with the metal pigment or at an interposition of another layer and contains polysiloxane and/or silica, and a resin layer which is disposed on the surface of the adhesion layer either in contact with the adhesion layer or at an interposition of another layer.

Description

TECHNICAL FIELD
The present invention relates to coated metal pigments which can be contained in, for example, metallic coatings to be used for coating metals or plastics, to methods for the production of the same, and to coating compositions containing the same. In particular, it relates to coated metal pigments which show excellent coating storage stability, i.e., excellent water resistance when being used as an aqueous coating and also show excellent chemical resistance when coating films are formed therefrom, to methods for the production of the same, and to coating compositions containing the same.
BACKGROUND ART
In recent years, because of growing interest about environmental problems, aqueous coatings and powder coatings have attracted attention as low-pollution coatings free from organic solvents. Also in such coating systems, metallic finery is required in various applications like the conventional organic solvent-based coatings. Use of metal pigments is therefore indispensable. In powder coating, however, objects to be coated are limited substantially only to metals because of restrictions due to electrostatic coating and high temperature baking. In the case of aqueous coatings, there may be problems that a metal pigment reacts with water in the coating to turn black or generate a hydrogen gas. A current problem is how to secure the storage stability of coatings.
In order to solve a problem about storage stability in use as an aqueous coating, i.e., a problem about water resistance, some technologies have already been developed, for example: a method in which a metal pigment is treated with a phosphoric acid-based or phosphate-based additive (Japanese Patent Laying-Open No. 63-054475 (Patent document 1), Japanese Patent Laying-Open No. 61-47771 (Patent document 2), and Japanese Patent Laying-Open No. 7-133440 (Patent document 3)), a method in which a metal pigment is treated with Mo (molybdenum) compound (Japanese Patent Laying-Open No. 6-057171 (Patent document 4)), and a method in which a metal pigment is coated with an oxide film such as silica (Japanese Patent Laying-Open No. 2003-41150 (Patent document 5), Japanese Patent Laying-Open No. 2004-131542 (Patent document 6), and Japanese Patent Laying-Open No. 2004-124069 (Patent document 7)).
On the other hand, from a viewpoint of cost, for example in plastic coating for cellular phones, personal computers and the like, one-layer coating is required. In this case, excellent chemical resistance is also required. As an approach for improving the chemical resistance, aluminum pigments coated with a resin (Japanese Patent Laying-Open No. 62-253668 (Patent document 8), Japanese Patent Laying-Open No. 64-40566 (Patent document 9)), and the like have been developed. However, although organic solvent-based coatings can satisfy the market demand, there is a problem of poor water resistance when being used as an aqueous coating.
In general, there is a tendency that it is difficult to satisfactorily impart chemical resistance in surface treatment for imparting water resistance and it is difficult to satisfactorily impart water resistance in surface treatment for imparting chemical resistance. Therefore, no technologies of reconciling water resistance and chemical resistance at practically satisfactory levels have been established. Although there are some attempts to satisfy both water resistance and chemical resistance at a high level by combined use of a technology of imparting storage stability in aqueous coatings and a resin coating technique (U.S. Pat. No. 2,885,366 specification (Patent document 10), Japanese Patent Laying-Open No. 1-129070 (Patent document 11), Japanese Patent Laying-Open No. 7-3185 (Patent document 12), and Japanese Patent Laying-Open No. 2002-121423 (Patent document 13)), none of them has reached a practically satisfactory level.
  • Patent document 1: Japanese Patent Laying-Open No. 63-054475
  • Patent document 2: Japanese Patent Laying-Open No. 61-47771
  • Patent document 3: Japanese Patent Laying-Open No. 7-133440
  • Patent document 4: Japanese Patent Laying-Open No. 6-057171
  • Patent document 5: Japanese Patent Laying-Open No. 2003-41150
  • Patent document 6: Japanese Patent Laying-Open No. 2004-131542
  • Patent document 7: Japanese Patent Laying-Open No. 2004-124069
  • Patent document 8: Japanese Patent Laying-Open No. 62-253668
  • Patent document 9: Japanese Patent Laying-Open No. 64-40566
  • Patent document 10: U.S. Pat. No. 2,885,366 specification
  • Patent document 11: Japanese Patent Laying-Open No. 1-129070
  • Patent document 12: Japanese Patent Laying-Open No. 7-3185
  • Patent document 13: Japanese Patent Laying-Open No. 2002-121423
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The present invention intends to solve the above-mentioned problems and provide a coated metal pigment which can satisfy both the coating stability in use as an aqueous coating, namely, water resistance and the chemical resistance of a coating film formed from the aqueous coating at practically satisfactory levels, a method for the production of the same, and a coating composition containing the same.
Means for Solving the Problems
The present invention relates to a coated metal pigment including a metal pigment and a composite coating layer, wherein the composite coating layer includes an adhesion layer which is disposed on the surface of the metal pigment either in contact with the metal pigment or at an interposition of another layer and contains polysiloxane and/or silica, and a resin layer which is disposed on the surface of the adhesion layer either in contact with the adhesion layer or at an interposition of another layer.
In the coated metal pigment of the present invention, a layer including an oxide or a hydrate containing at least one sort selected from Mo, P and Al is preferably further formed between the metal pigment and the adhesion layer.
The resin layer in the coated metal pigment of the present invention is preferably a copolymer obtained by copolymerization of at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities, and a polymerizable monomer having a benzene nucleus.
The another layer disposed on the surface of the adhesion layer in the coated metal pigment of the present invention is preferably a coupling agent layer which includes a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group.
The present invention relates also to a method of coated metal pigment production for obtaining the coated metal pigment mentioned above, including: an adhesion layer formation step which includes mixing the metal pigment with a solvent containing an alkoxysilane, water and a hydrolysis catalyst and forming the adhesion layer on the surface of the metal pigment through hydrolysis and condensation of the alkoxysilane; a hydrophobization step which includes hydrophobizing the surface of the adhesion layer; and a resin layer formation step which includes dispersing the hydrophobized metal pigment in a nonpolar solvent containing a polymerization initiator and at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities and a polymerizable monomer having a benzene nucleus to deposit the resin layer including a copolymer of the monomers on the surface of the metal pigment.
In the production method of the present invention, it is preferable that the ratio of the average particle diameter (A) of the coated metal pigment to the average particle diameter (B) of the metal pigment before the adhesion layer formation step, (A)/(B), is not less than 1.0 and not more than 1.1.
The production method of the present invention preferably further has a step of forming, before the adhesion layer formation step, a layer including an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment.
The present invention relates also to the coated metal pigment mentioned above and a coating composition containing the coated metal pigment obtained by the method mentioned above and a binder.
Effects of the Invention
Use of the coated metal pigment of the present invention makes it possible to satisfy both the storage stability of an aqueous metallic coating for use in coating metals, plastics, and the like and the chemical resistance of a coating film. Moreover, the coated metal pigment of the present invention is produced also as a copper alloy pigment, a silver-coated glass flake, and the like, which can be prevented from discoloring in a coating and in a coating film.
BEST MODES FOR CARRYING OUT THE INVENTION
In the coated metal pigment of the present invention, a layer containing polysiloxane and/or silica is formed as an adhesion layer in contact with a metal pigment or at an interposition of another layer and further a resin layer is formed on the surface of the adhesion layer in contact with the adhesion layer or at an interposition of another layer.
Preferable examples of the material of the metal pigment used in the present invention include aluminum and its alloy, iron and its alloy (for example, stainless steel), copper and its alloy (for example, bronze), and materials prepared by coating metals, such as Ag, Cu, Ni, Ti and Fe, or an alloy thereof on glass flakes by plating, PVD or the like.
The particle diameter and shape of a metal pigment are not particularly restricted, but those having an average major axis of from 1 to 100 μm and a thickness of from 0.01 to 5 μm are preferred.
The adhesion layer of the present invention is a layer containing polysiloxane and/or silica. It is preferable that polysiloxane or silica is the principal component of the adhesion layer, in other words, that 50 mass % or more of the adhesion layer is accounted for by polysiloxane or silica. Polysiloxane can be formed, for example, by hydrolysis and condensation of an alkoxysilane.
Examples of the alkoxysilane include tetraethoxysilane, tetramethoxysilane, tetraisopropoxysilane and condensates thereof.
In use of an alkoxysilane, the reaction shown below is caused to proceed by feeding a metal pigment and the alkoxysilane into a solvent, such as methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether or propylene glycol monopropyl ether, to hydrolyze and then condense the alkoxysilane,
Al+Si(OR)4+2H2O→Al/SiO2+4ROH
and as a result, a coating film containing polysiloxane or silica as a principal component is formed on the surface of the metal pigment. The thus produced coating film adheres firmly to the surface of the metal pigment to form the adhesion layer in the present invention and improves the stability of the metal pigment in a coating composition.
The thickness of the adhesion layer of the present invention is preferably about 5 to 50 nm. When the thickness of the adhesion layer is 5 nm or more, good water resistance is imparted in use of the coated metal pigment of the present invention as an aqueous coating; when it is 50 nm or less, the gloss of the metal pigment is not affected and good design is obtained.
In the coated metal pigment of the present invention, a resin layer is formed on the surface of the adhesion layer in contact with the adhesion layer or at an interposition of another layer. The resin layer has an effect of improving the chemical resistance of a coating film because it can bond firmly to the coating resin, which is a constituent of the coating film.
As the resin constituting the resin layer, a resin substantially insoluble in organic solvents and water is preferably used. In particular, it is preferable to use a resin insoluble both in the organic solvent which can be used as a solvent in the preparation of a coating containing the coated metal pigment of the present invention and in water. Examples of such organic solvents include alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, isoamyl alcohol, n-hexyl alcohol, 2-ethylhexyl alcohol, diacetone alcohol and ethylene glycol; esters such as ethyl acetate, n-butyl acetate, isoamyl acetate and cellosolve acetate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; polyhydric alcohol ethers such as ethylcellosolve, butylcellosolve, propylene glycol monomethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether and butylcarbitol; and hydrocarbons such as toluene, xylene, solvent naphtha, cyclohexane, n-hexane, n-heptane, isooctane, mineral spirit and petroleum benzine. Use of a resin substantially insoluble in at least one of these organic solvents and in water, in particular, a resin substantially insoluble in all of these organic solvents and in water is preferable because a resin layer can exist in a coating stably for a long period of time and chemical resistance achieved when being formed into a coating film is maintained for a long time.
