US9271332B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
US9271332B2
US9271332B2 US14/400,327 US201314400327A US9271332B2 US 9271332 B2 US9271332 B2 US 9271332B2 US 201314400327 A US201314400327 A US 201314400327A US 9271332 B2 US9271332 B2 US 9271332B2
Authority
US
United States
Prior art keywords
heating
temperature
heating device
passage
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/400,327
Other versions
US20150122798A1 (en
Inventor
Yoshinobu MAEMURA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Assigned to SANDEN CORPORATION reassignment SANDEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEMURA, YOSHINOBU
Publication of US20150122798A1 publication Critical patent/US20150122798A1/en
Application granted granted Critical
Publication of US9271332B2 publication Critical patent/US9271332B2/en
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDEN CORPORATION
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 038489 FRAME: 0677. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SANDEN CORPORATION
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE TYPOGRAPHICAL ERRORS IN PATENT NOS. 6129293, 7574813, 8238525, 8083454, D545888, D467946, D573242, D487173, AND REMOVE 8750534 PREVIOUSLY RECORDED ON REEL 047208 FRAME 0635. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SANDEN CORPORATION
Assigned to SANDEN CORPORATION reassignment SANDEN CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDEN HOLDINGS CORPORATION
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2218Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters controlling the operation of electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2228Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
    • B60H2001/2231Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters for proper or safe operation of the heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2246Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor
    • B60H2001/2256Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor related to the operation of the heater itself, e.g. flame detection or overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2259Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal
    • B60H2001/2262Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal related to the period of on/off time of the heater

