Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS9034053 B2
Tipo de publicaciónConcesión
Número de solicitudUS 13/684,529
Fecha de publicación19 May 2015
Fecha de presentación24 Nov 2012
Fecha de prioridad25 Feb 2004
También publicado comoCA2556747A1, CA2556747C, CN1929799A, CN1929799B, EP1722732A2, EP1722732B1, US8048086, US8316853, US8316854, US8695606, US9308023, US20050187561, US20090277455, US20120042879, US20130220334, US20140039639, US20150282839, US20160346008, WO2005082299A2, WO2005082299A3
Número de publicación13684529, 684529, US 9034053 B2, US 9034053B2, US-B2-9034053, US9034053 B2, US9034053B2
InventoresKathy Lee-Sepsick, Lani L. L. Paxton, Jeffrey A. Marcus, Stephen N. Williams
Cesionario originalFemasys Inc.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Methods and devices for conduit occlusion
US 9034053 B2
Resumen
The present invention comprises systems, methods and devices for the delivery of compositions for occluding or of means for opening conduits. The implantable occlusive material may be delivered pre-formed or in situ cured and, may be a resorbable material that supports tissue ingrowth that eventually replaces the material leaving little or no original material in place. The delivery system is positioned to allow for placement of the occlusive material into the body conduit. Use of delivery systems, methods and devices for re-opening an occluded body conduit are also included.
Imágenes(6)
Previous page
Next page
Reclamaciones(18)
What is claimed is:
1. A method for opening the lumen of at least one occluded fallopian tube, comprising,
a) providing a delivery system comprising a delivery device comprising at least an introducer shaft comprising a closed tip and defining at least one opening spaced from the closed tip for providing at least one catheter; at least one catheter comprising an end structure on a delivery end, and one or more elements for opening a conduit,
b) positioning the closed tip of the introducer shaft at or near the fundus of a uterus,
c) positioning the delivery end of at least one catheter at or near the uterine cornua such that the end structure is at or near a tubal ostium, wherein the end structure maintains the delivery end in the uterine cornua and aids in localizing the one or more elements for opening a conduit at an occlusion in the lumen of at least one fallopian tube;
d) activating the one or more elements for opening a conduit at the occlusion in the lumen of the at least one fallopian tube; and
e) opening the lumen of the at least one fallopian tube.
2. The method of claim 1, wherein the one or more elements for opening the conduit comprise devices or members for providing shockwaves to shatter the occluding material.
3. The method of claim 1, further comprising
f) maintaining the opening of the lumen of the at least one fallopian tube by providing a stent within the lumen of the at least one fallopian tube.
4. The method of claim 1, wherein the one or more elements for opening the conduit comprise chemical elements.
5. The method of claim 1, wherein the one or more elements for opening the conduit comprise biological elements.
6. The method of claim 1, wherein the one or more elements for opening the conduit comprise mechanical elements.
7. A method for opening the lumen of one occluded fallopian tube, comprising,
a) providing a delivery system comprising a delivery device comprising an introducer shaft comprising a closed tip and defining an opening spaced from the closed tip for providing a catheter; one catheter comprising an end structure on a delivery end, and one or more elements for opening a conduit,
b) positioning the closed tip of the introducer shaft at or near the fundus of a uterus,
c) positioning the delivery end of the catheter at or near the uterine cornua such that the end structure is at or near a tubal ostium, wherein the end structure maintains the delivery end in the uterine cornua and aids in localizing the one or more elements for opening a conduit at an occlusion in the lumen of a fallopian tube;
d) activating the one or more elements for opening a conduit at an occlusion in the lumen of the fallopian tube; and
e) opening the lumen of the fallopian tube.
8. The method of claim 7, wherein the one or more elements for opening the conduit comprise devices or members for providing shockwaves to shatter the occluding material.
9. The method of claim 7, further comprising
f) maintaining the opening of the lumen of the fallopian tube by providing a stent within the lumen of the fallopian tube.
10. The method of claim 7, wherein the one or more elements for opening the conduit comprise chemical elements.
11. The method of claim 7, wherein the one or more elements for opening the conduit comprise biological elements.
12. The method of claim 7, wherein the one or more elements for opening the conduit comprise mechanical elements.
13. A method for opening the lumens of two occluded fallopian tubes, comprising,
a) providing a delivery system comprising a delivery device comprising an introducer shaft comprising a closed tip and defining two openings spaced from the closed tip, each opening for providing a catheter; two catheters each comprising an end structure on a delivery end, and one or more elements for opening a conduit,
b) positioning the closed tip of the introducer shaft at or near the fundus of a uterus,
c) positioning the delivery end of each catheter at or near the uterine cornua such that the end structure is at or near a tubal ostium, wherein the end structure maintains the delivery end in the uterine cornua and aids in localizing the one or more elements for opening a conduit at an occlusion in the lumen of a fallopian tube;
d) activating the one or more elements for opening a conduit at occlusion in the lumen of the fallopian tube; and
e) opening the lumen of the fallopian tube.
14. The method of claim 13, wherein the elements for opening the conduit comprise devices or members for providing shockwaves to shatter the occluding material.
15. The method of claim 13, further comprising
f) maintaining the opening of the lumen of the fallopian tube by providing a stent within the lumen of the fallopian tube.
16. The method of claim 13, wherein the one or more elements for opening the conduit comprise chemical elements.
17. The method of claim 13, wherein the one or more elements for opening the conduit comprise biological elements.
18. The method of claim 13, wherein the one or more elements for opening the conduit comprise mechanical elements.
Descripción
CROSS-REFERENCE TO A RELATED APPLICATION

This application is a continuation of U.S. Nonprovisional patent application Ser. No. 13/285,744 filed Oct. 31, 2011 (now U.S. Pat. No. 8,316,854) which is a continuation of U.S. Nonprovisional Patent Application No. 11/065,886 filed Feb. 24, 2005 (now U.S. Pat. No. 8,048,086), which claims the priority of U.S. Provisional Patent Application No. 60/547,491, filed Feb. 25, 2004, and U.S. Provisional Patent Application No. 60/587,604 filed Jul. 13, 2004, each application is herein incorporated by reference in its entirety.

TECHNICAL FIELD

The present invention relates to methods and devices for occluding conduits. In particular, the present invention is directed to methods and devices for delivery of compositions that lead to occlusion of conduits and for later re-opening of such occluded conduits.

BACKGROUND OF THE INVENTION

In the medical and research fields, there are many clinical situations where it is desired or necessary to stop the passage, flow or transfer of substances within a body tube or conduit by causing an occlusion or blockage. It is often desirable for the occlusion to be re-opened at a later time. Unfortunately, many occlusion techniques are often harmful or potentially harmful and are not reversible to accommodate changes in the needs or desires of patients.

One area that has a need for reversible occlusion of a body tube is the control of fertility. Over the last 50 years, the world has experienced the highest rates of population growth and the largest annual population increases recorded in history. Women account for over 50% of the world's population and play a critical role in family health, nutrition, and welfare. One of the most significant areas in need of attention and innovation in women's healthcare is that of contraception, where the reproductive aged woman is currently faced with sub-optimal alternatives.

Over the past 20 years, couples in every world region have adopted contraception with increasing frequency as a means of regulating the timing and number of children. However, in the less developed countries there are still a substantial number of women, who wish to control fertility but are not presently using contraception. Many governments worldwide are intervening with policies to provide access to contraceptive methods to control over-population. In 2000, it was estimated that 123 million women did not have access to safe and effective means of contraception. Therefore, the potential for a suitable contraceptive system has widespread implications for the world population.

Today there are several contraceptive options available, although currently available options are associated with specific limitations. Some contraceptive options include surgical intervention, such as tubal ligation for female sterilization and vasectomy for male sterilization, both of which are invasive and considered non-reversible. Other options available to women are hormonal contraceptives, which are not suitable or safe for a number of women. Further options include intrauterine devices that may have significant side effects. The ideal contraceptive system is one that would provide an immediately effective, reversible, non-hormonal, non-surgical, easy to deliver, office-based solution that does not require anesthesia, patient compliance, or special equipment, and does not leave a foreign body in place long-term. None of the current options meets these requirements.

The most widely utilized method of permanent contraception is tubal ligation or female surgical sterilization. There are a number of major drawbacks associated with tubal ligation. The procedure is permanent and invasive, requires general anesthesia, has a long recovery time, and can result in post-tubal ligation syndrome. Post-tubal ligation syndrome occurs when the surgeon closing the fallopian tube inadvertently damages or destroys blood vessels to the ovaries causing post-menopausal symptoms of abnormal bleeding, memory loss, confusion, mood swings, and lack of sex drive. In addition, a recent study has found that of all the hormonal and non-hormonal methods of birth control, tubal sterilization has the greatest association with development of functional ovarian cysts. Further, women who undergo tubal ligation frequently express regret or seek reversal. Reversal of tubal ligation, when attempted, is difficult, costly, and frequently unsuccessful.

On the other end of the spectrum, the most widely utilized method of non-surgical contraception is the administration of hormonal drugs, such as implanted hormones or birth control pills. This method of contraception is effective only so long as hormones are administered or birth control pills taken according to a specific regimen. Although widely used, this method of contraception is not suitable or safe for all women. In addition, there is a high failure rate resulting in unintended pregnancies due to patient non-compliance with the daily regimen of taking pills.

One reversible contraceptive device currently available is the intrauterine device (IUD). There are an estimated 85 to 100 million women worldwide using this method, substantiating the importance of reversibility. However, given the possible health risks associated with IUDs and patient reluctance to have a foreign body in place for an extended period of time, fewer than 1 million women in the U.S. use this method, and many manufacturers have ceased distribution of these devices. The health risks include unplanned expulsion requiring removal due to excessive pain or bleeding, pelvic-inflammatory disease, permanent infertility, ectopic pregnancy, miscarriage and even death.

While the currently available compositions and methods for contraception represent a significant advancement in the art, further improvements would be desirable to provide safe, effective and reversible non-surgical devices, compositions, and methods for preventing pregnancy. It would be beneficial if these devices, compositions and methods provided an immediately effective, non-hormonal, non-surgical, easy to deliver, office-based solution that did not require anesthesia or patient compliance with a daily regimen. It would be further beneficial if these devices, compositions and methods did not require special equipment to undertake a contraceptive procedure or require a foreign body remaining in place over a long period of time. It would be further beneficial if these devices, compositions and methods were suitable to reversal. Some or all of these advantages of an ideal contraceptive system are provided by the devices, systems, compositions and methods of the present invention.

SUMMARY

The present invention comprises methods, systems, and devices for the delivery of compositions for the occlusion of conduits. In particular, the present invention comprises methods, systems, and devices for the occlusion of conduits in humans or other animals. The devices of the present invention are used to deliver compositions comprising materials that occlude the conduit. The conduit may be a naturally occurring conduit such as a tube or vessel in the body or may be a conduit that has been introduced in the body such as a medical device or through surgical means. The occlusive material may be a permanent implant or may be a material that is degraded or resorbed by the body and allows for tissue ingrowth to maintain the occlusion.

The present invention also comprises delivery systems, methods, and devices for reversing the occlusion. The occlusion may be reversed by removal of implant materials or tissue ingrowth that are blocking the conduit, by creating a channel through the occlusion, or by creating a new channel around the occlusion.

One aspect of the present invention comprises delivery systems, methods and devices for occlusion of fallopian tubes and reversal of the occlusion. One embodiment of this aspect is a method that comprises introduction of a delivery device system for delivery of occlusive material to both fallopian tubes without the necessity to remove, reinsert, or substantially reposition the delivery device. Such a device may be sized for each recipient by pre-visualization of the anatomy of the recipient. The implanted occlusive material may be permanent or may be degraded or resorbed by the body and replaced by ingrowth of tissue. Reversal of such occlusion comprises a device that is capable of removing the occlusive material. In another embodiment, reversal of conduit occlusion comprises a device that is capable of forming a channel through or around the material or ingrown tissue. Reversal of conduit occlusion may further comprise placement of devices, such as stents, to maintain the re-opened channel; these methods of maintaining the re-opened conduit are also performed through the use of the delivery device.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1A shows an embodiment of a delivery device for the transcervical delivery of occlusive material.

FIG. 1B shows an embodiment of a double lumen catheter.

FIG. 1C shows an embodiment of a cartridge component containing a flowable material, which includes, but is not limited to occlusive material or balloon distension material.

FIG. 2A shows a step in an embodiment of a method of the delivery system for deploying and using a delivery device wherein the introducer is inserted through the cervix.

FIG. 2B shows a step in an embodiment of a method of the delivery system for deploying and using a delivery device wherein two double lumen catheters are deployed contralaterally within the uterine cornua.

FIG. 2C shows a step in an embodiment of a method of the delivery system, wherein each catheter is retracted and the operator begins to withdraw the introducer shaft from the uterus.

FIG. 3A shows an embodiment of a delivery system, wherein the delivery catheters are shown partially extended.

FIG. 3B shows a portion of the delivery system from FIG. 1A wherein the introducer tip and partially extended catheters are shown in greater detail.

FIG. 3C shows an internal view of the delivery system from FIG. 3A.

FIGS. 4A-C show an embodiment of a delivery device stabilizer and its placement within a body. 4A shows an embodiment of a delivery device stabilizer prior to placement in the body. 4B shows the delivery device stabilizer in place, prior to expansion of the expandable portion. 4C shows the expandable portion expanded.

FIG. 4D shows an embodiment of a delivery device stabilizer that is slidable on the introducer shaft and incorporates an expandable portion, that is shown unexpanded.

FIG. 4E shows an embodiment of a pre-formed delivery device stabilizer that is slidable on the introducer shaft.

FIG. 4F shows an embodiment of a delivery device stabilizer mechanism that is slidable on the introducer shaft and incorporates a cup-shaped base that fits over the cervix.

FIG. 4G shows the interaction of the delivery device stabilizer shown in FIG. 4F with outer face of the cervix.

FIG. 5 A-D show a cervical clamp and its placement. FIG. 5A shows an embodiment of the delivery device in position in a body, incorporating a cervical clamp. FIG. 5B shows an embodiment of the delivery device in position in a body with the cervical clamp in position.

FIG. 5C shows aspects of an embodiment of a cervical clamp. FIG. 5D shows aspects of an embodiment of a cervical clamp.

FIG. 6 shows embodiments of methods and devices for opening of occlusions.

FIG. 6 A-F show embodiments of delivery of one or more solutions that degrade and remove the occlusion. FIG. 6B shows an embodiment of use of a guide wire or catheter to open the occlusion. FIG. 6C shows an embodiment of use of an expandable member, such as a balloon, to open the occlusion. FIG. 6D shows an embodiment of use of a cutting or debriding member to open the occlusion. FIG. 6E shows an embodiment of an energy device to open the occlusion. FIG. 6F shows an embodiment of the conduits after opening.

DETAILED DESCRIPTION

The present invention comprises delivery systems, methods and devices for occluding conduits, and methods, systems, and devices for reversing occlusions in conduits. The present invention comprises delivery systems and methods for occluding conduits in the body through the placement of occlusive material using a delivery device. One aspect of the present invention comprises occluding conduits permanently. In another aspect, the present invention comprises reversibly occluding conduits. Yet another aspect of the present invention comprises methods, delivery systems and compositions to occlude the fallopian tubes of a female mammal, and methods and systems to re-open such occlusions. A further aspect of the invention comprises methods, delivery systems, and compositions to occlude the vas deferens of a male mammal, and methods and systems to re-open such occlusions. Methods, systems and compositions of the present invention may be used in embodiments that permit non-surgical, office-based reversible sterilization.

The present invention comprises methods for occluding conduits, particularly conduits found in human or other animal bodies. Such conduits may exist naturally in the body or be present because of disease, damage, placement of medical devices or surgical means.

As used herein, the term “conduit” shall refer to any tube, duct, or passage, whether natural or synthetic, which carries gas, fluids or solids in a biological system.

As used herein, “occlude” refers to blocking, partially or fully, the transport of gas, fluids, or solids through a conduit. The term “occlusion,” as used herein, refers to blockage within a conduit wherein such blockage results in partial restriction or complete interruption of the transport of gas, fluids, or solids through the conduit. As used herein, “occlusive material” refers to a composition that is capable of occluding a conduit by effecting an occlusion therein. As used herein, occlusive or occluding material means the initial composition that is placed or inserted into the conduit, as well as the composition, whether the physical, biological, or chemical nature of the composition has changed or not, that is in place in the conduit and provides for the interruption of flow through the conduit. The meaning of the term can be determined from its use in the sentence. Occlusive compositions, occlusion compositions, occlusive materials and occlusion materials are terms used interchangeably herein.

As used herein, occlusive material comprises any natural or synthetic compositions or any combination of natural and synthetic compositions that can be placed at the desired site in the conduit using the delivery systems of the present invention. Occlusive materials of the present invention may comprise materials that are fluid, semi-solid, gels, solids, and combinations thereof. The occlusive materials may further comprise a pre-formed material that is of a shape or size that occludes the conduit or may be a material that will take on a form or shape or size to occlude the conduit. Occlusive materials may further comprise compositions that cure in situ at the desired site in the conduit. The occlusive compositions may further comprise materials that polymerize in situ, wherein the polymerization may be initiated either at the site of interest in the conduit or prior to placement at the site. Occlusive compositions may further comprise combinations of two or more of any of the foregoing materials. Disclosed herein are exemplary compositions and materials suitable for use as occlusive compositions.

As used herein, “cure” means a change in the physical, chemical, or physical and chemical properties of the occlusive material following placement or insertion at the desired site in a conduit.

As used herein, non-invasive visualization or imaging refers to all forms of imaging that do not require the use of ionizing radiation or direct visualization such as by hysteroscopy. Examples of non-invasive imaging include all forms of ultrasound or magnetic resonance imaging, which are incorporated within the scope of this definition.

As used herein, the term “delivery system” comprises all components necessary to deliver an occlusive material or all components necessary to open an occlusion, and may comprise an introducer, delivery device or catheter(s), combinations thereof, occlusion means or means for opening an occlusion, and any other components necessary for the full functioning of the delivery system.

In general, the methods of the present invention comprise administration of delivery systems that deliver compositions that are capable of occluding conduits. The delivery systems comprise devices that are capable of delivering occlusive compositions to the desired site. Disclosed herein are exemplary methods, delivery systems, and compositions for occlusion of conduits of the reproductive tracts of mammals. Such methods and compositions can be used in other physiological systems and biological sites of humans or other animals, and delivery systems for such biological sites are contemplated by the present invention.

The present invention also comprises methods for opening, generally the re-opening, of occluded conduits. The methods comprise means for removal of the occlusion, including removal of occluding compositions or for formation of openings or channels through or around one or more occluded regions. Means of removal include, but are not limited to, physical withdrawal of the occluding composition, destruction of the occluding composition using physical, chemical or biological means, canalization of the one or more occluded regions, and placement of new conduits, such as stents or bypass materials to restore functionality to the formerly occluded region. Disclosed herein are exemplary methods, delivery systems and compositions for removal of the occlusion of conduits of the reproductive tracts of mammals to restore fertility functionality. Such restorative methods and compositions can be used in other physiological systems and biological sites of humans or other animals, and delivery systems for such biological sites are contemplated by the present invention.

One aspect of the present invention comprises methods of contraception for mammalian females that uses ultrasound visualization of a delivery system that delivers a resorbable composition to a target site, for example, from the cornual aspect of the uterus into each fallopian tube, wherein the composition is capable of creating an occlusion in each fallopian tube.

A further aspect comprises using the delivery system to implant occlusive material. One aspect comprises methods that use ultrasound for visualization and positioning of the device and monitoring and confirming the placement of the composition when an ultrasound visible composition is used. The method comprises introduction of the device, including inserting the shaft of the introducer through the cervix until the atraumatic tip contacts the uterine fundus as determined by non-invasive visualization such as ultrasound or through the sensation of the operator. When the tip is appropriately placed, optionally, the operator may engage a member that aids in stabilizing the delivery device, referred to herein as a delivery device stabilizer. For example, this member may be a depth stop, a member which indicates that the tip is in position and the introducer shaft should be not be introduced any further, and includes, but is not limited to, other delivery device stabilizers such as those shown in FIGS. 4 and 5, or more than one member that aids in stabilization. With the introducer in position, each of two double-lumen balloon catheters is introduced through an introducer channel until it exits the channel in the shaft of the introducer, and the tip of the catheter is located within the uterine cornua as determined by ultrasound.

A further aspect of the present invention comprises methods wherein each catheter undergoes the following steps. At a proximal end of the catheter, one end of the catheter which is near the handle and distant from the delivery end of the catheter, a cartridge containing balloon distension medium is connected to the balloon fitting, the stopcock is opened, and the distension medium is delivered to effect inflation of the balloon positioned at the delivery end of the catheter. The stopcock is then closed and the cartridge is disconnected from the fitting. At a proximal end of the catheter, a cartridge containing the occlusive composition is then connected to the delivery catheter fitting, the material is delivered through the catheter and out of the delivery end of the catheter that is at or adjacent to the delivery site. The material may be delivered directly to the target site or may move from the delivery site to the target site location, and the material cures to form the occlusion. Once the material has at least partially cured into an occlusion, the balloon is deflated. Each catheter is retracted until it is housed within the introducer shaft or fully removed from the introducer. If necessary, the delivery device stabilizer is disengaged. The delivery system is then withdrawn from the patient leaving only the occlusion in place. The occlusive material may be delivered sequentially or simultaneously to the two fallopian tubes. The device is designed for delivery of occlusive compositions to two separate sites with minimal to no repositioning and without removal of the device, including the introducer, until the procedure is complete. One or both of the delivery catheters may be retracted into the introducer without repositioning or removal of the entire device.