In this description, the fact that the resin constituting the resin layer is substantially insoluble in an organic solvent and in water can be made sure on the basis of the fact that, in both cases where a coated metal pigment is dispersed in an organic solvent and in water, followed by being left at rest at 40° C. for 10 days, the amount of the resin eluted from the coated metal pigment is not more than 5 g per 100 g of the resin layer of the coated metal pigment.
Examples of the resin constituting the resin layer of the present invention include acrylic ester copolymers, polyester resins, epoxy resins, polyurethane resins, polyethylene resins and polystyrene resins. Acrylic ester copolymers having a three-dimensional cross-linked structure are particularly preferred. In the coated metal pigment of the present invention, it is preferable that the resin layer is formed so that the amount of the resin layer is within the range of from 1 to 100 parts by mass, preferably from 5 to 50 parts by mass, per 100 parts by mass of the metal pigment. When the amount of the resin layer is 1 part by mass or more, good chemical resistance is obtained; when it is 100 parts by mass or less, the gloss of the metal pigment is hard to be affected.
When the coating layer of the present invention is a composite coating layer with at least a double structure including an adhesion layer and a resin layer, it is possible to impart water resistance by an action of the adhesion layer and chemical resistance by an action of the resin layer. Moreover, according to the combination of the adhesion layer and the resin layer of the present invention, both the layers do not mutually inhibit their actions and the adhesion between the adhesion layer and the resin layer is good. It therefore is possible to obtain a coated metal pigment which satisfies both water resistance in an aqueous coating and chemical resistance after the formation of a coating film by virtue of a synergistic effect of the adhesion layer and the resin layer.
As far as the effect of the present invention is maintained, there may be, between the adhesion layer and the resin layer, another layer such as a coupling agent layer composed of a coupling agent such as a silane coupling agent or a titanium coupling agent, a fat layer composed of a constitution of fatty acid/aliphatic amine/aliphatic alcohol/phosphoric ester or the like, or a polysiloxane layer having a residual alkoxyl group.
A particularly preferable example of the another layer formed between the adhesion layer and the resin layer is a coupling agent layer composed of a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group. When such a coupling agent layer is formed, the effect that the adhesion between the adhesion layer and the resin layer increases is imparted because there are many hydrophobic groups in the surface of the adhesion layer and the hydrophobic groups have an action of promoting uniform formation of a resin layer.
In the present invention, it is preferable that a film composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al is formed between the metal pigment and the adhesion layer. When the above-mentioned layer is formed, the adhesion between the metal pigment and the adhesion layer improves more, and a dense, uniform adhesion layer can be formed.
Examples of a compound containing Mo include peroxo-polymolybdic acid represented by a composition formula MoxOy.mH2O2.nH2O (x is 1 or 2, y is an integer from 2 to 5, m and n denote arbitrary positive numbers), ammonium molybdate and phosphomolybdic acid.
Examples of a compound containing P include orthophosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid and metaphosphoric acid.
Examples of a compound containing Al include aluminum nitrate. In use of an aluminum pigment as a metal pigment, a boehmite coating may be formed on the surface of the aluminum pigment by dispersing the aluminum pigment in a solution containing ammonia, amine, oxalic acid, or the like and water and treating the solution.
The content of Mo, P and Al in the coating film formed on the surface of the metal pigment is preferably from 0.01 to 5.0 parts by mass, and more preferably from 0.05 to 2.0 parts by mass per 100 parts by mass of the metal pigment. The content of Mo, P and Al is desirably varied depending on the specific surface area of the metal pigment to be treated. It is preferable that the content is made large for a metal pigment with a large specific surface area and that the content is made small for a metal pigment with a small specific surface area. A case where the content of Mo, P and Al is 0.01 parts by mass or more per 100 parts by mass of the metal pigment is preferable because a dense, uniform adhesion layer is easily obtained; a case where the content is 5.0 parts by mass or less is preferable because the color appearance and the metallic glossy appearance of the coated metal pigment are good.
The resin layer in the coated metal pigment of the present invention is preferably a copolymer obtained by copolymerization of at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities, and a polymerizable monomer having a benzene nucleus because it can increase the chemical resistance of a coating film.
The fact that the resin layer of the present invention is a copolymer obtained by copolymerization of three kinds of the above-mentioned monomers can be confirmed, for example, by the following methods. Constituent monomer components can be detected by immersing a coated metal pigment in a mixed acid of hydrochloric acid/nitric acid=1/1 to dissolve metal components, collecting the residue by filtration, drying and making an IR analysis of the sample. Another exemplary method is one in which quality determination of fragments is made by pyrolysis gas chromatography. A monomer component having a phosphoric acid group can be specified by combined use of the IR analysis and a method of analyzing the content of phosphorus in the sample by ICP emission spectroscopic analysis.
Examples of reactive monomers having a carboxyl group and/or a phosphoric acid group include acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid, fumaric acid, 2-methacryloyloxyethyl acid phosphate, di-2-methacryloyloxyethyl acid phosphate, tri-2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate, di-2-acryloyloxyethyl acid phosphate, tri-2-acryloyloxyethyl acid phosphate, diphenyl-2-methacryloyloxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl acid phosphate, dibutyl-2-methacryloyloxyethyl acid phosphate, dibutyl-2-acryloyloxyethyl acid phosphate, dioctyl-2-methacryloyloxyethyl acid phosphate, dioctyl-2-acryloyloxyethyl acid phosphate, 2-methacryloyloxypropyl acid phosphate, bis(2-chloroethyl)vinyl phosphonate and diallyldibutyl phosphonosuccinate. These may be used singly or in combination of two or more species.
Use of a reactive monomer having a carboxyl group and/or a phosphoric acid group can result in improvement in chemical resistance or adhesion to an object to be coated when forming a coating film because the reactive monomer has an action of improving the adhesion to the adhesion layer of the present invention.
The amount of the reactive monomer having a carboxyl group and/or a phosphoric acid group is preferably adjusted to 0.1 to 10 mass % of the entire portion of the monomer. When the amount of the reactive monomer is adjusted within this range, a coating film having good chemical resistance is obtained. The amount of the reactive monomer is more preferably set within the range of from 0.5 to 5 mass %.
Preferable examples of polyfunctional acrylic ester monomers with three or more functionalities include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetramethylolpropane triacrylate, tetramethylolpropane tetraacrylate, tetramethylolpropane trimethacrylate, tetramethylolpropane tetramethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate and ditrimethylolpropane tetraacrylate. These may be used singly or in combination of two or more species.
Since a polyfunctional acrylic ester monomer with three or more functionalities contributes to three-dimensional crosslinking of a resin, a resin layer substantially insoluble in an organic solvent and water can be formed when such a polyfunctional acrylic ester monomer is used.
The amount of the polyfunctional acrylic ester monomer is preferably adjusted within the range of from 30 to 90 mass % of the entire portion of the monomer. In such a case, good chemical resistance is imparted to a coating film. The amount of the polyfunctional acrylic ester monomer is more preferably adjusted within the range of from 40 to 80 mass %.
Preferable examples of polymerizable monomers having a benzene nucleus include styrene, α-methylstyrene, vinyltoluene, divinylbenzene, phenyl vinyl ketone, phenyl vinyl ether, divinylbenzene monooxide phenoxyethyl acrylate, phenoxy-polyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-acryloyloxyethyl-2-hydroxyethyl phthalic acid and 2-acryloyloxyethylhexahydrophthalic acid. These may be used singly or in combination of two or more species.
By copolymerizing a polymerizable monomer having a benzene nucleus to form a resin layer, the barrier effect against chemicals of this resin layer is improved and the chemical resistance when being converted into a coating film is improved.
The amount of the polymerizable monomer having a benzene nucleus is preferably adjusted within the range of from 5 to 50 mass % of the entire portion of the monomer. In such a case, coating films will have good chemical resistance. The amount of the polymerizable monomer having a benzene nucleus is more preferably set within the range of from 10 to 30 mass %.
<Method of Coated Metal Pigment Production>
The coated metal pigment of the present invention can be obtained, for example, by a production method including an adhesion layer formation step which includes mixing the metal pigment with a solvent containing an alkoxysilane, water and a hydrolysis catalyst and forming the adhesion layer on the surface of the metal pigment through hydrolysis and condensation of the alkoxysilane; a hydrophobization step which includes hydrophobizing the surface of the metal pigment on which the adhesion layer has been formed; and a resin layer formation step which includes dispersing the hydrophobized metal pigment in a nonpolar solvent containing a polymerization initiator and at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities and a polymerizable monomer having a benzene nucleus to deposit the resin layer including a copolymer of the monomers on the surface of the metal pigment.
(Preliminary Step)
The production method mentioned above may further has a preliminary step of forming, before the above-mentioned adhesion layer formation step, a layer composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment. In this case, the adhesion of the metal pigment and the adhesion layer is improved and a dense, uniform adhesion layer can be formed.
The method of forming a film composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al on the surface of the metal pigment is not particularly restricted. Examples thereof include a method including stirring or kneading a metal pigment and a solution containing a compound containing at least one sort selected from Mo, P and Al in a slurry state or in a paste state.
(Adhesion Layer Formation Step)
On the surface of a metal pigment or, when the preliminary step is provided, on the surface of a metal pigment on which a layer composed of an oxide or a hydrate containing at least one sort selected from Mo, P and Al, an adhesion layer containing polysiloxane and/or silica is formed. As the method of forming an adhesion layer, a method is preferably used in which an alkoxysilane and water are added to a solution in which a metal pigment has been dispersed and the alkoxysilane is hydrolyzed and condensed by adjusting the pH value of the solution with a hydrolysis catalyst, thereby depositing polysiloxane and/or silica on the surface of the metal pigment.
