Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS8810771 B2
Tipo de publicaciónConcesión
Número de solicitudUS 13/323,404
Fecha de publicación19 Ago 2014
Fecha de presentación12 Dic 2011
Fecha de prioridad28 Oct 2003
También publicado comoCN1612051A, CN1612051B, DE602004025893D1, US7352433, US7532304, US8102502, US8860922, US9182679, US20050128445, US20080204679, US20090197211, US20120086926, US20120120377, US20150015858
Número de publicación13323404, 323404, US 8810771 B2, US 8810771B2, US-B2-8810771, US8810771 B2, US8810771B2
InventoresChristiaan Alexander Hoogendam, Erik Roelof Loopstra, Bob Streefkerk, Bernhard Gellrich, Andreas Wurmbrand
Cesionario originalAsml Netherlands B.V., Carl Zeiss Smt Ag
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Lithographic apparatus and device manufacturing method
US 8810771 B2
Resumen
Liquid is supplied to a space between the projection system of a lithographic apparatus and a substrate. A flow of gas towards a vacuum inlet prevents the humid gas from escaping to other parts of the lithographic apparatus. This may help to protect intricate parts of the lithographic apparatus from being damaged by the presence of humid gas.
Imágenes(3)
Previous page
Next page
Reclamaciones(20)
The invention claimed is:
1. A lithographic apparatus, comprising:
a substrate table configured to hold a substrate;
a projection system configured to project a patterned beam onto a target portion of the substrate;
a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid;
a member that is located above the substrate table and that extends along at least a part of the boundary of the space between the projection system and the substrate, the member configured to at least partly confine the liquid in the space; and
a gas inflow port separate from the body of the member and configured to create a flow of gas to at least partly confine humid gas in a volume around and in contact with the liquid in the space.
2. The apparatus according to claim 1, further comprising an underpressure inlet configured to remove gas.
3. The apparatus according to claim 2, wherein the underpressure inlet is configured to remove gas in contact with the liquid in a volume above the liquid.
4. The apparatus according to claim 2, wherein the underpressure inlet has an annular shape, the projection system arranged at the center of the annular shape.
5. The apparatus according to claim 1, further comprising a cover to cover at least part of the projection system, the cover configured to prevent humid gas from entering the projection system or the remainder of the lithographic apparatus.
6. The apparatus according to claim 5, further comprising a seal, wherein the seal is configured to seal the cover to the projection system.
7. The apparatus according to claim 5, wherein the seal is flexible.
8. The apparatus of claim 5, further comprising a passage between the member and the cover.
9. The apparatus according to claim 1, wherein the gas inflow port is arranged so that, in use, the flow of gas is at least partly between the member and the projection system.
10. The apparatus according to claim 1, wherein the member further comprises an outlet, on a bottom surface of the member, configured to remove liquid.
11. The apparatus according to claim 10, wherein the member is movable in Z, Rx and Ry directions.
12. The apparatus of claim 1, wherein the flow of gas is clean and dry gas.
13. The apparatus of claim 1, further comprising a passage that is between the member and the projection system and that is fluidly connected to the space.
14. A device manufacturing method, comprising:
providing a liquid to a space between a projection system of a lithographic apparatus and a substrate;
confining the liquid in the space at least in part by a member of the lithographic apparatus located above the substrate;
creating a flow of gas to confine humid gas in a volume around and in contact with the liquid in the space using a gas inflow port separate from the member; and
projecting a patterned beam of radiation using the projection system onto a target portion of the substrate through the liquid.
15. The method according to claim 14, comprising flowing the gas through a passage, the passage formed at least partly by the projection system and the member.
16. A lithographic apparatus, comprising:
a substrate table configured to hold a substrate;
a projection system configured to project a patterned beam onto a target portion of the substrate;
a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid;
a member that is located above the substrate table and that extends along at least a part of the boundary of the space between the projection system and the substrate, the member configured to at least partly confine the liquid in the space;
a gas inflow port configured to create a flow of gas to at least partly confine humid gas in a volume around and in contact with the liquid in the space; and
a gas outflow port configured to remove gas from the flow of gas.
17. The apparatus of claim 16, wherein the gas outflow port is formed in a structure separate from the projection system and the member.
18. The apparatus of claim 16, wherein the flow of gas is clean and dry gas.
19. The apparatus of claim 16, wherein the member further comprises an outlet that is on a bottom surface of the member and that is configured to remove liquid.
20. The apparatus of claim 16, further comprising a passage that is between the member and the projection system and that is fluidly connected to the space.
Descripción

This application is a continuation of co-pending U.S. patent application Ser. No. 12/422,140, filed Apr. 10, 2009, now allowed, which is a continuation of U.S. patent application Ser. No. 12/010,705, filed Jan. 29, 2008, now U.S. Pat. No. 7,532,304, which is a continuation of U.S. patent application Ser. No. 10/961,395, filed Oct. 12, 2004, now U.S. Pat. No. 7,352,433, which claims priority to European patent application EP 03256809.9, filed Oct. 28, 2003, each application is incorporated herein in its entirety.

FIELD

The present invention relates to a lithographic apparatus and a device manufacturing method.

BACKGROUND

A lithographic apparatus is a machine that applies a desired pattern onto a target portion of a substrate. Lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that circumstance, a patterning device, such as a mask, may be used to generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising part of, one or several dies) on a substrate (e.g. a silicon wafer) that has a layer of radiation-sensitive material (resist). In general, a single substrate will contain a network of adjacent target portions that are successively exposed. Known lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion in one go, and so-called scanners, in which each target portion is irradiated by scanning the pattern through the projection beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction.

