US9271339B2 - Microwave oven - Google Patents

Microwave oven Download PDF

Info

Publication number
US9271339B2
US9271339B2 US13/703,700 US201113703700A US9271339B2 US 9271339 B2 US9271339 B2 US 9271339B2 US 201113703700 A US201113703700 A US 201113703700A US 9271339 B2 US9271339 B2 US 9271339B2
Authority
US
United States
Prior art keywords
time
magnetron
magnetrons
oscillation start
microwave oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/703,700
Other versions
US20130087555A1 (en
Inventor
Seiichi Hirano
Seiji Kanbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Assigned to SHARP KABUSHIKI KAISHA reassignment SHARP KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRANO, SEIICHI, KANBARA, SEIJI
Publication of US20130087555A1 publication Critical patent/US20130087555A1/en
Application granted granted Critical
Publication of US9271339B2 publication Critical patent/US9271339B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/687Circuits for monitoring or control for cooking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Definitions

  • the present invention relates to a microwave oven provided with a magnetron.
  • Patent Literature 1 A conventional microwave oven is disclosed in Patent Literature 1.
  • This microwave oven is provided with a heating chamber in which a cooking object is placed, and the microwave oven incorporates a magnetron which oscillates in response to application of voltage, to thereby generate a microwave.
  • the microwave generated by the magnetron is supplied into a heating chamber, where a cooking operation is performed with respect to the cooking object.
  • the microwave oven is provided with a timer which counts driving time of the magnetron.
  • the driving time of the magnetron counted by the timer is stored in an accumulated manner as cumulative driving time.
  • the cumulative driving time of the magnetron exceeds a predetermined length of replacement time, it is judged that the life of the magnetron is close to its end, and a notice is given to the effect that it is time to replace the magnetron through a display portion or the like.
  • Patent Literature 1 JP-A H02-233909 (Pages 1-4, FIG. 1)
  • FIG. 7 shows statistical data of lives of magnetrons.
  • the ordinate indicates the cumulative failure rate F(t) (unit: %), and the abscissa indicates the cumulative driving time (unit: h).
  • the cumulative failure rate (fault rate) indicates the relationship between the cumulative driving time of magnetrons and the percentage of magnetrons failed in the cumulative driving time.
  • magnetron replacement time is set to a length of time (such as 1000 hours) at the end of which, for example, 1% of magnetrons failed and their lives expired.
  • a large number of magnetrons that are not as much degraded as have to be replaced are also replaced, too early, before their lives actually come to an end. This has led to the problem of high running cost of microwave ovens attributable to the too frequent replacement of magnetrons.
  • the present invention has been made to provide a microwave oven capable of reducing running cost.
  • a microwave over includes a heating chamber in which a cooking object is to be placed, a magnetron which oscillates in response to application of voltage thereto to thereby generate a microwave to be supplied into the heating chamber, an electric wave sensor which detects the microwave generated by the magnetron, a timer which counts oscillation start-up time of the magnetron, the oscillation start-up time starting when the voltage is applied to the magnetron and ending when the microwave generated by oscillation of the magnetron is detected by the electric wave sensor, and a notification portion which makes a notification concerning time to replace the magnetron.
  • the notification portion makes the notification when the oscillation start-up time exceeds a predetermined length of time.
  • the timer when a voltage is applied to the magnetron, the timer starts counting time.
  • the magnetron oscillates in response to the application of the voltage, a microwave is generated.
  • the timer counts oscillation start-up time which starts at the application of the voltage to the magnetron and ends at the start of the oscillation.
  • the microwave generated by the magnetron is supplied into the heating chamber, where a cooking operation is performed on the cooking object.
  • the notification portion notifies that it is time to replace the magnetron.
  • the oscillation start-up time be stored, and that the notification portion make the notification if the oscillation start-up time exceeds the predetermined length of time a plurality of times in a row.
  • a plurality of magnetrons be provided as the magnetron, and that the magnetrons each oscillate in different phases.
  • the plurality of magnetrons oscillate in different phases, and the electric wave sensor detects microwaves from the plurality of magnetrons one by one at different time points.
  • the timer count driving time of the magnetron, that the oscillation start-up time and cumulative driving time of the magnetron be stored, and that the oscillation start-up time and the cumulative driving time of the magnetron be readable.
  • the timer counts the driving time.
  • the driving time of the magnetron is stored as cumulative driving time, and the oscillation start-up time from the voltage application to the start of oscillation is also stored.
  • An operator is able to read and acquire the cumulative driving time and the oscillation start-up time by a predetermined operation. This makes it possible to estimate, based on statistical data acquired in advance, how much driving time of the magnetron is left before it needs to be replaced.
  • an electric wave sensor is provided to detect a microwave, and time to replace the magnetron is notified when oscillation start-up time between the application of a voltage to the magnetron and the detection of the microwave by the electric wave sensor exceeds a predetermined length of time. This makes it possible to keep using the magnetron until the oscillation start-up time becomes longer due to degradation. Thus, it is possible to replace the magnetron less frequently, to thereby reduce the running cost of the microwave oven.
  • FIG. 1 is a perspective view showing a microwave oven embodying the present invention
  • FIG. 2 is a front sectional view showing an interior of the microwave oven embodying the present invention
  • FIG. 3 is a side sectional view showing an electric wave sensor incorporated in the microwave oven embodying the present invention
  • FIG. 4 is a block diagram showing a configuration of the microwave oven embodying the present invention.
  • FIG. 5 is a flow chart showing an operation of the microwave oven embodying the present invention.
  • FIG. 6 is a diagram showing relationship between the cumulative driving time and the oscillation start-up time of a magnetron.
  • FIG. 7 is a diagram showing statistical data of the life of magnetrons.
  • FIG. 1 is a perspective view showing a microwave oven embodying the present invention.
  • a door 3 is disposed at the front face of a microwave oven 1 for opening and closing a heating chamber 2 (see FIG. 2 ).
  • a window portion 3 a is formed through which to visually check the heating chamber 2 .
  • An operation panel 4 is disposed lateral to the door 3 .
  • an operation portion 5 and a display portion 6 are provided in the operation panel 4 .
  • the operation portion 5 has a plurality of keys and a touch panel provided on the display portion 6 , on which an operation of selecting a cooking menu is performed, and through which an instruction is given to start a cooking operation.
  • the display portion 6 is formed of components such as a liquid crystal panel, and displays an operation screen showing the operation performed on the operation portion 5 , the progress of the cooking operation, and the like.