Definitions

  • a terminal 12 molded from silicon, glass and the like by casting is provided at one end opening of the metal pipe 6 .
  • a lead wire 14 connected to the heating wire 8 is pulled through the terminal 12 .
  • the lead wire 14 and an external power unit 3 electrically connected to the lead wire 14 constitute an energization circuit for providing the heating wire 8 with electricity.
  • only one heater 2 is shown in FIG. 1 , two or more heaters 2 may be provided.
  • a heating device of this kind includes a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a temperature detection means for detecting the temperature of the heating medium in the passage; and an energization interrupting means for interrupting the carrying of current to the heater depending on the detected temperature of the heating medium.
  • Patent Document 1 discloses a heating device which is provided with a thermostat or a thermal fuse at the outside of the housing, on a surface shared with the heating face of the heating portion. Thus, the heating device prevents accidental heating of the passage with no heating medium while preventing a malfunction in the thermal fuse.
  • Patent Document 2 discloses a heating device which is provided with a thermal fuse at the current-carrying terminal. Heat transferred from the heating portion via the current-carrying terminal causes the heating device to interrupt the carrying of current to the heater regardless of the level of the heating medium in the passage so as to prevent accidental heating of an empty passage.
  • Patent Document 3 discloses a heating device which is provided with a convex on the inside of the housing.
  • the heating device prevents accidental heating of the passage with no heating medium by placing a thermal fuse into contact with the heating portion via the convex of the housing.
  • a heating device is unable to stop the heater swiftly due to a deterioration in the responsiveness of the energization interrupting means because the heating device has its temperature detection means placed into contact with a non-heating portion of the heater located outside the housing, and the carrying of current to the heater is interrupted based on heat transferred via the non-heating portion. For that reason, the accuracy of detection of accidental heating of an empty passage can be decreased, leading to an occurrence of smoke or fire.
  • the present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a heating device capable of detecting accidental heating of an empty passage with high accuracy by detecting the temperature of the heating medium, interrupting energization with excellent responsiveness, and securely preventing an occurrence of smoke or fire so as to improve reliability of the heating device.
  • a heating device of the present invention includes a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a temperature detection means for detecting the temperature of the heating medium in the passage; and an energization interrupting means for interrupting the carrying of current to the heater depending on the temperature of the heating medium detected by the temperature detection means.
  • the temperature detection means is brought into contact with the heating portion.
  • the temperature detection means should come into surface contact with the heating portion.
  • the temperature detection means should be connected to the housing via a seal member.
  • a plurality of the seal members should be provided.
  • the heating device includes a temperature detection means for detecting the temperature of a heating medium in a passage for the heating medium, and an energization interrupting means for interrupting the carrying of current to a heater depending on the temperature of the heating medium detected by the temperature detection means.
  • the heating device is capable of detecting accidental heating of an empty passage with high accuracy by detecting the temperature of the heating medium, interrupting energization with excellent responsiveness and securely preventing an occurrence of smoke or fire because the temperature detection means is brought into contact with a heating portion of the heater.
  • FIG. 1 is a longitudinal sectional view of a heating device in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a principal part of the heating device taken from line A-A in FIG. 1 .
  • FIG. 3 is a cross-sectional view illustrating a principal part of a heating device in accordance with a variation of the present invention, taken from line A-A in FIG. 1 .
  • FIG. 4 is a cross-sectional view illustrating a principal part of a heating device in accordance with another variation of the present invention, taken from line A-A in FIG. 1 .
  • a heating device 1 includes a heater 2 and a case (housing) 4 which contains the heater 2 .
  • the heater 2 is an electrothermal heater which generates heat by energization.
  • the heater 2 is composed of a bottomed cylindrical metal pipe 6 (heating portion).
  • a coiled heating wire 8 such as a nichrome wire is inserted in the metal pipe 6 , and a heat-resistant insulating material 10 , such as magnesium oxide, having high electrical insulation properties and thermal conductivity is filled into the metal pipe 6 by pressure to seal the heating wire 8 .
  • a terminal 12 molded from silicon, glass and the like by casting is provided at one end opening of the metal pipe 6 .
  • a lead wire 14 connected to the heating wire 8 is pulled through the terminal 12 .
  • the lead wire 14 and an external power unit (not shown) electrically connected to the lead wire 14 constitute an energization circuit (not shown) for providing the heating wire 8 with electricity.
  • an energization circuit not shown for providing the heating wire 8 with electricity.
  • the case 4 is composed of one or more cast bodies.
  • the case 4 contains the heater 2 by airtightly surrounding vicinities of both ends of the metal pipe 6 through O-rings 16 . Clearance is created between an inner surface 4 a of the case 4 and an outer circumference 6 a of the metal pipe 6 .
  • the clearance serves as a passage 18 into which a heating medium as a LLC (coolant, antifreeze), such as ethylene glycol, flows.
  • An inlet pipe 20 and an outlet pipe 22 for the heating medium are protrusively provided at appropriate positions on an outer surface 4 b of the case 4 so that the both pipes communicate with the passage.
  • the heating device 1 having such a schematic configuration, which is to be mounted, for example, in a hybrid car, an electric vehicle and the like, is used to heat a coolant or the like circulating through a refrigeration circuit in an air conditioning apparatus for a vehicle, serving as an auxiliary heat source for providing heat to make up a shortage in waste heat out of the engine in the case of a hybrid car, or as an alternative heat source for providing heat in place of the engine that does not exist in the case of an electric vehicle.
  • an LLC circulating in a cooling water circuit for cooling an engine flows via the inlet pipe 20 into the passage 18 , and the heater 2 heats the LLC.