It has been proposed to immerse the substrate in the lithographic projection apparatus in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. The point of this is to enable imaging of smaller features since the exposure radiation will have a shorter wavelength in the liquid. (The effect of the liquid may also be regarded as increasing the effective NA of the system and also increasing the depth of focus.)

However, submersing the substrate or substrate and substrate table in a bath of liquid (see, for example, U.S. Pat. No. 4,509,852, hereby incorporated in its entirety by reference) means that there is a large body of liquid that must be accelerated during a scanning exposure. This requires additional or more powerful motors and turbulence in the liquid may lead to undesirable and unpredictable effects.

One of the solutions proposed is for a liquid supply system to provide liquid on only a localized area of the substrate and in between the final element of the projection system and the substrate using a liquid confinement system (the substrate generally has a larger surface area than the final element of the projection system). One way which has been proposed to arrange for this is disclosed in PCT patent application WO 99/49504, hereby incorporated in its entirety by reference. As illustrated in FIGS. 2 and 3, liquid is supplied by at least one inlet IN onto the substrate, preferably along the direction of movement of the substrate relative to the final element, and is removed by at least one outlet OUT after having passed under the projection system. That is, as the substrate is scanned beneath the element in a −X direction, liquid is supplied at the +X side of the element and taken up at the −X side. FIG. 2 shows the arrangement schematically in which liquid is supplied via inlet IN and is taken up on the other side of the element by outlet OUT which is connected to a low pressure source. In the illustration of FIG. 2 the liquid is supplied along the direction of movement of the substrate relative to the final element, though this does not need to be the case. Various orientations and numbers of in- and out-lets positioned around the final element are possible, one example is illustrated in FIG. 3 in which four sets of an inlet with an outlet on either side are provided in a regular pattern around the final element.

SUMMARY

The presence of liquid in a lithography apparatus results in the surrounding gas (e.g., air) becoming very humid. Humidity levels of up to 100% are possible. Moisture in the gas can enter other parts of the lithography apparatus thus contaminating other machine pacts and measurement components so the operation and accurate measurement of the lithography apparatus may become compromised. The moisture in the gas may cause rusting of machine parts and therefore may reduce the life span of the lithography apparatus.

Accordingly, it would be advantageous, for example, to provide a method of confining and/or removing humid gas.

According to an aspect of the invention, there is provided a lithographic apparatus, comprising:

an illumination system configured to condition beam of radiation;

a support structure configured to hold a patterning device, the patterning device configured to pattern the beam of radiation according to a desired pattern;

a substrate table configured to hold a substrate;

a projection system configured to project the patterned beam onto a target portion of the substrate;

a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid; and

a gas flow port configured to create a flow of gas to remove humid gas in a space above and in contact with the liquid, to confine the humid gas in the space, or both.

The humid gas above (where down is the direction of propagation of the projection beam) the liquid may thus be confined to or removed from a small volume relative to the projection apparatus. In an embodiment, there may be no rigid connection between parts of the apparatus so relative movement between the parts of the apparatus may occur freely. The gas used should be clean and dry to avoid damage to the apparatus and to absorb the humidity.

In an embodiment, the gas flow port comprises a vacuum inlet, which may also remove a contaminant from the system. The contaminant removed can be solid particles (which could damage the apparatus by scratching it), liquid particles or gaseous particles other than the gas itself. The vacuum inlet may be annular shaped, the projection system being arranged at the center of the annulus.

In an embodiment, the gas flow port comprises a passage through which the flow of gas flows. The passage bounds the volume of humid gas and the clean, dry gas flowing through the passage helps to prevent the humid gas from escaping. The passage may be formed at least partly by a part of the projection system and the gas flow port.

The lithographic apparatus may further comprise a cover, the cover forming a part of the passage, the cover being joined to the projection system by a seal. The cover may thus provides a gastight cover to the projection system, helping to prevent humid gas from entering the projection system or the remainder of the lithographic apparatus. The seal should be flexible and is, in an embodiment, a glue. Relative movement between parts of the lithographic apparatus may therefore not be compromised.

The liquid supply system may comprise a liquid confinement structure extending along at least part of the boundary of a space between the projection system and the substrate. In an embodiment, the gas flow port is arranged so that a flow of gas is provided at least partly between the liquid confinement structure and the projection system. Due to the presence of the gas flow port, relative movement between the liquid confinement structure and the projection system may take place. In an embodiment, the lithographic apparatus is arranged so that the gas flow port is arranged between the projection system and the liquid confinement structure. The liquid confinement structure optionally comprises a gas seal inlet configured to form a gas seal between the liquid confinement structure and a surface of the substrate. Humid gas is therefore confined by the substrate, the gas seal inlet, the liquid confinement structure, the gas flow port and the projection system. In an embodiment, the liquid confinement structure is mounted onto a base frame of the lithographic projection apparatus. In an embodiment, the liquid confinement structure is movable relative to the base frame in the Z, Rx and Ry directions (where the Z direction is the direction of propagation of the projection beam) but fixed in all other directions.

According to a further aspect of the invention, there is provided a device manufacturing method, comprising:

providing a liquid to a space between a projection system and a substrate;

flowing a gas in a space above and in contact the liquid to remove humid gas in the space, to confine the humid gas in the space, or both; and

projecting a patterned beam of radiation using the projection system onto a target portion of the substrate through the liquid.

An embodiment of the invention easily may be used with the liquid supply system illustrated in FIGS. 2 and 3. Additional inlets and outlets arranged in a space above the liquid in those Figures would generate a gas flow which could absorb the humid gas from or confine the humid gas in the gaseous space above the liquid.

Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal displays (LCDs), thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms “wafer” or “die” herein may be considered as synonymous with the more general terms “substrate” or “target portion”, respectively. The substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist) or a metrology or inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.

The terms “radiation” and “beam” used herein encompass all types of electromagnetic radiation, including ultraviolet (UV) radiation (e.g. having a wavelength of 365, 248, 193, 157 or 126 nm).

The term “patterning device” used herein should be broadly interpreted as referring to any device that can be used to impart a projection beam with a pattern in its cross-section such as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the projection beam may not exactly correspond to the desired pattern in the target portion of the substrate. Generally, the pattern imparted to the projection beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.

A patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions; in this manner, the reflected beam is patterned. In each example of a patterning device, the support structure may be a frame or table, for example, which may be fixed or movable as required and which may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device”.

The term “projection system” used herein should be broadly interpreted as encompassing various types of projection system, including refractive optical systems, reflective optical systems, and catadioptric optical systems, as appropriate for example for the exposure radiation being used, or for other factors such as the use of an immersion fluid or the use of a vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system”.

The illumination system may also encompass various types of optical components, including refractive, reflective, and catadioptric optical components for directing, shaping, or controlling the projection beam of radiation.

The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more mask tables). In such “multiple stage” machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:

FIG. 1 depicts a lithographic apparatus according to an embodiment of the invention;

FIG. 2 depicts a liquid supply system according to an embodiment of the invention;

FIG. 3 is an alternative view of the liquid supply system of FIG. 2; and

FIG. 4 is a detail of a lithographic projection apparatus according to an embodiment of the invention.

DETAILED DESCRIPTION

FIG. 1 schematically depicts a lithographic apparatus according to a particular embodiment of the invention. The apparatus comprises:

an illumination system (illuminator) IL configured to provide a projection beam PB of radiation (e.g. UV radiation).

a first support structure (e.g. a mask table) MT configured to hold a patterning device (e.g. a mask) MA and connected to a first positioner PM configured to accurately position the patterning device with respect to item PL;

a substrate table (e.g. a wafer table) WT configured to hold a substrate (e.g. a resist-coated wafer) W and connected to a second positioner PW configured to accurately position the substrate with respect to item PL; and

a projection system (e.g. a refractive projection lens) PL configured to image a pattern imparted to the projection beam PB by patterning device MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.

As here depicted, the apparatus is of a transmissive type (e.g. employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above).

The illuminator IL receives a beam of radiation from a radiation source SO. The source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to form part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD comprising for example suitable directing mirrors and/or a beam expander. In other cases the source may be integral part of the apparatus, for example when the source is a mercury lamp. The source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.

The illuminator IL may comprise adjusting means AM for adjusting the angular intensity distribution of the beam. Generally, at least the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in a pupil plane of the illuminator can be adjusted. In addition, the illuminator IL generally comprises various other components, such as an integrator IN and a condenser CO. The illuminator provides a conditioned beam of radiation, referred to as the projection beam PB, having a desired uniformity and intensity distribution in its cross-section.

The projection beam PB is incident on the mask MA, which is held on the mask table MT. Having traversed the mask MA, the projection beam PB passes through the projection system PL, which focuses the beam onto a target portion C of the substrate W. With the aid of the second positioner PW and position sensor IF (e.g. an interferometric device), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioner PM and another position sensor (which is not explicitly depicted in FIG. 1) can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval from a mask library, or during a scan. In general, movement of the object tables MT and WT will be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning), which form part of the positioners PM and PW. However, in the case of a stepper (as opposed to a scanner) the mask table MT may be connected to a short stroke actuator only, or may be fixed. Mask MA and substrate W may be aligned using mask alignment marks M1, M2 and substrate alignment marks P1, P2.

The depicted apparatus can be used in the following preferred modes:

  • 1. In step mode, the mask table MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the projection beam is projected onto a target portion C at one time (i.e. a single static exposure). The substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure.
  • 2. In scan mode, the mask table MT and the substrate table WT are scanned synchronously while a pattern imparted to the projection beam is projected onto a target portion C (i.e. a single dynamic exposure). The velocity and direction of the substrate table WT relative to the mask table MT is determined by the (de-)magnification and image reversal characteristics of the projection system PL. In scan mode, the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion.
  • 3. In another mode, the mask table MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern imparted to the projection beam is projected onto a target portion C. In this mode, generally a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography that utilizes a programmable patterning device, such as a programmable minor array of a type as referred to above.

Combinations and/or variations on the above described modes of use or entirely different modes of use may also be employed.

Another liquid supply system solution according to an embodiment of the invention is a liquid supply system with a seal member or a liquid confinement structure which extends along at least a part of a boundary of the space between the final element of the projection system and the substrate table. The seal member is substantially stationary relative to the projection system in the XY plane though there may be some relative movement in the Z direction (in the direction of the optical axis). A seal is formed between the seal member and the surface of the substrate. In an embodiment, the seal is a contactless seal such as a gas seal. Such a system is disclosed in U.S. patent application Ser. No. 10/705,783, hereby incorporated in its entirety by reference.

As shown in FIG. 4, a liquid reservoir 10 between the projection system and the substrate is bounded by a gas seal 16 forming an annulus around the projection system. The seal 16, in an embodiment a gas seal, is formed by gas e.g. air, synthetic air, N2 or an inert gas, provided under pressure via inlet 15 to the gap between seal member 12 and the substrate and extracted via first outlet 14. The over pressure on the gas inlet 15, vacuum level on the first outlet 14 and geometry of the gap are arranged so that there is a high velocity gas flow inwards that confines the liquid. The distance between the gas inlet and outlet and substrate W is small. The liquid reservoir is supplied with liquid by inlet 22 and extends above the bottom of the final element of the projection system PL. Excess liquid is removed via outlet 14.