Yet another aspect of the present invention comprises a delivery system for implantation of the occlusive composition into the fallopian tubes comprising a delivery device comprising an introducer with two channels, optionally one or more delivery device stabilizers, a housing means which may function as a handle if needed, means for attachment of one or more containers of balloon distension medium and the occlusive composition, and two catheters for delivery of the occlusive composition. The catheters may comprise an end structure, which is a balloon or other similarly functioning member that may hold the catheter in position, prevents leakage of the material from the target site or performs both functions. The occlusive composition may be mixed prior to delivery and then delivered from the container through the catheters to one or more target sites.

One aspect of the present invention comprises a delivery system comprising an introducer, one or more catheters wherein each may have a distinct function or design, and one or more cartridge components wherein each cartridge may have a distinct design and contain a distinct material.

Now referring to FIG. 1A, an exemplary embodiment of an introducer is shown comprising the following subcomponents: the introducer tip (1) which is shaped for atraumatic insertion through the cervix; the introducer shaft (3), generally a structure which may be cylindrical in nature, which contains two introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft; a delivery device stabilizer (4) which in this example indicates the position of the tip relative to the point of entry, which may be measured based on markings along the shaft and which may further serve to hold the introducer in position; a handle (5) which has an ergonomic design for gripping by the operator; and a pair of catheter insertion holes (6) through which the delivery catheters can be inserted into the introducer and guided to the introducer shaft catheter channels (2). The delivery device stabilizer (4) shown in this example is a depth stop.

FIG. 1B shows a delivery catheter for delivery of occlusive material, said catheter comprising the following subcomponents: the delivery end (7) of the catheter through which the occlusive material is delivered to the target site; a balloon (8) which may hold the catheter in position and may prevent leakage of the occlusive material away from the target; the shaft of the catheter (9) which, in this figure, features a pre-formed curve designed to aid in movement of the delivery end of the catheter from the introducer shaft into the comual aspect of the uterus, and includes two lumens, one for inflation of the balloon and one for delivery of the occlusive material; a bifurcation (10) of the catheter lumens; a fitting (11) that mates with a cartridge that contains flowable material to be delivered, such as the occlusive material; and a fitting with a stopcock (12) that mates with a cartridge that contains flowable material to be delivered, such as distension media for inflation and deflation of the balloon. One aspect of the present invention comprises a delivery catheter that is a double lumen delivery catheter. It should be understood that the delivery catheter may comprise a number of features and designs known in the art for catheters and that would be useful for the function of the delivery system. In one embodiment of the present invention, the one or more catheters are disposed within the hollow introducer shaft. The catheters of the present invention may be single lumen or dual lumen catheters, or other catheters that would function in the present invention. One aspect of the invention comprises a stopcock is used to prevent leakage of the balloon distension medium after placement. It should be understood that other devices, such as a valve or diaphragm, including a self-sealing diaphragm, may also serve the same function and be useful in obtaining and maintaining inflation of the balloon of the present invention.

FIG. 1C shows a cartridge (14) which may contain a flowable material (16) wherein the cartridge component comprises the following aspects: the tip of the cartridge (15) that mates with the delivery catheter fitting (11) or a fitting with stopcock (12) as required; the barrel of the cartridge (17); a plunger (18) that fits with the barrel of the cartridge (17) so as to form a seal to prevent back-flow of flowable material, said plunger allowing the operator to deliver the flowable material; and a flowable material (16), wherein the flowable material may comprise occlusive material or distension media.

Now referring to FIGS. 2A-2C, wherein a schematic is shown of an exemplary embodiment of a method for deploying and using the exemplary delivery system shown in FIG. 1 to effect an occlusion in both fallopian tubes of a mammal. It should be understood that not all steps need be performed in every deployment. Further, it should be understood that additional steps may be added as determined by one skilled in the art as necessary to increase performance, efficacy, or comfort of the subject undergoing the method depicted in FIG. 2.

In FIG. 2A, the operator holds the introducer handle (5) and inserts the shaft of the introducer (3) through the cervix (20) until the atraumatic tip (1) contacts the uterine fundus (19) as determined by tactile feel, non-invasive visualization such as ultrasound, or a combination of both tactile feel and non-invasive visualization. When the atraumatic tip (1) is appropriately placed, the introducer shaft catheter channels (2) are located such that the openings are directed toward the uterine cornua (24). Following contact of the atraumatic tip (1) with the uterine fundus (19), the delivery device stabilizer (4) is moved into position. In one embodiment, the delivery device stabilizer (4) may comprise components or structures that function to ensure that the operator maintains a fixed position of the introducer shaft, for example for preventing uterine perforation, as well as maintaining the position of the shaft catheter channels (2) throughout the procedure. In another embodiment, the delivery device stabilizer (4) may comprise components or structures to provide a depth stop mechanism to the delivery device. In still another embodiment, the delivery device stabilizer comprises components or structures to provide a depth stop mechanism and stabilization to the delivery device.

FIG. 2B depicts the use of the delivery system for the introduction of an in situ curing flowable occlusive material. With the introducer in position, the operator moves each of two double-lumen catheters through a catheter insertion hole (6) through the introducer shaft catheter channels until each catheter exits the introducer shaft catheter channel (2), and the delivery end (7) of the catheter is located within the uterine cornua (24) as determined by the operator's tactile feel, non-invasive imaging such as ultrasound, or a combination of feel and imaging. An exemplary embodiment of a double lumen catheter is described in FIG. 1B. Once the delivery end (7) of the catheter is positioned within the uterine cornua (24), the catheter position may be maintained by a locking mechanism which may be attached to the handle at or near the catheter insertion hole (6), at another location within the handle, or by a mechanism that is separate from the handle and which serves to grab, clamp, hold or otherwise stabilize the catheter such that it does not move and such that the delivery end remains in the target location. In another aspect of the invention, inflation of the balloon as described below is sufficient to maintain position of the catheter, and no additional locking mechanism may be required. A cartridge (14) containing balloon distension medium (22), which has been previously prepared or mixed if such mixing is necessary, is then fitted to a fitting with a stopcock (12), the stopcock is opened, and the distension medium (22) delivered to effect inflation of the balloon (8). Distension medium may comprise any flowable or liquid material suitable for inflation of the balloon (8), such material being chemically compatible with the material of the balloon (8) and may be biologically compatible in the event distension medium is introduced into the uterine cavity or fallopian tubes. Exemplary distension media include, but are not limited to, air and sterile isotonic saline solution. Following inflation of the balloon (8), the stopcock is then closed, the cartridge disconnected from the fitting (12), and the procedure repeated to inflate the balloon on the contralateral side. The balloons may be distended simultaneously using two cartridges. A cartridge (14) containing a flowable occlusive material (23) is then connected to the delivery catheter fitting (11), and the plunger (18) is pressed into the barrel (17) of the cartridge to deliver the flowable occlusive material (23) into and through the catheter, and exiting through the delivery end of the catheter (7) toward the target location for example, where it cures in situ. As depicted in FIG. 2B, occlusive material has been dispensed in the target area and has begun to cure in situ, forming an occlusion (25).

FIG. 2C shows the device at completion of the procedure. Once the flowable occlusive composition has reached the appropriate stage of curing, from beginning to cure to substantially curing into an occlusion (25), the operator uses the distension medium cartridge to deflate each balloon, withdrawing the distension medium into the cartridge. Each catheter is retracted until it is housed within the introducer shaft (3) or, as shown in FIG. 2C, fully removed from the introducer. If necessary, the delivery device stabilizer (4) is disengaged. The delivery device is then withdrawn from the patient, leaving the occlusion in place.

While the exemplary method shown in FIGS. 2A-2C follows a sequence in which both balloons are inflated, occlusive material is delivered through both catheters, both balloons are deflated, and the catheters withdrawn, a procedure in which all actions are completed initially by one delivery catheter followed sequentially by completion of all actions for the second delivery catheter is equally contemplated by the present invention and can be at the discretion of the operator. Further, it should be understanded that the exemplary method may comprise, as depicted in FIG. 2B, the sequential dispensing of occlusive material (23) from each of two delivery catheters placed in the uterine cornua (24), or alternatively simultaneous dispensing of occlusive material (23) through both delivery catheters.

The delivery system may comprise ease of use features as depicted in FIGS. 3A-3C, which show further exemplary embodiments of a delivery system. FIG. 3A shows an external view of a delivery device with the delivery catheters extended, wherein the delivery device comprises the following components: an atraumatic tip (1) of the introducer shaft; a balloon (8), which is depicted in the drawing as being inflated; the delivery end (7) of the delivery catheter; the shaft of the introducer (3) comprising two introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft; that contain the delivery catheters and guide them into position; a delivery device stabilizer (4) to aid in correct placement throughout the procedure; an ergonomically designed handle (5); a slide grip (26) that is used by the operator to move the delivery catheters into position, wherein the grip has both up and down movement for extension or retraction and side to side movement for rotation of the catheter tip and wherein the position of the grip can be locked in place to prevent further motion of the catheter once the desired placement has been achieved; the shaft of the dual lumen delivery catheter (27); a occlusive material ampule (28) containing a flowable occlusive composition (23); and, a delivery plunger (29).

FIG. 3B shows an enlargement of the delivery device, as it would appear when it is proximal to the target site for delivery, where the numbered components are as described for FIG. 3A.

FIG. 3C shows internal aspects of the delivery device described in FIG. 3A, comprising the introducer shaft (3), wherein the introducer shaft has two dual lumen delivery catheters (27) disposed within it; a distal bifurcation housing (30), wherein each dual lumen catheter is directed by the distal bifurcation housing (30) to one of two slide grips (26), allowing for individual manipulation of each catheter by the operator; each catheter shaft continues from the slide grip (26) generally towards the delivery plunger (29) wherein the two catheter shafts are each attached to the occlusive material bifurcation housing (31) having a channel which directs the flowable occlusive material (23) into each of the two delivery catheters; and a component (32) capable of piercing the occlusion material ampule (28) when the plunger (29) is depressed to initiate entry of the material into the delivery catheters. Although FIGS. 3A-3C do not show a mechanism for inflation and deflation of the balloon, it should be understood that the delivery system may include such a mechanism. An embodiment of such a balloon inflation mechanism is described in the present invention, although other embodiments of this mechanism could be used therein. A method of use for this embodiment of the delivery system may be like that of the delivery system depicted in FIGS. 1A-1C, or claimed herein. For example, the system comprises introducing the delivery device transcervically with the delivery catheters contained within the introducer, each delivery catheter is moved into position and the balloon inflated, the material is delivered, and the system withdrawn.

Depicted in FIG. 4 are further exemplary embodiments of the delivery device stabilizer (4), serving a similar or additional function to that shown in FIG. 1, which allows for the fixation of the delivery system to the cervix or hold the delivery device in position during use of the delivery system of the present invention. These stabilizers may be used as a component of the delivery device described herein or may be useful for holding in position any transcervical device or instrument having a shaft, including, for example, hysteroscopes and uterine cannulas.

FIGS. 4A-4C show a method of use of one embodiment of a delivery device stabilizer which is slidable on the introducer shaft.

FIG. 4A depicts an example of a delivery device stabilizer (4) that fits into the cervical canal and expands to lock in place. Once the atraumatic tip (1) is in position at the uterine fundus (19), a delivery device stabilizer can be employed. As shown, the cervical canal (33) has a larger inner diameter than the introducer shaft (3), which allows movement of the shaft when inserted. The cervix (20) has a large enough opening to allow passage of the delivery device stabilizer (4) into the cervical canal in a collapsed or deflated state. As shown in FIG. 4B, the delivery device stabilizer (4) is moved transcervically into the canal while the introducer shaft (3) is held in place, with the atraumatic tip (1) of the introducer shaft positioned at the top of the uterine fundus (19). The collapsed expandable portion of delivery device stabilizer (4) is positioned within the cervical canal while a wider base, of sufficient size to prohibit entry into the cervix, is positioned against the external os. FIG. 4C shows the delivery device stabilizer (4) in the uterine canal, wherein the expandable portion of the delivery device stabilizer (4) is expanded or inflated. When expanded, the expansion portion of delivery device stabilizer (4) holds the delivery device stabilizer in place and prevents excessive motion of the introducer shaft (3). Although the delivery device stabilizer is shown in FIGS. 4B and 4C residing within the cervical canal, the design of this locking mechanism may also be envisioned to lie up to and even through the internal os with any portion of the length designed for expansion to enhance fixation.

FIG. 4D shows in detail an exemplary embodiment of the delivery device stabilizer (4) with an expandable portion, wherein the delivery device stabilizer mechanism may slide on the introducer shaft. The stop has a hollow core (36), which allows it to be mounted on the shaft of the introducer where it is designed to slide for proper positioning. An expandable portion (34) is mounted on a non-expandable portion (37), which is attached to a base portion (35) that is of sufficient size to prohibit passage into the cervix. The expandable portion (34) may be a balloon that is expanded with a distension medium of one or more gases or fluids, solid or semi-solid materials, to hold it in place. The expandable portion (34) may also be a mechanical device such as spiral or straight wire members that are mechanically actuated to effect expansion. The expandable portion (34) may be expanded after insertion or may be inserted in a partially or fully expanded state prior to insertion and further expanded as required after insertion into the cervix. Any means for providing an expandable portion that are known to those skilled in the art is contemplated by the present invention.

FIG. 4E illustrates an exemplary embodiment of a delivery device stabilizer with a pre-formed internal portion. The delivery device stabilizer comprises a hollow core (36) for attachment to and slidable movement relative to the introducer shaft. The stabilizer comprises a portion that fits into the cervix (38) and a base portion that remains outside the cervix (35), wherein the portion that fits inside the cervix is shaped such that it locks or wedges into or through the cervical canal and limits motion. The shape may be rounded, wedge-shaped, or have any other geometry that allows a snug fit within the cervical canal. The portion that fits inside the cervix (38) may be made from a different material than the outer portion (35) or may be made from a combination of materials. While rigid materials may be used, materials that are pliable, compressible, or expand in place such as by swelling, or some combination thereof may be preferred. The delivery device stabilizer mechanism may be designed and material selected such that the delivery device stabilizer mechanism collapses or is compressed while being pushed through the cervix and then re-expands upon placement in the target location.

FIG. 4F shows an exemplary embodiment of a delivery device stabilizer mechanism with a hollow core (36) to fit over a shaft that has a portion (38) that fits into or through the cervical canal as well as a base portion (35) that has a cup shape that conforms to the outer geometry of the cervix. FIG. 4G illustrates placement of the exemplary delivery device stabilizer mechanism of FIG. 4F, showing that the base portion with a cup shape conforms to the outer curvature of the cervix while the inner portion (38) fits within the cervical canal. The shape of the inner portion (38) may be rounded, wedge-shaped, or have any other geometry that allows a snug fit. The portion that fits inside the cervix (38) may be made from a different material than the outer portion (35) or may be made from a combination of materials. While rigid materials may be used, materials that are pliable, compressible, or expand in place such as by swelling, or combinations of such characteristics may be used. Either the internal portion (38) or the base portion (35) may be used alone or in combination as necessary to ensure appropriate fixation, stability, or both. It may be considered that the exemplary embodiments described in FIG. 4 incorporate the function of a depth stop, as shown in FIG. 1, into the design of the delivery device stabilizer (4).

FIGS. 5A and 5B show the placement of an exemplary embodiment of a delivery device stabilizer referred to as a cervical clamp. In one aspect of the present invention, the cervical clamp may be used in the delivery system that does not incorporate an additional delivery device stabilizer. In a further aspect of the present invention, the cervical clamp may be used in a delivery system that also uses one or more additional delivery device stabilizers, which may include a depth stop. FIGS. 5A and 5B show a cervical clamp (39) mounted on an introducer shaft (3), which is attached to a handle (5). The introducer shaft (3) is positioned such that the tip of the shaft (1) is positioned at the uterine fundus (19). As shown in FIGS. 5A and 5B, the cervical clamp is used in combination with a delivery device stabilizer (4) incorporating a depth stop function that marks and maintains the insertion position of the atraumatic tip (1). The cervical clamp (39) is introduced into the vagina (40) in a closed or folded state, as depicted in FIG. 5A. The clamp (39) is advanced over the introducer shaft (3) until the leading edge nears the cervix (20), at which point, it is deployed and attached to the cervix (20), as depicted in FIG. 5B. The cervical clamp (39) attached to the cervix (20) functions to stabilize the introducer shaft.

FIG. 5C depicts an exemplary embodiment of a cervical clamp in which the grasping arms (42) may remain in a folded state until acted upon by a force. The cervical clamp, with a hollow core (36) to allow the clamp to move over a shaft, includes grasping arms (42), which are actuated to attach to the cervix. In this embodiment, three grasping arms are depicted. Other embodiments include devices with two, four, five, or more grasping arms. The grasping arms are positioned such that the tips of the arms (41) are in close proximity to the introducer shaft on which the cervical clamp is mounted. As depicted in FIG. 5C, tabs (43) are provided that, when squeezed by the operator of the device, cause the arms (42) and tips (41) to move outward, causing the cervical clamp to open. The clamp (39) is positioned over the cervix (20), and the tabs (43) are released, causing the clamp to fasten or attach to the cervix. The clamp is released by pressing on the tabs (43) to move the arms (42) outward, disengaging the tips (41) from the cervix. A further embodiment of the device may include a mechanism for movement of the clamp (39) relative to the shaft (3) and a mechanism for controlling the movement arms (42), wherein such mechanisms may be incorporated into the handle (S) of the delivery device.

FIG. 5D depicts a further embodiment of a cervical clamp in which the grasping arms (42) may remain in an open state until acted upon by a force. In this embodiment, four grasping arms are depicted. Other embodiments include devices with two, three, five, or more grasping arms. A compression member (44), with a hollow core (36), slides relative to the shaft of the clamp (45) and imparts a compressive force on the arms (42), deforming or moving them into a closed or folded position. To attach this embodiment to the cervix (20), the compression member (44) is advanced to compress the arms (42) to a folded state as depicted in FIG. 5A. When the clamp (39) is in place near the cervix (20), the compression member (44) is retracted to allow the arms to open. Subsequent advancement of the compression member (44) closes the arms (42) of the clamp (39), by deforming or moving the arms (42) to bring the tips (41) in to contact with the cervix (19). The compression member (44) may be advanced or retracted by mechanical means such as threads, ratchet, slider, or other mechanisms. A further embodiment of the device may include a mechanism for movement of the clamp (39) relative to the shaft (3) and a mechanism for controlling the movement of the compression member (44) incorporated into the handle (5) of the delivery system.

The tips of the arms (41) of the cervical clamp (39) may further comprise one or more grasping teeth, or may include other shapes or mechanisms for firmer or more comfortable attachment to the cervix (20). The tips (41) and arms (43) may be made from the same material or of distinct materials as required; for example, the tips may incorporate a material that is compressible and conformable to the cervix and may be designed to alter shape when in contact with the cervix to provide increased comfort or improved gripping. One aspect of the invention envisions that the tips (41) interact with the cervix (20) in such a manner that the grip strength of the clamp is sufficiently low that the patient feels little or no pain with minimal or no anesthesia while having sufficient grip strength to hold, fix, and/or stabilize the position of the introducer. The cervical clamp (39) has a cylindrical channel (36), which allows for mounting onto or sliding over the introducer shaft (3).

FIGS. 6A-6E illustrate exemplary embodiments of conduit occlusion opening or re-opening devices, or reversal devices and methods, particularly for opening or re-opening one or more occluded fallopian tubes. The example discussed herein is directed to opening occluded fallopian tubes, but this description is in no way to be seen as limiting the methods of the present invention. An introducer shaft (3) with two or more channels may be used to deliver two or more catheters (9) to the area of the fallopian tube occlusion (25). Materials or devices for opening of occlusions or reversal of occlusions may be delivered through or mounted on the delivery catheters (9). Occluded fallopian tubes may be treated simultaneously or sequentially. The delivery device allows for the opening or re-opening of two or more conduits without the need for removal and re-introduction or substantial repositioning of the device. One or more reversal methods may be used in combination to effect re-opening of the occluded conduit. It should be understood that, while depicted for use in re-opening occlusion in fallopian tubes, the methods and devices described herein may be useful for re-opening occlusions in any occluded body conduit. As used herein, the terms opening and re-opening both refer to making a non-functional conduit functional again by providing an opening through or removing an occlusion.

FIG. 6A depicts the introduction of an enzymatic, solvent, or other occlusion-degrading solution (46) to the site of the occlusion (25), such that the solution (46) degrades and removes the occlusion (25). An introducer shaft (3) is placed in position and delivery catheters (9) are advanced through the shaft through introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft such that the catheters reach the occlusion (25). End structures (8), which may include a balloon, may be engaged, such as inflated, to limit delivery of the degrading solution to the area of occlusion (25), and may prevent retrograde flow into the uterus.