  • Heat from the LLC which has been heated by the engine and the heating device 1 is used to heat a coolant circulating through a refrigeration circuit provided in an air conditioning apparatus for the vehicle.
  • the heated coolant is used to heat and cool the air in the vehicle cabin.
  • the LLC which has been used for heating the coolant is discharged from the passage 18 via the outlet pipe 22 and returned to the cooling water circuit. Then, the LLC is again used to cool the engine.
  • a through-hole 24 is bored into the case 4 in a direction perpendicular to the longitudinal direction of the heater 2 .
  • a temperature sensor 26 (temperature detection means) for detecting the temperature of a LLC which flows through the passage 18 is inserted in the through-hole 24 .
  • the temperature sensor 26 is a roughly cylindrical shaped thermistor.
  • a flat end face 30 of a temperature measurement end 28 of the temperature sensor 26 comes into line contact with the outer circumference 6 a of the metal pipe 6 of the heater 2 . This enables the temperature sensor 26 to detect not only the temperature of the LLC but also the surface temperature of the metal pipe 6 , i.e. the heating portion of the heater 2 .
  • Two annular grooves 32 are formed on a side 26 a of the temperature sensor 26 .
  • An O-ring 34 (seal member) is fitted to each annular groove 32 .
  • the temperature sensor 26 is airtightly connected to and secured to the through-hole 24 through each O-ring 34 .
  • the temperature sensor 26 is electrically connected to an inverter 5 through a lead wire 38 pulled out of its outer end 36 .
  • the inverter 5 controls energization (energization interrupting means) by turning on and off the carrying of current to the heater 2 in response to the temperature of the LLC and/or the surface temperature of the metal pipe 6 detected with the temperature sensor 26 through the power unit 3 and the energization circuit described above.
  • the temperature of the LLC is controlled within a proper range by the use of the temperature sensor 26 under this energization control. Thus, the temperature of the heater 2 does not abnormally rise.
  • the heating device 1 having the temperature sensor 26 which is out of contact with the metal pipe 6 and capable of detecting only the temperature of the LLC in the case of a conventional heating device, can undergo a deterioration in the responsiveness of the temperature sensor 26 due to the heat-insulation effect of the air surrounding the temperature sensor 26 , leading to a delay in the detection of such accidental heating. As a result, temperature in the passage 18 can go on to increase, causing an occurrence of smoke or fire in the heating device 1 .
  • the present embodiment provides energization control by taking advantage of a difference in heat transfer property between the LLC as a fluid and the air as a gas, that is, the temperature of the LLC becomes dominant when the LLC exists in the passage 18 and the temperature of the heater 2 becomes dominant when no or little LLC exists in the passage 18 , as the temperature sensor 26 is brought into direct contact with the outer circumference 6 a of the metal pipe 6 , i.e. the heating portion of the heater 2 , while the temperature sensor 26 is placed in the passage 18 where the LLC flows.
  • the present embodiment as described above provides normal energization control without stopping the heating device 1 for protection when an LLC exists in the passage 18 while the present embodiment provides error processing to stop promptly the heating device 1 for protection when no or little LLC exists in the passage 18 .
  • the heating device 1 that achieves high reliability as it promptly detects accidental heating of an empty passage with high accuracy and prevents reliably an occurrence of smoke or fire while performing normal energization control by the use of the temperature sensor 26 .
  • each O-ring 34 is fitted to each of the annular grooves 32 formed on the side 26 a of the temperature sensor 26 , the temperature sensor 26 is airtightly connected to and secured to the through-hole 24 through each of the O-rings 34 .
  • So-called dual seals provide the prevention of leakage of the LLC from the case 4 . This prevents an occurrence of accidental heating of an empty passage caused by a decrease in the amount of the LLC in the passage 18 , leading to the heating device 1 of higher reliability. Even if only one O-ring 34 is fitted to the temperature sensor 26 , leakage of the LLC from the case 4 can be prevented.
  • the present invention is not limited to the embodiment of the heating device 1 described above, but various alterations may occur.
  • the temperature measurement end 28 of the temperature sensor 26 comes into line contact with the outer circumference 6 a of the metal pipe 6 . It is, however, preferable that the area of contact between the temperature sensor 26 and the metal pipe 6 be larger so as to make larger the heat transfer area between the temperature sensor 26 and the metal pipe 6 .
  • a flat surface 40 is formed on a part of the outer circumference 6 a of the metal pipe 6 , and the end face 30 of the temperature measurement end 28 is brought into contact with the flat surface 40 . Since the temperature sensor 26 is placed into surface contact with the metal pipe 6 , the heat transfer area between the temperature sensor 26 and the metal pipe 6 gets larger. This brings about a further improvement in the responsiveness of the energization interrupting means and provides the detection of accidental heating of an empty passage with higher accuracy.
  • a concave curved surface 42 having a radius almost equal to the curvature radius of the outer circumference 6 a of the metal pipe 6 may be formed on the end face 30 of the temperature measurement end 28 of the temperature sensor 26 , and the outer circumference 6 a of the metal pipe 6 may be brought into contact with the concave curved surface 42 so that the temperature sensor 26 is placed into surface contact with the metal pipe 6 .
  • one O-ring 34 is fitted to each of the two annular grooves 32 on the side 26 a of the temperature sensor 26 .
  • two O-rings 34 are provided.
  • the number of the O-rings 34 is not limited to this example. Nevertheless, providing at least two O-rings 34 produces not only the effect of the dual seals described above but also an aligning effect in keeping the temperature sensor 26 from being out of alignment with respect to the through-hole 24 . Consequently, the responsiveness of the energization interrupting means and the accuracy in the detection of accidental heating of an empty passage can be reliably increased.
  • the temperature sensor 26 acts as a temperature detection means and the inverter for controlling energization acts as an energization interrupting means in the embodiment described above, a thermal fuse or the like incorporating both the temperature detection means and the energization interrupting means may be brought into contact with the metal pipe 6 .
  • the heating device 1 is not limited to use in a car air conditioning apparatus of a hybrid car or an electric vehicle, but can be used as a heat source for other purposes.