To prevent moisture-laden gas from pervading the entire apparatus, metal membranes may be used to confine the humid gas between the projection system and a liquid confinement structure used to at least partly contain the liquid between the projection system and the substrate. Alternatively, rubber-like Viton fluoroelastomer rings may be used to confine the gas. In such arrangements, however, it may be possible a vibration is transmitted between the projection system and the liquid confinement structure.

As shown in FIG. 4, the projection system also comprises a cover 35 attached to a main part of the projection system PL by a seal 40. The seal 40 should be flexible to accommodate small relative movement between the main part of the projection system PL and the cover 35. Glues are likely to be particularly effective. An advantage of such an arrangement is transmission of vibration forces between the projection system and the liquid confinement structure may be reduced or avoided.

A vacuum chamber 34 with an inlet 33 is arranged in the volume above the reservoir 10. The outside of the vacuum chamber 34 and cover 35 form a passage 32 along which gas flows towards vacuum chamber 34. In addition to the gas flowing along passage 32, gas from all surrounding areas will flow towards the vacuum chamber 34. The partial vapor pressure of the liquid in the gas above the reservoir 10 is high, and the flow of gas along passage 32 prevents the humid gas from entering the projection system PL.

Additionally or alternatively, the gas flow will absorb humidity from surrounding gas so there is a gradient of humidity, the humidity of the gas decreasing away from the reservoir 10. Thus delicate parts of the apparatus such as mirrors for the interferometer beams are arranged in a dry part of the apparatus so that the humidity doesn't affect measurements made using the interferometer beams. Additionally, if glue is used as seal 40, dry, flowing gas will help to ensure that the glue remains dry and therefore a gastight seal is maintained. Keeping the glue 40 dry also helps prevent it from expanding and thus generating forces which may deform the projection system.

The vacuum chamber 34 can be independent of the projection system as in the example above, or can be part of the projection system PL, or part of the seal member 12 and in any of these circumstances may be actuatable in the Z direction. There may be a plurality of gas passages 32 and vacuum chambers 34 arranged around the projection system PL, or alternatively one annular (or other) shaped vacuum chamber with a slit inlet. Although the example here is of a vacuum chamber i.e. an underpressure generating a gas flow, the gas flow port could equally comprise an overpressure.

A system as described above may be used in conjunction with the liquid supply system shown in FIGS. 2 and 3, the vacuum chamber 34 and passage 32 being arranged above the inlets IN and outlets OUT.

In an embodiment, there is provided a lithographic apparatus, comprising: an illumination system configured to condition beam of radiation; a support structure configured to hold a patterning device, the patterning device configured to pattern the beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid; and a gas flow port configured to create a flow of gas to remove humid gas in a space above and in contact with the liquid, to confine the humid gas in the space, or both.

In an embodiment, the gas flow port comprises a vacuum inlet. In an embodiment, the vacuum inlet removes gas in contact with the liquid. In an embodiment, the vacuum inlet also removes a contaminant from gas in contact with the liquid. In an embodiment, the vacuum inlet has an annular shape, the projection system being arranged at the center of the annulus. In an embodiment, the gas flow port comprises a passage through which the flow of gas flows. In an embodiment, the passage is formed at least partly by the projection system and the gas flow port. In an embodiment, the apparatus further comprises a cover, the cover forming a part of the passage, the cover being joined to the projection system by a seal. In an embodiment, the seal is flexible. In an embodiment, the seal comprises glue. In an embodiment, the liquid supply system further comprises a liquid confinement structure extending along at least a part of the boundary of the space between the projection system and the substrate. In an embodiment, the gas flow port is arranged so that the flow of gas is at least partly between the liquid confinement structure and the projection system. In an embodiment, the liquid confinement structure further comprises a gas seal inlet configured to form a gas seal between the liquid confinement structure and a surface of the substrate. In an embodiment, the liquid confinement structure is mounted onto a base frame. In an embodiment, the liquid confinement structure is movable relative to the base frame in Z, Rx and Ry directions and fixed in all other directions.

In an embodiment, there is provided a device manufacturing method, comprising: providing a liquid to a space between a projection system and a substrate; flowing a gas in a space above and in contact the liquid to remove humid gas in the space, to confine the humid gas in the space, or both; and projecting a patterned beam of radiation using the projection system onto a target portion of the substrate through the liquid.

In an embodiment, the method comprises using a vacuum inlet to create the flowing gas. In an embodiment, the method comprises using the vacuum inlet to remove gas in contact with the liquid. In an embodiment, the vacuum inlet has an annular shape, the projection system being arranged at the center of the annulus. In an embodiment, the method comprises flowing the gas through a passage, the passage formed at least partly by the projection system and a device used to create the flowing gas. In an embodiment, a cover forms a part of the passage, the cover being joined to the projection system by a seal. In an embodiment, the seal is flexible. In an embodiment, providing the liquid comprises providing the liquid to the space between the projection and the substrate using a liquid confinement structure extending along at least a part of the boundary of the space between the projection system and the substrate. In an embodiment, flowing the gas comprises flowing the gas between the liquid confinement structure and the projection system. In an embodiment, the method further comprises forming a gas seal between the liquid confinement structure and a surface of the substrate. In an embodiment, the liquid confinement structure is mounted onto a base frame. In an embodiment, the liquid confinement structure is movable relative to the base frame in Z, Rx and Ry directions and fixed in all other directions.