FIG. 6B shows a method of reversing an occlusion by passing a guide wire or small catheter (47) through the occlusion (25), thereby clearing the blocked fallopian tube. An introducer shaft (3) is placed in position, and one or more delivery catheters (9) are placed through the shaft through introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft such that the catheters reach the occlusion (25) in one or both of the fallopian tubes. A guide wire (47) or a small catheter (47) is passed through the delivery catheter (9) and advanced across the occlusion (25). The occlusion is removed or cannulated, thereby reopening the fallopian tube. Material for use in the small catheter may be sufficiently stiff to allow for movement across and through the occlusive material or tissue.

As depicted in FIG. 6C, one or more catheters (9) with attached balloon (48) may be placed through an introducer shaft (3) through introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft such that the catheters can be advanced such that the balloon (48) is within the area of occlusion (25). Inflation of the balloon may effect clearing of the occlusion. The catheter with attached balloon may pass directly through the introducer shaft (3) to reach the occlusion (25) or may pass through a larger catheter (not depicted) that passes through the introducer shaft (3) to the area of the occlusion (25). The balloon may be further used to effect delivery of a stent or other structure that maintains the re-opened channel after reversal of the occlusion.

FIG. 6D depicts a method of clearing fallopian tube occlusions by using a cutting or debriding mechanism. The cutting mechanism (49) may comprise or be similar to, for example, a device for atherectomy (directional coronary atherectomy), rotoblation (percutaneous transluminal rotational atherectomy), or a cutting balloon. One or more delivery catheters (9) are passed through an introducer shaft (3) through introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft such that the catheters can be advanced to the vicinity of the occluded region (25). A cutting device (49) is advanced through the delivery catheter (9) to the occluded region (25). The cutting device is used to remove the occlusion (25), thereby reopening the fallopian tube.

FIG. 6E depicts a method of clearing an occlusion by using an energy-producing device (50). Ultrasound, RF energy, microwave, laser, radiation, heat, or other energy sources may be used. An introducer shaft (3) is placed, and one or more delivery catheters (9) are inserted through the introducer shaft through introducer shaft catheter channels (2), which run the interior length of the shaft and have openings for insertion of a catheter into the shaft and for the catheter to exit the shaft so that the catheters can be provided to the area of the occlusion (25). An energy-producing device (50) mounted on a catheter or wire is passed through the introducing catheter (9) and into the occluded region (25). The occluded region is subjected to energy from the energy source, which removes the occlusive material and clears the occlusion.

FIG. 6F depicts a uterus that has been subjected to one or more of the methods depicted in FIGS. 6A, 6B, 6C, 6D, and 6E. After treatment, the occlusion has been re-opened or removed, leaving patent fallopian tubes (51).

The delivery systems of the present invention comprise means for introducing delivery devices into the body, means for providing occlusive material such as reservoirs and pumps, devices for in situ delivery of compositions comprising occlusive materials, means for polymerizing or coagulating the occlusive materials, including mechanical, biological or chemical means; means for visualization of procedures, pre- and post-procedural compositions and methods of treatment, means and compositions for supporting or inducing tissue ingrowth or degradation of the occlusive material, and means for re-opening of the occluded conduit.

The present invention further comprises methods for occluding fallopian tubes that are useful for providing female sterilization. It is well known in the art that a primary cause of naturally occurring infertility in females is blockage of the oviducts from the ovary to the uterus. Females having this natural condition normally do not even realize it exists and do not suffer any adverse side effects besides being infertile. Moreover, the condition can often be successfully reversed, thus restoring the ability to bear children. Based upon the observations of naturally occurring oviductal occlusion, the creation of tubal occlusions by external intervention has arisen as a potential means of effecting female sterilization.

Aspects of the present invention comprise a delivery system, compositions comprising one or more occlusive materials, and a method for tubal occlusion and more particularly occlusion of the fallopian tubes of a female mammal for the purpose of reversible sterilization. In one aspect of the invention, the delivery device is inserted either directly or through an introducer sheath and positioned to reach the area in which the occlusion is desired while the operator non-invasively visualizes the delivery to ensure correct placement. Once in place, the operator instills the occlusive agent through a channel in the delivery catheter, creating the occlusion. The delivery device is then withdrawn, leaving the occlusion in place. Over time, fibrous tissue grows into the material as it resorbs, leaving an occlusion fashioned of the patient's own tissue. The delivery system may be used to deliver an agent, such as a device or composition, to reverse the occlusion, and methods for re-opening the occlusion are described.

As envisioned for female sterilization, a delivery system comprises a transcervical introducer sheath generally made of a standard medical-grade metal or plastic such as stainless steel, nylon, PTFE, or polyurethane, which may be naturally sonolucent or may require enhancement of ultrasound visibility by coating with a sonolucent material or otherwise modifying the material. The sheath may comprise an atraumatic tip to allow for comfortable placement and, combined with selection of a suitably flexible material, to prevent damage to the uterine wall. The introducer shaft has sufficient diameter to allow for introduction of other components of the delivery system. The introducer may contain one, two or more channels that guide catheters into position, for example delivery catheters for delivery of occlusive materials. The introducer may include a mechanism to modify the angle of the introducer relative to the surrounding tissues, such as the cervix or uterus, to allow for a better fit to the anatomy of the individual patient, including such individual variations as ante- or retroverted/ante- or retroflexed uterus. Modified versions of the introducer may allow for uses other than for the occlusion of the fallopian tube(s), such as the localized delivery of contrast media for confirmation of tubal patency or the delivery to or removal from the fallopian tube(s) of other material or devices for diagnosis, treatment, or examination of the tube, including the delivery of systems for re-opening an occlusion. One aspect of the introducer sheath is that it can be visualized using noninvasive techniques such as ultrasound. Visualization may be used to guide accurate placement and to ensure that the tip of the device does not penetrate the uterine wall. A delivery device stabilizer may be included to ensure that accurate placement is maintained throughout the procedure. The delivery device stabilizer may comprise or include a means to fix or hold the introducer in place, such as a mechanism or device to attach or hold the introducer within the cervix or to otherwise maintain the device in the desired position, minimizing risk to the patient and allowing the operator greater flexibility to carry out other aspects of the procedure. Fixation may be accomplished through physical means such as clamping, suction, wedging, inflation, or by other means that maintain the device in the desired position.

A delivery system of the present invention comprises a device that can be configured in a collapsed, retracted, or folded form for insertion through the cervix, which may comprise an introducer sheath. After introduction, the device is positioned allowing an atraumatic tip containing a single or multiple holes at the tip of the device to reach the desired location, such as within the cornual aspect of the uterus at or near the ostium of a fallopian tube. The present invention comprises a device that has at least one end of a delivery catheter with an opening that is placed within the cornual aspect of the uterus at or near the ostium of a fallopian tube. In one embodiment, the delivery device comprises two delivery catheters, with each catheter having its delivery opening positioned simultaneously or sequentially at the ostia of both fallopian tubes. In another embodiment, such a device may be shaped like a Y, a T, or an arrow wherein the two delivery ends of the shape are positioned within the uterine cornua at or near the ostia. The delivery system may utilize existing catheter-based technology, for example, balloon catheters, and may incorporate standard materials such as Pebax, nylon, PTFE, polyurethane, vinyl, polyethylene, ionomer, polyamide, polyethylene terephthalate, and other materials. These materials may be naturally sonolucent or may be modified to enhance their ultrasound visibility, such as by coating or the inclusion of air bubbles within the material. Embodiments of the present invention may include a means for controlled flexion or rotation of the delivery system, which may aid in positioning one or more ends at the desired anatomic location. The catheters may be designed with one or more curves that ensure that the tip is guided to the uterine cornua. Such curves may be either pre-formed to suit a majority of female reproductive anatomies or may be selected based on the individual anatomy of a single female patient.

The present invention comprises methods for occlusion of fallopian tubes comprising delivery of devices, such that the methods incorporate intra-procedure non-invasive visualization without hysteroscopy, and positioning of the delivery ends of a delivery device within the uterine cornua at or near the ostia of both fallopian tubes without the need for removal and reintroduction of instrumentation. Embodiments of the present invention comprise delivery devices that are sized appropriately for a general population of patients and also comprise delivery devices that are custom-fitted and individually tailored to meet individual patient anatomical needs. Delivery devices taught in the prior art, such as U.S. Pat. Nos. 5,746,769, 6,145,505, 6,176,240, 6,476,070, 6,538,026, 6,634,361, 6,679,266, and 6,684,384, 5,954,715, 6,068,626, 6,309,384, 6,346,102, and 6,526,979 do not consider individual patient anatomy, may require the use of a hysteroscope for direct visualization, and necessitate cannulation of each tube sequentially, with the need to reposition, withdraw and reinsert the device, enhancing the technical difficulty of the procedure and consequently the inherent risk of failure.

One aspect of this invention contemplates the use of pre-procedure imaging, such as by ultrasound, to allow for selection or adjustment of lengths and angles of the deployed delivery device and selection of appropriate delivery device stabilizer to accommodate individual patient anatomy. This pre-procedure imaging is used to rule out anomalies that may preclude use of the system and may be used to determine the uterine width between the fallopian tubes to select the correct size delivery system or to adjust the angle or shape of each of the two delivery ends such that each would be properly located within the uterine cornua at or near the ostium of a tube on deployment. Imaging may also elucidate the size and shape of the cervical os and canal, guiding selection of size and shape of delivery device stabilizer or spacer. Alternatively, one of a set of predetermined sizes of the delivery system could be selected based on the pre-procedure imaging information. The ability to adjust placement of the delivery ends or tips, including the angle and length for each individual end or in combination, during the procedure based on tactile feedback, imaging, or both tactile and imaging information is also contemplated. Other pre-procedure methods include the use of hormonal medications to control estrogen/progesterone cycle changes or prevent placement of the device during pregnancy and the use of pre-operative medications such as anti-infective or immune response therapies.

The present invention further comprises post-procedure methods and compositions. Post-procedure methods may comprise, for example, ultrasound or X-ray visualization, to allow for confirmation that the occlusive material continues to provide an occlusion over time. Post-procedure methods and compositions may further comprise the use of hormonal agents to prohibit menstrual shedding of the endometrium is also contemplated to minimize the risk of expulsion for a period of time, for example to allow for a period of time for resorption of the occlusive material and tissue ingrowth. For example, use of a long-acting hormonal medication such as an injectable medroxyprogesterone acetate depot may serve the function of both the pre- and post-operative hormonal therapy without the need for reliance on patient compliance. Post-operative methods and compositions may further comprise antibiotic or steroidal compositions.

Methods of the present invention comprise visualization of one or more steps of the methods. Visualization of the insertion, placement of the device, and release of the occlusive composition are included in methods for providing the occlusive material. Visualization of the occluded region, removal of the occlusive material, reopening of the conduit and testing for return of functionality of the conduit are included in methods for reversing the occlusion of the conduit. Such visualization methods are known to those skilled in the art. U.S. Pat. Nos. 4,731,052 and 4,824,434 teach that ultrasound may be used for visualization of internal structures. The compositions and devices of the present invention comprise materials that allow for visualization, such as by ultrasound, during the procedure to ensure appropriate patient selection and device placement and localization, and for post-application monitoring to confirm appropriate material placement and the presence of an occlusion.

Once the delivery device is appropriately placed, the occlusive material is introduced through the delivery device to create the occlusion of the fallopian tubes. In one aspect of the invention, the delivery device has individual channels in the shaft of the introducer, with capability to provide a delivery end or tip directed toward the opening of a fallopian tube. An aspect of the invention allows for the simultaneous or sequential delivery of occlusive material to the fallopian tubes without the need to withdraw and reinsert or substantially reposition the device. The occlusive material is delivered by actions of the operator manually or automatically once the device is in position. One aspect of the invention contemplates the occlusive material is visualizable by non-invasive imaging such as ultrasound. Materials may be naturally sonolucent or may be modified to have enhanced sonolucency by the introduction of materials or bubbles such as microbubbles of air or gas. These microbubbles may be present within the material prior to attachment to the delivery system or may be introduced into the material during the delivery process, such as through the use of a cavitation mechanism.

It is contemplated that the methods taught herein are effective with one application of occlusive material to at least one conduit, though the methods comprise at least one application to at least one conduit. Embodiments also comprise one or more applications of occlusive material to at least one conduit during one delivery cycle. For example, once the delivery device is in place in the uterus, with at least one end of the device at the site or sites to be occluded, occlusive material may be applied once, and then, without removal, one or more other applications of occlusive material are performed. Alternatively, occlusive materials may be placed at the site or sites for occlusion over multiple treatments. For each treatment, the delivery device would be inserted and removed. Such multiple applications may occur on consecutive days of insertion and removal or the days of insertion and removal may be interspersed with days of no applications of occlusive material. Such treatment regimens may be designed with individual patient needs taken into account by those skilled in the art, such as the treating physicians. Such treatment regimens may utilize the same or different occlusive compositions at each application.

The occlusive compositions include natural or synthetic materials. Natural materials include those found in animals or plants and not necessarily in the species in which they are used. Synthetic materials include any materials that can be made by humans or machines in laboratory or industrial settings. The compositions may comprise materials that are initially mostly fluid that polymerize in situ to become solid materials, may comprise solid materials that may or may not change properties such as flexibility, once placed at the site or sites for occlusion, may comprise a mixture of fluids with gas, solid articles or both, dispersed therein. The occlusive material compositions may be a pre-formed shaped material that is released by the device once one or more delivery ends are in position, and the compositions may comprise occlusive material that starts as a liquid or semi-solid that cures in situ. The compositions of the present invention may include solid structures such a stents, rods, pellets, beads, and other tissue bulking agents that provide a solid structure to the occlusion formed at the site or sites. Compositions of the present invention may also combine pre-formed structures, such as spheres or particles, with material that starts as a liquid or semi-solid and cures in situ, entrapping the preformed structures.

One aspect of the present invention comprises an occluding composition comprising a liquid that is mixed prior to delivery or does not require pre-mixing such as the single liquid composition, is ultrasound visible, and cures upon delivery into and through the tubal ostia within 5 cm of the ostium to provide mechanical blockage and is at least 75% resorbed at a range of between about 30 to about 365 days. In one embodiment, the occluding composition is not hydrophilic and does not swell in the presence of fluids in the environment. In another aspect, the occlusive composition forming the occlusion may aid in the initiation or stimulation of tissue growth into the occluded site, wherein the occlusion is replaced by tissue that maintains the occlusion after resorption of the occlusion material. In another aspect, an embodiment of the invention contemplates use of an occlusive material that has a functional lifespan wherein for a period of time it forms the physical occlusion or blockage of the lumen, and after period of time, the occlusive material is gone, having been resorbed or degraded, but is not replaced by tissue ingrowth, so that the lumen is again open and functional.

In a further aspect of the present invention, the occlusive material comprises a two component liquid comprising a resorbable polymer solution component and a liquid cyanoacrylate tissue adhesive component. The resorbable polymer is a polyester polymer selected from polylactide, polyglycolide or polycaprolactone, or a polyester copolymer selected from poly(lactide/glycolide) acid (PLGA) or poly(lactid-co-.epsilon.-caprolact-one) (PLCL). The cyanoacrylate tissue adhesive component comprises any of a number of biocompatible alkyl- or alkoxyalkyl-2-cyanoacrylates such as n-butyl-2-cyanoacrylate or 2-methoxybutyl-2-cyanoacrylate. The two component liquids are mixed prior to entry in the catheters for delivery. In curing, the cyanoacrylate homopolymerizes and entraps the polyester polymers or copolymers. The cyanoacrylate adheres to the lumen wall to anchor the occlusion in place.

A single liquid composition is also contemplated. The single liquid composition comprises a liquid tissue adhesive, such as a cyanoacrylate with a nano- or micro-particulate material, which may be made from resorbable polyesters. In one aspect of the invention, the particles are capable of visualization by ultrasound. The particles and tissue adhesive are combined prior to delivery to the target site. The composition cures by the homopolymerization of the tissue adhesive, entrapping the particles, and anchors the occlusion in the lumen by adhesion to the lumen wall.

The resorbable nature of the occluding composition and the proximity of the occlusion to the ostia, extending over a limited length of the fallopian tube, may allow for ease in the reversibility of the contraceptive method. As the occlusive implanted composition is resorbed, there is ingrowth of tissue that maintains the occlusion. The tissue occlusion so formed can be recanalized to provide an open conduit for fertilization without the need for surgical removal and reapposition of the tube across the area of the occlusion.

A wide variety of materials are known in the art that can be used to form the conduit occlusions of the present invention, such as oviduct occlusions. U.S. Pat. No. Re. 29,345 teaches the use of silastic that is partially pre-formed and partially in situ cured. U.S. Pat. No. 4,185,618 teaches the use of a gel-forming carrier substance that holds in place a tissue fibrosis-promoting material. U.S. Pat. Nos. 4,365,621 and 4,509,504 describe the use of a swelling material that is inert and permanent. U.S. Pat. No. 6,096,052 describes the use of a mesh-based material that supports fibrous tissue ingrowth. U.S. Pat. No. 4,700,701 describes the use of a resorbable plug in combination with physical and/or chemical means of inducing a scarring reaction. U.S. Pat. No. 5,989,580 incorporates the use of a biocompatible, non-degradable implanted polymer of several types that can be removed by dissolution. U.S. Pat. No. 6,605,294 teaches the use of absorbable polymers, pre-shaped with at least one rod-shaped portion, to occlude fallopian tubes. U.S. Pat. No. 5,894,022 teaches using a composition that may form a degradable mesh. U.S. Pat. Nos. 6,371,975, 6,458,147, and 6,743,248 teach the use of a polyethylene glycol and protein composition for the occlusion of vascular access puncture sites. The present invention comprises these and other occlusive compositions for blocking a conduit that may be introduced using the delivery devices of the current invention.

One aspect of the occlusive compositions of the current invention comprises a resorbable material capable of providing an initial mechanical blockage and initiating or supporting the tissue ingrowth necessary to create the occlusion and/or an adhesive composition that maintains the position of the material during curing and the initial phase of tissue ingrowth. U.S. Pat. Nos. 4,359,454, 6,476,070, and 6,538,026 teach the use of cyanoacrylate, and in particular a composition containing either n-methyl or n-hexyl cyanoacrylate, as a resorbable, yet scar-promoting, material. Other patents teach compositions of polymerizable monomers, such as cyanoacrylates, alone or in combination with other materials, such compositions that may be useful as occlusive agents or adhesives in the present invention and/or as resorbable materials capable of initiating or supporting tissue ingrowth to form a permanent adhesion. These include U.S. Pat. Nos. 5,328,687, 5,350,798, 6,010,714, 6,143,352, 6,174,919, 6,299,631, 6,306,243, 6,433,096, 6,455,064, 6,476,070, 6,538,026, 6,579,469, 6,605,667, 6,607,631, 6,620,846, and 6,723,144.

A further aspect of the current invention includes materials that are delivered in a solid or non-solid form which may be used to deliver or adhere materials that may be useful in promoting or forming occlusions or which may be useful in forming occlusions in and of themselves whereas such material may be resorbable or permanent. Such materials include dry compositions that hydrate and form crosslinked hydrogels, as taught by U.S. Pat. No. 6,703,047. U.S. Pat. Nos. 5,612,052, 5,714,159, and 6,413,539 teach self-solvating polyester copolymers that form hydrogels upon contact with body fluids. U.S. Pat. No. 4,804,691 teaches compositions of hydroxyl-terminated polyesters crosslinked with diisocyanate. U.S. Pat. No. 6,723,781 teaches crosslinked, dehydrated hydrogels. Hyaluronic acid based hydrogels are taught in U.S. Pat. Nos. 5,866,554 and 6,037,331. Two part hydrogels are taught in U.S. Pat. No. 6,514,534. Crosslinked bioadhesive polymers are taught in U.S. Pat. Nos. 6,297,337 and 6,514,535. Thermosensitive biodegradable polymers are taught in U.S. Pat. No. 5,702,717.

The present invention comprises compositions that form an occlusion in a conduit, wherein the occluding material is resorbed or biodegraded by the body in a range from at least about 20% to about 100%, or in a range from at least about 20% to about 80%, from a range of at least about 20% and about 60%, from a range of at least about 30% to about 50%, from a range of at least about 30% to about 80%, from a range of about 70% to about 100%, and from a range of about 40% to about 100%. Such resorption may occur substantially over a period of time from about 30 days to 365 days, from about 30 days to 180 days, from about 30 days to 90 days, from about 60 days to 365 days, from 60 days to 180 days, or from about 90 days to 365 days. A composition comprises a material that is resorbed or biodegraded by the body in a range of at least about 20% to substantially 100% in a period of time of about 30 days to 365 days, where the initial mechanical occlusion formed by the material is maintained thereafter by the tissue that grows into the site.