Abstract

A heating device includes a heater (2) having a heating portion (6) which generates heat by energization; a housing (4) which contains the heating portion and forms a passage (18) for a heating medium between the housing and the heating portion; a temperature sensor (26) for detecting the temperature of the heating medium in the passage; and an inverter for interrupting energization of, that is, the carrying of current to, the heater depending on the temperature of the heating medium detected by the temperature sensor. The temperature sensor is brought into contact with the heating portion.

Description

RELATED APPLICATIONS
This is a U.S. National Phase Application under 35 USC 371 of International Application PCT/JP2013/062920 filed on May 8, 2013.
This application claims the priority of Japanese application no. 2012-108323 filed May 10, 2012, the entire content of which is hereby incorporated by reference.
TECHNICAL FIELD
A terminal 12 molded from silicon, glass and the like by casting is provided at one end opening of the metal pipe 6. A lead wire 14 connected to the heating wire 8 is pulled through the terminal 12. The lead wire 14 and an external power unit 3 electrically connected to the lead wire 14 constitute an energization circuit for providing the heating wire 8 with electricity. Although only one heater 2 is shown in FIG. 1, two or more heaters 2 may be provided.
BACKGROUND ART
It is known that a heating device of this kind includes a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a temperature detection means for detecting the temperature of the heating medium in the passage; and an energization interrupting means for interrupting the carrying of current to the heater depending on the detected temperature of the heating medium.
Patent Document 1 discloses a heating device which is provided with a thermostat or a thermal fuse at the outside of the housing, on a surface shared with the heating face of the heating portion. Thus, the heating device prevents accidental heating of the passage with no heating medium while preventing a malfunction in the thermal fuse.
Patent Document 2 discloses a heating device which is provided with a thermal fuse at the current-carrying terminal. Heat transferred from the heating portion via the current-carrying terminal causes the heating device to interrupt the carrying of current to the heater regardless of the level of the heating medium in the passage so as to prevent accidental heating of an empty passage.
Patent Document 3 discloses a heating device which is provided with a convex on the inside of the housing. The heating device prevents accidental heating of the passage with no heating medium by placing a thermal fuse into contact with the heating portion via the convex of the housing.
PRIOR ART DOCUMENT Patent Document
  • Patent Document 1: Japanese Patent No. 4561319
  • Patent Document 2: Japanese Patent No. 4293091
  • Patent Document 3: Japanese Patent No. 3395571
SUMMARY OF THE INVENTION Problems to be Solved by the Invention
Unfortunately, a heating device according to each of the Patent Documents 1 to 3 is unable to stop the heater swiftly due to a deterioration in the responsiveness of the energization interrupting means because the heating device has its temperature detection means placed into contact with a non-heating portion of the heater located outside the housing, and the carrying of current to the heater is interrupted based on heat transferred via the non-heating portion. For that reason, the accuracy of detection of accidental heating of an empty passage can be decreased, leading to an occurrence of smoke or fire.
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a heating device capable of detecting accidental heating of an empty passage with high accuracy by detecting the temperature of the heating medium, interrupting energization with excellent responsiveness, and securely preventing an occurrence of smoke or fire so as to improve reliability of the heating device.
Means for Solving the Problems
In order to achieve the above object, a heating device of the present invention includes a heater having a heating portion which generates heat by energization; a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion; a temperature detection means for detecting the temperature of the heating medium in the passage; and an energization interrupting means for interrupting the carrying of current to the heater depending on the temperature of the heating medium detected by the temperature detection means. The temperature detection means is brought into contact with the heating portion.
Preferably, the temperature detection means should come into surface contact with the heating portion.
Preferably, the temperature detection means should be connected to the housing via a seal member.
Preferably, a plurality of the seal members should be provided.
Advantageous Effects of the Invention
According to the present invention, a heating device with high reliability can be provided owing to the following reasons. The heating device includes a temperature detection means for detecting the temperature of a heating medium in a passage for the heating medium, and an energization interrupting means for interrupting the carrying of current to a heater depending on the temperature of the heating medium detected by the temperature detection means. The heating device is capable of detecting accidental heating of an empty passage with high accuracy by detecting the temperature of the heating medium, interrupting energization with excellent responsiveness and securely preventing an occurrence of smoke or fire because the temperature detection means is brought into contact with a heating portion of the heater.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a longitudinal sectional view of a heating device in accordance with an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a principal part of the heating device taken from line A-A in FIG. 1.