  • the display portion 6 also functions as a notification portion which makes a notification to a user by displaying a message or the like for the user to see.
  • FIG. 2 is a front sectional view showing an interior of the microwave oven 1 .
  • a cooking object W is placed on a bottom plate 2 c of the heating chamber 2 which is open at the front.
  • a plurality of magnetrons 7 are disposed lateral to the heating chamber 2 and generate microwaves by oscillating when voltage is applied thereto.
  • the magnetrons 7 and the heating chamber 2 are coupled to each other by a waveguide tube 8 .
  • the microwaves generated by the magnetrons 7 are guided through the waveguide tube 8 and supplied into the heating chamber 2 .
  • An antenna chamber 9 a is provided under the bottom plate 2 c , and in the antenna chamber 9 a , there is provided an antenna 9 which rotates by being driven by the antenna motor 10 .
  • the microwaves supplied into the heating chamber 2 are made uniform by the rotation of the antenna 9 .
  • FIG. 3 is a side sectional view of the electric wave sensor 11 .
  • the electric wave sensor 11 has a front plate 11 a and a rear plate 11 b , and is disposed in a recess 2 b which is provided in the side wall 2 a of the heating chamber 2 .
  • the rear plate 11 b is attached to a bottom surface of the recess 2 b , with the recess 2 b covered by the front plate 11 a , and with the electric wave sensor 11 projecting into the heating chamber 2 from the front plate 11 a.
  • FIG. 4 is a block diagram showing an example of the configuration of the microwave oven 1 .
  • a control portion 12 which controls each portion is provided on a rear side of the operation panel 4 (see FIG. 1 ).
  • a power supply portion 13 the magnetrons 7 , the antenna motor 10 , the electric wave sensor 11 , the operation portion 5 , the display portion 6 , a memory portion 14 , a timer 15 , and an input/output portion 16 are connected to the control portion 12 .
  • the power supply portion 13 supplies power to the control portion 12 , and it also supplies power to each portion of the microwave oven 1 under the control of the control portion 12 .
  • the memory portion 14 which is composed of an RAM and an ROM, stores a sequence of cooking performed by the microwave oven 1 , and it also stores a cooking menu database. Furthermore, the memory portion 14 temporarily stores results of computation performed by the control portion 12 , and the memory portion 14 also stores data obtained by the electric wave sensor 11 and the like.
  • the timer 15 counts driving time of the magnetrons 7 , cooking time, and the like.
  • the input/output portion 16 is capable of being connected to an external device to update and read out the sequence of cooking stored in the memory portion 14 .
  • FIG. 5 is a flow chart showing an operation of the microwave oven 1 .
  • the process waits until a cooking menu is selected by the operation portion 5 in step # 11 .
  • the process waits until an instruction is given by the operation portion 5 in step # 12 to start cooking.
  • step # 13 When the instruction to start cooking is received, a voltage from the power supply 13 is applied to the magnetrons 7 and the antenna motor 10 under the control of the control portion 12 , and thereby the magnetrons 7 and the antenna motor 10 are driven in step # 13 .
  • the plurality of magnetrons 7 are driven in different phases.
  • step # 14 the timer 15 starts counting time.
  • step # 15 the process waits until the electric wave sensor 11 detects a microwave.
  • the electric wave sensor 11 detects the microwaves from the magnetrons 7 at different times. This makes it possible to identify the source magnetron 7 of each of the microwaves detected by the electric wave sensor 11 .
  • step # 16 oscillation start-up time, which is counted by the timer 15 from the voltage application until the detection of the microwaves by the electric wave sensor 11 , is stored in the memory portion one by one corresponding to each of the magnetrons 7 .
  • step # 17 the timer 15 continues time counting until the time to finish cooking comes.
  • step # 18 the magnetrons 7 and the antenna motor 10 are made to stop operating.
  • step # 19 cumulative driving time, which is obtained by accumulating the driving time of the magnetrons 7 counted by the timer 15 , is stored in the memory portion 14 . That is, the driving time of the cooking operation this time is added to the cumulative driving time stored at the end of the previous cooking operation, and the resulting cumulative driving time is stored in the memory portion 14 .
  • step # 20 it is judged whether or not the oscillation start-up time of each of the magnetrons 7 stored in step # 16 is longer than a predetermined length of time.
  • FIG. 6 is a diagram showing an example of the relationship between the cumulative driving time and the oscillation start-up time of a magnetron. The ordinate indicates the oscillation start-up time (unit: second), and the abscissa indicates the cumulative driving time (unit: hour).
  • the oscillation start time which is time from when a voltage is applied to the magnetrons until when the magnetrons start oscillating, increases substantially linearly as the magnetrons are increasingly degraded with accumulation of driving.
  • statistical data is acquired in advance as to lengths of the oscillation start-up time of the magnetrons 7 at the end of their lives, and when the oscillation start-up time becomes as long as a predetermined length of time (for example, 4.5 seconds) that is shorter than the oscillation time that the magnetrons 7 have at the end of their lives, it is judged to be the time to replace the magnetrons 7 .
  • a predetermined length of time for example, 4.5 seconds
  • step # 21 a message or a warning icon, for example, is displayed on the display portion 6 to thereby notify the user that it is time to replace a magnetron 7 .
  • a warning light or sound may be used to notify the time to replace any of the magnetrons 7 .
  • the oscillation start-up time and the cumulative driving time of each of the magnetrons 7 stored in the memory portion 14 are read out via the input/output portion 16 by an operator such as a maintenance person.
  • the statistical data as shown in the above-mentioned FIG. 6 is acquired in advance.
  • the electric wave sensor 11 is provided to detect microwaves, and the time to replace a magnetron is notified when the oscillation start-up time between the application of voltage to the magnetrons 7 and the detection of the microwaves by the electric wave sensor 11 exceeds the predetermined length of time. This makes it possible to keep using the magnetrons 7 until the oscillation start-up time becomes longer due to degradation. Thus, it is possible to replace the magnetrons 7 less frequently, to thereby reduce the running cost of the microwave oven 1 .
  • the oscillation start-up time and the cumulative driving time of the magnetrons 7 are stored in the memory portion 14 , and the oscillation start-up time and the cumulative driving time are readable via the input/output portion 16 , and thus, it is possible to predict how much time is left before the life of each of the magnetrons 7 comes to an end, and this helps improve the user-friendliness of the microwave oven 1 .
  • the microwave oven is provided with the plurality of magnetrons 7 , but a single magnetron may be provided instead.
  • the electric wave sensor 11 is disposed inside the heating chamber 2 , but instead, it may be disposed in the waveguide tube 8 or in the antenna chamber 9 a . However, it is more desirable to dispose the electric wave sensor 11 inside the heating chamber 2 , which makes it possible, in unfreezing a frozen cooking object, to judge the completion of the unfreezing based on the detection by the electric wave sensor 11 .
  • the life and the oscillation start-up time depend on the kind of the magnetrons 7 .
  • the present invention is applicable to a microwave oven provided with a magnetron.