In an embodiment, there is provided a lithographic apparatus, comprising: an illumination system configured to condition beam of radiation; a support structure configured to hold a patterning device, the patterning device configured to pattern the beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid; a gas flow port configured to create a flow of gas to remove humid gas in a space above and in contact with the liquid, to confine the humid gas in the space, or both; and a passage through which the flow of gas flows formed at least partly by the projection system and the gas flow port.

In an embodiment, the gas flow port comprises a vacuum inlet. In an embodiment, the vacuum inlet has an annular shape, the projection system being arranged at the center of the annulus. In an embodiment, the liquid supply system further comprises a liquid confinement structure extending along at least a part of the boundary of the space between the projection system and the substrate. In an embodiment, the gas flow port is arranged so that the flow of gas is at least partly between the liquid confinement structure and the projection system.

While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The description is not intended to limit the invention.

Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US357397510 Jul 19686 Abr 1971IbmPhotochemical fabrication process
US364858710 Oct 196814 Mar 1972Eastman Kodak CoFocus control for optical instruments
US43461646 Oct 198024 Ago 1982Werner TabarelliPhotolithographic method for the manufacture of integrated circuits
US439027317 Feb 198128 Jun 1983Censor Patent-Und VersuchsanstaltProjection mask as well as a method and apparatus for the embedding thereof and projection printing system
US439670518 Sep 19812 Ago 1983Hitachi, Ltd.Pattern forming method and pattern forming apparatus using exposures in a liquid
US448091015 Mar 19826 Nov 1984Hitachi, Ltd.Pattern forming apparatus
US450985217 Ago 19829 Abr 1985Werner TabarelliApparatus for the photolithographic manufacture of integrated circuit elements
US470434825 Sep 19853 Nov 1987Hitachi, Ltd.Exposure of uniform fine pattern on photoresist
US499882113 Jul 198812 Mar 1991Canon Kabushiki KaishaProjection apparatus
US50400202 Nov 198913 Ago 1991Cornell Research Foundation, Inc.Self-aligned, high resolution resonant dielectric lithography
US56106835 Jun 199511 Mar 1997Canon Kabushiki KaishaImmersion type projection exposure apparatus
US571503917 May 19963 Feb 1998Hitachi, Ltd.Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns
US58250437 Oct 199620 Oct 1998Nikon Precision Inc.Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
US59003543 Jul 19974 May 1999Batchelder; John SamuelMethod for optical inspection and lithography
US59979635 May 19987 Dic 1999Ultratech Stepper, Inc.Microchamber
US61914296 Abr 199920 Feb 2001Nikon Precision Inc.Projection exposure apparatus and method with workpiece area detection
US623663411 Ago 200022 May 2001Digital Papyrus CorporationMethod and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US65558343 Nov 200029 Abr 2003Asml Netherlands B.V.Gas flushing system for use in lithographic apparatus
US656003216 Mar 20016 May 2003Olympus Optical Co., Ltd.Liquid immersion lens system and optical apparatus using the same
US660054724 Sep 200129 Jul 2003Nikon CorporationSliding seal
US660313017 Abr 20005 Ago 2003Asml Netherlands B.V.Gas bearings for use with vacuum chambers and their application in lithographic projection apparatuses
US663336510 Dic 200114 Oct 2003Nikon CorporationProjection optical system and exposure apparatus having the projection optical system
US707561612 Nov 200311 Jul 2006Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US70989915 Oct 200429 Ago 2006Nikon CorporationExposure method, exposure apparatus, and method for manufacturing device
US7352433 *12 Oct 20041 Abr 2008Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US7532304 *29 Ene 200812 May 2009Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US200100384422 May 20018 Nov 2001Silicon Valley Group, Inc.Method and apparatus for a non-contact scavenging seal
US2002002082126 Jul 200121 Feb 2002Koninklijke Philips Electronics N.V.Method of manufacturing an optically scannable information carrier
US200201636297 May 20027 Nov 2002Michael SwitkesMethods and apparatus employing an index matching medium
US2003003091610 Dic 200113 Feb 2003Nikon CorporationProjection optical system and exposure apparatus having the projection optical system
US200301230407 Nov 20023 Jul 2003Gilad AlmogyOptical spot grid array printer
US200301230429 Dic 20023 Jul 2003Joseph LaganzaMethod and apparatus for a reticle with purged pellicle-to-reticle gap
US200301463963 Mar 20037 Ago 2003Asml Netherlands B.V.Gas flushing system with recovery system for use in lithographic apparatus
US200301744086 Mar 200318 Sep 2003Carl Zeiss Smt AgRefractive projection objective for immersion lithography
US200400006272 Ago 20021 Ene 2004Carl Zeiss Semiconductor Manufacturing Technologies AgMethod for focus detection and an imaging system with a focus-detection system
US2004002184430 Jul 20035 Feb 2004Nikon CorporationProjection optical system and exposure apparatus having the projection optical system
US2004007589522 Oct 200222 Abr 2004Taiwan Semiconductor Manufacturing Co., Ltd.Apparatus for method for immersion lithography
US2004010923730 May 200310 Jun 2004Carl Zeiss Smt AgProjection objective, especially for microlithography, and method for adjusting a projection objective