FIG. 3 is a cross-sectional view illustrating a principal part of a heating device in accordance with a variation of the present invention, taken from line A-A in FIG. 1.
FIG. 4 is a cross-sectional view illustrating a principal part of a heating device in accordance with another variation of the present invention, taken from line A-A in FIG. 1.
MODE FOR CARRYING OUT THE INVENTION
A heating device in accordance with an embodiment of the present invention will now be described with reference to the attached drawings.
As shown schematically in FIG. 1, a heating device 1 includes a heater 2 and a case (housing) 4 which contains the heater 2.
As shown schematically in FIG. 2, the heater 2 is an electrothermal heater which generates heat by energization. The heater 2 is composed of a bottomed cylindrical metal pipe 6 (heating portion). A coiled heating wire 8 such as a nichrome wire is inserted in the metal pipe 6, and a heat-resistant insulating material 10, such as magnesium oxide, having high electrical insulation properties and thermal conductivity is filled into the metal pipe 6 by pressure to seal the heating wire 8.
A terminal 12 molded from silicon, glass and the like by casting is provided at one end opening of the metal pipe 6. A lead wire 14 connected to the heating wire 8 is pulled through the terminal 12. The lead wire 14 and an external power unit (not shown) electrically connected to the lead wire 14 constitute an energization circuit (not shown) for providing the heating wire 8 with electricity. Although only one heater 2 is shown in FIG. 1, two or more heaters 2 may be provided.
The case 4 is composed of one or more cast bodies. The case 4 contains the heater 2 by airtightly surrounding vicinities of both ends of the metal pipe 6 through O-rings 16. Clearance is created between an inner surface 4 a of the case 4 and an outer circumference 6 a of the metal pipe 6. The clearance serves as a passage 18 into which a heating medium as a LLC (coolant, antifreeze), such as ethylene glycol, flows. An inlet pipe 20 and an outlet pipe 22 for the heating medium are protrusively provided at appropriate positions on an outer surface 4 b of the case 4 so that the both pipes communicate with the passage.
The heating device 1 having such a schematic configuration, which is to be mounted, for example, in a hybrid car, an electric vehicle and the like, is used to heat a coolant or the like circulating through a refrigeration circuit in an air conditioning apparatus for a vehicle, serving as an auxiliary heat source for providing heat to make up a shortage in waste heat out of the engine in the case of a hybrid car, or as an alternative heat source for providing heat in place of the engine that does not exist in the case of an electric vehicle.
For example, in the case of a hybrid car, an LLC circulating in a cooling water circuit (not shown) for cooling an engine flows via the inlet pipe 20 into the passage 18, and the heater 2 heats the LLC. Heat from the LLC which has been heated by the engine and the heating device 1 is used to heat a coolant circulating through a refrigeration circuit provided in an air conditioning apparatus for the vehicle. The heated coolant is used to heat and cool the air in the vehicle cabin. The LLC which has been used for heating the coolant is discharged from the passage 18 via the outlet pipe 22 and returned to the cooling water circuit. Then, the LLC is again used to cool the engine.
According to the present embodiment, a through-hole 24 is bored into the case 4 in a direction perpendicular to the longitudinal direction of the heater 2. A temperature sensor 26 (temperature detection means) for detecting the temperature of a LLC which flows through the passage 18 is inserted in the through-hole 24. The temperature sensor 26 is a roughly cylindrical shaped thermistor. A flat end face 30 of a temperature measurement end 28 of the temperature sensor 26 comes into line contact with the outer circumference 6 a of the metal pipe 6 of the heater 2. This enables the temperature sensor 26 to detect not only the temperature of the LLC but also the surface temperature of the metal pipe 6, i.e. the heating portion of the heater 2.
Two annular grooves 32 are formed on a side 26 a of the temperature sensor 26. An O-ring 34 (seal member) is fitted to each annular groove 32. The temperature sensor 26 is airtightly connected to and secured to the through-hole 24 through each O-ring 34.
The temperature sensor 26 is electrically connected to an inverter 5 through a lead wire 38 pulled out of its outer end 36. The inverter 5 controls energization (energization interrupting means) by turning on and off the carrying of current to the heater 2 in response to the temperature of the LLC and/or the surface temperature of the metal pipe 6 detected with the temperature sensor 26 through the power unit 3 and the energization circuit described above.
When an LLC exists in the passage 18, the temperature of the LLC is controlled within a proper range by the use of the temperature sensor 26 under this energization control. Thus, the temperature of the heater 2 does not abnormally rise.