The present invention contemplates use of an in situ curable material, which lowers the risk of expulsion by allowing the material to conform and adhere to the walls of the conduit, or specifically the uterus and/or fallopian tube. Compositions capable of in situ curing preferably comprise a material that is flowable at a temperature outside physiologic limits but curable at physiologic temperatures such as those taught by U.S. Pat. Nos. 5,469,867 and 5,826,584. High viscosity liquids capable of delivering and maintaining materials in place that are useful for the present invention are taught in U.S. Pat. Nos. 5,747,058, 5,968,542, and 6,413,536. Alternatively, the material may cure on contact with the tissue environment as described in U.S. Pat. Nos. 4,359,454, 6,476,070, and 6,538,026; on contact with a curing agent as described by U.S. Pat. Nos. 5,278,202 and 5,340,849; or on dissipation of the solvent as described by U.S. Pat. Nos. 4,938,763, 5,278,201, 5,324,519, 5,487,897, 5,599,552, 5,599,552, 5,632,727, 5,702,716, 5,728,201, 5,733,950, 5,736,152, 5,739,176, 5,744,153, 5,759,563, 5,780,044, 5,792,469, 5,888,533, 5,990,194, 6,120,789, 6,130,200, 6,395,293, 6,461,631, 6,528,080, and Re. 37,950 as well as world-wide patent numbers WO 97/42987, WO 99/47073, and WO 00/24374.

The present invention comprises use of compositions made from a combination of more than one material to form the occlusion, particularly compositions that comprise materials that cure or polymerize by differing mechanisms. For example, the compositions may comprise a combination of two materials, one of which cures or polymerizes because an activating agent is present and the other cures, polymerizes or solidifies, all of which are interchangeable terms, because of the pH of the environment in which it is placed. Components of the mixture may serve different or overlapping roles; for example, a tissue adhesive component may primarily serve to minimize expulsion of the implant while tissue in-growth is occurring, while another component may primarily initiate or support the tissue growth. The tissue adhesive component may be selected from the group of materials containing the cyanoacrylates, polyacrylic acids, polyethylene glycols, modified polyethylene glycols, thrombin, collagen, collagen-based adhesives, fibrin, fibrin glue compositions, gelatin-resorcinol-formaldehyde-glutaraldehye (GRFG) glue, autologous blood in combination with collagen and/or thrombin, crosslinked albumin adhesives, modified glycosaminoglycans, poly(N-isopropylacrylamide)-based adhesives, alginates, chitosan, and gelatin, crosslinked with carbodiimide or genepin, among others, in a proportion of the overall composition from about 5% to 50%, from about 5% to 25%, from about 10% to 50%, or from about 10% to 25%. The material added primarily for the initiation or support of tissue ingrowth may be chosen from the group consisting of solid or solvated resorbable polymers, including the resorbable polyesters or their copolymers. The tissue ingrowth component, including or excluding the presence of solvent, may comprise from about 20% to 80%, from about 50% to 80%, from about 40 to 70%, or from about 50% to 90% of the overall composition. When a copolymer is used the percentage of each polymer within the copolymer will be from about 25% to 75%.

Additional components may be included to stabilize the overall mixture or to control the viscosity, curing time, resorption timeframe, plasticity, or to enhance visualization of the material. Such agents may include: polymerization inhibitors and stabilizers including, for example sulfonic acid, lactic acid, acetic acid, sulfur dioxide, lactone, boron trifluoride, hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol, benzoquinone, 2-hydroxybenzoquinone, p-methoxy phenol, t-butyl catechol, organic acid, butylated hydroxyl anisole, butylated hydroxyl toluene, t-butyl hydroquinone, alkyl sulfate, alkyl sulfite, 3-sulfolene, alkylsulfone, alkyl sulfoxide, mercaptan, and alkyl sulfide; emulsifying agents such as polyvinyl alcohol; echogenic agents such as microbubbles of air or gas, microparticles or spheres of crosslinked albumin with entrapped air or gas (Albunex), sonicated albumin, gelatin-encapsulated air or gas bubbles, nanoparticles, microparticles, spheres, or microcapsules of resorbable polyesters or other resorbable materials with entrapped air or gas, particles of other materials with entrapped air or gas; contrast agents such as gold particles; viscosity-modifying materials such as crosslinked cyanoacrylate, polylactic acid, polyglycolic acid, lactic-glycolic acid copolymers, polycaprolactone, lactic acid-caprolactone copolymers, poly-3-hydroxybutyric acid, polyorthoesters, polyalkyl acrylates, copolymers of alkylacrylate and vinyl acetate, polyalkyl methacrylates, and copolymers of alkyl methacrylates and butadiene; and plasticizers such as dioctyl phthalate, dimethyl sebacate, trethyl phosphate, tri(2-ethylhexy)phosphate, tri(p-cresyl)phosphate, glyceryl triacetate, glyceryl tributyrate, diethyl sebacate, dioctyl adipate, isopropyl myristate, butyl stearate, lauric acid, dibutyl phthalate, trioctyl trimellitate, and dioctyl glutarate. The composition may further contain colorants such as dyes and pigments. The total amount of these agents may comprise from about 0.1% to 10%, from 1% to 10%, or from 5% to 20% of the overall composition.

The combination of two or more materials that cure by different mechanisms, including contact with tissue or the appropriate curing environment for example, conditions such as aqueous, ionic, temperature, or pH, chemical crosslinking, or solvent dissipation, among others, is contemplated by the current invention. The combination of one or more materials that cure by one or more mechanisms combined with one or materials that are pre-cured or pre-formed into particles, spheres, or other structures, is also contemplated by the current invention.

The present invention contemplates the use of pre-formed solid materials such as particles, spheres, capsules, or the like, in combination with a liquid or semi-solid material. The pre-formed solids may comprise degradable or resorbable materials and may have enhanced ultrasound visibility or may serve to enhance ultrasound visibility of the composite occlusive material. The particles as contemplated may be nanoparticles of an average size ranging from about 100 to 2000 nanometers, about 100 to 1000 nanometers, about 250 to 2000 nanometers, or about 500 to 2000 nanometers in diameter. Particles may also be microparticles with an average size ranging from about 0.1 to 1000 micrometers, about 0.1 to 250 micrometers, about 1 to 500 micrometers, about 50-500 micrometers, about 100-750 micrometers, or about 250 to 1000 micrometers. The liquid or semisolid material acts as a transport medium for the pre-formed solids and then cures in situ, entrapping the solids. The particles may be coated with or contained within a material that enhances their miscibility with the liquid or semi-solid material or minimizes the tendency of the particles to promote the premature curing of the liquid or semi-solid material prior to delivery. Coating materials may include extremely low moisture content formulations of the particulate constituent materials or other polymers or copolymers containing, for example, caprolactone, poly-.beta.-hydroxybutyrate, delta-valerolactone, as well as polyvinylpyrrolidone, polyamides, gelatin, albumin, proteins, collagen, poly(orthoesters), poly(anhydrides), poly(.alpha.-cyanoacrylates), poly(dihydropyrans), poly(acetals), poly(phosphazenes), poly(urethanes), poly(dioxinones), cellulose, and starches. The following patents and U.S. patent applications teach manufacturing methods for creating echogenic particles for use in ultrasound contrast agents: U.S. Pat. Nos. 5,352,436; 5,562,099; 5,487,390; 5,955,143; 2004/0161384; 2004/0258761; and 2004/0258769. Particles made by these methods are contemplated by the present invention.

The present invention also comprises methods for sequential applications of the same or different materials. For example, a composition of the occluding material that functions as the in situ curable material may be placed in the site or sites, and an adhesive composition may be applied separately either before or after the curable material so as to fix the implanted material in place, thus lowering the risk of expulsion. The in situ curable materials may cure or solidify in the native environment of the fallopian tube, or the curing may require the presence of an energy source, such as light, heat, other electromagnetic waves, sound waves, or microwaves or the presence of an initiator and/or accelerator for curing. The additional energy sources may be provided by the delivery device or another introductory vehicle or by sources outside the body.

The end structure of a delivery device may have alternative shapes that aid in maintaining the end at the site, aid in delivery of occlusive material, aid in removal of the delivery device from the site, aid in localizing the occlusion and other shapes and designs for functions by the end. For example, a delivery device used for occluding the fallopian tubes in a mammal, having an end that is placed within the uterine cornua at or near the tubal ostia, may have end structures that comprise a shape that aids in delivery of the occlusive material, for example by maintaining it in position. This end structure may function to guide tip placement of the delivery system or anchor the arm ending to and/or cover the ostium of the tube and may take the form of a nozzle, cup, or balloon. A nozzle, cup or balloon is useful for preventing leakage of compositions of in situ curable material away from the implantation site. Preferably, the end structures do not adhere to the implantable material although the use of an absorbable, detachable end structure that may adhere to the implantable material and be left in place after removal of the remainder of the delivery system is also contemplated. Using a device having a structure that conforms to the shape of the uterine cornua, maintaining localized delivery to at least one ostia eliminates the need to cannulate into the fallopian tube.

The present invention comprises methods for female sterilization wherein the delivery device is not inserted into the fallopian tube and in which the occlusive material is introduced within the uterine cornua at or near the tubal ostia affecting portions of the endometrium and/or tubal epithelium. The extent of the occlusion such as the portion of the uterine cornua and fallopian tube blocked by the occlusive material, may be controlled by modification of the curing time, viscosity, and amount of material delivered. The current invention comprises methods for effective blockage of a conduit, such as a fallopian tube, by occluding a minimal portion of the fallopian tube. Such occlusion may block a conduit for less than 1.0 mm of the length of the conduit, for less than 1 cm of the length of the conduit, for less than 3 cm of the length of the conduit, or for less than 5 cm of the length of the conduit. For example, in occluding a fallopian tube, an embodiment of the present invention comprises methods of application of an occluding material such that no more than 5 cm of the fallopian tube is occluded. In affecting this length of tube, the anatomical areas of the fallopian tube targeted for occlusion include the areas within the uterine wall (the interstitial segment) and early portions of the isthmic section. The present invention may not be dependent on the length, width or depth of the solidified occluding material, and the extent of the solidified occluding material may be dependent on whether subsequent reversal of the occlusion is desired. If reversal of the occlusion is contemplated at the time of occluding, a minimal amount of occlusion may be achieved, thus allowing for more ease in reversing the occlusion and opening the conduit.

In one method of delivery of the occlusive material, pressure generated in the lumen of the delivery system forces the occlusive material through the delivery device, including at least one opening in at least one delivery end, out of the device and into the area to be blocked. Once the occlusive material has been delivered, the delivery device is removed in whole or in part from the patient (the end structure may be detachable and fashioned from a resorbable material designed to be left in place). For example, once the occlusive material is delivered to the site or the occlusive material cures in situ, the delivery device can be collapsed, re-folded, re-sheathed, or directly removed in one or more pieces from the patient.

The compositions of the present invention comprise occlusive materials and may further comprise one or more agents that are capable of providing other functions, including but not limited to, a curable carrier for the occlusive material, allowing for controlled release of a substance, enhancing the ability of the occlusive material to cause fibrosis or inhibit contraception. Quinacrine is well established to create scarring of the tubal epithelium and cause tubal blockage. In combination with the occlusive material, low dosages of quinacrine or other sclerotic agents, such as tetracycline, may assist in creation of the fibrous tissue blockage. The compositions of the present invention comprise fibrous tissue growth promoting agents such as growth factors or pro-inflammatory reagents that are known to those skilled in the art. U.S. Pat. No. 3,803,308 teaches that the instillation of copper or zinc salts alone into the uterus inhibits contraception. Current copper intrauterine devices have incorporated this concept. The present invention comprises compositions comprising copper salts or other metallic elements in addition to the occlusive material. Inclusion of hormonal contraceptives within the occlusive material to limit further the risk of pregnancy during the timeframe of tissue ingrowth is contemplated.

The present invention comprises methods for using energy-delivering devices to initiate or completely form an occlusion. Such methods comprise activities at the site of the placement of the occlusive materials to aid in the formation of tissue growth and/or biodegradation of the occlusive material. Such activities include, but are not limited to, use of cautery methods, bipolar coagulating current, a high frequency generator to produce a tissue damaging current, and use of laser, light, microwave, and radiofrequency energy. Devices for providing such activities and uses thereof are taught in U.S. Pat. Nos. 4,700,701; 5,095,917; 5,474,089; 5,954,715; and 6,485,486.

The present invention also comprises delivery systems, methods and devices for removing at least one occlusion at the occluded site. As used herein, the term reversing the occluded site, means making the conduit capable of transporting again. Making the conduit capable of transporting can include, but is not limited to, removal of the original occluding material, creating a new lumen through the occluded site, such as forming a channel through the occluding material or the in-grown tissue at the occluded site, or by-passing the occluded site. The methods of the present invention comprise delivery of devices that place permanent plugs within one or more conduits, simultaneously or sequentially, wherein such plugs are structured such that a device of the present invention can be used to remove the plugs at a later time. Structures for such plugs are taught U.S. Pat. No. Re. 29,345. Such plugs are not resorbable or biodegradable by bodily actions and thus incorporate means for anchoring the plugs within the conduit. The occlusion may be removed from the conduit by destruction of the occluding material. For example, shockwaves can be used to shatter the material, similar to that used in lithotripsy methods, and the material is expelled from the conduit. Chemical or biological means, such as instillation of solvents or enzymes, can be used to disintegrate the occlusion. Removal devices of the present invention can be used to affect one or both fallopian tubes that have occluding material therein, by physical removal of plugs, provision of materials that recanalize the occluding site, or that mechanically form a new channel through or around the occluded site. The device may also deliver a stent or other device to ensure that the new channel remains open. U.S. Pat. Nos. 4,983,177; 5,989,580; 4,664,112 and others teach methods for reversibility of occluded sites. In methods for reversing the blockage of fallopian tubes, the present invention contemplates systems, methods and devices that are capable of reversing the occlusion in each fallopian tube under non-invasive visualization and without removal and reinsertion or the need to reposition substantially the delivery device until both tubes are unblocked. Although it may be desirable to open the tubes one at a time, the ability to reach both tubes under non-invasive visualization and without the withdrawal and reintroduction of instrumentation represents an advantage over the prior art.

In one aspect of the present invention in which a partially or fully resorbable material is used to cause occlusion of a conduit, minimal or no permanent foreign body remains in position. In fallopian tube occlusion, the occlusion is located at or near the ostium of the tube, making non-surgical access simple. A catheter with a working head for the removal of an occlusion in a vessel or other body passageway can be used with the delivery device. A method for reversal of such blocked tubes incorporates the use of a catheter-based delivery system similar to that used for the introduction of the occlusive material. In this aspect of the invention, the channel or channels of the delivery device are used for the introduction of a stiff or cutting catheter or a catheter for instillation of a dissolution medium (e.g., enzyme or solvent) that recanalizes the blocked section(s) of the tube. A stent or other device to maintain the opening may be placed through the delivery device as well.

In general, the present invention comprises methods for occluding at least one conduit in a human or animal body, comprising, providing a delivery system capable of delivering an effective amount of a composition comprising an occlusive material, wherein the delivery system comprises a delivery device comprising at least an introducer shaft for providing at least two catheters; two catheters, each comprising an end structure on a delivery end and attachment means on a proximal end, a composition comprising an occlusive material, and means for providing the composition comprising an occlusive material into and through the catheters; delivering an effective amount of the composition comprising an occlusive material at or near the target site such that the material occludes the lumen of the conduit; and occluding the conduit with the composition comprising an occlusive material within the lumen of the conduit. Means for providing the delivery composition include, but are not limited to, syringes and pressure systems, pumps, containers with plungers to force material into the catheters, or other methods and devices for moving flowable material through a catheter or tube. The methods further comprise opening conduits, whether the conduit is occluded by methods of the present invention or by other methods or processes, including natural and synthetic or medical processes. The methods may comprise occluding two conduits without removal and re-introduction or substantial repositioning of the introducer shaft. Such a method may be used to treat fallopian tubes of a mammal, and provides methods of contraception.

The compositions used in the methods of the present invention comprising the occlusive material may be mixed prior to delivery to the lumen. The compositions may comprise a liquid tissue adhesive and a solvated polymer, wherein the composition cures in situ. The composition comprising the occlusive material may be ultrasound visible. The ultrasound visible material may comprise microbubbles of air or gas or microparticles of a material that entrap air or gas. Compositions of the present invention comprise compositions wherein the liquid tissue adhesive is cyanoacrylate, polyacrylic acids, polyethylene glycols, modified polyethylene glycols, thrombin, collagen, collagen-based adhesives, fibrin, fibrin glue compositions, gelatin-resorcinol-formaldeh-yde-glutaraldehye (GRFG) glue, autologous blood in combination with collagen or thrombin, crosslinked albumin adhesives, modified glycosaminiglycans, poly(N-isopropylacrylamide)-based adhesives, alginates, or chitosan or gelatin, crosslinked with carbodiimide or genepin; and the solvated polymer is a resorbable polyester, including polylactide, polyglycolide, or polycaprolactone or copolymers of these materials, including poly(lactide-/glycolide) acid (PLGA) or poly(lactide-co-.epsilon.-caprolactone) (PLCL). The compositions may be visible by ultrasound. The compositions may further comprise tissue scarring agents, fibrosis agents, fertilization inhibitors, contraceptive agents, tissue growth promoters, hormones, polymerization inhibitors, polymerization stabilizers, emulsifying agents, echogenic agents, contrast agents, viscosity-modifying materials, plasticizers, colorants or combinations thereof.

The cured compositions of the present invention swell less than 20%, and may be about 20% to about 100% substantially resorbed in a range of about 30 to about 365 days. Once resorbed the occlusion may be maintained by tissue ingrowth.

Compositions of the present invention may also comprise a liquid tissue adhesive and particles. The particles may be nano- or micro-particles comprising spheres of resorbable polymers. The particles may be from about 0.1 micrometer to about 1000 micrometers in diameter. The compositions may be viewable by ultrasound. The compositions may further comprise a curable carrier for the occlusive materials, a control release agent, tissue scarring agents, fibrosis agents, fertilization inhibitors, contraceptive agents, tissue growth promoters, hormones, polymerization inhibitors, polymerization stabilizers, emulsifying agents, echogenic agents, contrast agents, viscosity-modifying materials, plasticizers, colorants or combinations thereof.

The present invention comprises methods for contraception comprising providing a delivery system capable of delivering an effective amount of a composition comprising an occlusive material, wherein the delivery system comprises a delivery device comprising at least an introducer shaft for providing at least two catheters; two dual lumen balloon catheters; a composition comprising an occlusive material and means for providing the composition comprising an occlusive material into and through the catheters; delivering an effective amount of the composition comprising an occlusive material at or near the target location such that the material occludes the lumen of at least one fallopian tube; and occluding the fallopian tube with the composition comprising an occlusive material within the lumen of the conduit.

The present invention comprises devices, including contraceptive devices, comprising an introducer shaft for providing at least two catheters; two catheters, each comprising an end structure at the delivery end; a composition comprising an occlusive material, and means for providing the composition comprising an occlusive material into and through the catheters. The end structure may be a cup, nozzle, or a balloon. The devices may further comprise a delivery device stabilizer for holding the contraceptive device in place once positioned. The delivery device stabilizer may fit over or attach to the cervix or fit into or expand within the cervix to hold the device in position.

The present invention also comprises systems and methods for opening occluded conduits. A method comprises providing a delivery device comprising at least an introducer shaft for providing at least two catheters; two catheters, each comprising an end structure at the delivery end; and means for re-opening the conduit; and re-opening or opening the conduit. A device that may be used to open conduits comprises at least an introducer shaft for providing at least two catheters; at least one catheter, comprising a stationary device at one end; means for holding the delivery system in place upon positioning; and means for opening the conduit. Means for opening the conduit comprise device or members for providing shockwaves to shatter the occluding material, chemical means including solvents, biological means including enzymes, or mechanical means including stiff or cutting catheter ends to recanalize the lumen. The method may further comprise maintaining the opening of the conduit by providing a stent within the lumen of the conduit.

It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.

All patents, patent applications and references included herein are specifically incorporated by reference in their entireties.

It should be understood, of course, that the foregoing relates only to exemplary embodiments of the present invention and that numerous modifications or alterations may be made therein without departing from the spirit and the scope of the invention as set forth in this disclosure.

Although the exemplary embodiments of the present invention describe in detail methods, delivery systems, and compositions to occlude the fallopian tubes of human, the present invention is not limited to these embodiments. There are numerous modifications or alterations that may suggest themselves to those skilled in the art for use of the methods, delivery systems, and compositions herein for the occlusion of a variety of conduits in both human and non-human mammals.

The present invention is further illustrated by way of the examples contained herein, which are provided for clarity of understanding. The exemplary embodiments should not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.

EXAMPLES Example 1 Preparation of Implantable Material A

A solution of 25/75 poly lactide-co-.epsilon.-caprolactone (PLCL) was prepared 50% by weight in n-methyl-pyrrolidone (NMP) and sterilized. A mixture of 2-methoxypropyl cyanoacrylate (MPCA) with a biocompatible acid, in this case glacial acetic acid (AA), was prepared containing approximately 1 part MPCA and 1 part AA and sterilized. Implantable material A was prepared immediately prior to use by mixing 0.8 cc PLCL solution with 0.2 cc MPCA mixture until homogeneity of the mixture was achieved. The resultant mixture initially warms indicative of curing but remains adhesive to tissue and flowable through a 20G IV catheter for at least 15 min at room temperature in the absence of an aqueous environment. In contact with either water or animal tissue, the implantable material completes its curing quickly, forming a semi-solid material that is compressible and flakes relatively easily.