Abstract

Disclosed is a microwave oven provided with: a heating chamber (2) for housing the object to be cooked therein; a magnetron (7) that oscillates by having a voltage applied thereto, and generates a microwave to be supplied to the heating chamber (2); a radio wave sensor (11) for detecting the microwave generated by the magnetron (7); a timer (15) for measuring an oscillation starting time that is a period of time from when the voltage is applied to the magnetron (7) to when the microwave is detected by the radio wave sensor (11) due to the oscillation; and a notification unit (6) for sending a notice about the timing at which the magnetron (7) should be exchanged. When the oscillation starting time becomes longer than a prescribed period of time, a notice about that fact is sent by the notification unit (6).

Description

TECHNICAL FIELD
The present invention relates to a microwave oven provided with a magnetron.
BACKGROUND ART
A conventional microwave oven is disclosed in Patent Literature 1. This microwave oven is provided with a heating chamber in which a cooking object is placed, and the microwave oven incorporates a magnetron which oscillates in response to application of voltage, to thereby generate a microwave. The microwave generated by the magnetron is supplied into a heating chamber, where a cooking operation is performed with respect to the cooking object.
In addition, the microwave oven is provided with a timer which counts driving time of the magnetron. The driving time of the magnetron counted by the timer is stored in an accumulated manner as cumulative driving time. When the cumulative driving time of the magnetron exceeds a predetermined length of replacement time, it is judged that the life of the magnetron is close to its end, and a notice is given to the effect that it is time to replace the magnetron through a display portion or the like.
This notice enables a user to replace the magnetron before its life expires and the magnetron stops working. Thus, it is possible to prevent failure of cooking caused by the magnetron stopping in the middle of a cooking operation. Furthermore, in the case of a business-use microwave oven, the magnetron can be replaced out of business hours, and this helps avoid downtime of the microwave oven, to thereby prevent reduction of the operating ratio of the microwave oven.
CITATION LIST Patent Literature
Patent Literature 1: JP-A H02-233909 (Pages 1-4, FIG. 1)
SUMMARY OF INVENTION Technical Problem
However, according to the above conventional microwave oven, different magnetrons have different lengths of lives due to individual difference. FIG. 7 shows statistical data of lives of magnetrons. The ordinate indicates the cumulative failure rate F(t) (unit: %), and the abscissa indicates the cumulative driving time (unit: h). The cumulative failure rate (fault rate) indicates the relationship between the cumulative driving time of magnetrons and the percentage of magnetrons failed in the cumulative driving time.
Based on such statistical data as shown in FIG. 7, magnetron replacement time is set to a length of time (such as 1000 hours) at the end of which, for example, 1% of magnetrons failed and their lives expired. As a result, a large number of magnetrons that are not as much degraded as have to be replaced are also replaced, too early, before their lives actually come to an end. This has led to the problem of high running cost of microwave ovens attributable to the too frequent replacement of magnetrons.
The present invention has been made to provide a microwave oven capable of reducing running cost.
Solution to Problem
To achieve the above object, according to the present invention, a microwave over includes a heating chamber in which a cooking object is to be placed, a magnetron which oscillates in response to application of voltage thereto to thereby generate a microwave to be supplied into the heating chamber, an electric wave sensor which detects the microwave generated by the magnetron, a timer which counts oscillation start-up time of the magnetron, the oscillation start-up time starting when the voltage is applied to the magnetron and ending when the microwave generated by oscillation of the magnetron is detected by the electric wave sensor, and a notification portion which makes a notification concerning time to replace the magnetron. Here, the notification portion makes the notification when the oscillation start-up time exceeds a predetermined length of time.
With this configuration, when a voltage is applied to the magnetron, the timer starts counting time. When the magnetron oscillates in response to the application of the voltage, a microwave is generated. When the electric wave sensor detects the microwave, the timer counts oscillation start-up time which starts at the application of the voltage to the magnetron and ends at the start of the oscillation. The microwave generated by the magnetron is supplied into the heating chamber, where a cooking operation is performed on the cooking object. When the oscillation start-up time exceeds the predetermined length of time, the notification portion notifies that it is time to replace the magnetron.
According to a preferable embodiment of the present invention, it is preferable that the oscillation start-up time be stored, and that the notification portion make the notification if the oscillation start-up time exceeds the predetermined length of time a plurality of times in a row.
According to a preferable embodiment of the present invention, it is preferable that a plurality of magnetrons be provided as the magnetron, and that the magnetrons each oscillate in different phases. With this configuration, the plurality of magnetrons oscillate in different phases, and the electric wave sensor detects microwaves from the plurality of magnetrons one by one at different time points.
According to a preferable embodiment of the present invention, it is preferable that the timer count driving time of the magnetron, that the oscillation start-up time and cumulative driving time of the magnetron be stored, and that the oscillation start-up time and the cumulative driving time of the magnetron be readable.
With this configuration, when the magnetron is driven and a cooking operation is performed, the timer counts the driving time. The driving time of the magnetron is stored as cumulative driving time, and the oscillation start-up time from the voltage application to the start of oscillation is also stored. An operator is able to read and acquire the cumulative driving time and the oscillation start-up time by a predetermined operation. This makes it possible to estimate, based on statistical data acquired in advance, how much driving time of the magnetron is left before it needs to be replaced.