On the other hand, conventionally, when no or little LLC exists in the passage 18 due to absence of the LLC supply to the cooling water circuit, a leakage of the LLC from the cooling water circuit or other reasons, there is no or little heating medium for transferring heat from the heater 2. If this happens, the heating device 1 can undergo accidental heating of an empty passage, leading to a trouble that the temperature of the heater 2 itself abnormally rises. Even when such accidental heating of an empty passage occurs, the heating device 1 having the temperature sensor 26, which is out of contact with the metal pipe 6 and capable of detecting only the temperature of the LLC in the case of a conventional heating device, can undergo a deterioration in the responsiveness of the temperature sensor 26 due to the heat-insulation effect of the air surrounding the temperature sensor 26, leading to a delay in the detection of such accidental heating. As a result, temperature in the passage 18 can go on to increase, causing an occurrence of smoke or fire in the heating device 1.
In contrast, the present embodiment provides energization control by taking advantage of a difference in heat transfer property between the LLC as a fluid and the air as a gas, that is, the temperature of the LLC becomes dominant when the LLC exists in the passage 18 and the temperature of the heater 2 becomes dominant when no or little LLC exists in the passage 18, as the temperature sensor 26 is brought into direct contact with the outer circumference 6 a of the metal pipe 6, i.e. the heating portion of the heater 2, while the temperature sensor 26 is placed in the passage 18 where the LLC flows.
The present embodiment as described above provides normal energization control without stopping the heating device 1 for protection when an LLC exists in the passage 18 while the present embodiment provides error processing to stop promptly the heating device 1 for protection when no or little LLC exists in the passage 18. Thus, it is possible to provide the heating device 1 that achieves high reliability as it promptly detects accidental heating of an empty passage with high accuracy and prevents reliably an occurrence of smoke or fire while performing normal energization control by the use of the temperature sensor 26.
Since each O-ring 34 is fitted to each of the annular grooves 32 formed on the side 26 a of the temperature sensor 26, the temperature sensor 26 is airtightly connected to and secured to the through-hole 24 through each of the O-rings 34. So-called dual seals provide the prevention of leakage of the LLC from the case 4. This prevents an occurrence of accidental heating of an empty passage caused by a decrease in the amount of the LLC in the passage 18, leading to the heating device 1 of higher reliability. Even if only one O-ring 34 is fitted to the temperature sensor 26, leakage of the LLC from the case 4 can be prevented.
The present invention is not limited to the embodiment of the heating device 1 described above, but various alterations may occur.
For example, as the end face 30 of the temperature measurement end 28 of the temperature sensor 26 is flat in the above-mentioned embodiment, the temperature measurement end 28 comes into line contact with the outer circumference 6 a of the metal pipe 6. It is, however, preferable that the area of contact between the temperature sensor 26 and the metal pipe 6 be larger so as to make larger the heat transfer area between the temperature sensor 26 and the metal pipe 6.
Specifically, with reference to FIG. 3, a flat surface 40 is formed on a part of the outer circumference 6 a of the metal pipe 6, and the end face 30 of the temperature measurement end 28 is brought into contact with the flat surface 40. Since the temperature sensor 26 is placed into surface contact with the metal pipe 6, the heat transfer area between the temperature sensor 26 and the metal pipe 6 gets larger. This brings about a further improvement in the responsiveness of the energization interrupting means and provides the detection of accidental heating of an empty passage with higher accuracy.
Alternatively, with reference to FIG. 4, a concave curved surface 42 having a radius almost equal to the curvature radius of the outer circumference 6 a of the metal pipe 6 may be formed on the end face 30 of the temperature measurement end 28 of the temperature sensor 26, and the outer circumference 6 a of the metal pipe 6 may be brought into contact with the concave curved surface 42 so that the temperature sensor 26 is placed into surface contact with the metal pipe 6.
In the embodiment described above, one O-ring 34 is fitted to each of the two annular grooves 32 on the side 26 a of the temperature sensor 26. Thus, two O-rings 34 are provided. The number of the O-rings 34, however, is not limited to this example. Nevertheless, providing at least two O-rings 34 produces not only the effect of the dual seals described above but also an aligning effect in keeping the temperature sensor 26 from being out of alignment with respect to the through-hole 24. Consequently, the responsiveness of the energization interrupting means and the accuracy in the detection of accidental heating of an empty passage can be reliably increased.
Although the temperature sensor 26 acts as a temperature detection means and the inverter for controlling energization acts as an energization interrupting means in the embodiment described above, a thermal fuse or the like incorporating both the temperature detection means and the energization interrupting means may be brought into contact with the metal pipe 6.
The heating device 1 according to the present invention is not limited to use in a car air conditioning apparatus of a hybrid car or an electric vehicle, but can be used as a heat source for other purposes.
EXPLANATION OF REFERENCE SIGNS
    • 1 heating device
    • 2 heater
    • 4 case (housing)
    • 6 metal pipe (heating portion)
    • 18 passage
    • 26 temperature sensor (temperature detection means)
    • 34 O-ring (seal member)