Concretely, from 1 to 20 parts by mass of a metal pigment is dispersed in 100 parts by mass of a treatment solvent. Under stirring, the pH value is adjusted with a hydrolysis catalyst and an alkoxysilane is added while the temperature is kept at 20 to 90° C. At this time, the alkoxysilane may be added either slowly or all at once. The treatment time is preferably from 1 to 48 hours, and more preferably from 3 to 24 hours. Since the pH value of the solution changes during the treatment, the pH value is adjusted by occasional addition of a hydrolysis catalyst. When the treatment is completed, solid-liquid separation with a filter is effected and then, as demanded, heating treatment at 100° C. to 500° C. is effected. The above-mentioned preliminary step and the adhesion layer formation step may be carried out continuously in the same treatment solvent.
As the above-mentioned treatment solvent, hydrophilic solvents are preferably used and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether and acetone. These may be used singly or in combination of two or more species. It is preferable that water enough for hydrolyzing an alkoxysilane is incorporated in the treatment solvent.
Regarding the hydrolysis catalyst, preferable examples of basic catalysts include monoethanolamine, diethanolamine, triethanolamine, ammonia, ethylenediamine, tert-butylamine, γ-aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropylmethyldimethoxysilane, urea, sodium silicate and sodium hydroxide; preferable examples of acidic catalysts include oxalic acid, acetic acid, nitric acid, sulfuric acid, phosphoric acid and phosphonic acid. These basic catalysts or the acidic catalysts may be used solely or in combination of two or more species.
The pH value of the solution under treatment is preferably adjusted within a range of from 7 to 11, more preferably from 7.5 to 10 in the case of using an alkaline catalyst and within a range of from 1.5 to 4, more preferably from 2 to 3 in the case of using an acid catalyst. In the present invention, when a basic catalyst is used, the rate of adhesion layer formation is higher and the productivity is better.
In the preliminary step and the adhesion layer formation step, a dispersing agent may be added in order to prevent aggregation of the metal pigment. As the kind of a dispersing agent, nonionic surfactants, anionic surfactants, cationic surfactants, polycarboxylic acid-based dispersing agents, polymer dispersing agents, and the like are preferred.
(Hydrophobization Step)
By hydrophobizing the adhesion layer formed in the adhesion layer formation step, it is possible to prevent the aggregation of the metal pigment in the resin layer formation step to form a resin layer uniformly. As a result, a coated metal pigment excellent in chemical resistance can be obtained. In particular, a coated metal pigment having an average particle diameter such that the difference between the average particle diameter of the metal pigment as the raw material and that of the coated metal pigment is not greater than 2 μm is preferred from the viewpoint of hiding ability and chemical resistance.
The method of hydrophobizing the surface of an adhesion layer is not particularly restricted. Preferably used are, for example, a method in which a silane coupling agent or a silylation agent having a hydrophobic group is added to a solution after the adhesion layer formation step, and a method in which a silane coupling agent or a silylation agent having a hydrophobic group is added together with water and a hydrolysis catalyst under kneading to a metal pigment prepared through solid-liquid separation after the adhesion layer formation step and conversion into a paste. In such cases, a coupling agent layer composed of a silane coupling agent having a hydrophobic group or a silylation agent having a hydrophobic group is formed on the surface of the adhesion layer. In other words, the surface of the adhesion layer comes to have many hydrophobic groups in a silane coupling agent or a silylation agent and the surface of the adhesion layer is hydrophobized. A hydrophobic group in a silane coupling agent or a silylation agent serves to promote uniform formation of a resin layer to be formed later and also serves to improve the adhesion between an adhesion layer and a resin layer. In other words, because of presence of many hydrophobic groups in the surface of the adhesion layer, a resin layer formed later will be in a state such that it easily adheres to the surface of the adhesion layer when depositing on the surface of a metal pigment through polymerization, and it becomes possible to form a resin layer more uniformly and the adhesion between the adhesion layer and the resin layer will be improved in comparison to the case of failing to hydrophobize the surface of the adhesion layer. Preferable examples of a silane coupling agent or a silylation agent include methyltriethoxysilane, methyltrimethoxysilane, methyldiethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, octadecyltriethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, nonylphenyltriethoxysilane, hexamethyldisilazane and N,O-bis(trimethylsilyl)acetamide. Among these, a silane coupling agent or a silylation agent having the hydrophobic group(s) including 6 or more, more preferably 8 or more carbon atoms is preferred. When the number of carbon atoms is 6 or more, the hydrophobic group is easier to adhere to a resin layer which will be formed later and it becomes possible to form a resin layer more uniformly.
(Resin Layer Formation Step)
As a method of forming a resin layer, a method is preferably used in which a metal pigment resulting from the adhesion layer formation step is subjected to solid-liquid separation, followed, as demanded, by washing and filtering with a nonpolar solvent, the metal pigment is then dispersed in a nonpolar solvent, a polymerizable monomer and a polymerization initiator are then added and the monomer is polymerized under stirring and heating, and a resin which has become insoluble in the solvent is deposited on the surface of the metal pigment.
In use of this method, the coating efficiency of a resin layer is higher and a thicker resin layer can be formed in comparison to, for example, a method in which polymerizable double bonds are introduced in a polysiloxane-coated surface and then resin coating is applied via covalent bonds.
The polymerization reaction is preferably effected in a non-oxidizing atmosphere, for example, in an inert gas such as nitrogen and argon because if the atmosphere is an oxidizing atmosphere, radicals which contribute to the polymerization reaction tend to disappear easily and the polymerization efficiency of the monomer tends to decrease. The reaction temperature is properly from 50 to 150° C., and more preferably from 70 to 100° C. in view of the working environment and safety because if it is too low, the polymerization efficiency tends to decrease and if it is too high, the solvent evaporates easily.
As the nonpolar solvent, a hydrocarbon solvent is particularly preferred. Examples of preferable nonpolar solvents include mineral spirit, petroleum benzine, solvent naphtha, isoparaffin, normal paraffin, benzene, toluene, xylene, cyclohexane, hexane, heptane, octane, chlorobenzene, trichlorobenzene, perchloroethylene and trichloroethylene. These may be used singly or in combination of two or more species. In use of a nonpolar solvent, the deposition efficiency of a resin is good and therefore it is possible to coat the surface of a metal pigment with a sufficient amount of a resin. Moreover, as needed, for example in order to dissolve or disperse a monomer, polar solvents such as ketones, esters and alcohols may be mixed in an amount not more than 30 mass %.
As the reactive monomer having a carboxyl group and/or a phosphoric acid group, the polyfunctional acrylic ester monomer with three or more functionalities and the polymerizable monomer having a benzene nucleus, those previously mentioned may be used. In addition to these monomers, one species or a combination of two or more species among methyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxybutyl acrylate, 2-methoxyethyl acrylate, 2-diethylaminoethyl acrylate, butyl methacrylate, octyl methacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, tetraethylene glycol diacrylate, acrylic nitrile, methacrylic nitrile, vinyl acetate, vinyl propionate, polybutadiene, linseed oil, soybean oil, epoxidized soybean oil, epoxidized polybutadiene, cyclohexene vinyl monoxide and the like may also be used.
As a polymerization initiator, peroxides such as benzoyl peroxide, lauroyl peroxide, isobutyl peroxide and methyl ethyl ketone peroxide, azo compounds such as azobisisobutyronitrile, and the like can suitably be used.
After the completion of the resin layer formation step, the slurry is forced to pass through a filter, thereby being subjected to solid-liquid separation to yield a coated metal pigment in paste form having an appropriate solid content. The coated metal pigment in paste form may be imparted dispersibility in water and the like through addition of a dispersing agent or a surfactant. Affinity to an aqueous coating may also be imparted through replacement of the nonpolar solvent contained in the coated metal pigment in paste form by a hydrophilic solvent.
Examples of a dispersing agent and a surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkylamine, polyoxyethylene alkylphosphoric acid, metal soaps and polycarboxylic acid-based dispersing agents.
Examples of hydrophilic solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, tert-butyl alcohol, n-butyl alcohol, isobutyl alcohol, ethylcellosolve, butylcellosolve, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, propylene glycol monopropyl ether and acetone.
Generally, in surface treatment of a metal pigment, the average particle diameter of the metal pigment after the surface treatment tends to become larger through partial generation of aggregated particles. In the production method of the present invention, however, it is preferable that the ratio of the average particle diameter (A) of the coated metal pigment to the average particle diameter (B) of the metal pigment before the adhesion layer formation step, (A)/(B), is adjusted to not less than 1.0 and not more than 1.1. Since the adhesion layer is formed on the surface of the metal pigment through the adhesion layer formation step, the above-mentioned ratio (A)/(B) is, by nature, not less than 1.0. When the ratio (A)/(B) is not more than 1.1, even in observation of the coated metal pigment by an electron microscope, a state in which a superfine powder up to 1 μm is adhered to the surface of metal pigment flakes is recognized, but a state in which particles of the coated metal pigment are united is not recognized. This means that almost no aggregation of the coated metal pigment has occurred. When a coating film is produced from a coated metal pigment whose (A)/(B) ratio is adjusted to not more than 1.1, the hiding ability and the chemical resistance become particularly satisfactory.
The above-mentioned average particle diameter (A) and average particle diameter (B) can be measured, for example, by laser diffractometry.
The coated metal pigment of the present invention can be converted into a coating composition in combination with a binder. In the coating composition of the present invention, it is preferable that the content of the coated metal pigment is adjusted within the range of from 0.1 to 50 parts by mass, preferably from 1 to 30 parts by mass, per 100 parts by mass of the binder. When the content of the coated metal pigment is 0.1 parts by mass or more, a desired design can be obtained well; and when it is 50 parts by mass or less, a coating film has good image clarity.
The binder to be incorporated in the coating composition of the present invention is not particularly restricted, and examples thereof include thermosetting acrylic resin/melamine resin, thermosetting acrylic resin/CAB (cellulose acetate butyrate)/melamine resin, thermosetting polyester (alkyd) resin/melamine resin, thermosetting polyester (alkyd)/CAB/melamine resin, isocyanate-curing urethane resin/normal temperature curable acrylic resin and water-dilution acrylic emulsion/melamine resin.
In a coating composition, an appropriate solvent may be used. Although water is preferred as a solvent, organic solvents, such as alcohols, glycols, ketones, esters, ethers and hydrocarbons, may also be used.