Example 2 Preparation of Implantable Material B

A solution of 50/50 poly lactide-co-glycolide (PLGA) was prepared 25% by weight in ethyl alcohol (EtOH) and sterilized. A mixture of butyl cyanoacrylate (BCA) with AA was prepared containing approximately 2 parts BCA and 1 part AA and sterilized. Implantable material B was prepared immediately prior to use by mixing 0.4 cc PLGA solution with 0.4 cc BCA mixture until homogeneity of the mixture was achieved. The resultant mixture initially warms indicative of curing but remains strongly adhesive to tissue and flowable through a 20G IV catheter for at least 15 min at room temperature in the absence of an aqueous environment. In contact with either water or animal tissue, the implantable material completes its curing quickly, forming a relatively incompressible semi-solid material that fractures on attempted bending.

Example 3 Preparation of Implantable Material C

Particles of 50/50 PLGA were prepared by dissolving PLGA in methylene chloride to create a 25% weight/volume solution, emulsifying in a 0.3% polyvinyl alcohol (PVA) solution, and further addition of PVA solution with 2% isopropyl alcohol to remove solvent. Particles were collected, lyophilized, and sterilized. Particles (0.25 g) were added to 0.75 g of a sterilized mixture containing 2 parts BCA and one part AA. The resulting particulate suspension was flowable at room temperature but cured on contact with water or animal tissue, forming a stiff, adherent material.

Example 4 Preparation of Implantable Material D

Particles of 50/50 PLGA were prepared as described in Example 3 with the addition of hydroquinone (0.5%) to the PVA emulsification, resulting in the entrapment of hydroquinone on the surface of the particles. The particles were collected, lyophilized, and sterilized. Particles (0.25 g) were added to 0.75 g of sterilized BCA. The particulate suspension remained flowable at room temperature with no indication of cyanoacrylate polymerization. The composition hardened on exposure to water or tissue, forming a stiff, adherent material.

Example 5 Study of 3 Implantable Materials in the Rabbit Fallopian Tube

Three candidate materials prepared similarly to the previous examples have been studied for their ability to create a mechanical occlusion and generate a tissue ingrowth response when placed into the fallopian tubes of rabbits. A fourth material, methyl cyanoacrylate (MCA), previously used to effect female sterilization in animals and humans but shown to have an unacceptable biocompatibility profile, was used as a control. Each of the test and control materials was placed into the fallopian tubes of three New Zealand white rabbits through an open procedure in which a 20G IV catheter was used as the delivery system. Materials were infused through the catheter into the cornual aspect of the right and left uterine body; finger pressure was used to prohibit backward flow of the material into the remainder of the uterus. Forward flow of the material was stopped once materials were seen within the cul-de-sac (i.e., peritoneal spill had occurred) or the full volume of material had been delivered. It was noted that, in comparison to the control material which cured very rapidly, sticking to the catheter, and with a high heat of curing, the test materials had a longer curing timeframe (within the time prior to closure but sufficiently long to remove the catheter without adhesion) and did not generate as much heat. Once both right and left tubes had been treated, the reproductive organs were repositioned within the pelvis, and the incision was closed. At 14 days, the animals were sacrificed. Dye infusion testing demonstrated that the fallopian tubes of all animals were blocked. One test material had generated an excessive amount of inflammation and adhesions and was ruled out. The remaining test materials and the control generated an appropriate tissue response, completely blocking the lumen of the fallopian tube with inflammatory cells and debris.

Example 6 Use of the Delivery System in Explanted Human Uteri

A prototype delivery system comparable to that shown in FIG. 1 was used to delivery dye and occlusive material to the fallopian tubes of three explanted human uteri obtained in accordance with the rules of the institution's Institutional Review Board. In each case, the explanted uterus was placed on an examination table in anatomic position, and the shaft of the introducer was placed transcervically until the tip reached the top of the uterine fundus as determined by tactile feel. Each of two balloon catheters was then advanced through the channel in the introducer until it was felt to lodge within the cornual aspect of the uterus. The balloons were inflated until resistance was felt. The uterus was then bivalved to allow for visualization of the device, which, in each case, was seen to be appropriately placed. One case represented a normal, multiparous uterus, while two cases demonstrated significant leiomyomatous pathology, indicating that the presence of fibroids outside the midline or the cornua does not interfere with the successful use of the delivery system. After successful placement was confirmed, a series of liquid injections through the catheters was conducted: first with saline to confirm patency, second with a hematoxylin dye to demonstrate that backflow into the uterine cavity did not occur, and finally with an occlusive material from the animal study in the previous example to demonstrate full functionality of the system in humans. In each case tested, dye demonstrated forward flow without leakage into the uterine cavity, and the material was successfully delivered.

Example 7 Occluding Compositions

Functionality of
Component A Component B Additive(s) Additive
50% Gelatin- 50% Formaldehyde-
resorcinol glutaraldehyde
50% Gelatin- 50% Formaldehyde- Microbubbles of air Ultrasound
resorcinol glutaraldehyde visibility
50% Gelatin- 50% Formaldehyde- Progesterone-estrogen- Inhibition of
resorcinol glutaraldehyde dissolved in component B ovulation during
maturation of
blockage
50% Gelatin- 50% Formaldehyde- Tetracyline - dissolved in Promotion of
resorcinol glutaraldehyde component B scarring or fibrosis
50% Gelatin- 50% Formaldehyde- bFGF, EGF - dissolved in Induction of tissue
resorcinol glutaraldehyde component B ingrowth
50% Gelatin- 50% Formaldehyde- Gold particles suspended X-ray visibility
resorcinol glutaraldehyde in component A
50% Gelatin- 50% Formaldehyde- Copper sulfate - dissolved Inhibition of
resorcinol glutaraldehyde or suspended in ovulation and/or
component A enhanced MRI
visibility
70% Fibrin 30% poly-L-lactide
glue dissolved 50% by weight
in NMP
70% Fibrin 30% poly-L-lactide Microbubbles of air Ultrasound
glue dissolved 50% by weight visibility
in NMP
70% Fibrin 30% poly-L-lactide Progesterone-estrogen - Inhibition of
glue dissolved 50% by weight dissolved in component B ovulation during
in NMP maturation of
blockage
70% Fibrin 30% poly-L-lactide Tetracyline - dissolved in Promotion of
glue dissolved 50% by weight component B scarring or fibrosis
in NMP
70% Fibrin 30% poly-L-lactide bFGF, EGF - dissolved in Induction of tissue
glue dissolved 50% by weight component B ingrowth
in NMP
70% Fibrin 30% poly-L-lactide Gold particles suspended X-ray visibility
glue dissolved 50% by weight in component A
in NMP
70% Fibrin 30% poly-L-lactide Copper sulfate - dissolved Inhibition of
glue dissolved 50% by weight or suspended in ovulation and/or
in NMP component A enhanced MRI
visibility
11% n-butyl 89% poly-DL-lactide-
cyanoacrylate co-glycolide dissolved
50% by weight in NMP
11% n-butyl 89% poly-DL-lactide- Microbubbles of air Ultrasound
cyanoacrylate co-glycolide dissolved visibility
50% by weight in NMP
10% n-butyl 80% poly-DL-lactide- 10% lactic acid, Inhibition of
cyanoacrylate co-glycolide dissolved Microbubbles of air polymerization,
50% by weight in NMP Ultrasound
visibility
11% n-butyl 89% poly-DL-lactide- Progesterone-estrogen - Inhibition of
cyanoacrylate co-glycolide dissolved dissolved in component B ovulation during
50% by weight in NMP maturation of
blockage
11% n-butyl 89% poly-DL-lactide- Tetracyline - dissolved in Promotion of
cyanoacrylate co-glycolide dissolved component B scarring or fibrosis
50% by weight in NMP
11% n-butyl 89% poly-DL-lactide- bFGF, EGF - dissolved in Induction of tissue
cyanoacrylate co-glycolide dissolved component B ingrowth
50% by weight in NMP
11% n-butyl 89% poly-DL-lactide- Gold particles suspended X-ray visibility
cyanoacrylate co-glycolide dissolved in component A
50% by weight in NMP
11% n-butyl 89% poly-DL-lactide- Copper sulfate - dissolved Inhibition of
cyanoacrylate co-glycolide dissolved or suspended in ovulation and/or
50% by weight in NMP component A enhanced MRI
visibility
33% 67% poly-DL-lactide-co-
methoxypropyl glycolide dissolved 50%
cyanoacrylate by weight in NMP
33% 67% poly-DL-lactide-co- Microbubbles of air Ultrasound
methoxypropyl glycolide dissolved 50% visibility
cyanoacrylate by weight in NMP
31% 62% poly-DL-lactide-co- 7% lactic acid, Inhibition of
methoxypropyl glycolide dissolved 50% Microbubbles of air polymerization,
cyanoacrylate by weight in NMP Ultrasound
visibility
33% 67% poly-DL-lactide-co- Progesterone-estrogen - Inhibition of
methoxypropyl glycolide dissolved 50% dissolved in component B ovulation during
cyanoacrylate by weight in NMP maturation of
blockage
33% 67% poly-DL-lactide-co- Tetracyline - dissolved in Promotion of
methoxypropyl glycolide dissolved 50% component B scarring or fibrosis
cyanoacrylate by weight in NMP
33% 67% poly-DL-lactide-co- bFGF, EGF - dissolved in Induction of tissue
methoxypropyl glycolide dissolved 50% component B ingrowth
cyanoacrylate by weight in NMP
33% 67% poly-DL-lactide-co- Gold particles suspended X-ray visibility
methoxypropyl glycolide dissolved 50% in component A
cyanoacrylate by weight in NMP
33% 67% poly-DL-lactide-co- Copper sulfate - dissolved Inhibition of
methoxypropyl glycolide dissolved 50% or suspended in ovulation and/or
cyanoacrylate by weight in NMP component A enhanced MRI
visibility
11% isohexyl 89% poly-DL-co-ε-co-
cyanoacrylate caprolactone dissolved
50% by weight in ethyl
alcohol
11% isohexyl 89% poly-DL-co-ε-co- Microbubbles of air Ultrasound
cyanoacrylate caprolactone dissolved visibility
50% by weight in ethyl
alcohol
10% isohexyl 80% poly-DL-co-ε-co- 10% acetic acid, Inhibition of
cyanoacrylate caprolactone dissolved Microbubbles of air polymerization,
50% by weight in ethyl Ultrasound
alcohol visibility
11% isohexyl 89% poly-DL-co-ε-co- Progesterone-estrogen - Inhibition of
cyanoacrylate caprolactone dissolved dissolved in component B ovulation during
50% by weight in ethyl maturation of
alcohol blockage
11% isohexyl 89% poly-DL-co-ε-co- Tetracyline - dissolved in Promotion of
cyanoacrylate caprolactone dissolved component B scarring or fibrosis
50% by weight in ethyl
alcohol
11% isohexyl 89% poly-DL-co-ε-co- bFGF, EGF - dissolved in Induction of tissue
cyanoacrylate caprolactone dissolved component B ingrowth
50% by weight in ethyl
alcohol
11% isohexyl 89% poly-DL-co-ε-co- Gold particles suspended X-ray visibility
cyanoacrylate caprolactone dissolved in component A
50% by weight in ethyl
alcohol
11% isohexyl 89% poly-DL-co-ε-co- Copper sulfate - dissolved Inhibition of
cyanoacrylate caprolactone dissolved or suspended in ovulation and/or
50% by weight in ethyl component A enhanced MRI
alcohol visibility
60% n-butyl 40% poly-DL-lactide-co-
cyanoacrylate glycolide microparticles
emulsified in 4%
polyvinyl alcohol
60% n-butyl 40% poly-DL-lactide-co- Microbubbles of air Ultrasound
cyanoacrylate glycolide microparticles visibility
emulsified in 4%
polyvinyl alcohol
60% n-butyl 30% poly-DL-lactide-co- 10% lactic acid, Inhibition of
cyanoacrylate glycolide microparticles Microbubbles of air polymerization,
emulsified in 4% Ultrasound
polyvinyl alcohol visibility
60% n-butyl 40% poly-DL-lactide-co- 10% acetic acid, Inhibition of
cyanoacrylate glycolide microparticles Microbubbles of air polymerization,
emulsified in 4% Ultrasound
polyvinyl alcohol visibility
60% n-butyl 40% poly-DL-lactide-co- Progesterone-estrogen - Inhibition of
cyanoacrylate glycolide microparticles dissolved in component A ovulation during
emulsified in 4% maturation of
polyvinyl alcohol blockage
60% n-butyl 40% poly-DL-lactide-co- Quinacrine - dissolved in Promotion of
cyanoacrylate glycolide microparticles component A scarring or fibrosis
emulsified in 4%
polyvinyl alcohol
60% n-butyl 40% poly-DL-lactide-co- bFGF, EGF - dissolved in Induction of tissue
cyanoacrylate glycolide microparticles component A ingrowth
emulsified in 4%
polyvinyl alcohol
60% n-butyl 40% poly-DL-lactide-co- Gold particles suspended X-ray visibility
cyanoacrylate glycolide microparticles in component A
emulsified in 4%
polyvinyl alcohol
60% n-butyl 40% poly-DL-lactide-co- Copper sulfate - dissolved Inhibition of
cyanoacrylate glycolide microparticles or suspended in ovulation and/or
emulsified in 4% component A enhanced MRI
polyvinyl alcohol visibility

REFERENCES

US PATENT DOCUMENTS
3,405,711
3,680,542
3,803,308
3,858,586
Re 29,345
Re 37,950
4,136,695
4,158,050
4,160,446
4,185,618
4,245,623
4,359,454
4,509,504
4,606,336
4,664,112
4,679,558
4,681,106
4,700,701
4,700,705
4,804,691
4,824,434
4,938,763
4,983,177
5,065,751
5,095,917
5,147,353
5,278,201
5,278,202
5,324,519
5,328,687
5,340,849
5,350,798
5,469,867
5,474,089
5,487,897
5,559,552
5,612,052
5,632,727
5,681,873
5,702,716
5,714,159
5,733,950
5,736,152
5,739,176
5,744,153
5,746,769
5,747,058
5,759,563
5,780,044
5,792,469
5,826,584
5,866,554
5,888,533
5,894,022
5,935,137
5,954,715
5,962,006
5,968,542
5,979,446
5,989,580
5,990,194
6,010,714
6,019,757
6,037,331
6,042,590
6,066,139
6,068,626
6,096,052
6,112,747
6,120,789
6,130,200
6,143,352
6,145,505
6,174,919
6,176,240
6,179,832
6,297,337
6,299,631
6,306,243
6,309,384
6,327,505
6,346,102
6,357,443
6,371,975
6,378,524
6,395,293
6,401,719
6,413,536
6,413,539
6,433,096
6,455,064
6,458,147
6,461,631
6,476,070
6,485,486
6,514,534
6,514,535
6,526,979
6,528,080
6,538,026
6,565,557
6,579,469
6,599,299
6,605,294
6,605,667
6,607,631
6,620,846
6,634,361
6,663,607
6,676,971
6,679,266
6,682,526
6,684,884
6,703,047
6,723,144
6,723,781
6,743,248

FOREIGN PATENT DOCUMENTS\
WO 81/00701
WO 94/24944
WO 94/28803
WO 97/12569
WO 97/49345
WO 97/42987
WO 98/26737
WO 98/31308
WO 99/07297
WO 99/47073
WO 00/44323
WO 00/24374
WO 01/37760
WO 02/39880
WO 03/070085