Claims (6)

The invention claimed is:
1. A heating device for use in a motor vehicle as a source of heat within the motor vehicle, comprising:
a heater having a heating portion which generates heat by energization;
a housing which contains the heating portion and forms a passage for a heating medium between the housing and the heating portion;
a temperature detection means for detecting the temperature of the heating medium in the passage; and
an energization interrupting means for interrupting the carrying of current to the heater depending on the temperature of the heating medium detected by the temperature detection means,
wherein the temperature detection means is brought into contact with the heating portion, and
wherein the housing comprises one or more cast bodies.
2. The heating device according to claim 1, wherein the temperature detection means comes into surface contact with the heating portion.
3. The heating device according to claim 1, wherein the temperature detection means is connected to the housing via a seal member.
4. The heating device according to claim 3, wherein a plurality of the seal members are provided.
5. The heating device according to claim 2, wherein the temperature detection means is connected to the housing via a seal member.
6. The heating device according to claim 5, wherein a plurality of the seal members are provided.
US14/400,327 2012-05-10 2013-05-08 Heating device Active US9271332B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-108323 2012-05-10
JP2012108323A JP6029850B2 (en) 2012-05-10 2012-05-10 Heating device
PCT/JP2013/062920 WO2013168733A1 (en) 2012-05-10 2013-05-08 Heating device

Publications (2)

Publication Number Publication Date
US20150122798A1 US20150122798A1 (en) 2015-05-07
US9271332B2 true US9271332B2 (en) 2016-02-23

Family

ID=49550767

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/400,327 Active US9271332B2 (en) 2012-05-10 2013-05-08 Heating device

Country Status (5)

Country Link
US (1) US9271332B2 (en)
JP (1) JP6029850B2 (en)
CN (1) CN104272862B (en)
DE (1) DE112013002417T5 (en)
WO (1) WO2013168733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11649790B1 (en) * 2022-03-21 2023-05-16 Weichai Power Co., Ltd. Control method and apparatus applied to controller

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116906A (en) * 2013-12-18 2015-06-25 カルソニックカンセイ株式会社 Vehicle refrigerant heating device
JP2015138615A (en) * 2014-01-21 2015-07-30 カルソニックカンセイ株式会社 liquid heating device
JP5795822B2 (en) * 2014-12-08 2015-10-14 カルソニックカンセイ株式会社 Hot water heating device
JP6431831B2 (en) * 2015-09-09 2018-11-28 カルソニックカンセイ株式会社 Fluid heating apparatus and manufacturing method thereof
FR3062601B1 (en) * 2017-02-06 2019-06-07 Valeo Systemes Thermiques ELECTRICAL HEATING DEVICE, HEATING CIRCUIT, AND CORRESPONDING TEMPERATURE MANAGEMENT METHOD
PL3702693T3 (en) * 2019-02-28 2022-02-21 Gerdes Holding Gmbh & Co. Kg Continuous-flow heater with a fluid contact-side safety temperature limiting device
CN114938640A (en) * 2019-12-12 2022-08-23 法雷奥热系统公司 Electric heating device, in particular for a motor vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197581A (en) * 1978-04-12 1980-04-08 General Electric Company Control system for and method of controlling a cooking appliance
JPS61122453A (en) 1984-11-19 1986-06-10 Matsushita Electric Ind Co Ltd Electric tap-controlled water heater
JPH07199701A (en) 1993-12-28 1995-08-04 Canon Inc Heating device
JPH0945464A (en) 1995-07-31 1997-02-14 Ngk Spark Plug Co Ltd Glow plug
JPH10309935A (en) 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd Electric hot water circulating device for automobile
JP2000035248A (en) 1998-07-17 2000-02-02 Komatsu Electronics Kk Chemical heating apparatus
US6665492B1 (en) * 1997-03-19 2003-12-16 Northrop Grumman High-velocity electrically heated air impingement apparatus with heater control responsive to two temperature sensors
JP2006064327A (en) 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd Fluid heating device and washer therewith
JP2006132857A (en) 2004-11-08 2006-05-25 Matsushita Electric Ind Co Ltd Fluid heating device and sanitary washing device equipped with the same
US7312420B2 (en) * 2005-09-20 2007-12-25 Lexmark International, Inc. Switching device and system
US7472695B2 (en) * 2003-07-28 2009-01-06 Phillips & Temro Industries Inc. Controller for air intake heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839244C2 (en) * 1988-02-24 1993-12-09 Webasto Ag Fahrzeugtechnik Heater, in particular vehicle auxiliary heater
JP3519264B2 (en) * 1997-02-17 2004-04-12 松下電器産業株式会社 Automotive air conditioning controller
DE10051867A1 (en) * 2000-10-19 2002-04-25 Eberspaecher J Gmbh & Co Heating device, especially for motor vehicle use, has a temperature sensor that is integral with a temperature controller circuit, making assembly and removal easier and removing the need for additional cabling
JP2007010255A (en) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd Fluid heating device, and hot water supply device using it
JP2011144976A (en) * 2010-01-13 2011-07-28 Sanden Corp Heating device
JP5852774B2 (en) * 2010-07-14 2016-02-03 株式会社堀場エステック Liquid sample heating vaporizer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197581A (en) * 1978-04-12 1980-04-08 General Electric Company Control system for and method of controlling a cooking appliance
JPS61122453A (en) 1984-11-19 1986-06-10 Matsushita Electric Ind Co Ltd Electric tap-controlled water heater
JPH07199701A (en) 1993-12-28 1995-08-04 Canon Inc Heating device
JPH0945464A (en) 1995-07-31 1997-02-14 Ngk Spark Plug Co Ltd Glow plug
US6665492B1 (en) * 1997-03-19 2003-12-16 Northrop Grumman High-velocity electrically heated air impingement apparatus with heater control responsive to two temperature sensors
JPH10309935A (en) 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd Electric hot water circulating device for automobile
JP2000035248A (en) 1998-07-17 2000-02-02 Komatsu Electronics Kk Chemical heating apparatus
US7472695B2 (en) * 2003-07-28 2009-01-06 Phillips & Temro Industries Inc. Controller for air intake heater
JP2006064327A (en) 2004-08-30 2006-03-09 Matsushita Electric Ind Co Ltd Fluid heating device and washer therewith
JP2006132857A (en) 2004-11-08 2006-05-25 Matsushita Electric Ind Co Ltd Fluid heating device and sanitary washing device equipped with the same
US7312420B2 (en) * 2005-09-20 2007-12-25 Lexmark International, Inc. Switching device and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11649790B1 (en) * 2022-03-21 2023-05-16 Weichai Power Co., Ltd. Control method and apparatus applied to controller