As demanded, additives such as pigment dispersants, defoamers, antisettling agents and curing catalysts, and other coloring pigments such as organic coloring pigments, inorganic coloring pigments, pearl mica, alumina flakes, lamellar iron oxide and silica flakes may be incorporated.
The coated metal pigment of the present invention is used particularly suitably for normal temperature curable water-based coatings. Such normal temperature curable water-based coatings may be not only of one-component type, but also of two or more-component combination type. Moreover, one accompanied by a reaction is also available. As the emulsion or water-soluble binder used for normal temperature curable water-based coatings, various polymers can be used as natural or synthetic polymers, such as acrylic polymers, alkyd polymers, polyester polymers, urethane polymers, vinyl acetate polymers and silicon polymers, or oligomers, prepolymers, and the like.
EXAMPLES
The present invention is described in more detail below with reference to Examples, but the invention is not limited thereto.
Example 1
In 600 g of isopropyl alcohol (hereinafter abbreviated as IPA), a solution obtained by adding 0.5 g of a molybdenum metal powder in small portions to 10 g of a hydrogen peroxide solution containing 30 mass % of hydrogen peroxide was dissolved. In addition, 153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %, average particle diameter: 17.0 μm) as a metal pigment, and 0.6 g of a dispersing agent were added, followed by stirring and mixing at 50° C. for 1 hour (preliminary step).
The pH value of the slurry obtained above was adjusted to 8.5 by adding 30 g of water and monoethanolamine to the slurry.
30 g of tetraethoxysilane (hereinafter abbreviated as TEOS) was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours. During this operation, the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of monoethanolamine (adhesion layer formation step). Then, 3 g of n-decyltrimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours (hydrophobization step).
After the completion of the reaction, the slurry was subjected to solid-liquid separation with a filter and the resulting paste was washed and filtered with mineral spirit. An aluminum pigment in paste form having a solid content of 60 mass % was thus obtained. 167 g of the obtained aluminum pigment in paste form was charged into a 1-liter separable flask, to which 600 g of mineral spirit was then added. The system was stirred under introduction of a nitrogen gas and the temperature thereof was increased to 80° C. Subsequently, 0.2 g of acrylic acid, 4 g of epoxidized polybutadiene, 5 g of trimethylolpropane triacrylate, 1.8 g of divinylbenzene, and 0.75 g of azobisisobutyronitrile were added, and polymerization was effected at 80° C. for 6 hours. Following the completion of the polymerization, the slurry was filtered. A coated aluminum pigment in paste form having a solid content of 60 mass % and an average particle diameter of 17.5 μm was thus obtained as a coated metal pigment (resin layer formation step).
10 g of the resulting coated aluminum pigment in paste form was dispersed in 100 g of acetone. After leaving at rest at 40° C. for 10 days, filtering by suction through a glass filter was effected. Solid content measurement and quantitative determination of the amount of the resin components in the filtrate by gas chromatography showed that the amount of the resin eluted per 100 g of the coated aluminum pigment was 0.1 g or less.
5 g of the coated aluminum pigment dried after the filtering by suction mentioned above was dissolved in a solution of nitric acid/hydrochloric acid=1/1, and the insoluble component was collected by filtration, dried, and then quantitatively determined. In addition, the contents of Si in the solution and the insoluble component were quantitatively determined by ICP emission analysis and X-ray fluorescence analysis.
Based on these results of quantitative determination and using the following formulas:
Amount (g) of silica=(amount (g) of Si in mixed acid solution×60/28+amount (g) of Si in insoluble component×60/28)/(amount (g) of coated aluminum pigment−amount (g) of Si in mixed acid solution×60/28−amount (g) of insoluble component)×100 (g)
Amount (g) of resin=(amount (g) of insoluble component−amount (g) of Si in insoluble component×60/28)/(amount (g) of coated aluminum pigment−amount (g) of Si in mixed acid solution×60/28−amount (g) of insoluble component)×100 (g),
the amounts of silica and the resin relative to 100 g of Al in the aluminum pigment were calculated. The amount of silica was 7 g; the amount of the resin was 10.5 g.
Example 2
0.5 g of orthophosphoric acid was dissolved in 600 g of IPA. In addition, 153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %) as a metal pigment, and 0.6 g of a dispersing agent were added, followed by stirring and mixing at 50° C. for 1 hour (preliminary step).
The pH value of the slurry obtained above was adjusted to 8.5 by adding 30 g of water and aqueous ammonia to the slurry.
30 g of tetraethoxysilane was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours. During this operation, the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of aqueous ammonia (adhesion layer formation step). Then, 3 g of phenyltrimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours (hydrophobization step).
After the completion of the reaction, the slurry was subjected to solid-liquid separation with a filter. An aluminum pigment in paste form having a solid content of 60 mass % was thus obtained. 1 g of 2-methacryloyloxyethyl acid phosphate was added after being dissolved in 10 g of IPA to 167 g of the resulting aluminum pigment in paste form, followed by kneading. Subsequently, the mixture was charged into a 1-liter separable flask, to which 600 g of mineral spirit was then added. The system was stirred under introduction of a nitrogen gas and the temperature thereof was increased to 80° C. Subsequently, 0.2 g of acrylic acid, 4 g of methyl methacrylate, 5 g of tetramethylolpropane triacrylate, 1.8 g of styrene, and 0.75 g of azobisisobutyronitrile were added, and polymerization was effected at 80° C. for 6 hours. Following the completion of the polymerization, the slurry was filtered. A coated aluminum pigment in paste form having a solid content of 60 mass % and an average particle diameter of 18.3 μm was thus obtained as a coated metal pigment (resin layer formation step).
The coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment), the amount of silica was 7.2 g (per 100 g of aluminum), and the amount of the resin was 10.8 g (per 100 g of aluminum).
Example 3
To 600 g of propylene glycol monomethyl ether, 100 g of commercially available silver-coated glass flakes (Nippon Sheet Glass Co., Ltd., 2025PS; solid content: 100 mass %; average particle diameter: 24. 3 μm) and 1 g of γ-aminopropyltriethoxysilane were added, followed by stirring and mixing at 50° C. for 1 hour.
The pH value of the slurry obtained above was adjusted to 8.5 by adding 80 g of water and urea to the slurry. 30 g of tetraethoxysilane was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours. During this operation, the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of urea (adhesion layer formation step). Then, 3 g of dimethyldimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours (hydrophobization step).
After the completion of the reaction, the slurry was subjected to solid-liquid separation with a filter, followed by drying. Silver-coated glass flakes coated with silica were thus obtained. 100 g of the obtained silver-coated glass flakes were charged into a 1-liter separable flask, to which 600 g of mineral spirit was then added. The system was stirred under introduction of a nitrogen gas and the temperature thereof was increased to 80° C. Subsequently, 1 g of acrylic acid, 4 g of glycidyl methacrylate, 5 g of trimethylolpropane trimethacrylate, 1.8 g of vinyltoluene, and 0.75 g of azobisisobutyronitrile were added, and polymerization was effected at 80° C. for 6 hours. Following the completion of the polymerization, the slurry was filtered and dried. Coated silver-coated glass flakes having an average particle diameter of 25.4 μm were thus obtained as a coated metal pigment (resin layer formation step).
Comparative Example 1
0.5 g of orthophosphoric acid was dissolved in 600 g of IPA. In addition, 153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %; average particle diameter: 17.0 μm) as a metal pigment was added, followed by stirring and mixing at 50° C. for 1 hour.
The pH value of the slurry obtained above was adjusted to 8.5 by adding aqueous ammonia to the slurry. 60 g of tetraethoxysilane was added slowly to the pH-adjusted slurry, followed by stirring and mixing at 70° C. for 10 hours. During this operation, the pH value of the slurry was checked every 2 hours and it was adjusted to 8.5 by addition of aqueous ammonia. Then, 3 g of phenyltrimethoxysilane was added to the slurry, followed by stirring and mixing at 70° C. for 2 hours. Following the completion of the reaction, the slurry was subjected to solid-liquid separation with a filter. A coated aluminum pigment in paste form having a solid content of 60 mass % and an average particle diameter of 19.4 μm was thus obtained as a coated metal pigment.
The coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment) and the amount of silica was 13.5 g (per 100 g of aluminum). The amount of resin was not analyzed.
Comparative Example 2
153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %) was washed and filtered with mineral spirit. An aluminum pigment in paste form having a solid content of 60 mass % was thus obtained. 167 g of the obtained aluminum pigment in paste form was charged into a 1-liter separable flask, to which 600 g of mineral spirit was then added. The system was stirred under introduction of a nitrogen gas and the temperature thereof was increased to 80° C. Subsequently, 0.4 g of acrylic acid, 8 g of epoxidized polybutadiene, 10 g of trimethylolpropane triacrylate, 3.6 g of divinylbenzene, and 0.75 g of azobisisobutyronitrile were added, and polymerization was effected at 80° C. for 6 hours. Following the completion of the polymerization, the slurry was filtered. A coated aluminum pigment in paste form having a solid content of 60 mass % and an average particle diameter of 19.2 μm was thus obtained as a coated metal pigment.
The coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.1 g or less (per 100 g of the coated aluminum pigment) and the amount of the resin was 18.5 g (per 100 g of aluminum). The amount of silica was not analyzed.
Comparative Example 3
153.8 g (corresponding to 100 g of aluminum) of a commercially available aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %) was washed and filtered with test benzine. An aluminum pigment in paste form having a solid content of 60 mass % was thus obtained. 167 g of the obtained aluminum pigment in paste form was charged into a 1-liter separable flask, to which 600 g of test benzine was then added. The temperature of the system was increased to 120° C. Subsequently, 3.8 g of 3-methacryloxypropyltrimethoxysilane was added after being dissolved in 10 g of test benzine and then 0.15 g of vinylphosphonic acid was added after being dissolved in 10 g of mineral spirit. 0.15 g of water and 2.5 g of 2-buthanol were further added and the mixture was stirred at 120° C. for 1 hour. Then, 6 g of methylolpropane triacrylate was added after being dissolved in 10 g of mineral spirit and thereafter a liquid prepared by suspending 0.2 g of 2-2 azobis (2-methylpropanenitrile) in 5 g of test benzine was introduced over 30 minutes. Subsequently, after stirring the slurry at 120° C. for another 5 hours and allowing to cool for 2 hours, the slurry was subjected to solid-liquid separation with a filter. A coated aluminum pigment in paste form having a solid content of 60 mass % was thus obtained as a coated metal pigment.
The coated aluminum pigment obtained was analyzed in the same manner as in Example 1; the amount of the resin eluted in acetone was 0.2 g (per 100 g of the coated aluminum pigment), the amount of silica was 0.8 g (per 100 g of aluminum), and the amount of the resin was 4.1 g (per 100 g of aluminum).
TABLE 1
Amount of resin eluted
in acetone (g) (per Amount of Amount of
100 g of coated silica (g) (per resin (g) (per
aluminum pigment) 100 g of Al) 100 g of Al)
Example 1 0.1 or less 7   10.5
Example 2 0.1 or less 7.2 10.8
Example 3
Comparative 0.1 or less 13.5  Not analyzed
Example 1
Comparative 0.1 or less Not analyzed 18.5
Example 2
Comparative 0.2 0.8  4.1
Example 3