OTHER PUBLICATIONS

  • 1. Abma J C, Chandra A, Mosher W D, et al. Fertility, family planning, and women's health: new data from the 1995 National Survey of Family Growth. Vital Health Stat. 1997; 23(19).
  • 2. ACOG Practice Bulletin 46: Clinical management guidelines for obstetrician-gynecologists. Obstetrics and Gynecology. 2003; 102:647-658.
  • 3. American Foundation for Urologic Disease. Facts about vasectomy safety.
  • 4. Canavan T. Appropriate use of the intrauterine device. American Academy of Family Physicians. December 1998.
  • 5. Clenney T, et al. Vasectomy Techniques. American Academy of Family Physicians. July 1999.
  • 6. Fertility, Contraception and population policies. United Nations, Population Division, Department of Economic and Social Affairs. 25 Apr. 2003. ESA/P/WP.182.
  • 7. Hendrix N, et al. Sterilization and its consequences. Obstetrical and Gynecological Survey. Vol 54(12), December 1999, p766.
  • 8. Holt V L, et al. Oral contraceptives, tubal sterilization, and functional ovarian cyst risk. Obstet. Gynecol. 2003; 102:252-258
  • 9. Jamieson D J, et al. A comparison of women's regret after vasectomy versus tubal sterilization. Obstetrics Gynecology. 2002; 99 1073-1079.
  • 10. Snider S. The pill: 30 years of safety concerns. U.S. Food and Drug Administration. April 2001.
  • 11. Viddya Medical News Service. Side effects of tubal ligation sterilizations. Vol 1, Issue 249.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US189280310 Dic 19303 Ene 1933Becton Dickinson CoInjection device
US304203025 Nov 19583 Jul 1962Read ThaneSpherical type insert plug for body passageway and tool therefor
US318266225 Jul 196211 May 1965Shirodkar Vithal NPlastic prosthesis useful in gynaecological surgery
US340468217 Nov 19658 Oct 1968Tassette IncVaginal cup and means for inserting same
US340571122 Jul 196615 Oct 1968Maurice I. BakuninIntrauterine contraceptive device
US342281321 Jun 196521 Ene 1969Dow CorningMethod for sterilization of males
US346314115 May 196726 Ago 1969Casimir MozolfMale contraceptive
US34670903 May 196716 Sep 1969Zollett Phillip BSelf-retaining occlusive stem pessary
US35981158 Abr 196910 Ago 1971Horne Herbert W JrIntra-uterine contraceptive device
US364525817 Mar 197029 Feb 1972Charis Aka Charilaos George MaIntrauterine device
US367564223 Jul 197011 Jul 1972Lord Peter HerentRectal cone for use in postoperative treatment
US368054211 May 19701 Ago 1972Cimber Hugo SDevice for occlusion of an oviduct
US36871292 Oct 197029 Ago 1972Abcor IncContraceptive device and method of employing same
US37681023 Feb 197230 Oct 1973Univ UtahImplantable artificial urethral valve
US377460027 Oct 197127 Nov 1973Rhone Poulenc SaGynaecological surgical device
US38033081 Dic 19709 Abr 1974Searle & CoMethod of contraception with a soluble non-toxic copper or zinc compound
US380576726 Feb 197323 Abr 1974Erb ReneMethod and apparatus for non-surgical, reversible sterilization of females
US382270225 Jun 19739 Jul 1974Population Res IncDispensing method and apparatus
US38559961 Mar 197324 Dic 1974Medtronic IncContraceptive apparatus and procedure
US38560163 Nov 197224 Dic 1974H DavisMethod for mechanically applying an occlusion clip to an anatomical tubular structure
US38585712 Jul 19737 Ene 1975Arthur I RudolphCornual plug
US38585861 Jun 19737 Ene 1975Martin LessenSurgical method and electrode therefor
US38713746 Sep 197318 Mar 1975Population Res IncDispensing instrument
US387593931 Ene 19748 Abr 1975Population Res IncSingle stroke dispensing method
US388285423 Ago 197313 May 1975Research CorpSurgical clip and applicator
US391843111 Ene 197411 Nov 1975Sinnreich ManfredFallopian tube obturating device
US394825915 Mar 19746 Abr 1976Population Research IncorporatedDispensing instrument
US395410827 Ago 19744 May 1976Davis Hugh JOcclusion clip and instrument for applying same
US396762523 Dic 19746 Jul 1976In Bae YoonDevice for sterilizing the human female or male by ligation
US397233124 Ene 19753 Ago 1976Population Research IncorporatedDispensing catheter
US397356019 Jul 197410 Ago 1976A. H. Robins Company, IncorporatedIntrauterine device of C or omega form
US410965410 Ago 197629 Ago 1978Population Research, Inc.Single stroke dispensing apparatus
US411909810 Ene 197710 Oct 1978Population Research IncorporatedMaterial dispensing apparatus
US412613424 Ene 197521 Nov 1978Population Research IncorporatedDispensing instrument
US413549521 May 197523 Ene 1979Borgen Jennings OMethod and means for reversible sterilization
US41366959 Jul 197530 Ene 1979Gynetech-Denver, Inc.Transvaginal sterilization instrument
US415805015 Jun 197812 Jun 1979International Fertility Research ProgrammeMethod for effecting female sterilization without surgery
US416044612 Ago 197710 Jul 1979Abcor, Inc.Apparatus for and method of sterilization by the delivery of tubal-occluding polymer
US41817252 May 19771 Ene 1980The Regents Of The University Of MichiganMethod for alleviating psoriasis
US418232823 Nov 19778 Ene 1980Population Research IncorporatedDispensing instrument and method
US418561826 Jun 197829 Ene 1980Population Research, Inc.Promotion of fibrous tissue growth in fallopian tubes for female sterilization
US420789110 Oct 197817 Jun 1980Population Research IncorporatedDispensing instrument with supported balloon
US422623931 Ene 19787 Oct 1980Kli, Inc.Surgical ligating instrument and method
US42301162 Oct 197828 Oct 1980Kli, Inc.Tubal ligation instrument with anesthesia means
US42456236 Jun 197820 Ene 1981Erb Robert AMethod and apparatus for the hysteroscopic non-surgical sterilization of females
US426783912 Sep 197919 May 1981Repromed, Inc.Surgical instrument for use in reversible sterilization or permanent occlusion procedures
US435945416 Dic 198016 Nov 1982World Health OrganizationMethod and composition containing MCA for female sterilization
US43656215 May 198028 Dic 1982Ab MedlineDevice for members for closing body passages
US437452315 Ago 197522 Feb 1983Yoon In BOcclusion ring applicator
US438023821 Ago 198119 Abr 1983Institute StraunannDisposable applicator for mini-laparotomy using a clip method
US44166602 May 197822 Nov 1983Dafoe Charles AMethod of transvaginal sterilization
US446644213 Oct 198221 Ago 1984Schering AktiengesellschaftCarrier liquid solutions for the production of gas microbubbles, preparation thereof, and use thereof as contrast medium for ultrasonic diagnostics
US44858145 Sep 19794 Dic 1984Yoon In BOne-piece compound elastic occluding member
US44897257 Feb 198325 Dic 1984Simon Population TrustSexual sterilization devices
US450950428 Sep 19799 Abr 1985Medline AbOcclusion of body channels
US452359025 Oct 198218 Jun 1985Wilfred RothMethod and device for reversible sterilization in mammals
US45371862 Sep 198327 Ago 1985Verschoof Karel J HContraceptive device
US454718814 Nov 198315 Oct 1985Bionexus, Inc.Material dispensing apparatus
US454820120 Abr 198222 Oct 1985Inbae YoonElastic ligating ring clip
US457911018 Nov 19831 Abr 1986Jacques HamouTubular pessary as a contraceptive means
US459500021 May 198417 Jun 1986Jacques HamouTubular pessary as a contraceptive means
US460169817 Sep 198422 Jul 1986Moulding Jr Thomas SMethod of and instrument for injecting a fluid into a uterine cavity and for dispersing the fluid into the fallopian tubes
US460633623 Nov 198419 Ago 1986Zeluff James WMethod and apparatus for non-surgically sterilizing female reproductive organs
US46116025 Jul 198516 Sep 1986Bionexus, Inc.Instrument and method of tubal insufflation
US463118831 Ago 198423 Dic 1986S.K.Y. Polymers, Ltd. (Kingston Technologies)Injectable physiologically-acceptable polymeric composition
US463781818 Nov 198520 Ene 1987Johnson Richard KApparatus for producing sterility in female animals
US4664112 *12 Ago 198512 May 1987Intravascular Surgical Instruments, Inc.Catheter based surgical methods and apparatus therefor
US467955822 Sep 198614 Jul 1987Intravascular Surgical Instruments, Inc.Catheter based surgical methods and apparatus therefor
US468110622 Sep 198621 Jul 1987Intravascular Surgical Instruments, Inc.Catheter based surgical methods and apparatus therefor
US470070123 Oct 198520 Oct 1987Montaldi David HSterilization method and apparatus
US47007053 Oct 198620 Oct 1987Intravascular Surgical Instruments, Inc.Catheter based surgical methods and apparatus therefor
US471323516 Dic 198215 Dic 1987Crx Medical, Inc.Radiopaque cyanoacrylates
US473105214 Ene 198715 Mar 1988Seitz Jr H MichaelMethod for removing tissue and living organisms
US478896614 May 19876 Dic 1988Inbae YoonPlug for use in a reversible sterilization procedure
US479492721 Oct 19853 Ene 1989Inbae YoonElastic ligating ring clip
US479543813 May 19873 Ene 1989Intravascular Surgical Instruments, Inc.Method and apparatus for forming a restriction in a vessel, duct or lumen
US480469128 Ago 198714 Feb 1989Richards Medical CompanyMethod for making a biodegradable adhesive for soft living tissue
US480839911 Dic 198628 Feb 1989Ceskoslovenska Akademie VedComposition for diagnosing the transport function of the fallopian tube and a method for preparing said composition
US482443421 Dic 198725 Abr 1989Seitz Jr H MichaelApparatus used in a method for removing tissue and living organisms from human body cavities
US483294114 Ago 198623 May 1989Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.VContrast medium for ultrasonic examinations and process for its preparation
US483409110 Abr 198730 May 1989Ott Douglas EIntrauterine fallopian tube ostial plug and surgical process
US48470654 Feb 198711 Jul 1989Akimova Alla YComposition for occlusion of ducts and cavities of human body
US486926813 Oct 198826 Sep 1989Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US493242212 Jun 198912 Jun 1990Ragheb Gamal AContraceptive device
US493725426 Ene 198826 Jun 1990Ethicon, Inc.Method for inhibiting post-surgical adhesion formation by the topical administration of non-steroidal anti-inflammatory drug
US49387633 Oct 19883 Jul 1990Dunn Richard LBiodegradable in-situ forming implants and methods of producing the same
US49831773 Ene 19908 Ene 1991Wolf Gerald LMethod and apparatus for reversibly occluding a biological tube
US50263795 Dic 198925 Jun 1991Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US506575128 Sep 199019 Nov 1991Wolf Gerald LMethod and apparatus for reversibly occluding a biological tube
US509591719 Ene 199017 Mar 1992Vancaillie Thierry GTransuterine sterilization apparatus and method
US514735323 Mar 199015 Sep 1992Myriadlase, Inc.Medical method for applying high energy light and heat for gynecological sterilization procedures
US519355413 May 199116 Mar 1993Femcare LimitedSterilization devices
US521162712 Feb 199118 May 1993C. R. Bard, Inc.Catheter and method for infusion of aerated liquid
US521703025 Jun 19918 Jun 1993Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US521747325 Jun 19918 Jun 1993Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US522690825 Jun 199113 Jul 1993Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US527352712 May 199228 Dic 1993Ovamed CorporationDelivery catheter
US527820124 Abr 199011 Ene 1994Atrix Laboratories, Inc.Biodegradable in-situ forming implants and methods of producing the same
US527820223 Dic 199111 Ene 1994Atrix Laboratories, Inc.Biodegradable in-situ forming implants and methods of producing the same
US532451928 Oct 199128 Jun 1994Atrix Laboratories, Inc.Biodegradable polymer composition
US532868731 Mar 199312 Jul 1994Tri-Point Medical L.P.Biocompatible monomer and polymer compositions
US53342098 Jun 19932 Ago 1994Inbae YoonMulti-functional instruments and stretchable ligating and occluding devices
US534084923 Dic 199123 Ago 1994Atrix Laboratories, Inc.Biodegradable in-situ forming implants and methods for producing the same
US535079817 Ago 199327 Sep 1994The United States Of America As Represented By The Secretary Of The ArmyAbsorbable tissue adhesives
US535243622 Nov 19934 Oct 1994Drexel UniversitySurfactant-stabilized microbubble mixtures, process for preparing and methods of using the same
US536434526 Abr 199315 Nov 1994Imagyn Medical, Inc.Method of tubal recanalization and catheter system therefor
US5372584 *24 Jun 199313 Dic 1994Ovamed CorporationHysterosalpingography and selective salpingography
US537424726 Abr 199320 Dic 1994Imagyn Medical, Inc.Method of delivering a substance to a fallopian tube
US538908913 Oct 199214 Feb 1995Imagyn Medical, Inc.Catheter with angled ball tip for fallopian tube access and method
US539114624 Jun 199321 Feb 1995Conceptus, Inc.Mechanism for manipulating the distal end of a biomedical device
US54643955 Abr 19947 Nov 1995Faxon; David P.Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway
US54698672 Sep 199228 Nov 1995Landec CorporationCast-in place thermoplastic channel occluder
US547408926 Jun 199112 Dic 1995The United States Of America As Represented By The Secretary Of The Department Of Health And Human ServicesMethod and device for reversible sterilization
US54788377 Jun 199426 Dic 1995University Of Southern CaliforniaUse of quinacrine in preventing adhesion formation
US548739014 Ene 199430 Ene 1996Massachusetts Institute Of TechnologyGas-filled polymeric microbubbles for ultrasound imaging
US548789728 Sep 199330 Ene 1996Atrix Laboratories, Inc.Biodegradable implant precursor
US555144321 Ene 19953 Sep 1996Conceptus, Inc.Guidewire-type device axially moveable by torque or axial force and methods for use thereof
US556209918 Ago 19948 Oct 1996Massachusetts Institute Of TechnologyPolymeric microparticles containing agents for imaging
US55758025 Ene 199519 Nov 1996Femcare (Cyprus) LimitedMedical clip
US559955226 May 19944 Feb 1997Atrix Laboratories, Inc.Biodegradable polymer composition
US56016008 Sep 199511 Feb 1997Conceptus, Inc.Endoluminal coil delivery system having a mechanical release mechanism
US561205213 Abr 199518 Mar 1997Poly-Med, Inc.Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof
US56327277 Jun 199527 May 1997Atrix Laboratories, Inc.Biodegradable film dressing and method for its formation
US56327534 Abr 199527 May 1997Loeser; Edward A.Surgical procedures
US563487726 Abr 19943 Jun 1997Salama; Fouad A.Urinary control with inflatable seal and method of using same
US568187314 Oct 199328 Oct 1997Atrix Laboratories, Inc.Biodegradable polymeric composition
US570189931 May 199530 Dic 1997The Board Of Regents Of The University Of NebraskaPerfluorobutane ultrasound contrast agent and methods for its manufacture and use
US57027162 Jun 199330 Dic 1997Atrix Laboratories, Inc.Polymeric compositions useful as controlled release implants
US570271725 Oct 199530 Dic 1997Macromed, Inc.Thermosensitive biodegradable polymers based on poly(ether-ester)block copolymers
US570489910 Oct 19956 Ene 1998Conceptus, Inc.Protective sheath for a fiberoptic image guide within an articulated endoscope
US571415931 Oct 19963 Feb 1998Poly-Med, Inc.Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof
US571632110 Oct 199510 Feb 1998Conceptus, Inc.Method for maintaining separation between a falloposcope and a tubal wall
US57257779 Nov 199310 Mar 1998Prismedical CorporationReagent/drug cartridge
US573395025 Sep 199531 Mar 1998Atrix Laboratories, IncorporatedBiodegradable in-situ forming implants and methods of producing the same
US573615227 Oct 19957 Abr 1998Atrix Laboratories, Inc.Non-polymeric sustained release delivery system
US573917618 Mar 199414 Abr 1998Atrix Laboratories, Inc.Biodegradable in-situ forming implants and methods of producing the same
US57441539 Jun 199728 Abr 1998Atrix Laboratories, Inc.Liquid delivery compositions
US574676922 Oct 19965 May 1998Conceptus, Inc.Endoluminal coil delivery system having a mechanical release mechanism
US57470587 Jun 19955 May 1998Southern Biosystems, Inc.High viscosity liquid controlled delivery system
US575297418 Dic 199519 May 1998Collagen CorporationInjectable or implantable biomaterials for filling or blocking lumens and voids of the body
US57595637 Jun 19952 Jun 1998Atrix Laboratories, Inc.Liquid delivery compositions
US57800445 Dic 199614 Jul 1998Atrix Laboratories, Inc.Liquid delivery compositions
US578871613 Ene 19974 Ago 1998Kobren; Myles S.Surgical instrument and method for fallopian tube ligation and biopsy
US57924697 Jun 199511 Ago 1998Atrix Laboratories, Inc.Biodegradable in situ forming film dressing
US57952888 Ago 199618 Ago 1998Cohen; Kenneth L.Apparatus with valve for treating incontinence
US579533124 Ene 199418 Ago 1998Micro Therapeutics, Inc.Balloon catheter for occluding aneurysms of branch vessels
US580723917 May 199615 Sep 1998Conceptus, Inc.Transcervical ostium access device and method
US58265844 Oct 199527 Oct 1998Schmitt; Edward E.Devices for occluding channels in living mammals
US583022829 May 19963 Nov 1998Urosurge, Inc.Methods and systems for deployment of a detachable balloon at a target site in vivo
US58431216 Mar 19961 Dic 1998Yoon; InbaeMulti-functional surgical forceps instrument
US584625522 Ago 19968 Dic 1998Casey Medical Products LimitedSurgical clip
US586655419 Jul 19962 Feb 1999Shalaby; Shalaby W.Compositions for prevention of inflammation and adhesion formation and uses thereof
US587381523 Jun 199723 Feb 1999Conceptus, Inc.Access catheter and method for maintaining separation between a falloposcope and a tubal wall
US58856014 Abr 199723 Mar 1999Family Health InternationalUse of macrolide antibiotics for nonsurgical female sterilization and endometrial ablation
US588853321 Nov 199730 Mar 1999Atrix Laboratories, Inc.Non-polymeric sustained release delivery system
US589119222 May 19976 Abr 1999The Regents Of The University Of CaliforniaIon-implanted protein-coated intralumenal implants
US589145712 May 19976 Abr 1999Neuwirth; Robert S.Intrauterine chemical necrosing method, composition, and apparatus
US58940227 Oct 199713 Abr 1999The Regents Of The University Of CaliforniaEmbolic material for endovascular occlusion of abnormal vasculature and method of using the same
US59194345 Sep 19946 Jul 1999Nycomed Imaging AsPolymeric surfactant-encapsulated microbubbles and their use in ultrasound imaging
US59350568 Sep 199710 Ago 1999Conceptus, Inc.Access catheter and method for maintaining separation between a falloposcope and a tubal wall
US593509823 Dic 199610 Ago 1999Conceptus, Inc.Apparatus and method for accessing and manipulating the uterus
US593513718 Jul 199710 Ago 1999Gynecare, Inc.Tubular fallopian sterilization device
US594795814 Sep 19957 Sep 1999Conceptus, Inc.Radiation-transmitting sheath and methods for its use
US59479777 Jun 19957 Sep 1999Endoluminal Therapeutics, Inc.Apparatus and polymeric endoluminal sealing
US595471520 Abr 199821 Sep 1999Adiana, Inc.Method and apparatus for tubal occlusion
US595514320 Dic 199621 Sep 1999Drexel UniversityHollow polymer microcapsules and method of producing the same
US596200617 Jun 19975 Oct 1999Atrix Laboratories, Inc.Polymer formulation for prevention of surgical adhesions
US596854215 Sep 199719 Oct 1999Southern Biosystems, Inc.High viscosity liquid controlled delivery system as a device
US59720022 Jun 199826 Oct 1999Cabot Technology CorporationApparatus and method for surgical ligation
US597944622 Oct 19989 Nov 1999Synergyn Technologies, Inc.Removable fallopian tube plug and associated methods
US598958011 Dic 199623 Nov 1999Micro Therapeutics, Inc.Methods for sterilizing female mammals
US59901947 Nov 199723 Nov 1999Atrix Laboratories, Inc.Biodegradable in-situ forming implants and methods of producing the same
US601071422 Nov 19964 Ene 2000Closure Medical CorporationNon-thermogenic heat dissipating biomedical adhesive compositions
US60197577 Jul 19951 Feb 2000Target Therapeutics, Inc.Endoluminal electro-occlusion detection apparatus and method
US602633119 Jul 199415 Feb 2000Microsulis LimitedTreatment apparatus
US603733112 Nov 199814 Mar 2000Poly-Med, Inc.Compositions for prevention of inflammation and adhesion formation uses thereof
US604259016 Jun 199728 Mar 2000Novomedics, LlcApparatus and methods for fallopian tube occlusion
US606613914 May 199623 May 2000Sherwood Services AgApparatus and method for sterilization and embolization
US606862610 Ago 199930 May 2000Adiana, Inc.Method and apparatus for tubal occlusion
US60712835 Jun 19986 Jun 2000Medical Scientific, Inc.Selectively coated electrosurgical instrument
US608012923 Dic 199627 Jun 2000Conceptus, Inc.Method and apparatus for performing hysterosalpingography
US60801525 Jun 199827 Jun 2000Medical Scientific, Inc.Electrosurgical instrument
US60960528 Jul 19981 Ago 2000Ovion, Inc.Occluding device and method of use
US610325419 Feb 199715 Ago 2000Micro Therapeutics, Inc.Methods for sterilizing male mammals
US61127476 Nov 19985 Sep 2000Jones; Jesse M.Method of sterilizing females
US61136145 May 19985 Sep 2000Ensurg, Inc.Medical device for dissolution of tissue within the human body
US612078930 Mar 199919 Sep 2000Atrix Laboratories, Inc.Non-polymeric sustained release delivery system
US613020018 Dic 199710 Oct 2000Alza CorporationGel composition and methods
US614335218 Sep 19967 Nov 2000Closure Medical CorporationpH-modified biocompatible monomer and polymer compositions
US614550528 May 199914 Nov 2000Conceptus, Inc.Electrically affixed transcervical fallopian tube occlusion devices
US615294314 Ago 199828 Nov 2000Incept LlcMethods and apparatus for intraluminal deposition of hydrogels
US616549218 Feb 199926 Dic 2000Neuwirth; Robert S.Intrauterine chemical necrosing method, composition, and apparatus
US617491918 Feb 199816 Ene 2001Closure Medical CorporationCyanoacrylate compositions with vinyl terminated ester groups
US61762407 Jun 199523 Ene 2001Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and their delivery
US617983221 Ago 199830 Ene 2001Vnus Medical Technologies, Inc.Expandable catheter having two sets of electrodes
US618734615 Jul 199713 Feb 2001Ablation Products, Inc.Intrauterine chemical cauterizing method and composition
US619696630 Dic 19986 Mar 2001Conceptus, Inc.Access catheter and method for maintaining separation between a falloposcope and a tubal wall
US619735117 Sep 19976 Mar 2001Robert S. NeuwirthIntrauterine chemical necrosing method and composition
US62450909 Nov 199812 Jun 2001Salviac LimitedTranscatheter occluding implant
US625808410 Mar 199910 Jul 2001Vnus Medical Technologies, Inc.Method for applying energy to biological tissue including the use of tumescent tissue compression
US629067230 Jul 199718 Sep 2001Mick AbaeExploratory tubular sonogenic catheter
US629733719 May 19992 Oct 2001Pmd Holdings Corp.Bioadhesive polymer compositions
US629963112 Nov 19999 Oct 2001Poly-Med, Inc.Polyester/cyanoacrylate tissue adhesive formulations
US63062437 Jun 200023 Oct 2001Closure Medical CorporationpH-modified biocompatible monomer and polymer compositions
US63093841 Feb 199930 Oct 2001Adiana, Inc.Method and apparatus for tubal occlusion
US63275054 May 19994 Dic 2001Medtronic, Inc.Method and apparatus for rf intraluminal reduction and occlusion
US634610226 May 200012 Feb 2002Adiana, Inc.Method and apparatus for tubal occlusion
US63574439 Nov 199919 Mar 2002Synergyn Technologies, Inc.Removable fallopian tube plug and associated methods