US2004011411718 Nov 200317 Jun 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004011818414 Oct 200324 Jun 2004Asml Holding N.V.Liquid flow proximity sensor for use in immersion lithography
US200401199549 Dic 200324 Jun 2004Miyoko KawashimaExposure apparatus and method
US2004012535130 Dic 20021 Jul 2004Krautschik Christof GabrielImmersion lithography
US2004013649412 Nov 200315 Jul 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004016058212 Nov 200319 Ago 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004016515912 Nov 200326 Ago 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004016983417 Nov 20032 Sep 2004Infineon Technologies AgOptical device for use with a lithography method
US2004016992427 Feb 20032 Sep 2004Asml Netherlands, B.V.Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US2004018029420 Feb 200416 Sep 2004Asml Holding N.V.Lithographic printing with polarized light
US2004018029911 Mar 200316 Sep 2004Rolland Jason P.Immersion lithography methods using carbon dioxide
US2004020782412 Nov 200321 Oct 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004021192012 Nov 200328 Oct 2004Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2004022426514 Ago 200311 Nov 2004Matsushita Electric Industrial Co., LtdPattern formation method and exposure system
US2004022452520 Ago 200311 Nov 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US2004022792326 Feb 200418 Nov 2004Flagello Donis GeorgeStationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US2004023340123 Feb 200425 Nov 2004Naoki IrieExposure apparatus
US2004025354715 Sep 200316 Dic 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US2004025354815 Sep 200316 Dic 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US2004025754419 Jun 200323 Dic 2004Asml Holding N.V.Immersion photolithography system and method using microchannel nozzles
US2004025900819 Nov 200323 Dic 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US2004025904017 Nov 200323 Dic 2004Matsushita Electric Industrial Co., Ltd.Pattern formation method
US2004026380826 Abr 200430 Dic 2004Asml Holding N.V.Immersion photolithography system and method using inverted wafer-projection optics interface
US2005001815523 Jun 200427 Ene 2005Asml Netherlands B. V.Lithographic apparatus and device manufacturing method
US2005001815623 Jun 200427 Ene 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US200500305069 Jul 200410 Feb 2005Carl Zeiss Smt AgProjection exposure method and projection exposure system
US2005003612126 Abr 200417 Feb 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2005003618318 Mar 200417 Feb 2005Yee-Chia YeoImmersion fluid for immersion Lithography, and method of performing immersion lithography
US2005003618416 Abr 200417 Feb 2005Yee-Chia YeoLithography apparatus for manufacture of integrated circuits
US2005003621312 Ago 200317 Feb 2005Hans-Jurgen MannProjection objectives including a plurality of mirrors with lenses ahead of mirror M3
US2005003726911 Ago 200317 Feb 2005Levinson Harry J.Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US2005004693429 Ago 20033 Mar 2005Tokyo Electron LimitedMethod and system for drying a substrate
US200500482232 Sep 20033 Mar 2005Pawloski Adam R.Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
US2005006863926 Sep 200331 Mar 2005Fortis Systems Inc.Contact printing using a magnified mask image
US200500736703 Oct 20037 Abr 2005Micronic Laser Systems AbMethod and device for immersion lithography
US2005008479416 Oct 200321 Abr 2005Meagley Robert P.Methods and compositions for providing photoresist with improved properties for contacting liquids
US2005009411428 Sep 20045 May 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2005009411631 Oct 20035 May 2005Asml Netherlands B.V.Gradient immersion lithography
US200501007456 Nov 200312 May 2005Taiwan Semiconductor Manufacturing Company, Ltd.Anti-corrosion layer on objective lens for liquid immersion lithography applications
US2005011097324 Nov 200326 May 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2005011722415 Dic 20032 Jun 2005Carl Zeiss Smt AgCatadioptric projection objective with geometric beam splitting
US200501224973 Dic 20039 Jun 2005Lyons Christopher F.Immersion lithographic process using a conforming immersion medium
US2005012844512 Oct 200416 Jun 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US2005013481724 Jun 200423 Jun 2005Takashi NakamuraLiquid immersion type exposure apparatus
US200501410988 Sep 200430 Jun 2005Carl Zeiss Smt AgVery high-aperture projection objective
US2005019045515 Dic 20041 Sep 2005Carl Zeiss Smt AgRefractive projection objective for immersion lithography
US2005021713530 Sep 20046 Oct 2005Lam Research Corp.Phobic barrier meniscus separation and containment
US2005021713730 Jun 20046 Oct 2005Lam Research Corp.Concentric proximity processing head
US2005021770330 Sep 20046 Oct 2005Lam Research Corp.Apparatus and method for utilizing a meniscus in substrate processing
US200502592348 Jun 200524 Nov 2005Nikon CorporationExposure apparatus and device manufacturing method
US2006001276521 Sep 200519 Ene 2006Nikon CorporationExposure apparatus and device fabrication method
US2006002318429 Sep 20052 Feb 2006Nikon CorporationImmersion lithography fluid control system
US2006002863229 Sep 20059 Feb 2006Nikon CorporationEnvironmental system including vacuum scavenge for an immersion lithography apparatus