<Evaluation of Average Particle Diameter>
For the coated metal pigments prepared in Examples 1 to 3 and Comparative Examples 1 to 3, the average particle diameter (A) of the coated metal pigment and the average particle diameter (B) of the metal pigment before the adhesion layer formation step were measured by the laser diffractometry using Microtrac HRA 9320-X100 and toluene as a dispersion medium. Then, the average particle diameter ratio (A)/(B) was calculated. The results are shown in Table 2.
TABLE 2
Average particle diameter
Before adhesion
Coated metal layer formation
pigment (A) (μm) (B) (μm) (A)/(B)
Example 1 17.5 17 1.03
Example 2 18.3 17 1.08
Example 3 25.4 24.3 1.05
Comparative 19.4 17 1.14
Example 1
Comparative 19.2 17 1.13
Example 2
Comparative 19.8 17 1.16
Example 3
Examples 4 to 6, Comparative Examples 4 to 8
Normal temperature curable water-based coatings were prepared under the following preparation conditions using, respectively, the coated metal pigments obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and, as commercially available pigments, a commercially available non-coated aluminum pigment (Toyo Aluminium Kabushiki Kaisha, 7640NS; solid content: 65 mass %, average particle diameter: 17.0 μm) and a commercially available silver-coated glass flake (Nippon Sheet Glass Co., Ltd., 2025PS; solid content: 100 mass %, average particle diameter: 24.3 μm). Plastic-coated plates were then produced.
(Preparation of Mill Base)
Coated metal pigment or commercially available pigment: 30 parts by mass (in terms of solid)
Dispersing agent (The Nippon Synthetic Chemical Industry Co., Ltd., JURYMER 10): 1.0 part by mass
Water: 50 parts by mass
(Preparation of Coating)
Mill base: 40 parts by mass
Acrylic emulsion: 60 parts by mass (Shin-Nakamura Chemical Co., Ltd., NK polymer MK-100WL-5)
(Spray Conditions)
A coating was diluted in a solution of water/IPA/butylcellosolve=70/20/10 and was applied to a 2-mm thick ABS plate in a film thickness of 10 μm.
<Coating Stability Test>
150 g of a coating prepared in the manner described above was sampled and the amount of a hydrogen gas generated when the coating was stored at 40° C. for 10 days was measured. Furthermore, the color appearance of spray-coated plates before and after the test was measured with a color difference meter (Minolta Co., Ltd., CR400), and the color difference value (ΔE) between before and after the test was calculated. The results are shown in Table 3.
<Chemical Resistance Test of Coated Film>
A spray-coated plate was immersed in a 5 mass % sodium carbonate solution. The color appearance change which occurred when the plate was left at rest at a normal temperature for 24 hours was evaluated with a color difference meter, and the ΔE was calculated. The results are shown in Table 3.
TABLE 3
Coating stability
Color Gas Chemical
Metal appearance generation resistance
pigment (L*15) (ml) ΔE ΔE
Example 4 Example 1 155 0 0.2 0.7
Example 5 Example 2 153 0 0.4 1.2
Example 6 Example 3 122 0 0.8 0.5
Comparative Comparative 148 0 1.5 15.1
Example 4 Example 1
Comparative Comparative 146 25 3.5 4.2
Example 5 Example 2
Comparative Comparative 138 6 1.5 8.5
Example 6 Example 3
Comparative 7640NS 158 30 5.1 17.5
Example 7
Comparative 2025PS 125 0 8.5 6.7
Example 8
The results in Table 3 show that the color difference values ΔE between before and after the storage at 40° C. in the coatings of Examples 4 to 6 are within the range of from 0.2 to 0.8, which are remarkably smaller than the values of coatings of Comparative Examples 4 to 8 within the range of from 1.5 to 8.5. This fact indicates that the coating stability of the coatings of Examples 4 to 6 according to the present invention is good. In other words, these results show that the coated metal pigment of the present invention is excellent in water resistance.
Moreover, the color difference values ΔE between before and after the immersion of the coating films formed from the coatings of Examples 4 to 6 in a sodium carbonate solution are within the range of from 0.5 to 1.2, which are remarkably smaller than the values of the coating films formed from the coatings of Comparative Examples 4 to 8 within the range of from 4.2 to 17.5. This fact indicates that the coating films from the coatings of Examples 4 to 6 according to the present invention are of good chemical resistance.
It should be construed that the embodiments and the Examples disclosed herein are non-limiting and only illustrative. It is intended that the scope of the present invention is indicated not by the description provided above but by the claims, and all meanings equivalent to the claims and all modifications within the range of equivalence to the claims are included.
INDUSTRIAL APPLICABILITY
Since an aqueous coating prepared by use of the coated metal pigment of the present invention has excellent water resistance and a coating film containing the coated metal pigment is excellent in chemical resistance, the coated metal pigment according to the present invention can be used suitably as a metallic pigment to be used for coating metals, plastics and the like in the fields of vehicle coating, building material coating, printing ink, and the like.