US63719756 Nov 199816 Abr 2002Neomend, Inc.Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers
US637852422 Feb 200030 Abr 2002Jesse M. JonesMethod of sterilizing females
US63793733 Sep 199930 Abr 2002Confluent Surgical, Inc.Methods and apparatus for intraluminal deposition of hydrogels
US63952938 Mar 200028 May 2002Atrix LaboratoriesBiodegradable implant precursor
US640171921 Ago 199811 Jun 2002Vnus Medical Technologies, Inc.Method of ligating hollow anatomical structures
US641353627 Ago 19992 Jul 2002Southern Biosystems, Inc.High viscosity liquid controlled delivery system and medical or surgical device
US641353929 Ene 19982 Jul 2002Poly-Med, Inc.Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof
US643211621 Dic 199913 Ago 2002Ovion, Inc.Occluding device and method of use
US643309622 Jun 200113 Ago 2002Closure Medical CorporationSterilized cyanoacrylate solutions containing thickeners
US645096330 Jun 200017 Sep 2002Ackrad Laboratories, Inc.Apparatus and method for ultrasonic imaging of the uterus and fallopian tubes using air and saline
US645506429 Oct 199924 Sep 2002Closure Medical CorporationMethod of applying an adhesive composition over a bioactive polymerization initiator or accelerator
US64581471 Abr 19991 Oct 2002Neomend, Inc.Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
US646163116 Nov 19998 Oct 2002Atrix Laboratories, Inc.Biodegradable polymer composition
US64650013 Mar 199815 Oct 2002Board Of Regents, The University Of Texas SystemsTreating medical conditions by polymerizing macromers to form polymeric materials
US647606929 Ene 19995 Nov 2002Provasis Therapeutics Inc.Compositions for creating embolic agents and uses thereof
US64760702 Feb 20005 Nov 2002Provasis Therapeutics Inc.Compositions useful for remodeling body spaces
US64854864 Ago 199826 Nov 2002Trustees Of Dartmouth CollegeSystem and methods for fallopian tube occlusion
US649358910 Ago 200010 Dic 2002Medtronic, Inc.Methods and apparatus for treatment of pulmonary conditions
US651453414 Ago 19984 Feb 2003Incept LlcMethods for forming regional tissue adherent barriers and drug delivery systems
US651453521 May 19994 Feb 2003Noveon Ip Holdings Corp.Bioadhesive hydrogels with functionalized degradable crosslinks
US652697912 Jun 20004 Mar 2003Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US652808014 Ene 20024 Mar 2003Atrix Laboratories, Inc.Biodegradable polymer composition
US653802623 May 200025 Mar 2003Provasis Therapeutics, Inc.Compositions useful for remodeling body spaces
US65392653 May 200125 Mar 2003Medtronic, Inc.Apparatus for rf intraluminal reduction and occlusion
US655048031 Ene 200122 Abr 2003Numed/Tech LlcLumen occluders made from thermodynamic materials
US65655579 Feb 200020 May 2003Board Of Regents, The University Of Texas SystemApparatus and methods for fallopian tube occlusion
US65779035 May 199910 Jun 2003Microsulis PlcThermal sensor positioning in a microwave waveguide
US657946929 Oct 199917 Jun 2003Closure Medical CorporationCyanoacrylate solutions containing preservatives
US659929926 Jun 200129 Jul 2003Leonard S. SchultzDevice and method for body lumen occlusion
US660529414 Ago 199812 Ago 2003Incept LlcMethods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US66056678 Sep 200012 Ago 2003Closure Medical CorporationAntioxidant enriched adhesive compositions and storage containers therefor
US66076318 Sep 200019 Ago 2003Closure Medical CorporationAdhesive compositions with reduced coefficient of friction
US661003313 Oct 200026 Ago 2003Incept, LlcDual component medicinal polymer delivery system and methods of use
US66208462 Ago 200016 Sep 2003Closure Medical CorporationAbsorbable adhesive compositions
US66343611 Jun 199921 Oct 2003Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US66350555 May 199821 Oct 2003Microsulis PlcMicrowave applicator for endometrial ablation
US666360712 Jul 199916 Dic 2003Scimed Life Systems, Inc.Bioactive aneurysm closure device assembly and kit
US667697113 Mar 200113 Ene 2004Biocure, Inc.Embolic compositions
US667926628 Mar 200220 Ene 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and their delivery
US668252617 Nov 200027 Ene 2004Vnus Medical Technologies, Inc.Expandable catheter having two sets of electrodes, and method of use
US668488423 Jul 20013 Feb 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US668914821 Nov 200110 Feb 2004Incept LlcMethods and apparatus for intraluminal deposition of hydrogels
US669994020 Nov 20022 Mar 2004Poly Med, Inc.Cyanoacrylate-capped heterochain polymers and tissue adhesives and sealants therefrom
US67030472 Feb 20019 Mar 2004Incept LlcDehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US67053238 Jun 199816 Mar 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US670966722 Ago 200023 Mar 2004Conceptus, Inc.Deployment actuation system for intrafallopian contraception
US671281016 Mar 200130 Mar 2004Adiana, Inc.Method and apparatus for tubal occlusion
US67231443 Dic 200220 Abr 2004Hitachi, Ltd.Semiconductor device fabricating method
US672378129 Ago 200020 Abr 2004Noveon Ip Holdings Corp.Hydrogels containing substances
US672668212 Feb 200227 Abr 2004Adiana, Inc.Method and apparatus for tubal occlusion
US673682220 Feb 200218 May 2004Mcclellan Scott B.Device and method for internal ligation of tubular structures
US674324813 Abr 20001 Jun 2004Neomend, Inc.Pretreatment method for enhancing tissue adhesion
US67528036 Jul 200122 Jun 2004Vnus Medical Technologies, Inc.Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
US6758831 *24 Sep 20016 Jul 2004Ethicon, Inc.Device and method for aligning with the tubal ostium
US676383322 Ago 200020 Jul 2004Conceptus, Inc.Insertion/deployment catheter system for intrafallopian contraception
US678018223 May 200224 Ago 2004Adiana, Inc.Catheter placement detection system and operator interface
US804808624 Feb 20051 Nov 2011Femasys Inc.Methods and devices for conduit occlusion
US804810129 Sep 20081 Nov 2011Femasys Inc.Methods and devices for conduit occlusion
US805266929 Sep 20088 Nov 2011Femasys Inc.Methods and devices for delivery of compositions to conduits
US831685317 Jul 200927 Nov 2012Femasys Inc.Method and devices for conduit occlusion
US831685431 Oct 201127 Nov 2012Femasys Inc.Methods and devices for conduit occlusion
US832419331 Oct 20114 Dic 2012Femasys Inc.Methods and devices for delivery of compositions to conduits
US833655231 Oct 201125 Dic 2012Femasys Inc.Methods and devices for conduit occlusion
US869560624 Nov 201215 Abr 2014Femasys Inc.Methods and devices for conduit occlusion
US872690625 Nov 201220 May 2014Femasys Inc.Methods and devices for conduit occlusion
US2001001673816 Mar 200123 Ago 2001Harrington Douglas C.Method and apparatus for tubal occlusion
US2001001673923 Abr 200123 Ago 2001Goldman Mitchel P.Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression
US200100233653 May 200120 Sep 2001Medhkour Adel M.Apparatus for RF intraluminal reduction and occlusion
US2001004190023 Jul 200115 Nov 2001Ovion, Inc.Occluding device and method of use
US20020013589 *18 Dic 199631 Ene 2002Ovion, Inc.Contraceptive system and method of use
US2002002041723 Jul 200121 Feb 2002Nikolchev Julian N.Contraceptive transcervical fallopian tube occlusion devices and methods
US2002002905121 Dic 19997 Mar 2002Edward J. LynchOccluding device and method of use
US2002003510126 Sep 200121 Mar 2002American Home Products CorporationMethod of treating estrogen receptor positive carcinoma 17 alpha-dihydroequilin
US2002007274412 Feb 200213 Jun 2002Harrington Douglas C.Method and apparatus for tubal occlusion
US2002008263621 Nov 200127 Jun 2002Incept LlcMethods and apparatus for intraluminal deposition of hydrogels
US200200950824 Mar 200218 Jul 2002Evans Russell MorrisonTotal system for contrast delivery
US2002010641125 May 20018 Ago 2002Wironen John F.Compositions, methods, and kits for closure of lumen openings, and for bulking of tissue
US2002013314018 Jun 200119 Sep 2002Harry MoulisLiquid cautery catheter
US200201484767 Jun 200217 Oct 2002Farley Brian E..Method of ligating hollow anatomical structures
US2002017689322 Oct 200128 Nov 2002Wironen John F.Compositions, implants, methods, and kits for closure of lumen openings, repair of ruptured tissue, and for bulking of tissue
US200201778466 Mar 200228 Nov 2002Mulier Peter M.J.Vaporous delivery of thermal energy to tissue sites
US2002017785529 May 200228 Nov 2002Greene George R.Method of manufacturing expansile filamentous embolization devices
US2003001520313 Jun 200223 Ene 2003Joshua MakowerDevice, system and method for implantation of filaments and particles in the body
US2003002945716 Oct 200213 Feb 2003Callister Jeffrey P.Contraceptive system and method of use
US2003005173526 Jul 200220 Mar 2003Cook Biotech IncorporatedVessel closure member, delivery apparatus, and method of inserting the member
US2003006080024 Sep 200127 Mar 2003Ethicon, Inc.Device and method for aligning with the tubal ostium
US200300665335 Oct 200110 Abr 2003Loy Randall A.Removable fallopian tube plug and associated methods
US2003008263612 Nov 20021 May 2003Sunol Molecular CorporationAntibodies for inhibiting blood coagulation and methods of use thereof
US2003010858611 Dic 200112 Jun 2003Jacques RameyMethod of long-term reversible contraception for animals
US2003013403215 Nov 200217 Jul 2003Hassan ChaoukMethods for initiating in situ formation of hydrogels
US2003015856320 Feb 200221 Ago 2003Mcclellan Scott B.Device and method for internal ligation of tubular structures
US2003017017322 Nov 200211 Sep 2003Jo KlavenessContrast agents
US2003017175917 May 200111 Sep 2003Sadler Kenneth GeorgeMedical clips
US200301858969 Ago 20022 Oct 2003Marcia BuiserEmbolization
US2003019438912 Abr 200216 Oct 2003Porter Stephen C.Occlusive composition
US2003019439016 Dic 200216 Oct 2003Provasis Therapeutics, Inc.Compositions useful for remodeling body spaces
US2003022395619 Jun 20034 Dic 2003Goupil Dennis W.Embolic compositions
US200400026801 Jul 20021 Ene 2004Ackrad Laboratories, Inc.Single lumen balloon catheter apparatus
US2004007937720 Jun 200329 Abr 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US2004012791813 Ago 20031 Jul 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and methods
US2004015932412 Feb 200419 Ago 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and their delivery
US200401613841 Abr 200219 Ago 2004Wheatley Margaret A.Echogenic polymer microcapsules and nanocapsules and methods for production and use thereof
US2004016365023 Feb 200426 Ago 2004Conceptus, Inc.Deployment actuation system for intrafallopian contraception
US2004020472026 Abr 200414 Oct 2004Adiana, Inc.Method and apparatus for tubal occlusion
US2004020635814 May 200421 Oct 2004Conceptus, Inc., A California CorporationContraceptive transcervical fallopian tube occlusion devices and their delivery
US2004021142914 May 200428 Oct 2004Conceptus, Inc.Contraceptive transcervical fallopian tube occlusion devices and their delivery
US2004021521514 May 200428 Oct 2004Mcclellan Scott B.Device and method for internal ligation of tubular structures
US2004024187428 Ago 20022 Dic 2004Mohamed Abdel-RehimMethod and apparatus for sample preparation using solid phase microextraction
US2004025876122 Mar 200423 Dic 2004Wheatley Margaret A.Polymer-based microcapsules and nanocapsules for diagnostic imaging and drug delivery and methods for their production
US2004025876918 Jun 200423 Dic 2004Barker Ronnie C.Use of ocular vitamins in conjunction with other treatment methods for AMD
US2005004518328 Jun 20043 Mar 2005Ovion, Inc.Methods and devices for occluding body lumens and/or for delivering therapeutic agents
US2005018756124 Feb 200525 Ago 2005Femasys, Inc.Methods and devices for conduit occlusion
US2005024021123 Mar 200527 Oct 2005Stefan SporriApparatus and method for selectably treating a fallopian tube
US2006017862013 Nov 200310 Ago 2006Chemische Fabrik Kreussler & Co., GmbhDevice for producing medicinal foam
US200800636037 Sep 200713 Mar 2008Bracco International B.V.Ultrasound contrast agents and methods of making and using them
US2008026486525 Mar 200830 Oct 2008Herman Heath HMethods and Compositions for Chromatography
US2009002410829 Sep 200822 Ene 2009Kathy Lee-SepsickMethods and Devices for Delivery of Compositions to Conduits
US2009002415529 Sep 200822 Ene 2009Kathy Lee-SepsickMethods and Devices for Conduit Occlusion
US2009027745517 Jul 200912 Nov 2009Femasys Inc.Method and devices for conduit occlusion
US2009030662310 Ago 200910 Dic 2009Arteriocyte Medical Systems, Inc.Multiple ratio fluid dispenser
US2011013715020 Jun 20069 Jun 2011Viviane ConnorMethods and devices for determining lumen occlusion
US2012004287931 Oct 201123 Feb 2012Femasys Inc.Methods and Devices for Conduit Occlusion
US2012004626031 Oct 201123 Feb 2012Femasys Inc.Methods and Devices for Delivery of Compositions to Conduits
US2013022033424 Nov 201229 Ago 2013Femasys Inc.Methods and Devices for Conduit Occlusion
US2013022033525 Nov 201229 Ago 2013Femasys Inc.Methods and Devices for Conduit Occlusion
US2013022597725 Nov 201229 Ago 2013Femasys Inc.Methods and Devices for Delivery of Compositions to Conduits
US2014003963924 Nov 20126 Feb 2014Femasys Inc.Methods and Devices for Conduit Occlusion
USRE2920724 Ene 197510 May 1977Population Research IncorporatedDispensing method and apparatus
USRE2934522 Abr 19769 Ago 1977The Franklin InstituteMethod and apparatus for non-surgical, reversible sterilization of females
USRE3795028 Mar 200031 Dic 2002Atrix LaboratoriesBiogradable in-situ forming implants and methods of producing the same
CA2556747C25 Feb 200530 Jul 2013Femasys, Inc.Methods and devices for conduit occlusion
DE1722732U5 Ago 195424 May 1956Vossloh Werke GmbhSchienenbefestigung mittels dem schienenfuss aufliegender, sich in laengsrichtung der schiene erstreckender gespannter federn.
DE2537620A123 Ago 197524 Feb 1977Lothar Dr Med PoppBalloon pessary for blocking fallopian tubes - is inflatable double balloon containing X:ray opaque thread in wall
DE3324754A16 Jul 198317 Ene 1985Schering AgUltraschallkontrastmittel sowie dessen herstellung
EP1722732B125 Feb 200527 Mar 2013Femasys Inc.Device for conduit occlusion
FR2414925B1 Título no disponible
GB1470571A Título no disponible
HK1098042A1 Título no disponible
JP4750782B2 Título no disponible
JP2002200176A Título no disponible
JP2007500782A Título no disponible
JPS5946500B2 Título no disponible
WO1981000701A111 Sep 198019 Mar 1981Population Res IncFemale sterilization
WO1988009648A11 Jun 198815 Dic 1988Zalaform KftIntrauterine contraceptive
WO1993014786A14 Feb 19935 Ago 1993Colorado State University Research FoundationComposition and method to prevent conception or to cause sterility in animals
WO1994024944A123 Abr 199310 Nov 1994Bohdan BabinecMethod, device and apparatus for reversible contraceptive sterilization
WO1994028803A110 Jun 199422 Dic 1994Hec Medical Arts Ltd.Catheter and method of use thereof
WO1995019184A113 Ene 199520 Jul 1995Massachusetts Institute Of TechnologyPolymeric microparticles containing agents for imaging
WO1995025490A120 Mar 199528 Sep 1995Benedict Marie DoorschodtBlocking unit for a fallopian tube
WO1997012569A127 Sep 199610 Abr 1997Adam Laszlo MagosContraceptive device
WO1997042987A18 May 199720 Nov 1997Ben-Gurion University Of The NegevComposition and method for forming biodegradable implants in situ and uses of these implants
WO1997049345A127 Jun 199731 Dic 1997Chen Hank HTranscervical electroocclusive sterilization device
WO1998026737A116 Dic 199725 Jun 1998Ovion, Inc.Contraceptive system and method of use
WO1998031308A121 Ene 199823 Jul 1998The Penn State Research FoundationTranscervical contraceptive platinum microcoil
WO1999007297A14 Ago 199818 Feb 1999Trustees Of Dartmouth CollegeSystem and methods for fallopian tube occlusion
WO1999047073A118 Mar 199923 Sep 1999Merck & Co., Inc.Liquid polymeric compositions for controlled release of bioactive substances
WO2000018469A11 Oct 19996 Abr 2000Baxter International Inc.Improved component mixing catheter
WO2000024374A128 Oct 19994 May 2000Atrix Laboratories, Inc.Controlled release liquid delivery compositions with low initial drug burst
WO2000044323A128 Ene 20003 Ago 2000Adiana, Inc.Method and apparatus for tubal occlusion
WO2000054746A116 Mar 200021 Sep 2000Sujoy Kumar GuhaAn improved reversible contraceptive for male and female
WO2001037760A22 Nov 200031 May 2001Ray Terry LApparatus and method for preventing fluid transfer between an oviduct and a uterine cavity
WO2002039880A214 Nov 200123 May 2002Biomedical Engineering Solutions, Inc.Method and system for internal ligation of tubular structures
WO2002047744A211 Dic 200120 Jun 2002Flow Focusing, Inc.Method and catheter for aerating fluids for medical uses
WO2003070085A220 Feb 200328 Ago 2003Biomedical Engeneering Solutions, Inc.Device and method for internal ligation of tubular structures
WO2004024237A215 Sep 200325 Mar 2004Arizona Board Of RegentsMethods for sterilization using in situ gelling materials
WO2004035022A215 Oct 200329 Abr 2004Microtherapeutics, Inc.Prepolymeric materials for site specific delivery to the body
WO2005082299A225 Feb 20059 Sep 2005Femasys Inc.Methods and devices for conduit occlusion
Otras citas
Referencia
1Abdala N, et al. (2001). Use of ethylene vinyl alcohol copolymer for tubal sterilization by selective catheterization in rabbits. J Vasc Intery Radiol. 12(8): 979-984.
2Abma JC, et al. (1997) Fertility, family planning, and women's health: new data from the 1995 National Survey of Family Growth. Vital Health Stat 23. (19): 1-114.
3Advisory Action issued Jul. 15, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (8 pages).
4Advisory Action issued Jul. 15, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (8 pages).
5American Foundation for Urologic Disease. (2005) Facts about vasectomy safety. Published by the National Institute of Child Health & Human Development. Retrieved on Jun. 29, 2005 from the world wide web at http://www.nichd.nih.gov/publications/pubs/vasect.htm.
6ApSimon HT, et al. (1984) Embolization of small vessels with a double-lumen microballoon catheter. Part I: Design and construction. Radiology. 151(1): 55-57.
7Assaf A, et al. (1993) Histopathological effects of silicone rubber ‘Ovabloc’ on the human fallopian tube. Int J Gynaecol Obstet. 43(2): 181-189.
8Assaf A, et al. (1993) Histopathological effects of silicone rubber 'Ovabloc' on the human fallopian tube. Int J Gynaecol Obstet. 43(2): 181-189.
9Basu S, et al. (1995) Comparative study of biological glues: cryoprecipitate glue, two-component fibrin sealant, and "French" glue. Ann Thorac Surg. 60(5): 1255-1262.
10Berkey GS, et al. (1995) Sterilization with methyl cyanoacrylate-induced fallopian tube occlusion from a nonsurgical transvaginal approach in rabbits. J Vasc Interv Radiol. 6(5): 669-674.
11Brundin J, et al. (1985) Long-term toxicity of a hydrogelic occlusive device in the isthmus of the human oviduct. A light microscopic study. Acta Pathol Microbiol Immunol Scand A. 93(3): 121-126.
12Brundin J. (1991) Transcervical sterilization in the human female by hysteroscopic application of hydrogelic occlusive devices into the intramural parts of the fallopian tubes: 10 years experience of the P-block. Eur J Obstet Gynecol Reprod Biol. 39(1): 41-49.
13Canavan TP. (1998) Appropriate use of the intrauterine device. Am Fam Physician. 58(9): 2077-2084, 2087-2088.
14Certificate of Grant issue Mar. 27, 2013 for European Patent Application No. 05723981.3, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (1 page).
15Certificate of Patent issued May 27, 2011 for Japanese Application No. JP2007-500782, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (2 pages).
16Chen FQ. (1989) Study on the transperitoneal sterilization of the fallopian tube with silicon rubber plug and its reversibility. Shengzhi Yu Biyun. 9(3): 51-54.
17Clenney TL, et al. (1999) Vasectomy techniques. Am Fam Physician. 60(1): 137- 146, 151-152.
18Communication pursuant to Article 94(3) issued Jul. 8, 2011 for European Patent Application No. 05723981.3, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (5 pages).
19Communication under Rule 71(3) EPC issued Oct. 12, 2012 for European Patent Application No. 05723981.3, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (8 pages).
20Cooper JM. (1992) Hysteroscopic sterilization. Clin Obstet Gynecol. 35(2): 282-298.
21Corrected Notice of Allowability mailed Apr. 15, 2014 for U.S. Appl. No. 13/684,546, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (2 pages).
22Dan SJ, et al. (1984) Fallopian tube occlusion with silicone: radiographic appearance. Radiology. 151(3): 603-605.
23Davis RH, et al. (1975) Fallopian tube occlusion in rabbits with silicone rubber. J Reprod Med. 14(2): 56-61.
24Davis RH, et al. (1979) Chronic occlusion of the monkey fallopian tube with silicone polymer. Obstet Gynecol. 53(4): 527-529.
25Davis RH, et al. (1979) Chronic occlusion of the rabbit Fallopian tube with silicone polymer. Gynecol Obstet Invest. 10(6): 281-288.
26Decision to Grant issued Apr. 19, 2011 for Japanese Application No. JP2007-500782, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (1 page).
27Draft Claim Language faxed March 15, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (4 pages).
28Draft Claim Language faxed March 15, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (4 pages).
29El-Mowafi DM, et al. (2008) Fallopian Tube. Geneva Foundation for Medical Education and Research. (8 pages) Download available at: http://www.gfmer.ch/International-activities-En/El-Mowafi/Fallopian-tube.htm.
30El-Mowafi DM, et al. (2008) Fallopian Tube. Geneva Foundation for Medical Education and Research. (8 pages) Download available at: http://www.gfmer.ch/International—activities—En/El—Mowafi/Fallopian—tube.htm.
31Erb RA, et al. (1979) Hysteroscopic oviductal blocking with formed-in-place silicone rubber plugs. I. Method and apparatus. J Reprod Med. 23(2): 65-68.
32Examination Report filed Jun. 7, 2012 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (2 pages).
33Examination Report issued Apr. 19, 2011 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (3 pages).
34Examination Report issued Nov. 8, 2011 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (2 pages).
35Examiner Interview Summary issued Jun. 30, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (2 pages).
36Examiner Interview Summary issued Jun. 30, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (2 pages).
37Examiner Interview Summary issued May 25, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (4 pages).
38Examiner Interview Summary issued May 25, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (4 pages).
39Farcon E, et al. (1975) An absorbable intravasal stent and a silicone intravasal reversible plug. Report of experiments on animals. Invest Urol. 13(2): 108-112.
40Final Office Action issued Dec. 24, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (29 pages).
41Final Office Action issued Dec. 24, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (29 pages).