Advantageous Effects of Invention
According to the present invention, an electric wave sensor is provided to detect a microwave, and time to replace the magnetron is notified when oscillation start-up time between the application of a voltage to the magnetron and the detection of the microwave by the electric wave sensor exceeds a predetermined length of time. This makes it possible to keep using the magnetron until the oscillation start-up time becomes longer due to degradation. Thus, it is possible to replace the magnetron less frequently, to thereby reduce the running cost of the microwave oven.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a perspective view showing a microwave oven embodying the present invention;
FIG. 2 is a front sectional view showing an interior of the microwave oven embodying the present invention;
FIG. 3 is a side sectional view showing an electric wave sensor incorporated in the microwave oven embodying the present invention;
FIG. 4 is a block diagram showing a configuration of the microwave oven embodying the present invention;
FIG. 5 is a flow chart showing an operation of the microwave oven embodying the present invention;
FIG. 6 is a diagram showing relationship between the cumulative driving time and the oscillation start-up time of a magnetron; and
FIG. 7 is a diagram showing statistical data of the life of magnetrons.
DESCRIPTION OF EMBODIMENTS
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a perspective view showing a microwave oven embodying the present invention. A door 3 is disposed at the front face of a microwave oven 1 for opening and closing a heating chamber 2 (see FIG. 2). In the door 3, a window portion 3 a is formed through which to visually check the heating chamber 2. An operation panel 4 is disposed lateral to the door 3. In the operation panel 4, there are provided an operation portion 5 and a display portion 6.
The operation portion 5 has a plurality of keys and a touch panel provided on the display portion 6, on which an operation of selecting a cooking menu is performed, and through which an instruction is given to start a cooking operation. The display portion 6 is formed of components such as a liquid crystal panel, and displays an operation screen showing the operation performed on the operation portion 5, the progress of the cooking operation, and the like. Besides, the display portion 6 also functions as a notification portion which makes a notification to a user by displaying a message or the like for the user to see.
FIG. 2 is a front sectional view showing an interior of the microwave oven 1. A cooking object W is placed on a bottom plate 2 c of the heating chamber 2 which is open at the front. A plurality of magnetrons 7 are disposed lateral to the heating chamber 2 and generate microwaves by oscillating when voltage is applied thereto. The magnetrons 7 and the heating chamber 2 are coupled to each other by a waveguide tube 8. The microwaves generated by the magnetrons 7 are guided through the waveguide tube 8 and supplied into the heating chamber 2. An antenna chamber 9 a is provided under the bottom plate 2 c, and in the antenna chamber 9 a, there is provided an antenna 9 which rotates by being driven by the antenna motor 10. The microwaves supplied into the heating chamber 2 are made uniform by the rotation of the antenna 9.
On a side wall 2 a of the heating chamber 2, there is provided an electric wave sensor 11 which detects a microwave. FIG. 3 is a side sectional view of the electric wave sensor 11. The electric wave sensor 11 has a front plate 11 a and a rear plate 11 b, and is disposed in a recess 2 b which is provided in the side wall 2 a of the heating chamber 2. The rear plate 11 b is attached to a bottom surface of the recess 2 b, with the recess 2 b covered by the front plate 11 a, and with the electric wave sensor 11 projecting into the heating chamber 2 from the front plate 11 a.
FIG. 4 is a block diagram showing an example of the configuration of the microwave oven 1. In the microwave oven 1, a control portion 12 which controls each portion is provided on a rear side of the operation panel 4 (see FIG. 1). A power supply portion 13, the magnetrons 7, the antenna motor 10, the electric wave sensor 11, the operation portion 5, the display portion 6, a memory portion 14, a timer 15, and an input/output portion 16 are connected to the control portion 12.
The power supply portion 13 supplies power to the control portion 12, and it also supplies power to each portion of the microwave oven 1 under the control of the control portion 12. The memory portion 14, which is composed of an RAM and an ROM, stores a sequence of cooking performed by the microwave oven 1, and it also stores a cooking menu database. Furthermore, the memory portion 14 temporarily stores results of computation performed by the control portion 12, and the memory portion 14 also stores data obtained by the electric wave sensor 11 and the like.
The timer 15 counts driving time of the magnetrons 7, cooking time, and the like. The input/output portion 16 is capable of being connected to an external device to update and read out the sequence of cooking stored in the memory portion 14.
FIG. 5 is a flow chart showing an operation of the microwave oven 1. When the microwave oven 1 is turned on, the process waits until a cooking menu is selected by the operation portion 5 in step # 11. When a cooking object W is placed inside the heating chamber 2 and a cooking menu is selected, the process waits until an instruction is given by the operation portion 5 in step # 12 to start cooking.
When the instruction to start cooking is received, a voltage from the power supply 13 is applied to the magnetrons 7 and the antenna motor 10 under the control of the control portion 12, and thereby the magnetrons 7 and the antenna motor 10 are driven in step # 13. Here, the plurality of magnetrons 7 are driven in different phases. In step # 14, the timer 15 starts counting time.
In step # 15, the process waits until the electric wave sensor 11 detects a microwave. Here, since the plurality of magnetrons are driven in different phases, the electric wave sensor 11 detects the microwaves from the magnetrons 7 at different times. This makes it possible to identify the source magnetron 7 of each of the microwaves detected by the electric wave sensor 11.
When the electric wave sensor 11 detects the microwaves each generated by oscillation of a corresponding one of the magnetrons 7, the process proceeds to step #16. In step # 16, oscillation start-up time, which is counted by the timer 15 from the voltage application until the detection of the microwaves by the electric wave sensor 11, is stored in the memory portion one by one corresponding to each of the magnetrons 7.