Claims (16)

The invention claimed is:
1. A coated metal pigment for an aqueous coating which comprises:
a metal pigment having an average major axis of from 1 to 100 μm and a composite coating layer, wherein the material of said metal pigment is aluminum or its alloy, iron or its alloy, copper or its alloy, or material prepared by coating metal or an alloy on glass flakes, and said composite coating layer comprises an adhesion layer which is disposed on the surface of said metal pigment either in contact with said metal pigment or with another layer disposed between said metal pigment and said adhesion layer and contains polysiloxane and/or silica, and
a resin layer which is disposed on the surface of said adhesion layer with a coupling agent layer disposed between said adhesion layer and said resin layer and comprising a silane coupling agent having a hydrophobic group or a silylation coupling agent having a hydrophobic group, both the silane coupling agent and the silylation coupling agent being free of a polymerizable double bond, wherein said resin layer is a copolymer obtained by copolymerization of at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities, and a polymerizable monomer having a benzene nucleus, and wherein said copolymerization is solution polymerization.
2. The coated metal pigment according to claim 1, wherein a layer comprising an oxide or a hydrate containing at least one member selected from the group consisting of Mo, P and Al is further formed between said metal pigment and said adhesion layer.
3. The coated metal pigment according to claim 1, wherein said coupling agent layer comprises at least one species selected from the group consisting of methyltriethoxysilane, methyltrimethoxysilane, methyldiethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, octadecyltriethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, nonylphenyltriethoxysilane, hexamethyldisilazane and N,O-bis(trimethylsilyl)acetamide.
4. The coated metal pigment according to claim 1, wherein said silane coupling agent or said silylation agent has the hydrophobic group including 6 or more carbon atoms.
5. A coating composition comprising the coated metal pigment according to claim 1 and a binder.
6. A method for producing a coated metal pigment according to claim 1, which comprises:
mixing said metal pigment with a solvent containing an alkoxysilane, water and a hydrolysis catalyst and forming an adhesion layer on the surface of said metal pigment through hydrolysis and condensation of said alkoxysilane;
hydrophobizing the surface of said adhesion layer by forming a coupling agent layer from a silane coupling agent having a hydrophobic group or a silylation coupling agent having a hydrophobic group, both the silane coupling agent and the silylation coupling agent being free of a polymerizable double bond; and
dispersing said hydrophobized metal pigment in a nonpolar solvent containing a polymerization initiator and at least three kinds of monomers including a reactive monomer having a carboxyl group and/or a phosphoric acid group, a polyfunctional acrylic ester monomer with three or more functionalities and a polymerizable monomer having a benzene nucleus to form a resin layer comprising a copolymer of said monomers on the surface of the metal pigment.
7. The method for producing a coated metal pigment according to claim 6, wherein the ratio of the average particle diameter (A) of said coated metal pigment to the average particle diameter (B) of the metal pigment before formation of said adhesion layer, (A)/(B), is not less than 1.0 and not more than 1.1.
8. A coating composition comprising the coated metal pigment obtained by the method according to claim 6 and a binder.
9. A coated product produced by coating a product with a coated metal pigment produced by the method of claim 6.
10. The method for producing a coated metal pigment according to claim 6, wherein prior to formation of said adhesion layer, a layer comprising an oxide or a hydrate containing at least one member selected from the group consisting of Mo, P and Al is formed on the surface of said metal pigment.
11. The method for producing a coated metal pigment according to claim 10, wherein the ratio of the average particle diameter (A) of said coated metal pigment to the average particle diameter (B) of the metal pigment before formation of said adhesion layer, (A)/(B), is not less than 1.0 and not more than 1.1.
12. A product which possesses excellent coating storage stability by exhibiting excellent water resistance and excellent chemical resistance, said product containing the coated metal pigment of claim 1.
13. The product of claim 12, wherein said product is a metal, a plastic, a building material or a printing ink.
14. The coated metal pigment of claim 1, wherein the adhesion layer has a thickness of about 5 to 50 nm.
15. The coated metal pigment of claim 1, wherein the resin constituting the resin layer is a resin, substantially insoluble in organic solvents and water.
16. The coated metal pigment of claim 15, wherein the amount of the resin layer is within the range of 1 to 100 parts by mass per 100 parts by mass of the metal pigment.
US11/922,851 2005-10-13 2006-10-06 Coated metal pigment, method for production of the same, and coating composition containing the same Active 2028-12-10 US8580382B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005-298854 2005-10-13
JP2005298854 2005-10-13
PCT/JP2006/320047 WO2007043453A1 (en) 2005-10-13 2006-10-06 Coated metal pigment, method for production of the pigment, and coating composition comprising the pigment

Publications (2)

Publication Number Publication Date
US20090117281A1 US20090117281A1 (en) 2009-05-07
US8580382B2 true US8580382B2 (en) 2013-11-12

Family

ID=37942696

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/922,851 Active 2028-12-10 US8580382B2 (en) 2005-10-13 2006-10-06 Coated metal pigment, method for production of the same, and coating composition containing the same

Country Status (6)