US2006011444527 Oct 20051 Jun 2006Nikon CorporationExposure apparatus, and device manufacturing method
US2006026128814 Nov 200323 Nov 2006Helmar Van Santenliquid removal in a method an device for irradiating spots on a layer
DD206607A1 Título no disponible
DD221563A1 Título no disponible
DD224448A1 Título no disponible
DD242880A1 Título no disponible
EP0023231A127 Jul 19794 Feb 1981Tabarelli, WernerOptical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
EP0418427A218 Dic 198927 Mar 1991Eiichi MiyakeExposure process
EP0834773A26 Oct 19978 Abr 1998Nikon CorporationFocusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
EP1039511A110 Dic 199827 Sep 2000Nikon CorporationProjection exposure method and projection aligner
EP1420298A210 Nov 200319 May 2004ASML Netherlands B.V.Immersion lithographic apparatus and device manufacturing method
FR2474708B1 Título no disponible
WO2002091078A17 May 200214 Nov 2002Massachusetts Institute Of TechnologyMethods and apparatus employing an index matching medium
WO2003077034A26 Mar 200318 Sep 2003E.I. Du Pont De Nemours And CompanyFluorine-containing compounds with high transparency in the vacuum ultraviolet
WO2003085708A19 Abr 200316 Oct 2003Nikon CorporationExposure method, exposure device, and device manufacturing method
WO2004053596A217 Feb 200324 Jun 2004Carl Zeiss Smt AgMethod for adjusting a desired optical property of a positioning lens and microlithographic projection exposure system
WO2004053950A12 Dic 200324 Jun 2004Nikon CorporationExposure apparatus and method for manufacturing device
WO2004053951A12 Dic 200324 Jun 2004Nikon CorporationExposure method, exposure apparatus and method for manufacturing device
WO2004053952A15 Dic 200324 Jun 2004Nikon CorporationExposure apparatus and method for manufacturing device
WO2004053953A18 Dic 200324 Jun 2004Nikon CorporationExposure apparatus and method for manufacturing device
WO2004053954A18 Dic 200324 Jun 2004Nikon CorporationExposure apparatus and method for manufacturing device
WO2004053955A18 Dic 200324 Jun 2004Nikon CorporationExposure system and device producing method
WO2004053956A19 Dic 200324 Jun 2004Nikon CorporationExposure apparatus, exposure method and method for manufacturing device
WO2004053957A19 Dic 200324 Jun 2004Nikon CorporationSurface position detection apparatus, exposure method, and device porducing method
WO2004053958A19 Dic 200324 Jun 2004Nikon CorporationExposure apparatus and method for manufacturing device
WO2004053959A110 Dic 200324 Jun 2004Nikon CorporationOptical device and projection exposure apparatus using such optical device
WO2004055803A114 Nov 20031 Jul 2004Koninklijke Philips Electronics N.V.Liquid removal in a method and device for irradiating spots on a layer
WO2004057589A120 Nov 20038 Jul 2004Koninklijke Philips Electronics N.V.Method and device for irradiating spots on a layer
WO2004057590A120 Nov 20038 Jul 2004Koninklijke Philips Electronics N.V.Method and device for irradiating spots on a layer
WO2004077154A223 Feb 200410 Sep 2004Asml Holding N.V.Lithographic printing with polarized light
WO2004081666A123 Ene 200423 Sep 2004University Of North Carolina At Chapel HillImmersion lithography methods using carbon dioxide
WO2004090577A217 Mar 200421 Oct 2004Nikon CorporationMaintaining immersion fluid under a lithographic projection lens
WO2004090633A24 Abr 200421 Oct 2004Nikon CorporationAn electro-osmotic element for an immersion lithography apparatus
WO2004090634A229 Mar 200421 Oct 2004Nikon CorporationEnvironmental system including vaccum scavange for an immersion lithography apparatus
WO2004092830A21 Abr 200428 Oct 2004Nikon CorporationLiquid jet and recovery system for immersion lithography
WO2004092833A21 Abr 200428 Oct 2004Nikon CorporationEnvironmental system including a transport region for an immersion lithography apparatus
WO2004093130A22 Abr 200428 Oct 2004Nikon CorporationCleanup method for optics in immersion lithography
WO2004093159A229 Mar 200428 Oct 2004Nikon CorporationImmersion lithography fluid control system
WO2004093160A21 Abr 200428 Oct 2004Nikon CorporationRun-off path to collect liquid for an immersion lithography apparatus
WO2004095135A212 Abr 20044 Nov 2004Nikon CorporationOptical arrangement of autofocus elements for use with immersion lithography
WO2005001432A224 Mar 20046 Ene 2005Massachusetts Institute Of TechnologyOptical fluids, and systems and methods of making and using the same
WO2005003864A223 Jun 200413 Ene 2005Lam Research CorporationApparatus and method for providing a confined liquid for immersion lithography
WO2005006026A230 Jun 200420 Ene 2005Nikon CorporationUsing isotopically specified fluids as optical elements
WO2005008339A220 Jul 200427 Ene 2005Asml Netherlands B.V.Lithographic projection apparatus, purge gas supply system and gas purging method
WO2005013008A223 Jul 200410 Feb 2005Advanced Micro Devices, Inc.Method for monitoring and controlling imaging in immersion lithography systems
WO2005015283A116 Jul 200417 Feb 2005Carl Zeiss Smt AgProjection objectives including a plurality of curved mirrors with lenses ahead of the last but one mirror
WO2005017625A223 Jul 200424 Feb 2005Advanced Micro Devices, Inc.Method and apparatus for monitoring and controlling imaging in immersion lithography systems
WO2005019935A216 Ago 20043 Mar 2005Advanced Micro Devices, Inc.Refractive index system monitor and control for immersion lithography