42Final Office Action issued Jan. 6, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (9 pages).
43Final Office Action issued Mar. 30, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (10 pages).
44First Office Action issued Nov. 30, 2007 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
45Fischer ME, et al. (1984) Silicone devices for tubal occlusion: radiographic description and evaluation. Radiology. 151(3): 601-602.
46Frydman R. (2000) A double-blind, randomized study to compare recombinant human follicle stimulating hormone (FSH: Gonal-F) with highly purified urinary FSH (Metrodin HP) in women undergoing assisted reproductive techniques including intracytoplasmic sperm injection. Human Reproduction. 15(3): 520-525.
47Grode GA, et al. (1971) Feasibility study on the use of a tissue adhesive for the nonsurgical blocking of fallopian tubes. Phase I: evaluation of a tissue adhesive. Fertil Steril. 22(9): 552-555.
48Harrell WB, et al. (1969) Simulated tuboplasty using tissue adhesive on uterine horn in canines. J Ark Med Soc. 65(11): 433-435.
49Hefnawi F, et al. (1967) Control of fertility by temporary occlusion of the oviduct. Am J Obstet Gynecol. 99(3): 421-427.
50Hendrix NW, et al. (1999). Sterilization and its consequences. Obstet Gynecol Surv. 54(12): 766-777.
51Holt VL, et al. (2003) Oral contraceptives, tubal sterilization, and functional ovarian cyst risk. Obstet Gynecol. 102(2): 252-258.
52Huvar I, et al. (1994) Hysteroscopic sterilization using Ovabloc. Ceska Gynekol. 59(4): 193-195.
53International Preliminary Report on Patentability issued Aug. 30, 2006 for PCT Application No. PCT/US2005/006334 filed on Feb. 25, 2005, which published as WO/2005/082299 on Sep. 9, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant) (5 pages).
54International Search Report issued Sep. 22, 2005 for PCT Application No. PCT/US2005/006334 filed on Feb. 25, 2005, which published as WO/2005/082299 on Sep. 9, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant) (8 pages).
55Issue Notification issued Dec. 5, 2012 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (1 page).
56Issue Notification issued Mar. 26, 2014 for U.S. Appl. No. 13/684,524, filed 11/24/12 (Inventors—Lee-Sepsick et al.) (1 page).
57Issue Notification issued Nov. 14, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (1 page).
58Issue Notification issued Nov. 7, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (1 page).
59Issue Notification issued Nov. 7, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (1 page).
60Issue Notification issued Nov. 7, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (1 page).
61Issue Notification issued Oct. 12, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (1 page).
62Issue Notification issued Oct. 12, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (1 page).
63Issue Notification issued Oct. 12, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (1 page).
64Issue Notification issued Oct. 12, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (1 page).
65Issue Notification issued Oct. 19, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (1 page).
66Issue Notification issued Oct. 19, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (1 page).
67Issue Notification mailed Apr. 30, 2014 for U.S. Appl. No. 13/684,546, filed 11/25/12 (Inventors—Lee-Sepsick et al.) (1 page).
68Jamieson DJ, et al. (2002) A comparison of women's regret after vasectomy versus tubal sterilization. Obstet Gynecol. 99(6): 1073-1079.
69Keller MW, et al. (1986) Automated production and analysis of echo contrast agents. J Ultrasound Med. 5(9): 493-498.
70Libenzon LL, et al. (1973) Contraception through the sealing off of Fallopian tubes (experimental studies). Eksp Khir Anesteziol. 18(5): 18-20.
71Loffer FD, et al. (1986) Learning hysteroscopy sterilization and the Ovabloc System with Hyskon. Acta Eur Fertil. 17(6): 477-480.
72Loffer FD. (1982) What's new in female sterilization? The silicone tubal plug is. Ariz Med. 39(7): 442-445.
73Loffer FD. (1984) Hysteroscopic sterilization with the use of formed-in-place silicone plugs. Am J Obstet Gynecol. 149(3): 261-270.
74Maubon AJ, et al. (1996) Tubal sterilization by means of selective catheterization: comparison of a hydrogel and a collagen glue. J Vasc Interv Radiol. 7(5): 733-736.
75Miscellaneous Communication issued Oct. 25, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (2 pages).
76Miscellaneous Communication issued Oct. 25, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (2 pages).
77Neuwirth RS, et al. (1971) Chemical induction of tubal blockade in the monkey. Obstet Gynecol. 38(1): 51-54.
78Neuwirth RS, et al. (1980) An outpatient approach to female sterilization with methylcyanoacrylate. Am J Obstet Gynecol. 136(7): 951-956.
79Neuwirth RS, et al. (1983) Trials with the FEMCEPT method of female sterilization and experience with radiopaque methylcyanoacrylate. Am J Obstet Gynecol. 145(8): 948-954.
80No authors listed. (1973) Animal studies show silicone plugs prevent conception. JAMA. 225(2): 105-106.
81No authors listed. (1973) Implants seen as reversible contraceptives. Biomed News. 4: 12.
82No authors listed. (Apr. 1994) Hysteroscopy. ACOG Technical Bulletin No. 191. Int J Gynaecol Obstet. 45(2): 175-180.
83Non-Final Office Action issued Apr. 26, 2012 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (9 pages).
84Non-Final Office Action issued Aug. 4, 2011 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (15 pages).
85Non-Final Office Action issued Dec. 21, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (22 pages).
86Non-Final Office Action issued Dec. 21, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (22 pages).
87Non-Final Office Action issued Dec. 21, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (15 pages).
88Non-Final Office Action issued Dec. 21, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (15 pages).
89Non-Final Office Action issued Feb. 17, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (11 pages).
90Non-Final Office Action issued Jan. 19, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (25 pages).
91Non-Final Office Action issued Jan. 19, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (25 pages).
92Non-Final Office Action issued Jun. 24, 2005 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (26 pages).
93Non-Final Office Action issued Jun. 24, 2005 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (26 pages).
94Non-Final Office Action issues Mar. 30, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (8 pages).
95Non-Final Office Action mailed Dec. 5, 2014 for U.S. Appl. No. 14/032,162, filed Sep. 19, 2013 (Inventors—Lee-Sepsick et al.) (40 pages).
96Non-Final Rejection issued Jul. 19, 2013 for U.S. Appl. No. 13/684,524, filed Nov. 24, 2012 (Inventors—Lee-Sepsick et al.) (9 pages).
97Non-Final Rejection issued Sep. 6, 2013 for U.S. Appl. No. 13/684,546, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (10 pages).
98Notice of Abandonment mailed Oct. 30, 2014 for U.S. Appl. No. 14/196,491, filed Mar. 4, 2014 (Inventors—Lee-Sepsick et al.) (2 pages).
99Notice of Allowability issued Nov. 2, 2012 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (7 pages).
100Notice of Allowance and Fee(s) Due issued Aug. 8, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (8 pages).
101Notice of Allowance and Fee(s) Due issued Jul. 25, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (9 pages).
102Notice of Allowance and Fee(s) Due issued Jul. 25, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (9 pages).
103Notice of Allowance and Fee(s) Due mailed Nov. 15, 2013 for U.S. Appl. No. 13/684,524, filed on Nov. 24, 2012 (Inventors—Lee-Sepsick et al.) (9 pages).
104Notice of Allowance and Fees Due issued Jul. 19, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (7 pages).
105Notice of Allowance and Fees Due issued Jul. 19, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (7 pages).
106Notice of Allowance and Fees Due issued Mar. 14, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (9 pages).
107Notice of Allowance and Fees Due issued Mar. 14, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (9 pages).
108Notice of Allowance and Fees Due issued Sep. 4, 2012 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (9 pages).
109Notice of Allowance issued Jul. 15, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (11 pages).
110Notice of Allowance issued Jul. 15, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (11 pages).
111Notice of Allowance issued Jul. 21, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (12 pages).
112Notice of Allowance issued Jul. 21, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (12 pages).
113Notice of Allowance issued Jul. 25, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (7 pages).
114Notice of Allowance mailed Dec. 23, 2013 for U.S. Appl. No. 13/684,546, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (9 pages).
115Notice of Appeal filed Jun. 24, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (1 page).
116Notice of Appeal filed Jun. 24, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (1 page).
117Office Action issued Apr. 21, 2010 for Indian Application No. 2536/KOLNP/2006, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (2 pages).
118Office Action issued May 11, 2010 for Japanese Application No. JP2007-500782, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
119Omran KF, et al. (1970) Tubal occlusion: a comparative study. Int J Fertil. 15(4): 226-241.
120Pelage JP, et al. (1998) Selective salpingography and fallopian tubal occlusion with n-butyl-2-cyanoacrylate: report of two cases. Radiology. 207(3): 809-812.
121Pollack A. (2003) ACOG practice bulletin. Clinical management guidelines for obstetrician-gynecologists. Obstet Gynecol. 102(3): 647-658.
122Preliminary Amendment filed Mar. 4, 2014 for U.S. Appl. No. 14/196,491, filed Mar. 4, 2014 (Inventors—Lee-Sepsick et al.) (3 pages).
123Preliminary Amendment filed May 14, 2013 for U.S. Appl. No. 13/684,524, filed Nov. 24, 2012 (Inventors—Lee-Sepsick et al.) (6 pages).
124Preliminary Amendment filed May 14, 2013 for U.S. Appl. No. 13/684,546, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (7 pages).
125Preliminary Amendment filed May 14, 2013 for U.S. Appl. No. 13/684,549, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (7 pages).
126Preliminary Amendment filed Oct. 24, 2014 for U.S. Appl. No. 14/196,491, filed 03/04/14 (Inventors—Lee-Sepsick et al.) (5 pages).
127Preliminary Amendment filed Oct. 31, 2011 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (7 pages).
128Preliminary Amendment filed Oct. 31, 2011 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (7 pages).
129Preliminary Amendment filed Oct. 31, 2011 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (7 pages).
130Rakshit B. (1970) Attempts at chemical blocking of the Fallopian tube for female sterilization. J Obstet Gynaecol India. 20: 618-624.
131Reed TP et al. (1980) Tubal occlusion with silicone rubber: an update. J Reprod Med. 25(1): 25-28.
132Reed TP, et al. (1983) Hysteroscopic tubal occlusion with silicone rubber. Obstet Gynecol. 61(3): 388-392.
133Reed TP, et al. (Nov. 1978) Hysteroscopic Oviductal Blocking with Formed-In-Place Silicone Rubber Plugs Clinical Studies. Paper presented at the Clinical Symposium on Gynecologic Endoscopy. 7th Annual Meeting (Hollywood, FL) (pp. 1-4).
134Request for Reconsideration of the Holding of Abandonment filed Nov. 26, 2014 for U.S. Appl. No. 14/196,491, filed Mar. 4, 2014 (Inventors—Lee-Sepsick et al.) (10 pages).
135Response filed Apr. 13, 2011 for Indian Application No. 2536/KOLNP/2006, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (1 page).
136Response filed Apr. 5, 2011 for Indian Application No. 2536/KOLNP/2006, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (9 pages).
137Response filed Jul. 12, 2011 for Indian Application No. 2536/KOLNP/2006, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (11 pages).
138Response filed Sep. 2, 2011 for Indian Application No. 2536/KOLNP/2006, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (3 pages).
139Response to Article 94(3) Communication filed Feb. 6, 2012 for European Patent Application No. 05723981.3, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (20 pages).
140Response to Examination Report filed May 7, 2012 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (12 pages).
141Response to Examination Report filed Oct. 12, 2012 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (5 pages).
142Response to Examination Report filed Oct. 19, 2011 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al.—inventors; Femasys Inc.—Applicant) (5 pages).
143Response to Final Office Action filed Feb. 9, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2012 (Lee-Sepsick et al.—inventors) (6 pages).
144Response to Final Office Action filed Jun. 24, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (26 pages).
145Response to Final Office Action filed Jun. 24, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (26 pages).
146Response to Final Office Action filed Sep. 23, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (30 pages).
147Response to Final Office Action filed Sep. 23, 2010 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (30 pages).
148Response to Final Office Action with Terminal Disclaimers (and Review) filed Jul. 2, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (11 pages).
149Response to First Office Action filed Jun. 16, 2008 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
150Response to Non-Final Office Action filed Apr. 19, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (17 pages).
151Response to Non-Final Office Action filed Apr. 19, 2011 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (17 pages).
152Response to Non-Final Office Action filed Apr. 21, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (15 pages).
153Response to Non-Final Office Action filed Apr. 21, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (15 pages).
154Response to Non-Final Office Action filed Apr. 21, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (10 pages).
155Response to Non-Final Office Action filed Apr. 21, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (10 pages).
156Response to Non-Final Office Action filed Nov. 4, 2011 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (10 pages).
157Response to Non-Final Office Action filed Sep. 24, 2009 U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (22 pages).
158Response to Non-Final Office Action filed Sep. 24, 2009 U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (22 pages).
159Response to Non-Final Office Action with Terminal Disclaimers (and Review) filed Jul. 2, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (10 pages).
160Response to Non-Final Office Action with Terminal Disclaimers (and Review) filed Jul. 26, 2012 for U.S. Appl. No. 13/285,908, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (12 pages).
161Response to Non-Final Office Action with Terminal Disclaimers (and Review) filed Mar. 16, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 13, 2011 (Lee-Sepsick et al.—inventors (11 pages).
162Response to Non-Final Office Action with Terminal Disclaimers filed Oct. 21, 2013 for U.S. Appl. No. 13/684,524, filed on Nov. 24, 2012 (Inventors—Lee-Sepsick et al.) (9 pages).
163Response to Non-Final Rejection and Terminal Disclaimer filed Dec. 6, 2013 for U.S. Appl. No. 13/684,546, filed Nov. 25, 2012 (Inventors—Lee-Sepsick et al.) (10 pages).
164Response to Office Action filed Nov. 4, 2010 for Japanese Application No. JP2007-500782, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
165Response to Restriction Requirement filed Apr. 21, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (10 pages).
166Response to Restriction Requirement filed Apr. 21, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (10 pages).
167Response to Restriction Requirement filed Oct. 11, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (7 pages).
168Response to Restriction Requirement filed Oct. 11, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (7 pages).
169Response to Restriction Requirement filed Oct. 11, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (6 pages).
170Response to Restriction Requirement filed Oct. 11, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (6 pages).
171Response to Rule 312 Amendment issued Sep. 17, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (3 pages).
172Response to Rule 312 Amendment issued Sep. 17, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (3 pages).
173Response to Rule 312 Amendment issued Sep. 17, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (2 pages).
174Response to Rule 312 Communication issued Sep. 17, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (2 pages).
175Response to Second Office Action filed Apr. 24, 2009 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
176Response to Third Office Action filed Sep. 6, 2010 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
177Restriction Requirement issued Jun. 9, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (6 pages).
178Restriction Requirement issued Jun. 9, 2010 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (6 pages).
179Restriction Requirement issued Jun. 9, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (6 pages).
180Restriction Requirement issued Jun. 9, 2010 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (6 pages).
181Restriction Requirement issued Mar. 23, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.-inventors) (5 pages).
182Restriction Requirement issued Mar. 23, 2009 for U.S. Appl. No. 11/065,886, filed Feb. 24, 2005 (Lee-Sepsick et al.—inventors) (5 pages).
183Richart RM. (1981) Female sterilization using chemical agents. Res Front Fertil Regul. 1(5): 1-12.
184Richman TS, et al. (1984) Fallopian tubal patency assessed by ultrasound following fluid injection. Radiology. 152(2): 507-510.
185Risquez F. (1990) Diagnosis and treatment of ectopic pregnancy by retrograde selective salpingography and intraluminal methotrexate injection: work in progress. Human Reproduction. 5(6): 759-762.
186Rule 312 Amendment filed Aug. 28, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (3 pages).
187Rule 312 Amendment filed Aug. 29, 2012 for U.S. Appl. No. 13/286,127, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors) (2 pages).
188Rule 312 Amendment issued Aug. 28, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.-inventors) (3 pages).
189Rule 312 Amendment issued Aug. 28, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (3 pages).
190Rule 312 Communication filed Aug. 28, 2012 for U.S. Appl. No. 13/285,744, filed Oct. 31, 2011 (Lee-Sepsick et al.—inventors (3 pages).
191Saito H, et al. (2007) pH-responsive swelling behavior of collagen gels prepared by novel crosslinkers based on naturally derived di- or tricarboxylic acids. Acta Biomater. 3(1): 89-94.
192Second Office Action issued Dec. 12, 2008 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
193Snider S. (1990). The Pill: 30 years of Safety Concerns. Published by the U.S. Food and Drug Administration. (6 pages).
194Steptoe PC. (1975) Advances in laparoscopic sterilisation techniques. S Afr Med J. 49(48): 2019-2021.
195Stevenson TC, et al. (1972) The effect of methyl cyanoacrylate tissue adhesive on the human Fallopian tube and endometrium. J Obstet Gynaecol Br Commonw. 79(11): 1028-1039.
196Su YK. (1991) Embolus formation using bismuth polyurethane for tubosterilization observation of 259 cases. Zhonghua Fu Chan Ke Za Zhi. 26(6): 352-354, 388.
197Terminal Disclaimer (with Review) filed Feb. 9, 2012 for U.S. Appl. No. 12/504,912, filed Jul. 17, 2009 (Lee-Sepsick et al.—inventors) (15 pages).
198Terminal Disclaimer (with Review) filed Jul. 10, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (3 pages).
199Terminal Disclaimer (with Review) filed Jul. 10, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (3 pages).
200Terminal Disclaimer (with Review) filed Jun. 24, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (3 pages).
201Terminal Disclaimer (with Review) filed Jun. 24, 2011 for U.S. Appl. No. 12/240,738, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (3 pages).
202Terminal Disclaimer (with Review) filed Jun. 24, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.-inventors) (3 pages).
203Terminal Disclaimer (with Review) filed Jun. 24, 2011 for U.S. Appl. No. 12/240,791, filed Sep. 29, 2008 (Lee-Sepsick et al.—inventors) (3 pages).
204Third Office Action issued Jun. 24, 2010 for Chinese Application No. CN 200580006068.X, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant).
205U.S. Appl. No. 60/547,491, filed Feb. 25, 2004, K. Lee-Sepsick.
206U.S. Appl. No. 60/587,604, filed Jul. 13, 2004, K. Lee-Sepsick.
207United Nations Secretariat. (2003) Fertility, Contraception and population policies. United Nations Population Division, Department of Economic and Social Affairs. ESA/P/WP.182 (42 pages).
208van der Leij G, et al. (1995) Impact of Ovabloc intratubal polymer on the morphology of the fallopian tube. Int J Gynecol Pathol. 14(2): 167-173.
209van der Leij G, et al. (1997) Radiographic aspects of office hysteroscopic tubal occlusion with siloxane intratubal devices (the Ovabloc method). Int J Gynaecol Obstet. 59(2): 123-131.
210Viddya Medical News Service. (2000) Bibliography Excerpts: Side effects of tubal ligation sterilizations. 1: 249. (5 pages).
211Volpi E, et al. (1996). Transvaginal sonographic tubal patency testing using air and saline solution as contrast media in a routine infertility clinic setting. Ultrasound Obstet Gynecol. 7(1): 43-48.
212Voluntary Amendments filed Mar. 1, 2010 for Canadian Application No. CA 2556747, which claims priority to PCT/US2005/006334 filed on Feb. 25, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant) (16 pages).
213Wilson EW. (1995) The evolution of methods for female sterilization. Int J Gynaecol Obstet. 51 Suppl 1: S3-13.
214Written Opinion issued Sep. 22, 2005 for PCT Application No. PCT/US2005/006334 filed on Feb. 25, 2005, which published as WO/2005/082299 on Sep. 9, 2005 (Lee-Sepsick et al. listed as inventors and Femasys Inc. listed as Applicant) (4 pages).
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US940276231 Mar 20142 Ago 2016Femasys Inc.Methods and devices for conduit occlusion
Clasificaciones
Clasificación de EE.UU.623/23.7, 606/119, 604/515
Clasificación internacionalA61B17/42, A61F6/22, A61F2/954, A61B17/12, A61M25/01
Clasificación cooperativaA61B2017/1205, A61B17/12186, A61B2017/4233, A61F6/225, A61B17/42, A61F2/954, A61B2017/4225, A61M25/01
Eventos legales
FechaCódigoEventoDescripción
25 Mar 2015ASAssignment
Owner name: FEMASYS INC., GEORGIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE-SEPSICK, KATHY;PAXTON, LANI L. L.;MARCUS, JEFFREY A.;AND OTHERS;REEL/FRAME:035247/0363
Effective date: 20050224