Country Link
US (1) US8580382B2 (en)
EP (1) EP1953195B1 (en)
JP (1) JP5068170B2 (en)
KR (1) KR101285519B1 (en)
CN (1) CN101287804B (en)
WO (1) WO2007043453A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078438A1 (en) * 2010-06-08 2013-03-28 Asahi Kasei Chemicals Corporation Metallic pigment composition
US11525062B2 (en) * 2018-03-20 2022-12-13 Changzhou Green Photosensitive Materials Co., Ltd. Radiation curable composition containing modified pigment and use thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796364B2 (en) * 2007-11-05 2014-08-05 Servicios Administrativos Penoles S.A. De C.V. Method for preparation of additive for coatings containing metallic nanoparticles
JP5527753B2 (en) 2009-05-25 2014-06-25 東洋アルミニウム株式会社 Surface-coated metallic pigment, water-based paint containing the same, and coated product on which the same is applied
CN102575114B (en) * 2009-09-18 2014-08-13 旭化成化学株式会社 Resin-coated metal pigment, and process for producing same
EP2489683A4 (en) * 2009-10-15 2015-03-18 Toray Industries Process for production of core-shell particles, core-shell particles, and paste composition and sheet composition which contain same
DE102010007147A1 (en) 2010-02-05 2011-08-11 Eckart GmbH, 91235 SiO2-coated metallic effect pigments, process for producing these metallic effect pigments and use
DE102010020507A1 (en) 2010-05-14 2011-11-17 Eckart Gmbh Metal cations and phosphorus and / or sulfur-containing anions having metallic effect pigments, processes for the preparation of these metallic effect pigments and use
US8912252B2 (en) * 2010-07-20 2014-12-16 Silberline Manufacturing Company, Inc. Film-forming pigments and coating system including the same
US8815982B2 (en) 2010-07-20 2014-08-26 Silberline Manufacturing Company, Inc. Colored system
DE102011103882A1 (en) * 2011-03-25 2012-09-27 Eckart Gmbh Copper-containing metal pigments with metal oxide layer and plastic layer, process for their preparation, coating agent and coated article
DE102011055072A1 (en) 2011-11-04 2013-05-08 Eckart Gmbh Coated, wet-chemically oxidized aluminum effect pigments, process for their preparation, coating compositions and coated articles
DE102012103505A1 (en) 2012-04-20 2013-10-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the surface modification of particles
JP5188635B2 (en) * 2012-04-24 2013-04-24 旭化成ケミカルズ株式会社 Resin-coated metal pigment and method for producing the same
RU2638382C2 (en) * 2012-05-09 2017-12-13 Акцо Нобель Кемикалз Интернэшнл Б.В. Dispersion paint
DE102012109055A1 (en) 2012-09-25 2014-03-27 Eckart Gmbh Coated ferromagnetic metal pigments, process for their preparation and their use
JP2014088508A (en) * 2012-10-30 2014-05-15 Asahi Kasei Chemicals Corp Resin-coated metallic pigment and coating composition
US9163153B2 (en) 2013-03-15 2015-10-20 Sanford, L.P. Metallic ink composition and writing instrument containing same
CN103360800B (en) * 2013-08-07 2015-02-11 长沙族兴新材料股份有限公司 High-floatage type water-based aluminium-silver paste and preparation method thereof
KR101551657B1 (en) * 2013-10-28 2015-09-09 씨큐브 주식회사 Method of manufacturing pigment with excellent electrical conductivity and corrosion resistance
DE102013113885A1 (en) 2013-12-11 2015-06-11 Eckart Gmbh Coated metallic pigments, process for their preparation and their use, coating compositions and articles
CN103923495B (en) * 2014-04-01 2017-01-11 张孝根 Ultrafine powder with compound multi-layer core-shell structure as well as production method and application thereof
DE102014210138A1 (en) * 2014-05-27 2015-12-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Use of metal pigments in a liquid polymer formulation
EP3050929A1 (en) * 2015-01-28 2016-08-03 Eckart GmbH Coated pigments, method for their preparation and their use, coating agent and item
US9777180B2 (en) * 2015-02-03 2017-10-03 Basf Coatings Gmbh Method of forming a passivated pigment slurry for an aqueous topcoat coating composition
JP2018052997A (en) * 2015-02-12 2018-04-05 関西ペイント株式会社 Surface-coated brilliant pigment and brilliant coating composition containing the same
WO2017019480A1 (en) * 2015-07-24 2017-02-02 Sun Chemical Corporation Dispersant effect on aluminum pigments
US10899934B2 (en) 2016-03-30 2021-01-26 Eckart Gmbh Effect pigments coated with organic binders for powder paints, and a method for producing said coated effect pigments and their use
US10273371B2 (en) * 2016-07-25 2019-04-30 Basf Coatings Gmbh Method of forming a slurry of encapsulated pigment for an aqueous topcoat coating composition
KR101986064B1 (en) * 2016-09-06 2019-06-04 디아이씨 가부시끼가이샤 Resin-coated inorganic or metallic pigments
JP6864897B2 (en) * 2016-10-12 2021-04-28 大東化成工業株式会社 Surface treatment method for pigment powder
JP2018172617A (en) * 2017-03-31 2018-11-08 東洋アルミニウム株式会社 Coated pigment
DE102017207912A1 (en) * 2017-05-10 2018-11-15 Robert Bosch Gmbh Hydrophobically coated metallic component and method for its production
KR102063729B1 (en) * 2017-09-25 2020-02-17 주식회사 엠오피(M.O.P Co., Ltd.) Ceramic/metal slurry composition for digital light processing type 3D printer using surface modified pigment
CA3081803C (en) 2017-12-06 2022-08-30 Eckart Gmbh Plate-like pvd aluminum pigment with a protective encapsulation and method for manufacturing a plate-like pvd aluminum pigment with a protective encapsulation
WO2022154001A1 (en) * 2021-01-12 2022-07-21 旭化成株式会社 Metal pigment, application of metal pigment, and method for manufacturing metal pigment
CN117500887A (en) * 2021-06-14 2024-02-02 埃卡特有限公司 Coated metallic effect pigments, method for the production thereof and use thereof
CN113999548B (en) * 2021-11-15 2022-09-02 深圳市绚图新材科技有限公司 Preparation method of water-based aluminum pigment and reaction kettle for preparation

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885366A (en) 1956-06-28 1959-05-05 Du Pont Product comprising a skin of dense, hydrated amorphous silica bound upon a core of another solid material and process of making same
JPS5590560A (en) 1978-12-29 1980-07-09 Toho Ganriyou Kogyo Kk Powder metal pigment composition and its manufacture
JPS5590561A (en) 1978-12-29 1980-07-09 Toho Ganriyou Kogyo Kk Manufacture of stable metal powder pigment composition
EP0170474A2 (en) 1984-08-02 1986-02-05 Imperial Chemical Industries Plc Water-borne coating compositions containing metallic pigment having reduced tendency to gas generation on storage
JPS62253668A (en) 1985-09-07 1987-11-05 Asahi Kasei Metals Kk Novel resin-coated metallic pigment and its production
JPS6354475A (en) 1986-04-04 1988-03-08 Toyo Alum Kk Aluminum flake pigment composition for water-based paint
US4750940A (en) * 1985-09-07 1988-06-14 Asahi Kasei Metals Limited Novel resin-coated metallic pigment and a process for producing the same
JPS6440566A (en) 1987-08-07 1989-02-10 Toyo Aluminium Kk Aluminum flakes with both high corrosion resistance and gloss
JPH01129070A (en) 1987-11-13 1989-05-22 Asahi Kasei Metals Kk Novel metal powder pigment
EP0477433A2 (en) 1990-09-28 1992-04-01 Eckart-Werke Standard Bronzepulver-Werke Carl Eckart Gmbh & Co. Metallic pigments coated with synthetic resin, process for manufacturing them and their use
JPH069897A (en) 1992-06-24 1994-01-18 Nippon Dakuro Shamrock:Kk Coated metallic flake containing zinc, its production and coating
EP0583919A1 (en) 1992-08-05 1994-02-23 Toyo Aluminium Kabushiki Kaisha Flaky aluminium pigments coated with molybdic acid
JPH07133440A (en) 1993-11-09 1995-05-23 Toyo Alum Kk Aluminum pigment
WO1996038506A1 (en) 1995-05-30 1996-12-05 Asahi Kasei Metals Limited Novel resin-coated metallic pigment and metallic coating material containing the pigment
JPH10306229A (en) 1997-05-08 1998-11-17 Ube Nitto Kasei Co Ltd Particle covered with light-hardenable resin, its production and spacer from the particle
US5856379A (en) * 1996-01-16 1999-01-05 Fuji Photo Film Co., Ltd. Aqueous dispersion of core/shell-type composite particles with colloidal silica as the cores and with organic polymer as the shells and production method thereof
JP2002121423A (en) 2000-10-12 2002-04-23 Showa Aluminum Powder Kk Resin-coated aluminum pigment and method for producing the same
US20020102407A1 (en) * 2000-12-06 2002-08-01 Josef Huybrechts Aqueous coating compositions with phosphonic acid based compounds
US20020117084A1 (en) * 2000-12-19 2002-08-29 Kazuyuki Hayashi Black composite iron oxide pigment, and paint and resin composition using the same
JP2003041150A (en) 2001-08-02 2003-02-13 Merck Ltd Highly corrosion-resistant flaky metal pigment, method for producing the same and interference color pigment with metallic luster comprising the metal pigment as base
JP2003252916A (en) 2002-02-28 2003-09-10 Hitachi Ltd Composite particle and its manufacturing method
WO2004006921A1 (en) 2002-07-11 2004-01-22 Takeda Pharmaceutical Company Limited Process for producing coated preparation
JP2004124069A (en) 2002-07-31 2004-04-22 Showa Denko Kk Silica-coated aluminum pigment and its production method as well as application thereof
JP2004131542A (en) 2002-10-09 2004-04-30 Asahi Kasei Chemicals Corp Aluminum pigment
US20040151910A1 (en) * 2003-01-24 2004-08-05 Koller Anne Denise Organic-inorganic composite particle and process for preparation thereof
US20050006093A1 (en) * 2003-07-07 2005-01-13 Nguyen Philip D. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US20050142343A1 (en) * 2002-02-01 2005-06-30 Holger Winkler Moulded bodies consisting of core-shell particles
EP1619222A1 (en) 2003-04-28 2006-01-25 Toyo Aluminium Kabushiki Kaisha Aluminum pigment, process for production thereof and resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445290B1 (en) * 2001-05-24 2010-01-13 Toyo Aluminium Kabushiki Kaisha Powder coating composition, process for producing the same, and coating film made from the same
JP2004175813A (en) * 2002-11-22 2004-06-24 Toyo Aluminium Kk Powder coating composition