In step # 17, the timer 15 continues time counting until the time to finish cooking comes. When the time to finish cooking comes, then in step # 18, the magnetrons 7 and the antenna motor 10 are made to stop operating. In step # 19, cumulative driving time, which is obtained by accumulating the driving time of the magnetrons 7 counted by the timer 15, is stored in the memory portion 14. That is, the driving time of the cooking operation this time is added to the cumulative driving time stored at the end of the previous cooking operation, and the resulting cumulative driving time is stored in the memory portion 14.
In step # 20, it is judged whether or not the oscillation start-up time of each of the magnetrons 7 stored in step # 16 is longer than a predetermined length of time. FIG. 6 is a diagram showing an example of the relationship between the cumulative driving time and the oscillation start-up time of a magnetron. The ordinate indicates the oscillation start-up time (unit: second), and the abscissa indicates the cumulative driving time (unit: hour).
According to the figure, the oscillation start time, which is time from when a voltage is applied to the magnetrons until when the magnetrons start oscillating, increases substantially linearly as the magnetrons are increasingly degraded with accumulation of driving. Thus, statistical data is acquired in advance as to lengths of the oscillation start-up time of the magnetrons 7 at the end of their lives, and when the oscillation start-up time becomes as long as a predetermined length of time (for example, 4.5 seconds) that is shorter than the oscillation time that the magnetrons 7 have at the end of their lives, it is judged to be the time to replace the magnetrons 7. It should be noted that the figure merely shows an example, and the oscillation start-up time of different magnetrons increases at different rates with respect to the cumulative driving time due to individual difference.
If the oscillation start-up time of each of the magnetrons 7 is not longer than the predetermined length of time, the process is finished. If the oscillation start-up time of any of the magnetrons 7 is longer than the predetermined length of time, the process proceeds to step #21. In step # 21, a message or a warning icon, for example, is displayed on the display portion 6 to thereby notify the user that it is time to replace a magnetron 7. This enables the user to replace any of the magnetrons 7, which have different lengths of lives, when it is degraded enough to be replaced. Incidentally, lighting of a warning light or sound may be used to notify the time to replace any of the magnetrons 7.
Furthermore, the oscillation start-up time and the cumulative driving time of each of the magnetrons 7 stored in the memory portion 14 are read out via the input/output portion 16 by an operator such as a maintenance person. As to the relationship between the oscillation start-up time and the cumulative driving time, the statistical data as shown in the above-mentioned FIG. 6 is acquired in advance. By comparing the data read out from the memory portion 14 and the statistical data, it is possible to estimate the length of drivable time of the magnetrons 7 left before the oscillation start-up time reaches the above predetermined length of time, to thereby predict the time to replace the magnetrons 7. In this way, for example, when one of the magnetrons 7 has to be replaced, if time to replace another one of the magnetrons 7 is coming soon, they can be replaced at the same time, to thereby reduce the frequency of replacing the magnetrons 7, and this helps improve the user-friendliness of the microwave oven 1.
According to the present invention, the electric wave sensor 11 is provided to detect microwaves, and the time to replace a magnetron is notified when the oscillation start-up time between the application of voltage to the magnetrons 7 and the detection of the microwaves by the electric wave sensor 11 exceeds the predetermined length of time. This makes it possible to keep using the magnetrons 7 until the oscillation start-up time becomes longer due to degradation. Thus, it is possible to replace the magnetrons 7 less frequently, to thereby reduce the running cost of the microwave oven 1.
The oscillation start-up time counted in a plurality of cooking operations may be stored in the memory portion 14 in step # 16, and in step # 20, if the oscillation start-up time exceeds a plurality of times in a row, the process may proceed to step #21. This makes it possible to prevent replacement of the magnetrons 7 from being induced by erroneous detection of the oscillation start-up time.
Furthermore, the plurality of magnetrons 7 oscillate in different phases, and thus, it is possible for the single electric wave sensor 11 to detect whether or not oscillation has started with respect to each of the magnetrons 7, and thus, the number of components can be reduced.
Moreover, the oscillation start-up time and the cumulative driving time of the magnetrons 7 are stored in the memory portion 14, and the oscillation start-up time and the cumulative driving time are readable via the input/output portion 16, and thus, it is possible to predict how much time is left before the life of each of the magnetrons 7 comes to an end, and this helps improve the user-friendliness of the microwave oven 1.
In the present invention, the microwave oven is provided with the plurality of magnetrons 7, but a single magnetron may be provided instead. Furthermore, the electric wave sensor 11 is disposed inside the heating chamber 2, but instead, it may be disposed in the waveguide tube 8 or in the antenna chamber 9 a. However, it is more desirable to dispose the electric wave sensor 11 inside the heating chamber 2, which makes it possible, in unfreezing a frozen cooking object, to judge the completion of the unfreezing based on the detection by the electric wave sensor 11.
Incidentally, although whether or not the time to replace the magnetrons 7 is judged based on the oscillation start-up time, the life and the oscillation start-up time depend on the kind of the magnetrons 7. Thus, it is preferable to set the oscillation start-up time, based on which time to replace the magnetrons 7 is determined, to a length of time that least affects a cooking operation.
Industrial Applicability
The present invention is applicable to a microwave oven provided with a magnetron.
List of Reference Symbols
1 microwave oven
2 heating chamber
3 door
4 operation panel
5 operation portion
6 display portion
7 magnetron
8 waveguide tube
9 antenna
10 antenna motor
11 electric wave sensor
12 control portion
13 power supply portion
14 memory portion
15 timer
16 input/output portion