WO2005022266A231 Ago 200410 Mar 2005Advanced Micro Devices, Inc.Immersion medium bubble elimination in immersion lithography
WO2005024325A28 Jul 200417 Mar 2005Tokyo Electron LimitedMethod and system for drying a substrate
WO2005024517A216 Jul 200417 Mar 2005Nikon CorporationApparatus and method for providing fluid for immersion lithography
WO2005034174A21 Oct 200414 Abr 2005Micronic Laser Systems AbMethod and device for immersion lithography
WO2005054953A222 Nov 200416 Jun 2005Carl-Zeiss Smt AgHolding device for an optical element in an objective
WO2005054955A224 Nov 200416 Jun 2005Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
WO2005062128A226 Oct 20047 Jul 2005Advanced Micro Devices, Inc.Immersion lithographic process using a conforming immersion medium
WO2006005103A16 Jul 200519 Ene 2006The Cox Family Trust (Robert William Cox Trustee)Golf swing training apparatus
Otras citas
Referencia
1"Depth-of-Focus Enhancement Using High Refractive Index Layer on the Imaging Layer", IBM Technical Disclosure Bulletin, vol. 27, No. 11, Apr. 1985, p. 6521.
2A. Suzuki, "Lithography Advances on Multiple Fronts", EEdesign, EE Times, Jan. 5, 2004.
3B. Lin, The k3 coefficient in nonparaxial lambda/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microsyst. 1(1):7-12 (2002).
4B. Lin, The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microsyst. 1(1):7-12 (2002).
5B.J. Lin, "Drivers, Prospects and Challenges for Immersion Lithography", TSMC, Inc., Sep. 2002.
6B.J. Lin, "Proximity Printing Through Liquid", IBM Technical Disclosure Bulletin, vol. 20, No. 11B, Apr. 1978, p. 4997.
7B.J. Lin, "The Paths to Subhalf-Micrometer Optical Lithography", SPIE vol. 922, Optical/Laser Microlithography (1988), pp. 256-269.
8B.W. Smith et al., "Immersion Optical Lithography at 193nm", Future Fab International, vol. 15, Jul. 11, 2003.
9Chinese Official Action issued on Apr. 4, 2008 in Chinese Application No. 200410087957.0.
10G. Owen et al., "1/8mum Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036.
11G. Owen et al., "1/8μm Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036.
12G.W.W. Stevens, "Reduction of Waste Resulting from Mask Defects", Solid State Technology, Aug. 1978, vol. 21 008, pp. 68-72.
13H. Hata, "The Development of Immersion Exposure Tools", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-22.
14H. Hogan, "New Semiconductor Lithography Makes a Splash", Photonics Spectra, Photonics TechnologyWorld, Oct. 2003 Edition, pgs. 1-3.
15H. Kawata et al., "Fabrication of 0.2mum Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177.
16H. Kawata et al., "Fabrication of 0.2μm Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177.
17H. Kawata et al., "Optical Projection Lithography using Lenses with Numerical Apertures Greater than Unity", Microelectronic Engineering 9 (1989), pp. 31-36.
18J.A. Hoffnagle et al., "Liquid Immersion Deep-Ultraviolet Interferometric Lithography", J. Vac. Sci. Technol. B., vol. 17, No. 6, Nov./Dec. 1999, pp. 3306-3309.
19M. Switkes et al., "Immersion Lithography at 157 nm", J. Vac. Sci. Technol. B., vol. 19, No. 6, Nov./Dec. 2001, pp. 2353-2356.
20M. Switkes et al., "Immersion Lithography at 157 nm", MIT Lincoln Lab, Orlando 2001-1, Dec. 17, 2001.
21M. Switkes et al., "Immersion Lithography: Optics for the 50 nm Node", 157 Anvers-1, Sep. 4, 2002.
22Nikon Precision Europe GmbH, "Investor Relations-Nikon's Real Solutions", May 15, 2003.
23Nikon Precision Europe GmbH, "Investor Relations—Nikon's Real Solutions", May 15, 2003.
24Office Action dated Feb. 20, 2007 issued for U.S. Appl. No. 11/339,505.
25Preliminary Amendment filed Jun. 15, 2006 for U.S. Appl. No. 11/339,505.
26S. Owa and N. Nagasaka, "Potential Performance and Feasibility of Immersion Lithography", NGL Workshop 2003, Jul. 10, 2003, Slide Nos. 1-33.
27S. Owa et al., "Advantage and Feasibility of Immersion Lithography", Proc. SPIE 5040 (2003).
28S. Owa et al., "Immersion Lithography; its potential performance and issues", SPIE Microlithography 2003, 5040-186, Feb. 27, 2003.
29S. Owa et al., "Update on 193nm immersion exposure tool", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-51.
30Search Report for European Application No. 03256809.9, dated Sep. 13, 2004.
31Search Report for European Application No. 04256584.6 -1226, dated Feb. 14, 2006.
32T. Matsuyama et al., "Nikon Projection Lens Update", SPIE Microlithography 2004, 5377-65, Mar. 2004.
33U.S. Office Action dated Oct. 7, 2013 in corresponding U.S. Appl. No. 13/356,231.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US9182679 *1 Oct 201410 Nov 2015Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
US20150015858 *1 Oct 201415 Ene 2015Asml Netherlands B.V.Lithographic apparatus and device manufacturing method
Clasificaciones
Clasificación de EE.UU.355/30, 355/53
Clasificación internacionalG03B27/42, G03F7/20, G03B27/52, H01L21/027
Clasificación cooperativaG03F7/70341
Eventos legales
FechaCódigoEventoDescripción
13 Dic 2011ASAssignment
Owner name: CARL ZEISS SMT AG, GERMANY
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOOGENDAM, CHRISTIAAN ALEXANDER;LOOPSTRA, ERIK ROELOF;STREEFKERK, BOB;AND OTHERS;SIGNING DATES FROM 20050117 TO 20050216;REEL/FRAME:027371/0566
Owner name: ASML NETHERLANDS B.V., NETHERLANDS
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOOGENDAM, CHRISTIAAN ALEXANDER;LOOPSTRA, ERIK ROELOF;STREEFKERK, BOB;AND OTHERS;SIGNING DATES FROM 20050117 TO 20050216;REEL/FRAME:027371/0566
25 Nov 2014CCCertificate of correction