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885366A (en) 1956-06-28 1959-05-05 Du Pont Product comprising a skin of dense, hydrated amorphous silica bound upon a core of another solid material and process of making same
JPS5590560A (en) 1978-12-29 1980-07-09 Toho Ganriyou Kogyo Kk Powder metal pigment composition and its manufacture
JPS5590561A (en) 1978-12-29 1980-07-09 Toho Ganriyou Kogyo Kk Manufacture of stable metal powder pigment composition
EP0170474A2 (en) 1984-08-02 1986-02-05 Imperial Chemical Industries Plc Water-borne coating compositions containing metallic pigment having reduced tendency to gas generation on storage
JPS6147771A (en) 1984-08-02 1986-03-08 インペリアル・ケミカル・インダストリーズ・ピーエルシー Coating composition
JPS62253668A (en) 1985-09-07 1987-11-05 Asahi Kasei Metals Kk Novel resin-coated metallic pigment and its production
US4750940A (en) * 1985-09-07 1988-06-14 Asahi Kasei Metals Limited Novel resin-coated metallic pigment and a process for producing the same
US4869754A (en) 1986-04-04 1989-09-26 Toyo Aluminium Kabushiki Kaisha Aluminium pigment composition
JPS6354475A (en) 1986-04-04 1988-03-08 Toyo Alum Kk Aluminum flake pigment composition for water-based paint
JPS6440566A (en) 1987-08-07 1989-02-10 Toyo Aluminium Kk Aluminum flakes with both high corrosion resistance and gloss
JPH01129070A (en) 1987-11-13 1989-05-22 Asahi Kasei Metals Kk Novel metal powder pigment
EP0477433A2 (en) 1990-09-28 1992-04-01 Eckart-Werke Standard Bronzepulver-Werke Carl Eckart Gmbh & Co. Metallic pigments coated with synthetic resin, process for manufacturing them and their use
US5332767A (en) * 1990-09-28 1994-07-26 Eckart-Werke Standard Bronzpulver-Werke Carl Eckart Gmbh & Co. Synthetic resin-coated metal pigment, process for the production thereof and use thereof
JPH073185A (en) 1990-09-28 1995-01-06 Eckart Werke Standard Bronzepulver Werke Carl Eckart Gmbh & Co Metallic pigment coated with synthetic resin, and production and application of the pigment
JPH069897A (en) 1992-06-24 1994-01-18 Nippon Dakuro Shamrock:Kk Coated metallic flake containing zinc, its production and coating
EP0583919A1 (en) 1992-08-05 1994-02-23 Toyo Aluminium Kabushiki Kaisha Flaky aluminium pigments coated with molybdic acid
JPH0657171A (en) 1992-08-05 1994-03-01 Toyo Alum Kk Aluminum pigment
US5540768A (en) * 1993-11-09 1996-07-30 Toyo Aluminium Kabushiki Kaisha Aluminum pigments
JPH07133440A (en) 1993-11-09 1995-05-23 Toyo Alum Kk Aluminum pigment
WO1996038506A1 (en) 1995-05-30 1996-12-05 Asahi Kasei Metals Limited Novel resin-coated metallic pigment and metallic coating material containing the pigment
US5856379A (en) * 1996-01-16 1999-01-05 Fuji Photo Film Co., Ltd. Aqueous dispersion of core/shell-type composite particles with colloidal silica as the cores and with organic polymer as the shells and production method thereof
JPH10306229A (en) 1997-05-08 1998-11-17 Ube Nitto Kasei Co Ltd Particle covered with light-hardenable resin, its production and spacer from the particle
JP2002121423A (en) 2000-10-12 2002-04-23 Showa Aluminum Powder Kk Resin-coated aluminum pigment and method for producing the same
US20020102407A1 (en) * 2000-12-06 2002-08-01 Josef Huybrechts Aqueous coating compositions with phosphonic acid based compounds
US20020117084A1 (en) * 2000-12-19 2002-08-29 Kazuyuki Hayashi Black composite iron oxide pigment, and paint and resin composition using the same
US20040194663A1 (en) 2001-08-02 2004-10-07 Bangyin Li Highly anti-corrosive metal pigments
JP2003041150A (en) 2001-08-02 2003-02-13 Merck Ltd Highly corrosion-resistant flaky metal pigment, method for producing the same and interference color pigment with metallic luster comprising the metal pigment as base
US20050142343A1 (en) * 2002-02-01 2005-06-30 Holger Winkler Moulded bodies consisting of core-shell particles
JP2003252916A (en) 2002-02-28 2003-09-10 Hitachi Ltd Composite particle and its manufacturing method
WO2004006921A1 (en) 2002-07-11 2004-01-22 Takeda Pharmaceutical Company Limited Process for producing coated preparation
JP2004124069A (en) 2002-07-31 2004-04-22 Showa Denko Kk Silica-coated aluminum pigment and its production method as well as application thereof
JP2004131542A (en) 2002-10-09 2004-04-30 Asahi Kasei Chemicals Corp Aluminum pigment
US20040151910A1 (en) * 2003-01-24 2004-08-05 Koller Anne Denise Organic-inorganic composite particle and process for preparation thereof
EP1619222A1 (en) 2003-04-28 2006-01-25 Toyo Aluminium Kabushiki Kaisha Aluminum pigment, process for production thereof and resin composition
US20060150864A1 (en) 2003-04-28 2006-07-13 Yoshiki Hashizume Aluminum pigment, process for production thereof and resin composition
US20050006093A1 (en) * 2003-07-07 2005-01-13 Nguyen Philip D. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Allen et al., Tables of Bond Lengths . . . Bond Lengths of Organic Compounds, J. Chem. Soc. Perkin. Trans. II, Issue 1 (1987). *
Machine translation of JP 2004-124069A. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078438A1 (en) * 2010-06-08 2013-03-28 Asahi Kasei Chemicals Corporation Metallic pigment composition
US9296906B2 (en) * 2010-06-08 2016-03-29 Asahi Kasei Chemicals Corporation Metallic pigment composition
US11525062B2 (en) * 2018-03-20 2022-12-13 Changzhou Green Photosensitive Materials Co., Ltd. Radiation curable composition containing modified pigment and use thereof

Also Published As

Publication number Publication date
WO2007043453A1 (en) 2007-04-19
EP1953195A1 (en) 2008-08-06
US20090117281A1 (en) 2009-05-07
CN101287804A (en) 2008-10-15
EP1953195A4 (en) 2010-06-02
JP5068170B2 (en) 2012-11-07
EP1953195B1 (en) 2017-12-13
KR101285519B1 (en) 2013-07-17
CN101287804B (en) 2011-09-21
JPWO2007043453A1 (en) 2009-04-16
KR20080056146A (en) 2008-06-20

Similar Documents

Publication Publication Date Title
US8580382B2 (en) Coated metal pigment, method for production of the same, and coating composition containing the same
US6761762B1 (en) Effect pigments coated with reactive orientation aids
EP0810270B1 (en) Colored aluminium pigments and the preparation process thereof
EP2436738B1 (en) Surface-coated metallic pigment, water-based coating comprising same and article coated therewith
KR101566045B1 (en) Flake pigment, powder coating material containing the flake pigment, powder coated film obtained by coating with frictional electrification-type electrostatic coating apparatus using the powder coating material, coated product with the powder coated film, and process for producing flake pigment
JP4553844B2 (en) Flake pigment, paint and powder paint containing the same, and surface treatment agent for flake particles used therefor
KR101624372B1 (en) Resin-coated metallic pigment, water-based paint containing same, painted item to which same has been applied, and manufacturing method for same
WO2004096921A1 (en) Aluminum pigment, process for production thereof and resin composition
DE102008031901A1 (en) Metallic effect pigments, process for their preparation and use thereof and powder coating
CN1189177A (en) Oxidized coloured aluminium pigments, process for their production and their use
JP2003012964A (en) Metallic pigment composition, its production method, and coating composition and ink composition containing the metallic pigment composition
JP5759764B2 (en) Colored metal pigment and method for producing the same
JP2003096334A (en) Colored aluminum pigment, its production method, and coating material composition
JP3481372B2 (en) Surface-treated colored pigment, colored substrate particles and method for producing the same
WO2020161490A2 (en) New product
JP2004091730A (en) Polarizing colored aluminum pigment and coating composition containing the same
JP5779384B2 (en) Colorant
EP2847284B1 (en) Method for improving the effectiveness of titanium dioxide containing coatings

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYO ALUMINIUM KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, TAKAYUKI;MORIMITSU, TARO;SETOGUCHI, SHUNICHI;AND OTHERS;REEL/FRAME:020318/0719

Effective date: 20071102

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8