Claims (5)

The invention claimed is:
1. A microwave oven, comprising:
a heating chamber in which a cooking object is to be placed;
a magnetron which oscillates in response to application of voltage thereto to thereby generate a microwave to be supplied into the heating chamber;
an electric wave sensor which detects the microwave generated by the magnetron;
a timer which counts oscillation start-up time and cumulative driving time of the magnetron, the oscillation start-up time starting when the voltage is applied to the magnetron and ending when the microwave generated by oscillation of the magnetron is detected by the electric wave sensor; and
a notification portion which makes a notification concerning time to replace the magnetron,
wherein
the notification portion is programmed to make the notification when the oscillation start-up time read from the memory portion exceeds a predetermined length of time set based on the cumulative driving time;
the oscillation start-up time and the cumulative driving time are readably stored in a memory portion,
statistical data of the oscillation start-up time observed when lives of magnetrons come to an end is acquired in advance and stored in the memory portion, and
the predetermined length of time is set based on the statistical data read from the memory portion.
2. The microwave oven according to claim 1,
wherein
the oscillation start-up time is stored; and
the notification portion makes the notification if the oscillation start-up time exceeds the predetermined length of time a plurality of times in a row.
3. The microwave oven according to claim 1,
wherein
a plurality of magnetrons are provided as the magnetron; and
the magnetrons each oscillate in different phases.
4. The microwave oven according to claim 2,
wherein
a plurality of magnetrons are provided as the magnetron; and
the magnetrons each oscillate in different phases.
5. The microwave oven according to claim 2,
wherein
the timer counts driving time of the magnetron;
the oscillation start-up time and cumulative driving time of the magnetron are readably stored.
US13/703,700 2010-07-09 2011-07-07 Microwave oven Expired - Fee Related US9271339B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-156504 2010-07-09
JP2010156504 2010-07-09
PCT/JP2011/065532 WO2012005316A1 (en) 2010-07-09 2011-07-07 Microwave oven