Also Published As

Publication number Publication date
CN104272862A (en) 2015-01-07
DE112013002417T5 (en) 2015-01-29
JP2013235758A (en) 2013-11-21
CN104272862B (en) 2016-08-24
JP6029850B2 (en) 2016-11-24
WO2013168733A1 (en) 2013-11-14
US20150122798A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US9271332B2 (en) Heating device
US9226340B2 (en) Heating device
US20150131980A1 (en) Heating Device
JP2010121785A (en) Storage type water heater
WO2011086911A1 (en) Heating device
WO2011086909A1 (en) Heating device
WO2013157430A1 (en) Heating apparatus
US10476090B2 (en) Fuel cell system
WO2011086910A1 (en) Heating device
KR20160091002A (en) Safety control method and apparatus of the cooling-water heating type heater
JP2015512121A (en) Vehicle heater and method of manufacturing vehicle heater
KR101894465B1 (en) Cooling-water heating type heater
KR102053024B1 (en) Cooling-water heating type heater
WO2013186904A1 (en) Dew condensation detection device, cooling system, and method for controlling cooling medium flow rate
KR101998262B1 (en) Cooling-water heating type heater
KR101592747B1 (en) Device sensing overheat of heater for fuel cell vehicle
KR20150098879A (en) Cooling-water heating type heater
KR20210025245A (en) Cooling water heating device for battery with heat transfer structure for improving thermal fuse reaction rate
KR102040483B1 (en) Cooling-water heating type heater
KR101973522B1 (en) Coolant heater
JP2015020605A (en) Vehicle heater
JP2015025594A (en) Heating apparatus
JP2014224615A (en) Water heater
JP2012136154A (en) Vehicle heating device
JP2010220953A (en) Heated toilet seat

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDEN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAEMURA, YOSHINOBU;REEL/FRAME:034151/0898

Effective date: 20141017

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:038489/0677

Effective date: 20150402

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 038489 FRAME: 0677. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:047208/0635

Effective date: 20150402

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TYPOGRAPHICAL ERRORS IN PATENT NOS. 6129293, 7574813, 8238525, 8083454, D545888, D467946, D573242, D487173, AND REMOVE 8750534 PREVIOUSLY RECORDED ON REEL 047208 FRAME 0635. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:053545/0524

Effective date: 20150402

AS Assignment

Owner name: SANDEN CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:SANDEN HOLDINGS CORPORATION;REEL/FRAME:061296/0529

Effective date: 20220101

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8