Publications (2)

Publication Number Publication Date
US20130087555A1 US20130087555A1 (en) 2013-04-11
US9271339B2 true US9271339B2 (en) 2016-02-23

Family

ID=45441293

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/703,700 Expired - Fee Related US9271339B2 (en) 2010-07-09 2011-07-07 Microwave oven

Country Status (6)

Country Link
US (1) US9271339B2 (en)
EP (1) EP2592900A1 (en)
JP (1) JP5624137B2 (en)
CN (1) CN102960059A (en)
AU (1) AU2011274876B2 (en)
WO (1) WO2012005316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150351579A1 (en) * 2014-06-09 2015-12-10 Whirlpool Corporation Method of regulating temperature for sous vide cooking and apparatus therefor
USD815485S1 (en) 2016-06-01 2018-04-17 Sharp Kabushiki Kaisha Cooking oven
USD889899S1 (en) 2017-09-28 2020-07-14 Sharp Kabushiki Kaisha Cooking oven

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524318B2 (en) 2014-02-10 2019-12-31 Sharp Kabushiki Kaisha Microwave oven
JP6205284B2 (en) * 2014-02-10 2017-09-27 シャープ株式会社 microwave
WO2016006249A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Microwave heating device
CN104879801B (en) * 2015-06-08 2017-07-07 广东美的厨房电器制造有限公司 Microwave rice cooker
EP3435737B1 (en) * 2016-03-25 2021-04-28 Panasonic Intellectual Property Management Co., Ltd. Microwave heating device
US10383183B2 (en) * 2016-12-05 2019-08-13 Hall Labs Llc Microwave oven with oscillating magnetron
CN109661056B (en) * 2018-12-17 2021-06-22 京信通信系统(中国)有限公司 Microwave equipment
CN111615230B (en) * 2020-05-13 2022-06-10 广东美的厨房电器制造有限公司 Control method and device for microwave household appliance, microwave household appliance and electronic equipment

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694402A (en) * 1985-05-28 1987-09-15 Basic Measuring Instruments Waveform disturbance detection apparatus and method
JPH02233909A (en) 1989-03-03 1990-09-17 Sanyo Electric Co Ltd Cooker
JPH0362496A (en) 1989-07-31 1991-03-18 Toshiba Corp Microwave heating device
JPH0412491A (en) 1990-04-27 1992-01-17 Sharp Corp Electronic oven
JPH04250390A (en) 1991-01-28 1992-09-07 Matsushita Electric Works Ltd Ultrasonic object detector
JPH0529075A (en) 1991-07-25 1993-02-05 Sharp Corp Microwave oven
US5286938A (en) * 1990-07-24 1994-02-15 Kabushiki Kaisha Toshiba High frequency heating apparatus
JPH06193884A (en) 1992-12-21 1994-07-15 Matsushita Electric Ind Co Ltd High frequency heating cooker
US5395453A (en) * 1993-07-29 1995-03-07 Fujitsu Limited Apparatus and method for controlling oscillation output of magnetron
US5491323A (en) 1992-12-21 1996-02-13 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus for heating a material and a method of heating a material by high frequency irradiation
US5565781A (en) * 1991-07-09 1996-10-15 Dauge; Gilbert Device for detecting the malfunctioning of a load such as a magnetron
US5653906A (en) * 1994-09-07 1997-08-05 Robertshaw Controls Company Control system for a microwave oven, a microwave oven using such a control system and methods of making the same
US5760544A (en) * 1996-05-31 1998-06-02 Daihen Corporation Magnetron microwave generator with filament-life diagnostic circuit
JP2000105521A (en) 1998-09-29 2000-04-11 Canon Inc Device consisting of a plurality of units and abnormality detecting method and initializing method thereof
US20020066730A1 (en) * 2000-12-06 2002-06-06 Sung-Ho Lee Microwave oven and method of controlling the same
JP2003234173A (en) 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd High-frequency heating equipment
US20090289056A1 (en) * 2005-11-25 2009-11-26 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
US20090321428A1 (en) * 2008-06-30 2009-12-31 Hyde Roderick A Microwave oven
US7834299B2 (en) * 2004-12-14 2010-11-16 Enodis Corporation Impingement/convection/microwave oven and method
US7952289B2 (en) * 2007-12-21 2011-05-31 Nordson Corporation UV lamp system and associated method with improved magnetron control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529075A (en) * 1975-07-10 1977-01-24 Kazuhiko Okada Method to prepare rough surface of synthetic resin and apparatus thereof
JPS6193884A (en) * 1984-10-15 1986-05-12 松田 信一 Cleaning device for pipe
FR2885006B1 (en) * 2005-04-22 2007-06-29 Premark Feg Llc MICROWAVE OVEN WITH PHASE MODULATOR

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694402A (en) * 1985-05-28 1987-09-15 Basic Measuring Instruments Waveform disturbance detection apparatus and method
JPH02233909A (en) 1989-03-03 1990-09-17 Sanyo Electric Co Ltd Cooker
JPH0362496A (en) 1989-07-31 1991-03-18 Toshiba Corp Microwave heating device
JPH0412491A (en) 1990-04-27 1992-01-17 Sharp Corp Electronic oven
US5286938A (en) * 1990-07-24 1994-02-15 Kabushiki Kaisha Toshiba High frequency heating apparatus
JPH04250390A (en) 1991-01-28 1992-09-07 Matsushita Electric Works Ltd Ultrasonic object detector
US5565781A (en) * 1991-07-09 1996-10-15 Dauge; Gilbert Device for detecting the malfunctioning of a load such as a magnetron
JPH0529075A (en) 1991-07-25 1993-02-05 Sharp Corp Microwave oven
US5491323A (en) 1992-12-21 1996-02-13 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus for heating a material and a method of heating a material by high frequency irradiation
JPH06193884A (en) 1992-12-21 1994-07-15 Matsushita Electric Ind Co Ltd High frequency heating cooker
US5395453A (en) * 1993-07-29 1995-03-07 Fujitsu Limited Apparatus and method for controlling oscillation output of magnetron
US5653906A (en) * 1994-09-07 1997-08-05 Robertshaw Controls Company Control system for a microwave oven, a microwave oven using such a control system and methods of making the same
US5760544A (en) * 1996-05-31 1998-06-02 Daihen Corporation Magnetron microwave generator with filament-life diagnostic circuit
JP2000105521A (en) 1998-09-29 2000-04-11 Canon Inc Device consisting of a plurality of units and abnormality detecting method and initializing method thereof
US20020066730A1 (en) * 2000-12-06 2002-06-06 Sung-Ho Lee Microwave oven and method of controlling the same
JP2003234173A (en) 2002-02-06 2003-08-22 Matsushita Electric Ind Co Ltd High-frequency heating equipment
US7834299B2 (en) * 2004-12-14 2010-11-16 Enodis Corporation Impingement/convection/microwave oven and method
US20090289056A1 (en) * 2005-11-25 2009-11-26 Panasonic Corporation Power control apparatus for high-frequency dielectric heating and power control method for the same
US7952289B2 (en) * 2007-12-21 2011-05-31 Nordson Corporation UV lamp system and associated method with improved magnetron control
US20090321428A1 (en) * 2008-06-30 2009-12-31 Hyde Roderick A Microwave oven

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report issued in PCT/JP2011/065532, dated Sep. 13, 2011.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150351579A1 (en) * 2014-06-09 2015-12-10 Whirlpool Corporation Method of regulating temperature for sous vide cooking and apparatus therefor
US10085584B2 (en) * 2014-06-09 2018-10-02 Whirlpool Corporation Method of regulating temperature for sous vide cooking and apparatus therefor
US20190223647A1 (en) * 2014-06-09 2019-07-25 Whirlpool Corporation Method of regulating temperature for sous vide cooking and apparatus therefor
USD815485S1 (en) 2016-06-01 2018-04-17 Sharp Kabushiki Kaisha Cooking oven
USD889899S1 (en) 2017-09-28 2020-07-14 Sharp Kabushiki Kaisha Cooking oven

Also Published As

Publication number Publication date
AU2011274876A1 (en) 2013-01-10
CN102960059A (en) 2013-03-06
AU2011274876B2 (en) 2014-07-24
WO2012005316A1 (en) 2012-01-12
JP5624137B2 (en) 2014-11-12
JPWO2012005316A1 (en) 2013-09-05
EP2592900A1 (en) 2013-05-15
US20130087555A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US9271339B2 (en) Microwave oven
KR100709721B1 (en) Electronic defrost timer
JP2000227226A (en) Electronic instrument and its control method
JP4561683B2 (en) Electronics
CN101806257B (en) Operation management apparatus
JP4953758B2 (en) Signal output device and washing machine
KR20000008735U (en) Microwave Cooling Fan Motion Detector
JP4306104B2 (en) Safety management system
US6166364A (en) Microwave oven having a microwave detecting device
CN102163949A (en) Stepping motor control circuit and analogue electronic watch
JP6201467B2 (en) air compressor
KR100643885B1 (en) Method for detecting damage of convection fan of microwave oven
KR101197848B1 (en) Method of Driving a Vacuum Fluorescent Display Device and Displaying Method using the Same for Electronic Range
JP6205284B2 (en) microwave
KR100191527B1 (en) Method for indicating life of the elevator of a microwave oven
KR100262983B1 (en) Apparatus for selftezsting of microwave oven
JP2004101076A (en) Heating cooker
JPH0343676Y2 (en)
KR100329926B1 (en) Microwave oven having a magnetron checking function
JP2010074568A (en) Control circuit for household electric appliance
JPH11283479A (en) Heat-cooking device
KR20000001383A (en) ELECTRIC power SUPPLY CONTROLLING METHOD OF MICROWAVE OVEN
JP2001343129A (en) Heating cooker
JPH05322182A (en) Microwave oven
KR20050108251A (en) Method for detecting cooks of microwave oven

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRANO, SEIICHI;KANBARA, SEIJI;REEL/FRAME:029466/0795

Effective date: 20121107

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362